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Abstract

Since the ’60s of the last century, the calculation of the magnetic anomaly caused by 2D uniformly-polarized bodies with

polygonal cross-section was mainly performed using the popular algorithm of Talwani & Heirtzler (1962, 1964). Recently,

Kravchinsky et al. (2019) claimed errors in the above algorithm formulation, proposing new corrective formulas and questioning

the effectiveness of almost sixty years of magnetic calculations. Here we showed, demonstrating analytical equivalence of the

two approaches, that Kravchinsky et al.’s formulas simply represent an algebraic variant of those of Talwani & Heirtzler.

Moreover, we performed intensive numerical analysis generating a large amount of random magnetic scenarios, involving both

changing-shape polygons and a realistic geological model, showing a complete agreement among the magnetic responses of

the two discussed algorithms and the one proposed by Won & Bevis (1987). Additionally, we released the source code of the

algorithms in Julia and Python languages.

Hosted file

ghirotto_et_al-2020-grl-supporting_information.docx available at https://authorea.com/

users/550578/articles/604039-magnetic-anomalies-caused-by-2d-polygonal-structures-with-

uniform-arbitrary-polarization-new-insights-from-analytical-numerical-comparison-among-

available-algorithm-formulations

1

https://authorea.com/users/550578/articles/604039-magnetic-anomalies-caused-by-2d-polygonal-structures-with-uniform-arbitrary-polarization-new-insights-from-analytical-numerical-comparison-among-available-algorithm-formulations
https://authorea.com/users/550578/articles/604039-magnetic-anomalies-caused-by-2d-polygonal-structures-with-uniform-arbitrary-polarization-new-insights-from-analytical-numerical-comparison-among-available-algorithm-formulations
https://authorea.com/users/550578/articles/604039-magnetic-anomalies-caused-by-2d-polygonal-structures-with-uniform-arbitrary-polarization-new-insights-from-analytical-numerical-comparison-among-available-algorithm-formulations
https://authorea.com/users/550578/articles/604039-magnetic-anomalies-caused-by-2d-polygonal-structures-with-uniform-arbitrary-polarization-new-insights-from-analytical-numerical-comparison-among-available-algorithm-formulations


manuscript submitted to Geophysical Research Letters 

 

Magnetic anomalies caused by 2D polygonal structures with uniform arbitrary polarization: new 1 

insights from analytical/numerical comparison among available algorithm formulations 2 

 3 

Alessandro Ghirotto1, Andrea Zunino2,3, Egidio Armadillo1, Klaus Mosegaard2 4 

 5 

1 DISTAV, Applied Geophysics Laboratory, University of Genova, Genoa, Italy 6 

2 Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark 7 

3 Now at the Institute of Geophysics, ETH Zürich, Zürich, Switzerland  8 

 9 

Corresponding author: Alessandro Ghirotto (alessandro.ghirotto@edu.unige.it) 10 

 11 

Key points 12 

 13 

 Kravchinsky et al. (2019) claimed errors and omissions in the formulas of Talwani & Heirtzler 14 

(1962) for 2D forward magnetic calculation 15 

 Our analysis reveals that Kravchinsky et al.'s formulas are algebraically equivalent to those of 16 

Talwani & Heirtzler 17 

 Numerical tests show a complete agreement among the two above formulations and the one by Won 18 

& Bevis (1987) 19 

 20 

 21 

 22 

 23 

 24 

 25 

 26 

 27 

 28 

 29 

 30 

 31 

 32 

 33 

 34 

 35 

 36 

 37 

mailto:alessandro.ghirotto@edu.unige.it


manuscript submitted to Geophysical Research Letters 

 

Abstract 38 

 39 

Since the ’60s of the last century, the calculation of the magnetic anomaly caused by 2D uniformly-polarized 40 

bodies with polygonal cross-section was mainly performed using the popular algorithm of Talwani & 41 

Heirtzler (1962, 1964). Recently, Kravchinsky et al. (2019) claimed errors in the above algorithm 42 

formulation, proposing new corrective formulas and questioning the effectiveness of almost sixty years of 43 

magnetic calculations. Here we showed, demonstrating analytical equivalence of the two approaches, that 44 

Kravchinsky et al.’s formulas simply represent an algebraic variant of those of Talwani & Heirtzler. 45 

Moreover, we performed intensive numerical analysis generating a large amount of random magnetic 46 

scenarios, involving both changing-shape polygons and a realistic geological model, showing a complete 47 

agreement among the magnetic responses of the two discussed algorithms and the one proposed by Won & 48 

Bevis (1987). Additionally, we released the source code of the algorithms in Julia and Python languages. 49 

 50 

Plain Language Summary 51 

 52 

Forward magnetic calculation plays a major role in geophysics to model magnetization, location and shape 53 

of magnetic anomaly sources in unknown areas investigated by a magnetic survey. One of the most popular 54 

approaches to calculate the magnetic anomaly due to two-dimensional bodies is based on the Talwani & 55 

Heirtzler’s formulas (1962, 1964), that have been widely used both for scientific and industrial applications 56 

from the sixties. Recently, these formulas have been questioned by Kravchinsky et al. (2019), casting doubts 57 

on the truthfulness of all the magnetic models and interpretations obtained to date. In order to find a 58 

clarification, we examined and compared the two calculation approaches, both from an analytical and 59 

numerical point of view. In detail, after rectifying some inaccuracies in Kravchinsky et al.’s formulas, we 60 

found complete equivalence between the two discussed formulations, showing that they simply represent two 61 

algebraic variants of the same mathematical approach. We also performed intensive numerical tests 62 

comparing the results of the two algorithms with a third one proposed by Won & Bevis (1987). The three 63 

mathematical approaches gave the same magnetic responses for all the tested models, demonstrating total 64 

agreement between the three formulations. 65 

 66 

1. Introduction 67 

 68 

Modeling of magnetic anomalies is a fundamental tool in exploration geophysics. Since the appearance 69 

of early electronic computers, calculation of the magnetic field from models of the subsurface and the 70 

related inverse problem have played a major role in investigating the geological framework of unknown 71 

areas.  72 

An early mathematical formulation for anomalies due to 2D polygonal structures of uniform polarization 73 

is found in Talwani & Heirtzler (1962, 1964). Their algorithm remains the most used and cited to date. 74 
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Thanks to its wide applicability, Talwani & Heirtzler’s approach has become popular, both for 75 

expeditious interpretation of magnetic data and as a forward operator involved in inverse methods. 76 

Moreover, the aforementioned 2D formulation can be modified to extended to 3D bodies (Talwani, 77 

1965; Plouff 1975, 1976). More recently, Won & Bevis (1987) proposed an evolution of the original 78 

formulation by Talwani & Heirtzler which avoids the use of trigonometric functions, achieving a speed 79 

up of the calculation of magnetic anomaly. 80 

Another popular approach, which considers 2D or 3D prism-shaped bodies instead of polygonal-shaped 81 

ones, is that proposed in Bhattacharyya (1964). Such approach leads to a formulation where the 82 

subsurface is modelled as a set of prismatic bodies, often a set of rectangular cells, characterized by 83 

constant magnetic properties. 84 

Despite the fact that in recent years forward calculations have moved toward the computation of 85 

magnetic anomalies caused by 3D bodies, hand in hand with the rapid increase in CPU speed, 2D 86 

modeling still represents a widely utilized tool to quickly and intuitively gain a better understanding of 87 

the subsurface. Moreover, the much lower computational requirements for 2D calculations make them 88 

viable for simple interpretations of the magnetic signatures (e.g. in a trial and error approach) and to 89 

performing analysis directly on the field (e.g. on a laptop). 90 

Since the introduction of the abovementioned algorithms, the 2D approach developed in the attempt to 91 

overcome the simplistic assumption of a uniform polarization in magnetized bodies, trying to consider 92 

both demagnetization effects and non-uniform magnetization (Bhattacharyya & Navolio, 1975, 1976; 93 

Bhattacharyya & Chan, 1977; Ku, 1977; Blokh, 1980; Mariano & Hinze, 1993; Kostrov, 2007). 94 

Unfortunately, the mathematical expressions involved often represent an unrealistic approximation with 95 

respect to the experimentally observed spatial variation of rock magnetization. For a more detailed 96 

presentation of the main developments in forward magnetic calculation methods, readers are referred to 97 

Nabighian et al. (2005) and Kostrov (2007). 98 

Very recently, Kravchinsky et al. (2019) suggested the evidence of omissions and errors in the 99 

formulation of Talwani & Heirtzler (1962, 1964) that would lead to unfitting magnetic anomalies, 100 

proposing a modified algorithm to avoid that. 101 

In this paper we compare the original formulations of Talwani & Heirtzler (1962, 1964), Won & Bevis 102 

(1987) and the newer Kravchinsky et al. (2019) both from analytical and numerical points of view. For 103 

the former, the algorithms have been analyzed in order to highlight algebraic differences and similarities, 104 

while for the latter they have been tested and compared in a huge amount of randomly generated 105 

scenarios involving both induced and remnant magnetization on shape-changing polygons, to detect 106 

possible numerical differences or failing scenarios. In detail, we start by illustrating the three 107 

formulations of the algorithms in section 2 and then we discuss in deep the similarities and differences in 108 

section 3. We finally show that, after fixing some issues in Kravchinsky et al. (2019), their formulation 109 

and that of Talwani & Heirtzler (1962, 1964) are essentially the same algorithm, and that all three 110 

algorithms, i.e. including Won & Bevis (1987), produce the same results. 111 
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In addition, we release a set of open source codes written in Python and Julia languages illustrating the 112 

described algorithms (see section “Algorithms code availability”).   113 

 114 

2. Algorithm formulations 115 

 116 

Let us consider a three-dimensional non-magnetic space in which a body infinitely extended in y 117 

direction is immersed. The common aim of all formulations is the calculation of the magnetic field of 118 

this body upon observation points located along a profile aligned to the x direction at a certain height (the 119 

positive z axis is assumed pointing downward). The starting assumption is that our body can be 120 

considered as discretized by an infinite number of uniformly-magnetized elementary volumes with 121 

infinitesimal dimensions dx, dy, dz. Within this assumption, the magnetic field associated to the body can 122 

be mathematically expressed in terms of a line integral around its periphery, represented in two 123 

dimensions as its polygonal cross-section (figure 1a). The specific procedures for each formulation are 124 

summarized in the subsections below. For the respective detailed derivations, the reader is referred to 125 

Talwani & Heirtzler (1962, 1964), Kravchinsky et al. (2019) and Won & Bevis (1987). 126 

 127 

Figure 1 – a) Elementary volume with uniform magnetization immersed in a non-magnetic space. This volume can be 128 
extended in the space to define an infinitely elongated body in the y direction. The polygon in red represents the cross-129 
section of this body, that we consider for computing the magnetic field relative to the entire body. Modified from 130 
Kravchinsky et al. (2019). b) Sketch of all the parameters involved in the calculation of the vertical V and horizontal H 131 
magnetic strength in Talwani & Heirtzler’s algorithm. The semi-infinite lamina of thickness dz expands to form a semi-132 
infinite prism with section ABJK built on the side AB of the body. Modified from Kravchinsky et al. (2019). c) 133 
Representation of the laminas with thickness dz built along the polygon sides AB and GH drawn in figure a). Moving in a 134 
counterclockwise order (black arrows), the lamina along the side AB, defining a semi-infinite infinitesimal prism elongated 135 
in the positive x direction (red), provides a positive field, whereas the lamina on the side CD provides a negative field, 136 
smaller in absolute value owing to the less extended semi-infinite infinitesimal prism defined along this side (blue). The 137 
resulting magnetic anomaly, obtained as scalar sum between the total fields caused by the two laminas, is relative to the 138 
area in yellow inside the polygon. 139 
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 140 
2.1. Talwani & Heirtzler 141 

 142 

The formulation of Talwani & Heirtzler (1962, 1964) starts from the definition of the 143 

magnetic potential Ω: 144 

 145 

 
𝛺 =

𝑀⃗⃗  𝑑𝑥𝑑𝑦𝑑𝑧 𝑅⃗ 

𝑅3
 (1) 

 146 

relative to an elementary volume with uniform magnetization 𝑀⃗⃗  and distance R from the 147 

observation point with coordinates (x0,z0). Integrating expression (1) from negative to 148 

positive infinity in the y direction, we achieve the magnetic potential due to an infinitely 149 

elongated prism (figure 1a). The vertical V and horizontal H components of the magnetic 150 

strength of this prism can be obtained differentiating its magnetic potential with respect to x 151 

and z directions (the derivative of the magnetic potential along y is null not appearing this 152 

variable in the expression of the potential; see Talwani & Heirtzler (1962)). Now, integrating 153 

V and H from x to positive infinity, we obtain new expressions for V and H: 154 

 155 

 
V  = 2 

𝑀𝑥𝑧  −  𝑀𝑧𝑥

(𝑥2  +  𝑧2)
 dz    (2) 

 
H  =  2 

𝑀𝑥𝑥  −  𝑀𝑧𝑧

(𝑥2  +  𝑧2)
 dz (3) 

 156 

that are relative to a semi-infinite lamina with thickness dz (figure 1b). Mx and Mz represent 157 

the components of the magnetization vector 𝑀⃗⃗  along the x and z axes. 𝑀⃗⃗  is characterized by 158 

its own inclination and declination, that differ from that of the Earth magnetic field in the 159 

case of a remnant magnetization contribution. In the case of coexistence of induced and 160 

remnant magnetization, the resultant magnetization vector is the vectorial sum of both 161 

contributions (figure 2a-b). 162 

Now, let us imagine for instance to extend this lamina along the polygon side AB shown in 163 

figure 1b: integrating (2)-(3) from z1 to z2, representing the z coordinates of the side vertices 164 

taken in a counterclockwise order, V and H after several steps alter as follow: 165 

 166 

 𝑉  =  2 𝑠𝑖𝑛 𝜙 [𝑀𝑥 {(𝜃2  −  𝜃1) 𝑐𝑜𝑠 𝜙   +   𝑠𝑖𝑛 𝜙 𝑙𝑛 (
𝑟2
𝑟1

)} +  

−  𝑀𝑧 {(𝜃2 −  𝜃1) 𝑠𝑖𝑛 𝜙   −   𝑐𝑜𝑠 𝜙 𝑙𝑛
𝑟2
𝑟1

}] 

(4) 
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 𝐻  =  2 𝑠𝑖𝑛 𝜙 [𝑀𝑥 {(𝜃2  −  𝜃1) 𝑠𝑖𝑛 𝜙   −   𝑐𝑜𝑠 𝜙 𝑙𝑛 (
𝑟2
𝑟1

)} +  

+  𝑀𝑧 {(𝜃2 −  𝜃1) 𝑐𝑜𝑠 𝜙   + 𝑠𝑖𝑛 𝜙 𝑙𝑛
𝑟2
𝑟1

}] 

(5) 

 167 

with: 168 

 169 

 
𝑟1 =  √𝑥1

2  +  𝑧1
2    ;     𝑟2  =  √𝑥2

2  +  𝑧2
2 (6) 

 170 

and the following angles: 171 

 172 

 𝜃1 =   𝑡𝑎𝑛−1 (
𝑧1

𝑥1
)  ;   𝜃2 =   𝑡𝑎𝑛−1 (

𝑧2

𝑥2
) (7) 

 𝜙 =   𝑐𝑜𝑡−1 (
𝑥1 − 𝑥2

𝑧2 − 𝑧1
) (8) 

   173 

Notice that x1, x2, z1, z2 are respectively the x and z coordinates of the side vertices taken in a 174 

counterclockwise order with respect to an observation point (x0, z0) where the magnetic 175 

anomaly is calculated (figure 1b).  176 

Equations (4)-(5) represents the vertical and horizontal components of the magnetic strength 177 

due to a semi-infinite prism with section ABKJ (K and J located at infinity) built on the side 178 

AB (figure 1b). These equations can be rewritten in a simplified fashion as: 179 

 180 

 𝑉  =  2(𝑀𝑥𝑄  −  𝑀𝑧𝑃) (9) 

 𝐻  =  2(𝑀𝑥𝑃  +  𝑀𝑧𝑄) (10) 

 181 

in which the terms P and Q are: 182 

 183 

     184 

w185 

here: 186 

 𝑥21  =  𝑥2  −  𝑥1   ;    𝑧21  =  𝑧2  −  𝑧1 (13) 

 187 

In the case z21 = 0, both P and Q become zero and therefore the side provides no magnetic 188 

contribution. 189 

 
𝑃  =  

𝑧21 𝑥21

𝑧21
2   +  𝑥21

2   𝑙𝑛
𝑟2
𝑟1

  +   
𝑧21
2

𝑧21
2   +  𝑥21

2  (𝜃2  −  𝜃1) (11) 

 
𝑄  =  

𝑧21
2

𝑧21
2   +  𝑥21

2   𝑙𝑛
𝑟2
𝑟1

  −  
𝑧21 𝑥21

𝑧21
2   +  𝑥21

2  (𝜃2  −  𝜃1)  (12) 
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Now, the total field scalar anomaly is obtained as vectorial projection of V and H along the 190 

direction of the Earth magnetic field as follows: 191 

 192 

 𝑇  =  𝑉 𝑠𝑖𝑛 𝐼 + 𝐻  𝑐𝑜𝑠 𝐼 𝑠𝑖𝑛(𝑃  −  𝐷) (14) 

   193 

where I and D are respectively the inclination and declination of the Earth magnetic field, 194 

whereas P is the angle between the Geographic North and the profile direction along with 195 

the magnetic field of the body is computed (figure 2a).  196 

Finally, since the polygon consists of n sides, the overall total field scalar anomaly is 197 

computed by summing over the contributions T relative to each side in a counterclockwise 198 

order. A simplified representation of the physical meaning of the latter operation is 199 

illustrated in figure 1c. 200 

 201 

Figure 2 – a) Total Earth magnetic field 𝐻⃗⃗ , characterized by changing inclination I and declination D as a 202 
function of profile location upon Earth surface. I is defined as the angle made by 𝐻⃗⃗  with the horizontal plane and 203 
D as the angle between the Magnetic and the Geographic Norths. In detail, I may vary from ± 90° (respectively at 204 
North and South Poles) to 0° (at the equator) and D from 180° to -180°. The angle P define the orientation of the 205 
profile direction (x axis) along with the computation of the magnetic field is performed. β is the angle between the 206 
magnetic north and the negative direction of the body elongation (-y). I, D, P are taken clockwise, whereas β 207 
counterclockwise. b) Total magnetization vector 𝑀⃗⃗ , defined as the vectorial sum of induced 𝑀𝚤

⃗⃗ ⃗⃗   and remnant 𝑀𝑟
⃗⃗ ⃗⃗  ⃗ 208 

magnetization. It is characterized by own inclination Im and declination Dm. In the case of induced magnetization 209 
solely, then Im = I and Dm = D.    210 
  211 

2.2. Kravchinsky et al. 212 

 213 

Kravchinsky et al. (2019) suggested the existence of some mathematical omissions and 214 

errors in the original formulation of Talwani & Heirtzler (1962, 1964), with consequently 215 

possible failure of magnetic anomaly calculations. Nevertheless, this new formulation 216 

derives closely from that of Talwani & Heirtzler (1962, 1964), starting from the definition of 217 

the magnetic potential in the case of SI units (modified by a factor 
1

4𝜋
 with respect to (1)). 218 

The mathematical derivation partially differs during the integration from z1 to z2 leading to 219 
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the Talwani & Heirtzler’s corresponding equations (2)-(3), owing to a different definition of 220 

x, leading to the following new modified terms P and Q (Kravchinsky et al., 2019): 221 

 222 

 223 

w224 

h225 

e226 

r227 

e228 

 the meanings of r1, r2, x21, z21 are defined in (6)-(13).  229 

Now recalling (13), then 230 

 𝑔  =  
𝑥21

𝑧21
 (17) 

 231 

and 232 

 
δ  = {

−1, 𝑥1 < 𝑔𝑧1

1, 𝑥1 > 𝑔𝑧1
 (18) 

 
α1  =   tan−1 (

δ(𝑧1  +  𝑔𝑥1)

𝑥1  −  𝑔𝑧1
) (19) 

 
α2  =   tan−1 (

δ(𝑧2  +  𝑔𝑥2)

𝑥2  −  𝑔𝑧2
) (20) 

 233 

The new relations (15)-(16) appear very similar to the previous equations (11)-(12), where 234 

the major difference seems to be related to the angles α1 and α2 in place of Talwani’s θ1 and 235 

θ2 (cfr. eqs (7)-(19)-(20)). In addition to a different expression, α1 and α2 present also a δ 236 

term in order to take into account an absolute value appearing during the derivation in both 237 

the denominators in the arguments of the arctangents (cfr. Kravchinsky et al., 2019 – 238 

Supporting Information). 239 

Now, the computation of the vertical and horizontal components of the magnetic strength V 240 

and H is achieved by means of the following equations: 241 

 242 

 
𝑉  =  

1

2π
(𝑀𝑥𝑄  −  𝑀𝑧𝑃) (21) 

 
𝐻  =  

1

2π
(𝑀𝑥𝑃  +  𝑀𝑧𝑄) (22) 

 243 

 
P  =  

𝑧21 𝑥21

𝑧21
2   +  𝑥21

2  𝑙𝑛
𝑟2
𝑟1

  +   δ
𝑧21
2

𝑧21
2   +  𝑥21

2  (α2 − α1) (15) 

 

 𝑄 =  
𝑧21
2

𝑧21
2   +  𝑥21

2   𝑙𝑛
𝑟2
𝑟1

  −  δ
𝑧21 𝑥21

𝑧21
2   +  𝑥21

2  (α2 − α1)  

 

(16) 
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which differs from Talwani & Heirtzler’s ones only of a factor 
1

4𝜋
 owing to the utilization of 244 

SI instead of emu units. 245 

At this point, the computation of the scalar total field magnetic anomaly of the entire body 246 

should be carried out using eq. (14) for each polygon side in a counterclockwise order as for 247 

Talwani & Heirtzler’s algorithm. On the contrary, the authors (Kravchinsky et al., 2019) 248 

specify a clockwise order that, from a physical point of view, corresponds to having a semi-249 

infinite polygon in the opposite x direction built for each side, resulting in a negative scalar 250 

total field (-T) contribution. In the supporting information we explain how such issue has 251 

been corrected. 252 

 253 

2.3. Won & Bevis 254 

 255 

Won & Bevis (1987) proposed a faster approach to compute the magnetic anomaly thanks to 256 

the substitution of trigonometric functions with simpler relations referred to the vertex 257 

coordinates of the polygon (e.g. Grant & West, 1965). Moreover, this formulation allows to 258 

perform magnetic calculation even in the case of side vertices crossing the x axis (we have 259 

extended this possibility to the other two algorithms in the code attached to this paper). 260 

However, the theory behind this algorithm differs from that previously examined, being the 261 

formulation derived by means of the Poisson relation (Won & Bevis, 1987). This relation 262 

links the gravitational attraction to the scalar magnetic potential of a body, taking advantage 263 

from the fact that some similarities are observed between them. For instance, both have 264 

magnitude that is inversely proportional to the square of the distance to the relative sources 265 

(Blakely, 1995). The Poisson relation can be differentiated to obtain the magnetic strength 266 

vector 𝐻⃗⃗  as follow: 267 

 268 

 
𝐻⃗⃗   =  

𝑀

𝐺ρ

∂

∂α
𝑔′⃗⃗  ⃗ (23) 

 269 

where M is the magnetization module, G the gravitational constant, ρ the body density and 270 

𝑔′⃗⃗  ⃗ the gravitational attraction related to the body.  271 

The term 
𝜕

𝜕𝛼
 is defined as follows: 272 

 273 

 ∂

∂α
  ≡  𝑠𝑖𝑛𝐼𝑚

∂

∂𝑧
+ 𝑠𝑖𝑛β𝑐𝑜𝑠𝐼𝑚

∂

∂𝑥
 (24) 

 274 

where Im represents the inclination of the magnetization vector and β the strike of the body 275 

measured counterclockwise from magnetic north to the negative y axis (figure 2a). This 276 
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relation is used to achieve the magnetic strength components of a polygon side along x and z, 277 

that are: 278 

 
𝐻𝑧   =  

𝑀

𝐺ρ
  (𝑠𝑖𝑛𝐼𝑚

∂𝑔𝑧
′

∂𝑧
+ 𝑐𝑜𝑠𝐼𝑚𝑠𝑖𝑛β

∂𝑔𝑧
′

∂𝑥
) (25) 

 
𝐻𝑥   =  

𝑀

𝐺ρ
  (𝑠𝑖𝑛𝐼𝑚

∂𝑔𝑥
′

∂𝑧
+ 𝑐𝑜𝑠𝐼𝑚𝑠𝑖𝑛β

∂𝑔𝑥
′

∂𝑥
) (26) 

 279 

where g’x and g’z are the x and z components of the gravitational attraction of the body, 280 

defined as: 281 

 282 

 𝑔𝑥
′ =  2Gρ𝑋  ;   𝑔𝑧

′ =  2Gρ𝑍 (27) 

 283 

with X and Z representing line integrals along the polygon side (refer to Won & Bevis (1987) 284 

for details).  285 

Recalling (6)-(7)-(13)-(17), the partial derivatives of X and Z in respect to x and z are 286 

respectively: 287 

 288 

 𝜕𝑋

𝜕𝑥
=

𝑥21𝑧21

𝑥21
2 + 𝑧21

2   [
1

𝑔
 (𝜃1 − 𝜃2)  −   𝑙𝑛

𝑟2
𝑟1

]   +  𝑃 (28) 

 𝜕𝑋

𝜕𝑧
= −

𝑥21
2

𝑥21
2 + 𝑧21

2   [
1

𝑔
 (𝜃1 − 𝜃2)  −   𝑙𝑛

𝑟2
𝑟1

]   +  𝑄 (29) 

 𝜕𝑍

𝜕𝑥
= −

𝑥21𝑧21

𝑥21
2 + 𝑧21

2   [(𝜃1 − 𝜃2) +
1

𝑔
𝑙𝑛

𝑟2
𝑟1

]   +  𝑄 (30) 

 𝜕𝑍

𝜕𝑧
= −

𝑥21
2

𝑥21
2 + 𝑧21

2  
  [(𝜃1 − 𝜃2) +

1

𝑔
𝑙𝑛

𝑟2
𝑟1

]   −  𝑃 (31) 

 289 

 290 

where now: 291 

 292 

 
𝑃  =  

𝑥1𝑧2 − 𝑥2𝑧1

𝑥21
2 + 𝑧21

2 [
𝑥1𝑥21 − 𝑧1𝑧21

𝑟1
2 −

𝑥2𝑥21 − 𝑧2𝑧21

𝑟2
2 ] (32) 

 
Q  =  

𝑥1𝑧2 − 𝑥2𝑧1

𝑥21
2 + 𝑧21

2 [
𝑥1𝑧21 + 𝑧1𝑥21

𝑟1
2 −

𝑥2𝑧21 + 𝑧2𝑥21

𝑟2
2 ] (33) 

 293 

 294 

As in the previous derivations, the total field scalar anomaly of the side is obtained as a 295 

projection of V and H onto the Earth magnetic field: 296 

 297 
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 T = 𝐻𝑧sinI + 𝐻𝑥cosIsin (34) 

 298 
 299 
Contrary to the two preceding algorithms, now the computation of the total field scalar 300 

magnetic anomaly of the body using (34) should be carried out in clockwise order.  301 

 302 
 303 

3. Discussion 304 
3.1. Analytical results 305 

 306 

The three formulations discussed in this paper share the same purpose, i.e. to calculate the magnetic 307 

anomaly due to a body with uniform magnetization and polygonal section. Among these, those of 308 

Talwani and Heirtzler (1962, 1964) and Kravchinsky et al. (2019) present similar derivations, with some 309 

differences. In principle, Kravchinsky et al. (2019) addressed some mathematical errors and omissions in 310 

the original derivation of Talwani & Heirtzler, revealing some inconsistencies in magnetic anomaly 311 

calculation. However, after analyzing the two formulations, some inaccuracies in Kravchinsky et al. 312 

(2019) have been found. These issues are related to i) the order of calculation around the polygon sides 313 

(clockwise/counterclockwise), ii) the use of the cosine theorem formula and iii) the projection of V and H 314 

along the Earth magnetic field vector. A detailed discussion of these findings is provided in the 315 

supporting information of this paper. 316 

Regarding to the corrections brought to Talwani and Heirtzler (1962, 1964) by Kravchinsky et al. (2019), 317 

they mainly concern: a) a modification of the definitions of the angles θ1 and θ2 and b) an addition of a δ 318 

term in order to account for an absolute value which appears in their derivation.  319 

In the following, we illustrate how the two algorithms, after removing the inaccuracies in Kravchinsky et 320 

al. (2019), can be reconciled to a single approach, showing their equivalence from an analytic point of 321 

view. For this purpose, let us rewrite expressions (19)-(20) substituting the term δ with an absolute value 322 

at both the denominators in the argument of the arctangents, since 𝑥1  −  𝑔𝑧1 = 𝑥2  −  𝑔𝑧2 (refer to the 323 

supporting information of Kravchinsky et al. (2019) for an explanation): 324 

 325 

 
𝛼1  =   𝑡𝑎𝑛−1 (

𝑧1  +  𝑔𝑥1

|𝑥1  −  𝑔𝑧1|
) (35) 

 
𝛼2  =   𝑡𝑎𝑛−1 (

𝑧2  +  𝑔𝑥2

|𝑥2  −  𝑔𝑧2|
) (36) 

 326 

where the term g is the same than the one presented in eq. (17). Then, by cancelling out x1 and x2  both in 327 

the numerator and denominator of the argument of the respectively arctangents α1 and α2, we can 328 

distinguish two cases: 329 

 330 

1. if 𝑥1  −  𝑔𝑧1 = 𝑥2  −  𝑔𝑧2  >  0  (that is δ = 1 in (19)-(20)): 331 
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 332 

 

α1 = ta𝑛−1 (
𝑧1  +  𝑔𝑥1

𝑥1  −  𝑔𝑧1
) = ta𝑛−1 (

𝑧1
𝑥1

  +  𝑔

1  −  
𝑧1
𝑥1

𝑔
) (37) 

 

𝛼2 = 𝑡𝑎𝑛−1 (
𝑧2  +  𝑔𝑥2

𝑥2  −  𝑔𝑧2
) = 𝑡𝑎𝑛−1 (

𝑧2
𝑥2

  +  𝑔

1  −  
𝑧2
𝑥2

𝑔
) (38) 

 333 

2. if 𝑥1  −  𝑔𝑧1 = 𝑥2  −  𝑔𝑧2 < 0  (that is δ = -1 in (19)-(20)): 334 

 335 

 

𝛼1 = 𝑡𝑎𝑛−1 (−
𝑧1  +  𝑔𝑥1

𝑥1  −  𝑔𝑧1
) = 𝑡𝑎𝑛−1 (−

𝑧1
𝑥1

  +  𝑔

1  −  
𝑧1
𝑥1

𝑔
) (39) 

 

𝛼2 = 𝑡𝑎𝑛−1 (−
𝑧2  +  𝑔𝑥2

𝑥2  −  𝑔𝑧2
) = 𝑡𝑎𝑛−1 (−

𝑧2
𝑥2

  +  𝑔

1  −  
𝑧2
𝑥2

𝑔
) (40) 

 336 

Now, using the mathematical relation combining sums of arctangents in a unique arctangent expression: 337 

 338 

 

 tan−1A + tan−1B = {
𝑡𝑎𝑛−1 (

𝐴 + 𝐵

1 − 𝐴𝐵
) ,                                        𝐴𝐵 < 1 

𝑡𝑎𝑛−1 (
𝐴 + 𝐵

1 − 𝐴𝐵
) + (𝑠𝑖𝑔𝑛 𝑜𝑓 𝐴)𝜋, 𝐴𝐵 > 1

 (41) 

 339 

then we can rewrite (37)(40) as: 340 

 341 

 

α1   =  ta𝑛−1 (
𝑔 +

𝑧1
𝑥1

1 − 𝑔
𝑧1
𝑥1

)   =  ta𝑛−1(𝑔) +  ta𝑛−1 (
𝑧1

𝑥1
)    (42) 

 

α2  = 𝑡𝑎𝑛−1 (
𝑔 +

𝑧2
𝑥2

1 − 𝑔
𝑧2
𝑥2

)   =  𝑡𝑎𝑛−1(𝑔) + 𝑡𝑎𝑛−1 (
𝑧2

𝑥2
)     (43) 

 342 

when the product  
𝑧1

𝑥1
𝑔 =

𝑧2

𝑥2
𝑔 < 1, and: 343 

 

α1  =  ta𝑛−1 (−
𝑔 +

𝑧1
𝑥1

1 − 𝑔
𝑧1
𝑥1

)   = − ta𝑛−1 (
𝑔 +

𝑧1
𝑥1

1 − 𝑔
𝑧1
𝑥1

)

= −ta𝑛−1(𝑔) − ta𝑛−1 (
𝑧1

𝑥1
) + (𝑠𝑖𝑔𝑛 𝑜𝑓 𝑔)π 

(44) 
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α2  = ta𝑛−1 (−
𝑔 +

𝑧2
𝑥2

1 − 𝑔
𝑧2
𝑥2

)   = − ta𝑛−1 (
𝑔 +

𝑧2
𝑥2

1 − 𝑔
𝑧2
𝑥2

)

= −ta𝑛−1(𝑔) − ta𝑛−1 (
𝑧2

𝑥2
) + (𝑠𝑖𝑔𝑛 𝑜𝑓 𝑔)π  

(45) 

 344 

when  
𝑧1

𝑥1
𝑔 =

𝑧2

𝑥2
𝑔 > 1. 345 

As it is apparent, the terms  𝑡𝑎𝑛−1 (
𝑧1

𝑥1
) and 𝑡𝑎𝑛−1 (

𝑧2

𝑥2
) are exactly equivalent to the expressions of θ1 346 

and θ2 in Talwani & Heirtzler (1962, 1964) (see figure S4 in the supporting information for details 347 

concerning the angles involved in Kravchinsky et al. (2019) formulation).  Hence, cancelling out each 348 

term 𝑡𝑎𝑛−1(𝑔), in the case (1) the difference α2 – α1 will always be algebraically the difference θ2 – θ1, 349 

whereas in (2) α2 – α1 will be equal to – (θ2 – θ1). Recalling now the expressions (11)-(12) for P and Q in 350 

Talwani & Heirtzler (1962, 1964),  351 

 352 

 353 

and the homologous (15)-(16) in Kravchinsky et al. (2019), 354 

 355 

 
𝑃  =  

𝑧21 𝑥21

𝑧21
2   +  𝑥21

2   𝑙𝑛
𝑟2
𝑟1

  +  𝛿
𝑧21
2

𝑧21
2   +  𝑥21

2  (𝛼2  −  𝛼1) (15) 

 
 Q  =  

𝑧21
2

𝑧21
2   +  𝑥21

2   ln
𝑟2
𝑟1

  −  δ
𝑧21 𝑥21

𝑧21
2   +  𝑥21

2  (α2  −  α1)  (16) 

 356 

 357 

we can observe that the formulations differ for another term δ multiplying the difference α2 – α1. If we 358 

are in the case (2), eq. (44)-(45), we have δ = -1, then the difference α2 – α1 again leads back to θ2 – θ1. 359 

Hence, contrary to what pointed out by the authors, we have demonstrated that the formulation of 360 

Kravchinsky et al. (2019) does not differ from that of Talwani & Heirtzler (1962, 1964), rather it simply 361 

represents an algebraic variant, leading to identical results in terms of computed magnetic anomalies. For 362 

this reason, either formulations can be considered as a single approach and used without any distinctions.  363 

Regarding the Won & Bevis’ (1987) formulation, it is not easily comparable in details to the other two 364 

from an analytical point of view, being derived from different assumptions and theoretical approach. 365 

However, in the following section we compare it from a numerical point of view in order to understand 366 

whether its calculated magnetic response is always in agreement with that of the other algorithms.   367 

 
𝑃  =  

𝑧21 𝑥21

𝑧21
2   +  𝑥21

2   𝑙𝑛
𝑟2
𝑟1

  +   
𝑧21
2

𝑧21
2   +  𝑥21

2  (𝜃2  −  𝜃1) (11) 

 
𝑄  =  

𝑧21
2

𝑧21
2   +  𝑥21

2   𝑙𝑛
𝑟2
𝑟1

  −  
𝑧21 𝑥21

𝑧21
2   +  𝑥21

2  (𝜃2  −  𝜃1)  (12) 
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 368 

3.2. Numerical results 369 

 370 

Two different numerical tests have been implemented using the above algorithm formulations (i.e. 371 

considering our rectified version for that of Kravchinsky et al. (2019)) in order to achieve two different 372 

purposes, namely i) to detect possible issues and irregularities in magnetic anomaly computation in a 373 

wide variety of random magnetic scenarios and ii) to assess the results in a more realistic geological 374 

context upon sane magnetic scenarios, more helpful for geophysical applications.  375 

The former purpose has been accomplished by means of a random changing-shape generation of up to 376 

five polygons repeated for 1000000 iterations (i.e. magnetic scenarios). In detail, both induced 𝑀𝚤
⃗⃗ ⃗⃗   and 377 

𝑀𝑟
⃗⃗ ⃗⃗  ⃗  remnant magnetizations changing have been limited in a range between 0 and 50 A/m, their 378 

inclination and declination respectively between -90° and 90° and between -180° and 180°. One hundred 379 

observation points have been located evenly spaced at a constant clearance of 10 meters (toward up) 380 

along a profile 100 meters long. Figure 4a shows one of these iterations (for the relative frequency of the 381 

magnetic properties tested see figure S5 in the supporting information of this paper). 382 

During the test, a huge amount of combinations between the above magnetic properties have been 383 

sampled, showing in all cases full agreement between the three algorithms. Moreover, none anomalous 384 

or failing magnetic computations have been detected. 385 

For what concern the second purpose, it has been carried out for the same number of iterations in a more 386 

realistic geological context like that modelled in Armadillo et al. (2020). The bodies modelled are three 387 

polygons with fixed geometries, representing a horst tectonic structure (figure 4b).  In this test, the 388 

random variation of both induced and remnant magnetization has been restricted up to 5 A/m, 389 

representing a realistic value for geophysical studies. The range of variation for the others magnetic 390 

properties is the same of the former test. The external bodies extend respectively up to -100000 and 391 

100000 meters in x direction to avoid “border effects”. Being these bodies represented by the same 392 

lithotype, we have assigned to them the same induced 𝑀𝚤
⃗⃗ ⃗⃗    and remnant 𝑀𝑟

⃗⃗ ⃗⃗  ⃗  magnetization and the 393 

respective inclinations and declinations. For geological consistency, the central body is characterized by 394 

induced magnetization with same inclination and declination of that of the lateral bodies, but different 395 

module |𝑀𝚤|⃗⃗ ⃗⃗ ⃗⃗  ⃗. In addition, it is characterized by different remnant magnetization module, inclination and 396 

declination. During each iteration, the magnetic properties randomly are changed following the rules 397 

described. One thousand observation points have been located evenly spaced at a constant clearance of 398 

100 meters (toward up) along a profile 15000 meters long. Figure 4b presents one iteration relative to 399 

this analysis. 400 
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 401 

Figure 3 – a) Magnetic responses (green curves) due to four randomly generated polygons upon a magnetic scenario using the 402 
three algorithms of Talwani & Heirtzler (1962, 1964), Won & Bevis (1987) and Kravchinsky et al. (2019). In this forward 403 
model, representing an iteration of the former numerical test described in the main text, |𝑀𝚤

⃗⃗ ⃗⃗  | and |𝑀𝑟
⃗⃗ ⃗⃗  ⃗| represent the induced 404 

and remnant magnetization vector modules, whereas the abbreviation Inc. and Decl. their inclinations and declinations 405 
respectively. The numbers around each polygon described the order and verse of calculation performed on its segments. The 406 
inverted triangles depict the observation points where the magnetic anomaly is calculated. b) Forward magnetic model 407 
representing an iteration of the second numerical test in the case of a geological horst structure upon a random magnetic 408 
scenario. The body in orange (body 2) represents the horst body, surrounded by two other identical bodies (bodies 1 and 3 from 409 
left to right) for geological consistency. For the meaning of the abbreviations refer to the caption of the above figure a).   410 

 411 

Even in this test, in all sampled cases there has been full agreement between the results of all the 412 

algorithms, with differences in magnetic anomalies in each observation point next to the machine 413 

precision of the computer utilized for these tests.  414 

As result of both our numerical and analytical tests, we might confirm that the three formulations lead to 415 

the same results and no algorithm is advantageous over the other two, showing always to operate 416 

correctly and without abnormal behaviors. Moreover, the speed up in magnetic calculation originally 417 

obtained by Won & Bevis (1987) no longer has any advantage considering the much higher computing 418 

power of modern computers.     419 

 420 
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4. Conclusions 421 

 422 

In this paper, we have reviewed and compared the available formulations used to compute the magnetic 423 

anomaly caused by a 2D uniformly-polarized body with polygonal section, both from an analytical and a 424 

numerical point of view. During the analytical analysis we have demonstrated that the formulation of 425 

Kravchinsky et al. (2019) does not differ from that of Talwani & Heirtzler (1962, 1964), being simply an 426 

algebraic variant. Indeed, the angle differences α2 – α1 in Kravchinsky et al. (2019) reduces in all cases to 427 

the difference θ2 – θ1 in Talwani & Heirtzler (1962, 1964). In addition, we have revealed and fixed some 428 

inaccuracies in Kravchinsky et al. (2019), that are: i) the order of calculation around the polygon sides, 429 

ii) the use of the cosine theorem formula and iii) the projection of V and H along the Earth magnetic field 430 

vector, leading in case ii) often immediate termination of the algorithm during the numerical tests. 431 

During these tests, we have generated a huge number of magnetic scenarios in two different ways and 432 

purposes, namely i) to investigate possible irregularities in magnetic anomaly computation for random-433 

changing polygon numbers and geometries and ii) to evaluate the utilization of the algorithms in realistic 434 

geological/tectonic context like that presented in Armadillo et al. (2020). In all cases, the three 435 

algorithms have behaved in the same manner without criticality, computing in all the sampled scenarios 436 

the same magnetic anomaly response. For this reason, the reader is free to follow the three approaches 437 

described without any preference. 438 

 439 
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Algorithms code availability 446 

 447 

The source code and documentation for the three algorithms discussed above is provided in the 448 

programming languages Julia and Python as packages on the following GitHub repositories:  449 

 https://github.com/inverseproblem/Mag2Dpoly.jl 450 

 https://github.com/inverseproblem/pyMag2DPoly 451 

The codes are available only through the above GitHub repositories or upon request addressed to the 452 

corresponding author. 453 

This publication has to be referred with any use of the code.  454 

 455 
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