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Abstract

Wetlands are the single largest source of methane to the atmosphere and their emissions are expected to respond to a changing

climate. Inaccuracy and uncertainty in inundation extent drives differences in modeled wetland emissions and impacts repre-

sentation of wetland emissions on inter-annual and seasonal time frames. Existing wetland maps are based on optical or NIR

satellite data obscured by clouds and vegetation, often leading to underestimates in wetlands extent, especially in the Tropics.

Here, we present new inundation maps based on the CYGNSS satellite constellation, operating in L-band that is not impacted

by clouds or vegetation, providing reliable observations through canopy and cloudy periods. We map the temporal and spatial

dynamics of the Pantanal and Sudd wetlands, two of the largest wetlands in the world, using CYGNSS data and a computer

vision algorithm. We link these inundation maps to methane fluxes via WetCHARTs, a global wetland methane emissions model

ensemble. We contrast CYGNSS-modeled methane emissions with WetCHARTs standard runs that use monthly rainfall data

from ERA5, as well as the commonly used SWAMPS wetland maps. We find that the CYGNSS-based inundation maps modify

the methane emissions in multiple ways. The seasonality of inundation and methane emissions is shifted by two months because

of the lag in wetland recharge following peak rainfall. Both inundation and methane emissions also respond non-linearly to

wet-season precipitation totals, leading to large interannual variability in emissions. Finally, the annual magnitude of emissions

is found to be greater than previously estimated.
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Key points (3 max, 140 characters max)

• CYGNSS data is used to produce monthly maps of tropical wetlands at 0.01◦. The maps are used to drive the
WetCHARTs methane emission model.

• The seasonality of inundation-based model results lags two months behind the rainfall-based models and shows
larger dry-season emission.

• CYGNSS-based estimates, consistent with independent observations, show higher emissions with larger variability
than inundation-driven estimates.

Abstract (250 words max)

Wetlands are the single largest source of methane to the atmosphere and their emissions are expected to respond
to a changing climate. Inaccuracy and uncertainty in inundation extent drives differences in modeled wetland emissions
and impacts representation of wetland emissions on inter-annual and seasonal time frames. Existing wetland maps are
based on optical or NIR satellite data obscured by clouds and vegetation, often leading to underestimates in wetlands
extent, especially in the Tropics. Here, we present new inundation maps based on the CYGNSS satellite constellation,
operating in L-band that is not impacted by clouds or vegetation, providing reliable observations through canopy and
cloudy periods. We map the temporal and spatial dynamics of the Pantanal and Sudd wetlands, two of the largest wetlands
in the world, using CYGNSS data and a computer vision algorithm. We link these inundation maps to methane fluxes via
WetCHARTs, a global wetland methane emissions model ensemble. We contrast CYGNSS-modeled methane emissions
with WetCHARTs standard runs that use monthly rainfall data from ERA5, as well as the commonly used SWAMPS
wetland maps. We find that the CYGNSS-based inundation maps modify the methane emissions in multiple ways. The
seasonality of inundation and methane emissions is shifted by two months because of the lag in wetland recharge following
peak rainfall. Both inundation and methane emissions also respond non-linearly to wet-season precipitation totals, leading
to large interannual variability in emissions. Finally, the annual magnitude of emissions is found to be greater than
previously estimated.

Keywords (up to 6): CH4, flood, GNSS-R, Pantanal, Sudd, WetCHARTs
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1 Introduction
Methane is a potent greenhouse gas whose concentrations have been increasing at an accelerating rate over the past decade
[Fletcher & Schaefer, 2019, Nisbet et al., 2019]. After a decade of near-equilibrium [Turner et al., 2019], the drivers of
renewed growth are still debated. Main anthropogenic sources of methane include fossil fuels leakage during extraction
and transport or their incomplete burning, landfills, ruminant livestock, rice paddies, and waste water treatment plants
[Miller et al., 2013, Ciais et al., 2013]. Natural sources consist predominantly of biogenic emissions from wetlands, with
smaller contributions from termites and geological sources such as geothermal vents [Ciais et al., 2013]. Among all these,
emissions from wetlands are both the largest and most uncertain source [Saunois et al., 2016, Saunois et al., 2020] and
methane emissions from wetlands around the globe are predicted to increase significantly with climate change [Zhang
et al., 2017b]. Boreal ecosystems have been a source of concern because climate change has rapidly transformed these
ecosystems into methane emitters [Treat et al., 2018, Post et al., 2019]. However, tropical wetlands are both a much larger
[Koffi et al., 2020] and more uncertain source in the global CH4 balance [Turner et al., 2019], where even modest shifts in
methane production can affect the global budget on either inter-annual or decadal time frames. The largest source of
uncertainty in tropical wetland emissions comes from the lack of information about their extent [Bloom et al., 2017, Parker
et al., 2020]. But to understand how tropical wetlands are affected by climate change-induced shifts in precipitation
and temperature, it is crucial to first be able to accurately represent how they respond to interannual variability in these
parameters [Zhang et al., 2017a, Parker et al., 2018]. Capturing year-to-year variations in their extent should therefore be
of the highest importance, but so far, no dataset has risen to the challenge.

Wetland mapping can be done from a variety of remote sensing platforms, from drones to airplanes and satellites.
However, with their regular return times, satellites are better suited to survey highly seasonal wetlands. Optical sensors
such as Landsat or MODIS provide high resolution maps [Landmann et al., 2010, Pekel et al., 2016] but are obstructed by
clouds and vegetation. Constructing a cloud-free map can require months of accumulated data, making this data ill-suited
for the study of seasonal processes such as wetland inundation. In the Tropics, these disadvantages become real issues,
since small waterbodies are often covered by dense vegetation and the rainy season can be associated with month-long
periods of continuous cloud cover [Martins et al., 2018], biasing optical-based maps towards dry season water levels.
Synthetic aperture radar (SAR) microwave instruments are capable of seeing through clouds and vegetation [Hess et al.,
2015], but their long return times and narrow tracks requires that data be accumulated over extended periods of time,
making it difficult for these instruments to track short-term phenomena. Recently, the combination of SAR data from
Sentinel-1 with a classification algorithm showed promises for near-real time mapping of urban flooding [Shen et al.,
2019], but Sentinel-1’s frequency is too high for the sensor to see through vegetation and the method can therefore not be
applied to tropical wetlands. These approaches will therefore all tend to underestimate maximum extent and fail to capture
seasonal dynamics that may dictate large interannual variability in wetland emissions in response to climate drivers.

Global Navigation Satellite System Reflectometry (GNSS-R) instruments have received a lot of attention in recent years
for the strong signal coming from inland waterbodies due to the coherent reflection they are associated with [Camps,
2020, Chew & Small, 2020, Wang & Morton, 2020]. Launched in December 2016 and the first science GNSS-R mission,
the Cyclone Global Navigation Satellite System (CYGNSS) constellation of eight satellites [Ruf et al., 2018] combines the
unique water-sensing abilities of GNSS-R with a short return time [Bussy-Virat et al., 2019], opening up new possibilities
in the realm of short-term waterbody monitoring. Many different approaches are actively being developed to extract
information on the position of waterbodies from CYGNSS data including thresholding of the signal-to-noise ratio (SNR)
data [Chew et al., 2018, Morris et al., 2019], computer vision techniques [Gerlein-Safdi & Ruf, 2019], and signal coherency
analysis [Loria et al., 2020, Al-Khaldi et al., 2020]. Thresholding techniques are likely underestimating the waterbody
extent because vegetation can attenuate the SNR from wetlands under vegetation [Nghiem et al., 2017, Carreno-Luengo
et al., 2020, Park et al., 2020]. The coherency analysis technique goes beyond the SNR and decomposes the signal
into its coherent and incoherent components. While this technique is still being developed, it promises to increase the
spatial resolution of CYGNSS-based wetland maps. However, this method is computationally demanding and requires the
aggregation of CYGNSS data over multiple months, making it inadequate for the study of fast-changing waterbodies.

Here we propose a new and enhanced analysis of CYGNSS SNR data applied to the whole three years of data
combined with a computer vision algorithm initially presented in [Gerlein-Safdi & Ruf, 2019]. The method overcomes
the issues associated with vegetation-related SNR attenuation by looking at the distribution of the values in each pixel.
Wetland maps at 0.01◦ × 0.01◦ resolution are produced on a monthly basis and assimilated into the WetCHARTs methane
emissions model ensemble [Bloom et al., 2017]. Developed in 2017, WetCHARTs is a global wetland methane emission
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model ensemble for wetland emissions modeling [Mitchard, 2018, Ganesan et al., 2019, Turner et al., 2019, Parker et al.,
2020]. WetCHARTs has the ability to directly assimilate dynamic wetland extent maps or to use a combination of static
wetland maps and rainfall data to drive seasonal variations.

In this study, we demonstrate 1) the ability for CYGNSS data to provide high resolution monthly maps of wet-
lands and 2) the impact this new information has on both the timing and the magnitude of modeled methane emissions,
especially when compared to model outputs driven by either rainfall data or other remotely sensed wetland maps. For this
work, we focus on two specific wetlands: the Pantanal, located at the border between Brazil, Bolivia and Paraguay, and
the South Sudanese Sudd wetland. The Pantanal is the largest wetland in the world and the largest single natural source
of methane [Nisbet et al., 2019], contributing about 3.3 Tg CH4/year [Marani & Alvalá, 2007] and representing almost
4% of the annual CH4 emissions from wetlands. The Sudd wetland was recently pointed out as an underestimated and
growing source of methane based on an analysis of column retrievals of atmospheric CH4 data collected by the Japanese
Greenhouse gases Observing Satellite (GOSAT) [Lunt et al., 2019, Pandey et al., 2020]. In Section 2, we will describe
the CYGNSS data, the algorithm used to extract wetland features from the data, as well as the WetCHARTs model. In
Section 3, we will present our findings that show that using CYGNSS-based inundation maps instead of rainfall-based ones
leads to a shift in the timing and the magnitude of modeled methane emissions at both locations. We will also compare
our results to the commonly used Surface WAter Microwave Product Series (SWAMPS) wetland maps [Schroeder et al.,
2015, Jensen & Mcdonald, 2019]. Finally, in Section 4, we will discuss how these results are in agreement with data from
both in-situ experiments and satellites. We end by discussing the possible implications of these results on future tropical
wetland methane emission evaluations.

2 Methods
2.1 CYGNSS-based watermasks
2.1.1 CYGNSS data
Here we use the SNR of the level 1, version 2.1 CYGNSS data freely available from the Physical Oceanography
Distributed Active Archive Center (https://podaac.jpl.nasa.gov/) to produce a surface reflectivity (SR) signal based on
[Gerlein-Safdi & Ruf, 2019]: assuming coherent scattering [Chew & Small, 2018], the SNR is corrected for receiving
and transmitting antenna gains, transmitted power level, and propagation loss from transmitter to specular point and
specular point to receiver. The average of the 5% lowest data are removed to provide a range of variation compa-
rable to previous work [Chew&Small, 2018, Gerlein-Safdi &Ruf, 2019] and oceans are removed using CYGNSS’QCflags.

The algorithm developed in [Gerlein-Safdi & Ruf, 2019] to transform SR maps into watermasks was based on
the standard deviation of a pixel with respect to the average of the neighboring pixels. This method proved an appropriate
technique to look at permanent water bodies such as large rivers and lakes, but it required the aggregation of data over a
large period of time (one year of data was presented in [Gerlein-Safdi & Ruf, 2019]) in order to have enough samples
within the area used for background estimation. This made it difficult to use this method for the study of seasonal
hydrological processes. Here, we propose a similar, but different approach: instead of determining whether a pixel is
inundated based on its value compared to the spatial distribution (mean and standard deviation) of a box around the pixel,
we look at how a single pixel looks compared to the distribution of values for that same pixel over two and half years of
CYGNSS data (June 2017 until December 2019).

2.1.2 Algorithm steps
We start by gridding all the data from years 2017, 2018, and 2019 into a 0.01◦ × 0.01◦ grid. Each grid cell contains the
whole distribution of CYGNSS overpasses that fell into that gridcell. Because of the CYGNSS’ orbit, the sampling density
is highest at the edges of CYGNSS’ latitudinal band (around 38◦N and 38◦S) and lowest at the Equator [Bussy-Virat et al.,
2019]. The average number of samples in a single grid-cell is 11, ranging from 0 to 40.

We then grid monthly CYGNSS data into the same 0.01◦ × 0.01◦ grid, making monthly SR maps from June 2017 until
August 2020. If a pixel has more than one sample associated with it, the SR value is set to the average of all samples
falling within that pixel. SR values above 40 dB are filtered out as they appear to be mostly linked to specific tracks
with variations in GPS satellite transmitted power, an issue that is expected to disappear with the upcoming v3 of the
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Figure 1: Algorithm steps applied to two different months of data over the Pantanal: October 2019 (dry season), and
May 2019 (wet season). Top left: surface reflectivity from CYGNSS, bottom left: final watermask obtained. Top
right: map of the number of standard deviations above or below the 2.5 year average for each individual pixel.
Bottom right: markers for the random walker algorithm: red are dry, blue are wet, and white and unassigned
pixels.

CYGNSS data. Using a nearest neighbor interpolation (SciPy, https://scipy.org/), we fill in any pixel without data. We
then compare the value of each individual pixel for that month to the average and the standard deviation (STD) of the
values for that pixel to produce maps of the number of STDs from the average (Figure 1). In the final step, we use the
random walker segmentation from the scikit-image library (https://scikit-image.org/) for Python [van der Walt et al., 2014].
This computer vision technique is particularly recommended to segment noisy images [Grady, 2006] and has previously
been successfully applied to CYGNSS data [Gerlein-Safdi & Ruf, 2019]. Here, water markers are set as pixels that are
both one STD above the average for that pixel (over the 2.5 years of data) and that have a SR of at least 18 dB. Dry pixels
are defined as pixels that are below the average for that pixel and that have a SR below 15 dB. The diffusion parameter
of the scikit-image function is set to 0.5 and the wet and dry markers are then allowed to diffuse in random directions,
diffusing further in directions with small variations in STD, and stopping when they encounter a sharp gradient. The
remaining unassigned pixels are attributed to the wet and dry categories depending on what labeled marker has the highest
probability to reach it first. Figure 1 shows the different steps of the algorithm over the Pantanal during a dry and a wet
month and Figure 2 shows two examples of SR maps and final watermasks over the Sudd wetlands.

Looking at the coherence of the signal, it has been established that coherent reflections from water bodies can
have a range of SR values, depending on the topography, vegetation cover, and water surface roughness due to wind [Loria
et al., 2020]. For this reason, it is key that our technique is actually based on STD maps for a given month, and not on the
actual SR data. This allows the random walker algorithm to link together water pixels clearly identified as such, based on
both their position within the distribution and their SR values, with unassigned pixels that might have low SR values but
can be identified as wet from their high values in STD space.
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Figure 2: Inundation maps over the South Sudanese Sudd wetland for two different months of data ; left: February 2019
(dry season), and right: October 2019 (wet season). Top: surface reflectivity from CYGNSS. Bottom: final
watermask obtained.

2.2 WetCHARTs model
2.2.1 Model description
The WetCHARTs model was developed in 2017 [Bloom et al., 2017] to model methane emissions from wetlands globally
and to be used in atmospheric chemical transport models. The original model includes three temperature dependence
parameterizations of CH4 respiration fraction and nine heterotrophic respiration simulations (eight carbon cycle models
derived from the Multi-scale Synthesis and Terrestrial Model Intercomparison Project and one data-constrained terrestrial
carbon cycle analysis based on the global CARbon DAta MOdel fraMework (CARDAMOM)) for a total of 18 different
models for the extended ensemble. The model outputs monthly methane emission estimates at a 0.5◦ × 0.5◦ resolution.
The standard version of WetCHARTs uses static wetland extent maps based on the Globcover wetland and freshwater land
cover types [Bontemps et al., 2011] combined with the the Global Lakes and Wetlands Database (GLWD) [Lehner & Döll,
2004]. Seasonal variations are introduced using either ECMWF Re-Analysis (ERA) rainfall data so that the monthly
wetland extent is estimated as:

Monthly extent [m2] = static wetland extent [m2] × precipitation anomaly [unitless],

where the precipitation anomaly is the ratio of the monthly precipitation to mean or max precipitation, depending on
whether the static wetland map provides a maximum or mean wetland extent estimate.

Here, we use WetCHARTs version 1.3.1 and we introduce the CYGNSS-based inundation maps as a direct source of
information for monthly inundation extent. For this purpose, the CYGNSS maps are downscaled to match WetCHARTs
coarser resolution: the maps generated give a fractional water percentage that corresponds to the percentage of the 0.01◦
× 0.01◦ pixels within a 0.5◦ × 0.5◦ that are marked as flooded in the CYGNSS watermasks. The full extended ensemble
of 18 models is run for the June 2017 to December 2019 period using 1) ERA5 (see Section 2.2.2) rainfall data combined
with the static wetland maps from Globcover and GLWD, 2) the dynamic CYGNSS-based inundation maps, and 3) the
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SWAMPS v3 wetland maps (see Section 2.2.3) that have so far been the standard dynamic inundation maps used to drive
WetCHARTs [Zhang et al., 2017a, Pandey et al., 2020, Saunois et al., 2020].

2.2.2 ERA5 rainfall
The ERA5 rainfall dataset is used both in direct comparison with the inundation maps produced by CYGNSS and as a
parameter for the WetCHARTs methane emissions. ERA5 combines historical observations into global estimates using
advanced modeling and data assimilation systems. In particular, we use monthly rainfall estimates from June 2017 to April
2020 at a 30km grid resolution. The data is regridded to 0.5◦ × 0.5◦ resolution when used as an input for WetCHARTs.
All ERA5 data is free and available for download on the European Centre for Medium-Range Weather Forecasts website
(https://www.ecmwf.int/).

2.2.3 SWAMPS
The SWAMPS wetland maps product was first released in 2015 [Schroeder et al., 2015] and provides maps of fractional
surface water globally at 25 km resolution. The product combines active microwave scatterometer data from ERS,
QuikSCAT, and ASCAT (each covering a different time period) with radiometer data from SSM/I and SSMI/S (again
covering different time periods), environmental variables such as wind speed and precipitation from MERRA-2, and
MODIS land cover types maps. Version 3 of the SWAMPS product was released in 2019 [Jensen & Mcdonald, 2019].
The update extends the dataset until 2019, includes more dynamic land cover types, and improves the masking of surfaces
types that might raise false positives (such as flat deserts or snow). The data is available freely for download on the
website of the Alaska Satellite Facility (https://asf.alaska.edu. Because of the high frequency of the scatterometers used
to detect waterbodies, the product is not recommended for use over canopy-obscured wetlands [Schroeder et al., 2015].
Despite this, the SWAMPS maps have been used extensively in WetCHARTs as a driver of wetland extent dynamics
[Zhang et al., 2017a, Pandey et al., 2020, Saunois et al., 2020], using the maps to inform relative change compared to the
baseline provided by GLWD and GLlobcover. Here, we use SWAMPS v3.2 [Jensen & Mcdonald, 2019] to understand the
added value contained in CYGNSS-based inundation maps.

3 Results
3.1 CYGNSS–based monthly watermasks
3.1.1 Spatial patterns
Monthly watermasks are produced for the Pantanal (Figure 1 and S1) and the Sudd (Figure 2 and S2) wetlands at 0.01◦ ×
0.01◦ resolution. The inundation maps show strong seasonal dynamics, with a significant increase in the extent of the
inundated area during the wet season over both the Pantanal and the Sudd. Over the Pantanal during the dry season, the
maps show an inundation extent similar to that captured by the Global Surface Water Landsat-based product ([Pekel et al.,
2016], Figure S3). However, during the wet season, during which the land surface is often invisible to Landsat because
of cloud cover, the CYGNSS-based maps show a much larger inundated area. Over the Sudd, the CYGNSS-based data
indicate a much larger inundated area than the Global Surface Water product during both the dry and the wet seasons.

3.1.2 Seasonal dynamics
The expected correlation between rainfall amount and inundation extent is apparent when comparing rainfall data to
the CYGNSS inundation maps. The direct link between inter-seasonal variations in rainfall amount and the resulting
extent of the wetlands is particularly striking when looking at the timeseries of inundation extent (Figure 3) averaged
over the entire areas shown in Figures 1 and 2. A cross-correlation analysis shows that the seasonality of rainfall and
inundation extent are highly correlated, with a maximum correlation coefficient of 0.84 in the Sudd and 0.65 over
the Pantanal. At both locations, this maximum is obtained for a two month lag in inundation compared to rainfall (Figure 3).

In addition, we find that inundation extent demonstrates more inter-seasonal variability than the rainfall rate: both locations
exhibit similar minimum and maximum emissions levels with rainfall-driven maps, but the effect of small inter-seasonal
variations in rainfall appear to have an amplified impact on inundation extent. For example in the Sudd, the 2018 wet
season saw a close to 15% decrease in peak rainfall compared to 2017, but peak inundation was only half the acreage of

6

https://www.ecmwf.int/
https://asf.alaska.edu/data-sets/derived-data-sets/wetlands-measures/wetlands-measures-product-downloads/


Ju
n 17 Ju

l
Aug Sep Oct

Nov Dec

Jan
18Feb M

ar Apr
M

ay Ju
n Ju

l
Aug Sep Oct

Nov Dec

Jan
19Feb M

ar Apr
M

ay Ju
n Ju

l
Aug Sep Oct

Nov Dec

Jan
20Feb M

ar Apr
M

ay Ju
n Ju

l
Aug

0

20000

40000

60000

80000

100000

120000

C
Y

G
N

SS
-e

st
im

at
ed

in
un

da
te

d
ar

ea
(k

m
2 )

0.00

0.05

0.10

0.15

0.20

0.25

0.30

M
on

th
ly

av
er

ag
ed

ra
in

fa
ll

ra
te

(E
R

A
5,

m
m

/d
ay

)

−24 −12 0 12 24
−1

0

1
Cross-correlation

−12 −6 0 6 12
Lag (months) of inundation relative to rainfall

−1

0

1

(a) Pantanal

Ju
n 17 Ju

l
Aug Sep Oct

Nov Dec

Jan
18Feb M

ar Apr
M

ay Ju
n Ju

l
Aug Sep Oct

Nov Dec

Jan
19Feb M

ar Apr
M

ay Ju
n Ju

l
Aug Sep Oct

Nov Dec

Jan
20Feb M

ar Apr
M

ay Ju
n Ju

l
Aug

0

25000

50000

75000

100000

125000

150000

175000

200000

C
Y

G
N

SS
-e

st
im

at
ed

in
un

da
te

d
ar

ea
(k

m
2 )

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

M
on

th
ly

av
er

ag
ed

ra
in

fa
ll

ra
te

(E
R

A
5,

m
m

/d
ay

)

−24 −12 0 12 24
−1

0

1
Cross-correlation

−12 −6 0 6 12
Lag (months) of inundation relative to rainfall

−1

0

1

(b) Sudd

Figure 3: Monthly inundation extent (black solid lines) based on CYGNSS watermasks and monthly average rainfall rate
from ERA-5 data (red dashed line) over (a) the Pantanal and (b) the Sudd. The figures on the right show the
cross-correlations between rainfall and inundation extent, highlighting the one to two month lag between the
two timeseries.

the 2017 peak area (Figure 3). In the Pantanal, the maximum inundation extent during the 2019/2020 wet season only
reached about 20% of the 2017/2018 levels.

3.2 Methane emissions from tropical wetlands
The WetCHARTs extended ensemble is run using ERA5 rainfall data, the SWAMPS fractional water maps, and the
CYGNSS-based inundation maps from June 2017 to December 2019.

3.2.1 Comparison to rainfall-based emissions
A first order comparison shows that the CYGNSS-based and rainfall-based modeled emissions at both locations display
similarly marked seasonality (Figure 4). However, at both locations we find that inundation-driven emissions are
systematically higher than rainfall-driven emissions. In particular, rainfall-driven emissions fall to 0 for several months
during the dry season, whereas inundation-based emissions are still positive during the dry season and as high as 20
mg CH4/m2/day over the Pantanal in 2018.

In addition, we find that the use of CYGNSS-based watermasks shifts both the timing and the magnitude of the
methane emissions when compared to the rainfall-driven emissions (Figure 4): similarly to inundation and rainfall,
inundation-driven emissions exhibit more inter-seasonal variability than rainfall-driven emissions. A cross-correlation
analysis shows that the seasonality of inundation-driven methane emissions is delayed by two month compared to
rainfall-driven emissions (Figure 5, peak correlation coefficient in the Sudd: 0.74, in the Pantanal: 0.85), matching the
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delayed observed between CYGNSS-based inundation timeseries and ERA5 rainfall data (Figure 3).

Maps of the emissions (Figure S5) show that over the Pantanal, the main area driving the difference between rainfall- and
inundation-based emissions during the wet season is the south-eastern part of the wetland. Over the Sudd, inundation-based
emissions during the wet season are consistently larger than rainfall-driven ones over the eastern side of the wetland.
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Figure 4: Average monthly emissions over the whole area for (a) the Pantanal and (b) the Sudd wetlands based on
CYGNSS watermasks (red), SWAMPS wetland maps (blue), and ERA5 rainfall (black). Dotted lines are the
average of all 18 models and the shaded areas shows the spread between the 5th and the 95th percentiles.

3.2.2 Comparison to SWAMPS-based emissions
We find that the range of seasonal variation in the SWAMPS maps is much smaller than the CYGNSS maps, which
is reflected in the smaller range of variation in the modeled emissions at both locations (Figure 4). In particular, we
find that the maximum SWAMPS-based emissions are close to CYGNSS-based lowest emissions. The seasonality of
SWAMPS-based emissions matches closely the rainfall-based ones in the Pantanal, but are three to four months early
in the Sudd (Figure 4). Emissions maps (Figure S5) indicate that SWAMPS-based emissions are concentrated over the
White Nile, at the center of the domain, whereas CYGNSS and rainfall-based emissions are contributed mostly from the
western side of the wetland.

4 Discussion
4.1 Hydrological response of wetlands
The CYGNSS satellite constellation provides a new, unique view of two tropical wetlands and their seasonal changes over
the last three years. We find that both the Pantanal and the Sudd wetlands exhibit a clear response to the rainfall amount of
their wet seasons (Figure 3). While the inundated area peaks about two months after peak rainfall, there are clear spatial
patterns in the timing of the flooding that are apparent from Figures S1 and S2. Over the Pantanal, flooding starts early in
the rain season along the three main rivers draining into the wetlands: the Cuiabá River to the North, the Taquari River in
the Center, and the Rio Negro to the South. In situ measurements along these main rivers also show that the timing of
inundation is synchronous to rainfall [da Silva et al., 2020]. The rest of the wetlands fills in, ending with the area along the
Paraguay River in the South. In the Sudd, inundation appears to be more homogeneous throughout the valley, although the
contribution from themany small tributaries in the western plateau becomes increasingly apparent as the rain season evolves.

Another interesting feature of the inundation timeseries (Figure 3) is that inundation extent is not only affected
by wet season rain, but also dry season rain: this is especially evident during the last rainy season (winter 2019/2020) over
the Pantanal during which the wetland stayed mostly dry despite a robust rainy season. This might be tied to the extremely
dry season in summer 2019 that lead to unprecedented wild fires in September through November 2019 [Ionova, 2020].
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The drought likely lead to increased surface runoff [Larsen et al., 2009] at the onset of the rainy season and decreased
refilling of the wetland as a result.

One limitation of the CYGNSS-based maps is that it is unclear whether the method is capable of differentiating
between saturated soils and actual standing water above the soil surface. This is in large part due to the lack of other
datasets (in-situ or remotely sensed) that would allow us to validate the maps. However, while this remains an important
question to use this data in other contexts, the inundation proxy generated from CYGNSS still provides an informative tool
for wetland methane emissions. Indeed, since the L-band probes 5-10cm depth in the soil, signals that are interpreted as
inundated may represent total saturation at this depth instead of standing water. This is the depth at which biogeochemical
processes are understood to drive methane production [Angle et al., 2017] and evidence shows that the effect of water level
on wetland methane emissions is non-linear [Shao et al., 2017], with only negligible differences in emissions between
fully saturated and inundated soils.
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Figure 5: Cross-correlations between rainfall-based and inundation-based WetCHARTs CH4 emissions, highlighting the
two months lag between the two timeseries over (a) the Pantanal and (b) the Sudd wetlands.

4.2 Impact of CYGNSS-based watermasks on modeled methane emissions
The WetCHARTs model is a unique tool to understand what drives wetland methane emissions and how wetlands
contribute to the global methane cycle. We find that the use of CYGNSS-based inundation maps shifts the timing, the
magnitude, and the location of the predicted emissions.

4.2.1 Improvements of CYGNSS maps over existing products
The observed discrepancy in seasonality in SWAMPS-based emissions over the Sudd matches the results from [Pandey
et al., 2020], which found that SWAMPS maps over the Sudd wetlands are more than three months ahead of the seasonality
in rainfall and TROPOMI emissions. They found that the SWAMPS seasonality was instead closely aligned with river
height of the White Nile, which matches our results here showing SWAMPS-based emissions maps centered over the
White Nile (Figure S5). [Pandey et al., 2020]. [Pandey et al., 2020] attributes the discrepancy to SWAMPS’ incapacity to
map wetlands under vegetation [Schroeder et al., 2015]. This result along with the smaller wetland area estimates, that
lead to significantly lower modeled methane emissions, confirm that high frequency microwave data, such as the one used
for SWAMPS are not appropriate to map tropical wetlands accurately due to the presence of vegetation, but that CYGNSS
data can help fill in this data gap.

4.2.2 Assessing CYGNSS-based modeled emissions
While the Pantanal and the Sudd are located in remote areas where in-situ data is sparse, we do have a few pieces of
evidence indicating that inundation-based modeled emissions are in better agreement with actual fluxes.
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First, one of the striking characteristics of the rainfall-driven model is the absence of methane emissions during
the dry season at both the Pantanal and the Sudd. In contrast, inundation-driven maps show a reduced but still significant
flux during the dry season, corresponding to 0.1 to 0.3 Tg CH4/month in the Pantanal and 0.05 to 0.1 Tg CH4/month in
the Sudd (Figure S4). Flux tower measurements made in the Pantanal between 2014 and 2017 [Dalmagro et al., 2019]
confirm that the wetland effluxes CH4 even during the dry season. Here, we find that the residual fluxes are mainly coming
from the western part of the wetlands (Figure S5) that is considered to be inundated year-round.

Secondly, using the Japanese Greenhouse gases Observing Satellite (GOSAT) over the Sudd wetlands, [Lunt et al., 2019]
found yearly emissions ranging from about 2.5 to 7 Tg/year between 2010 and 2016. We find that in 2018, the average
yearly emissions for the rainfall-based WetCHARTs models was 1.09 ± 0.50 Tg (average across all 18 models ± standard
deviation) and 1.23 ± 0.48 Tg in 2019 (Figure S4). For the inundation-based models, the average was 2.10 ± 0.94 Tg in
2018 and 3.58 ± 1.43 Tg in 2019. While we only have a short timeseries, both the higher average and the larger range of
year-to-year variation of the inundation-based emissions are in better agreement with the GOSAT analysis than are the
rainfall-based emissions.

Third, [Parker et al., 2018] found that the GOSAT total column methane over the Pantanal peaks about one month later
than the rainfall-based WetCHARTs model. This delay is even clearer over the Paraná river in Argentina and this result is
consistent with the delay we observed between rainfall-driven and inundation-driven emissions (Figure 5).

Lastly, [Pandey et al., 2020] showed that over the Sudd wetlands, methane emissions models and methane con-
centrations measured from the TROPOspheric Monitoring Instrument (TROPOMI, [Hu et al., 2018]) are out-of-sync. The
authors came to the conclusion that the mismatch was due to a an issue with wetland extent maps and the discrepancy
between rainfall and surface inundation, a result that is indeed confirmed by our study.

4.3 Consequence for global methane emissions
Wetlands are the largest natural emitters of methane and these emissions will likely increase with increasing temperatures
due to climate change [Zhang et al., 2017b]. Understanding how methane will influence climate change and producing
more accurate climate models is therefore dependent on improving our methane emissions models. Wetland extent has
been identified time and time again as the largest source of uncertainty [Zhang et al., 2017a, Turner et al., 2019, Parker et al.,
2020] and our work introduces a new, robust method for mapping wetlands based on CYGNSS data. The range of evidence
coming from both the Sudd and the Pantanal indicates that these new inundation maps produce emissions that better capture
the average and the temporal dynamics of both in-situ and remotely-sensed methane fluxes. This is crucial since many
recent studies are finding that models are performing poorly at capturing the timing and the seasonal range of variations in
wetland emissions when compared to new satellite methane data that has been becoming available [Parker et al., 2018, Lunt
et al., 2019, Pandey et al., 2020]. Here, we demonstrated that emissions models can be significantly improved if they
are combinedwithmore accuratewetlandmaps that are able to accurately capture the full range of variation inwetland extent.

The current CYGNSS mapping technique, extended to the full CYGNSS coverage, could help improve wetland
emissions models between about 40◦N and 40◦S. However, how this new information will influence global emissions
is not clear.On the one hand, our results indicate that improved inundation maps would lead to an overall increase in
predicted wetland emissions during both the dry and wet seasons. On the other hand, evidence from the Pantanal shows
that in some wetlands, there is more inter-seasonal variation in inundation than there is in rainfall, sometimes leading to a
smaller-than-average wetland area even when rainfall amount is normal [Sandi et al., 2020]. This is due to the wetlands’
response to both wet and dry season rainfall, as well as upstream precipitation [Fossey et al., 2016, Karim et al., 2016].
Because existing wetland maps have been failing at capturing intra-seasonal dynamics, very little is know about the
seasonal cycle of individual wetlands and their response to year-to-year variations in rainfall and evaporative conditions.
However, accurately representing the wetland response to interannual variations in precipitation and temperature is the
first step to properly characterize the effects that climate change will have on these ecosystems. In addition, the increasing
pressure that many tropical ecosystems are facing from both land use change and climate change-induced increases
in rainfall variability is likely to lead to a global reduction in wetland extent in the long run [Junk, 2002, Dixon et al.,
2016, Inogwabini, 2020]. This would in turn drive a decrease in methane emissions. For this reason,the high quality maps
of wetlands at high temporal and spatial resolution and unaffected by clouds or vegetation that we developed here based
on CYGNSS data will be crucial to resolve seasonal dynamics [Rajib et al., 2020] and understand the resulting methane
emissions and their sensitivity to variations in temperature and precipitation.
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5 Conclusion
Wetlands are the largest natural source of methane on the planet. Uncertainty associated with wetland extent and tropical
wetlands in particular is a leading source of inconsistency between models and existing data, an issue that the CYGNSS
satellite data can help improve on. By providing monthly maps of inundated land at 0.01◦ × 0.01◦, we were able to
capture wetlands seasonal dynamics and their response to wet and dry season rainfall input. We focused on two of the
largest tropical wetlands: the Pantanal in Brazil and the Sudd in South Sudan. The new CYGNSS-based maps were
incorporated into the WetCHARTs wetland methane emissions model and the results compared to WetCHARTs standard
input that uses ERA5 rainfall data. We found that the inundation-based emissions have a seasonality shifted by about two
months compared to the rainfall-driven emissions. In addition, dry season inundation-driven emissions were consistently
higher in both locations. Finally, we found that inundation experiences more inter-seasonal variability than rainfall does,
resulting in more variable emissions for the inundation-driven models than for the rainfall-driven version. These results
highlight the need to generate and include better wetland maps into emissions models in order to get an accurate picture of
the effects of methane on climate change.
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Modeling methane production in tropical wetlands with CYGNSS inundation maps
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Figure S1: Monthly CYGNSS-based watermasks at 0.01◦ × 0.01◦ resolution over the Pantanal wetland in Brazil.
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Figure S2: Monthly CYGNSS-based watermasks at 0.01◦ × 0.01◦ resolution over the Sudd wetland in South Sudan.
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Figure S3: Maximum water extent between 1984 and 2019 from the Landsat-based Global Surface Water data product
[Pekel et al., 2016] for (a) the Pantanal and (b) the Sudd wetlands. Source: EC JRC/Google
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Figure S4: Average monthly emissions converted to Tg of CH4/months over the whole area for (a) the Pantanal and (b)
the Sudd wetlands based on CYGNSS watermasks (red), SWAMPS maps (blue), and ERA5 rainfall (black).
The lines show the average of all 18 models.
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Figure S5: Average monthly emissions for (a) the Pantanal and (b) the Sudd wetlands based on CYGNSS inundation
maps (left), SWAMPS inundation maps (center), and ERA5 rainfall (right).
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