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Abstract

The ocean’s “biological pump” significantly modulates atmospheric carbon dioxide levels. However, the complexity and vari-

ability of processes involved introduces uncertainty in interpretation of transient observations and future climate projections.

Much work has focused on “parametric uncertainty”, particularly determining the exponent(s) of a power-law relationship of

sinking particle flux with depth. Varying this relationship’s functional form introduces additional “structural uncertainty”. We

use an ocean biogeochemistry model substituting six alternative remineralization profiles fit to a reference power-law curve, to

characterize structural uncertainty, which, in atmospheric pCO2 terms, is roughly 50% of the parametric uncertainty associated

with varying the power-law exponent within its plausible global range, and similar to uncertainty associated with regional

variation in power-law exponents. The substantial contribution of structural uncertainty to total uncertainty highlights the

need to improve characterization of biological pump processes, and compare the performance of different profiles within Earth

System Models to obtain better constrained climate projections.
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Key Points:7

• Six alternative flux profiles fit to a Martin curve yield large differences in atmo-8

spheric carbon.9

• Structural uncertainty comprises one third of total uncertainty in the ocean’s bi-10

ological pump.11

Plain Language Summary12

The ocean’s “biological pump” regulates atmospheric carbon dioxide levels and cli-13

mate by transferring organic carbon produced at the surface by phytoplankton to the14

ocean interior via “marine snow”, where the organic carbon is consumed and respired15

by microbes. This surface to deep transport is usually described by a power-law rela-16

tionship of sinking particle concentration with depth. Uncertainty in biological pump17

strength can be related to different variable values (“parametric” uncertainty) or the un-18

derlying equations (“structural” uncertainty) that describe organic matter export. We19

evaluate structural uncertainty using an ocean biogeochemistry model by systematically20

substituting six alternative remineralization profiles fit to a reference power-law curve.21

Structural uncertainty makes a substantial contribution, about one third in atmospheric22

pCO2 terms, to total uncertainty of the biological pump, highlighting the importance23

of improving biological pump characterization from observations and its mechanistic in-24

clusion in climate models.25

Corresponding author: JML, jml1@mit.edu

Corresponding author: BBC, cael@noc.ac.uk

–1–



manuscript submitted to Geophysical Research Letters

Abstract26

The ocean’s “biological pump” significantly modulates atmospheric carbon dioxide lev-27

els. However, the complexity and variability of processes involved introduces uncertainty28

in interpretation of transient observations and future climate projections. Much work29

has focused on “parametric uncertainty”, particularly determining the exponent(s) of30

a power-law relationship of sinking particle flux with depth. Varying this relationship’s31

functional form introduces additional “structural uncertainty”. We use an ocean biogeo-32

chemistry model substituting six alternative remineralization profiles fit to a reference33

power-law curve, to systematically characterize structural uncertainty, which, in atmo-34

spheric pCO2 terms, is roughly 50% of parametric uncertainty associated with varying35

the power-law exponent within its plausible global range, and similar to uncertainty as-36

sociated with regional variation in power-law exponents. The substantial contribution37

of structural uncertainty to total uncertainty highlights the need to improve character-38

ization of biological pump processes, and compare the performance of different profiles39

within Earth System Models to obtain better constrained climate projections.40

1 Introduction41

Carbon and nutrients are consumed by phytoplankton in the surface ocean dur-42

ing primary production, leading to a downward flux of organic matter. This “marine snow”43

is transformed, respired, and degraded by heterotrophic organisms in deeper waters, ul-44

timately releasing those constituents back into dissolved inorganic form. Oceanic over-45

turning and turbulent mixing returns resource-rich deep waters back to the sunlit sur-46

face layer, sustaining global ocean productivity. The “biological pump” maintains this47

vertical gradient in nutrients through uptake, vertical transport, and remineralization48

of organic matter, storing carbon in the deep ocean that is isolated from the atmosphere49

on centennial and millennial timescales, lowering atmospheric CO2 levels by hundreds50

of microatmospheres (Volk & Hoffert, 1985; Ito & Follows, 2005). The biological pump51

resists simple mechanistic characterization due to the complex suite of biological, chem-52

ical, and physical processes involved (Boyd et al., 2019), so the fate of exported organic53

carbon is typically described using a depth-dependent profile to evaluate the degrada-54

tion of sinking particulate matter.55

Various remineralization profiles can be derived from assumptions about particle56

degradability and sinking speed(s) (Suess, 1980; Martin et al., 1987; Middelburg, 1989;57

–2–



manuscript submitted to Geophysical Research Letters

0.00 0.25 0.50 0.75 1.00
Fraction of export

0.0

0.2

0.4

0.6

0.8

1.0

De
pt

h 
[k

m
]

A Reference power law

b=0.70
b=0.84

b=0.98

0.00 0.25 0.50 0.75 1.00
Fraction of export

0.0

0.2

0.4

0.6

0.8

1.0

De
pt

h 
[k

m
]

B Minimizing relative error (RFIT)

0.00 0.25 0.50 0.75 1.00
Fraction of export

0.0

0.2

0.4

0.6

0.8

1.0

De
pt

h 
[k

m
]

C Minimizing absolute error (AFIT)

Power (b=0.84)
Stretched

Exponential
Rational

Ballast
Gamma

Double

0.00 0.25 0.50 0.75 1.00
Fraction of export

0.0

0.2

0.4

0.6

0.8

1.0

De
pt

h 
[k

m
]

D Fixed e-folding depth (EFD)

0.00 0.01 0.02
Attenuation [m 1]

0.0
0.2
0.4
0.6
0.8
1.0 0.00 0.01 0.02

Attenuation [m 1]

0.0
0.2
0.4
0.6
0.8
1.0 0.00 0.01 0.02

Attenuation [m 1]

0.0
0.2
0.4
0.6
0.8
1.0 0.00 0.01 0.02

Attenuation [m 1]

0.0
0.2
0.4
0.6
0.8
1.0

Figure 1. Fraction of sinking particulate organic matter exported from the 50 m surface layer

remaining at each depth for (a) the reference power-law (Eq. 1) with exponents 0.84 ± 0.14,

and six alternative functions (Eq. S1–S6) fit to the reference power-law curve (b=0.84) by (b)

statistically minimizing the relative error (“RFIT”), or (c) the absolute error (“AFIT”), and (d)

matching the e-folding depth scale of 164 m (“EFD”). See Materials and Methods, Table S1 for

fitting details, coefficients, and fit statistics. Inset plots show the attenuation rate of the export

flux with depth
[
1
f

∂f
∂z
,m−1

]
.

Banse, 1990; Armstrong et al., 2001; Lutz et al., 2002; Rothman & Forney, 2007; Kri-58

est & Oschlies, 2008; Cael & Bisson, 2018). The ubiquitous “Martin Curve” (Martin et59

al., 1987) is a power-law profile (Eq. 1) that assumes slower-sinking and/or labile organic60

matter is preferentially depleted near the surface causing increasing sinking speed and/or61

remineralization timescale with depth (e.g. Kriest & Oschlies, 2011).62

fp(z) = Cpz
−b, (1)63

where fp(z) is the fraction of the flux of particulate organic matter from a productive64

layer near the surface (Buesseler et al., 2020) sinking through the depth horizon z [m],65

Cp [mb] is a scaling coefficient, and b is a nondimensional exponent controlling how fp66

decreases with depth. Eq. 1 is often normalized to a reference depth zo but this param-67

eter is readily absorbed into Cp.68

Considerable effort has been dedicated to determining value(s) for the exponent,69

b (e.g., Martin et al., 1987, 1993; Berelson, 2001; Primeau, 2006; Kwon & Primeau, 2006;70

Honjo et al., 2008; Henson et al., 2012; Kriest et al., 2012; Gloege et al., 2017; Wilson71

et al., 2019). Open ocean particulate flux observations from the North Pacific (Martin72
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et al., 1987) indicate a b value of 0.858. Further analyses of expanded sediment trap datasets73

suggest a possible range of approximately 0.84±0.14 for the global b value (Martin et74

al., 1993; Berelson, 2001; Primeau, 2006; Honjo et al., 2008; Gloege et al., 2017), though75

a much wider range has been observed when including regional variability in b and optically-76

and geochemically-derived flux estimates (Henson et al., 2012; Guidi et al., 2015; Pavia77

et al., 2019). This may result from differences in temperature (Matsumoto, 2007), mi-78

crobial community composition (Boyd & Newton, 1999), particle composition (Armstrong79

et al., 2001), oxygen concentration (Devol & Hartnett, 2001), particle aggregation (Gehlen80

et al., 2006; Schwinger et al., 2016; Niemeyer et al., 2019), or mineral ballasting (Gehlen81

et al., 2006; Pabortsava et al., 2017).82

Uncertainty in the value of b translates to uncertainty in the biological pump’s im-83

pact on the ocean carbon sink, atmosphere-ocean carbon partitioning, and climate model84

projections. Thus, constraining b for the modern ocean and how it may differ in the past,85

or the future, is of much interest from a climate perspective. Varying a global value of86

b between 0.50–1.4 altered atmospheric pCO2 by 86–185µatm after several thousand years87

of equilibration, in an influential modeling study (Kwon et al., 2009): Higher values of88

b result in enhanced particle remineralization at shallower depths. Shallow watermasses89

are more frequently ventilated, allowing remineralized CO2 to be released back into the90

atmosphere on shorter timescales. Due to this depth-dependence, a small change of degra-91

dation depth can appreciably change atmospheric pCO2 (Yamanaka & Tajika, 1996; Kwon92

et al., 2009). Varying b over the plausible range in global values between 0.70–0.98 pro-93

duces a more modest change in atmospheric pCO2, over the range of (-16,+12)µatm (Gloege94

et al., 2017), while the modeled uncertainty in atmospheric pCO2 associated with regional95

variation in b is estimated between 5–15µatm (Wilson et al., 2019).96

Biogeochemical models are subject not only to parametric uncertainty (which value97

for b and how b varies in space and time), but also structural uncertainty, i.e. which equa-98

tion(s) to choose for the vertical flux of organic matter. The Martin Curve power-law99

is an empirical fit to sediment trap data, but several other functional forms have also been100

put forward (Suess, 1980; Middelburg, 1989; Banse, 1990; Armstrong et al., 2001; Lutz101

et al., 2002; Dutkiewicz et al., 2005; Rothman & Forney, 2007; Marsay et al., 2015) that102

fit sediment trap fluxes equivalently well and have equal if not better mechanistic jus-103

tification (Cael & Bisson, 2018). Atmospheric pCO2 and many other global biogeochem-104

ical properties (Kwon & Primeau, 2006; Kriest et al., 2012; Aumont et al., 2017) will be105
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affected by this structural uncertainty, so it is critical to evaluate the impact of choos-106

ing one remineralization profile “shape” over another.107

We assess the effect of remineralization profile shape on biological pump strength108

and evaluate a comprehensive estimate of structural uncertainty in terms of atmosphere-109

ocean carbon partitioning in a global ocean biogeochemistry model. We substitute the110

reference power-law curve for six plausible alternative remineralization profiles: expo-111

nential (Banse, 1990; Dutkiewicz et al., 2005; Marsay et al., 2015; Gloege et al., 2017),112

ballast (Armstrong et al., 2001; Gloege et al., 2017), double exponential (Lutz et al., 2002),113

stretched exponential (Middelburg, 1989; Cael & Bisson, 2018), rational (Suess, 1980),114

and upper incomplete gamma function of order zero (Rothman & Forney, 2007, we use115

the shorthand “gamma function” for “upper incomplete gamma function of order zero”,116

although different orders are possible). Each form corresponds to a basic mechanistic de-117

scription of particle fluxes (Cael & Bisson, 2018), that we tightly constrained to the ref-118

erence profile by statistically minimizing export fraction misfits or by matching degra-119

dation depth scales (Kwon et al., 2009). See Supporting Information for derivations of120

these profiles.121

These simulations indicate that structural uncertainty is an appreciable component,122

around one third, of total uncertainty for understanding the biological pump (with the123

remaining two thirds attributed to parametric uncertainty in b). Changing remineral-124

ization functional form alters atmospheric pCO2 by ∼10-15µatm depending on how struc-125

tural uncertainty is quantified, equivalent to ∼0.08 uncertainty in a global value of the126

power-law exponent, b, and similar to the uncertainty resulting from regional variation127

of b.128

Our results underscore the importance of characterizing basic mechanisms govern-129

ing the biological pump. Furthermore, our results corroborate that depth-dependence130

of these mechanisms is particularly important (Gehlen et al., 2006; Kriest & Oschlies,131

2008): not only is biological pump-driven carbon export and storage an important con-132

trol on atmospheric pCO2, we find that rapidly decreasing particle degradation in the133

upper ocean is equally important for a sufficient quantity of carbon to become isolated134

in the deep ocean. While a given flux curve may be chosen for historical reasons or math-135

ematical convenience, its skill should be compared to those of other idealized flux pro-136

file parameterizations in Earth System Models used for projections of future climate.137
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2 Materials and Methods138

2.1 Fitting the alternative remineralization curves.139

We fit the alternative functions for export fluxes and remineralization (Fig. 1, Eq.140

S1–S6, see Supporting Information) to the reference power-law curve (Eq. 1) with the141

exponent b=0.84 using nonlinear regression on the model vertical grid to minimize the142

absolute curve mismatch (“ABS” simulations). Subsurface points were weighted equally143

(1.0), except for a heavily weighted top level (valued 1000, but the overall fit was largely144

insensitive to the choice of this value) to ensure all the profiles pass through the same145

value as the control profile, i.e. fraction of export from the productive surface layer is146

unity. We further matched the e-folding depth of remineralization to the reference (“EFD”147

simulations) by adding a second heavily weighted point to the reference power-law at 164 m148

depth (z0e
(1/b)), with an export fraction of e−1. In a third set (“RFIT” simulations), the149

nonlinear regression is performed on the natural logarithm of the remineralization frac-150

tion in order to minimize the relative error of the reference profile match. Goodness of151

fit is evaluated by the Standard Error of Regression, S, which is the sum of squared resid-152

uals, divided by statistical degrees of freedom (number of points minus number of pa-153

rameters). Coefficients and S values for the eighteen curves are given in Table S1.154

2.2 Numerical ocean biogeochemistry model.155

Alternative remineralization profiles are substituted into global ocean simulations156

of a coarse resolution (2.8◦, 15 vertical level) configuration of the Massachusetts Insti-157

tute of Technology general circulation model, MITgcm (Marshall et al., 1997), coupled158

to an idealized marine biogeochemistry model that considers the coupled cycles of dis-159

solved inorganic carbon, alkalinity, phosphate, dissolved organic phosphorus, oxygen, and160

dissolved iron (Dutkiewicz et al., 2006; Parekh et al., 2005, 2006).161

Two-thirds of surface net community production (that depends on light, phosphate,162

and iron using Michaelis-Menten kinetics) is channelled into dissolved organic matter that163

is largely remineralized in the surface ocean with a timescale of 6 months (Yamanaka &164

Tajika, 1997), while one-third is exported to the ocean interior via sinking particulate165

organic matter subject to depth-dependent remineralization rates. Elemental biological166

transformations are related using fixed stoichiometric ratios RC:N :P :Fe:O2 = 117 : 16 :167

1 : 4.68 × 10−4 : −170 (Anderson & Sarmiento, 1994) with a prescribed inorganic to168

–6–
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organic rain ratio of 7% (Yamanaka & Tajika, 1996). The total atmosphere-ocean car-169

bon inventory is conserved as there is no riverine carbon input or sediment carbon burial,170

which may impact the model’s transient behavior and steady state (Roth et al., 2014).171

Atmosphere-ocean exchange of CO2 captures the magnitude and variation of observed172

air-sea fluxes (Lauderdale et al., 2016).173

Our model includes tracers to separate the in situ concentrations of carbon into:174

(i) a component subducted from the surface layer and transported conservatively by ocean175

circulation (the “preformed” carbon concentration, Cpre), and (ii) a component that in-176

tegrates export and remineralization of sinking particles as a watermass transits the ocean177

interior (the “biological” carbon concentration, Cbio), which encompasses both soft tis-178

sue regeneration and carbonate dissolution, and connects more directly to the biolog-179

ical pump (Volk & Hoffert, 1985; Ito & Follows, 2005). We integrate simulations for 10,000180

years toward steady state in atmosphere-ocean carbon partitioning.181

3 Results182

3.1 Varying the exponent of the reference power-law curve.183

Global power-law exponent, b, estimates range from 0.70 (Primeau, 2006) based184

on sediment traps to ∼1.00 based on inverse models fit to tracer distributions (Kwon &185

Primeau, 2006, 2008; Kwon et al., 2009; Kriest et al., 2012). These values match the global186

b interquartile range of 0.70–0.98 in (Gloege et al., 2017). We integrate three simulations187

with b = 0.84± 0.14 (Fig. 1a) using the standard power-law parameterization (Eq. 1)188

to produce a baseline estimate of biological pump parametric uncertainty. The reference189

simulation has the exponent b=0.84.190

Higher b values cause the fraction of sinking particulate matter to decrease faster191

with depth, that is, attenuation (1/fp · ∂fp/∂z) is higher in the upper ocean, whereas192

lower exponents have less attenuation and a larger proportion of export reaching the deep193

ocean (Figs. 1a and S2a–f). A negative feedback occurs near the surface in our simula-194

tions. For example, when b is increased, higher rates of upper ocean attenuation cause195

an increase in surface nutrient availability, and therefore more overall biological produc-196

tion (see ∆BC , Table S2). Local biological activity enhancement increases local rates of197

particle export, evaluated by integrated fluxes through the deepest mixed layer depth198

(∆Emld, Table S2). However, higher shallow export is compensated by greater upper ocean199
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Figure 2. Change in the integrated export flux rate [PgC y−1] passing through the 1 km

depth level against integrated biological carbon reservoir anomaly [PgC], both with respect to the

power-law curve where b=0.84 (Martin et al., 1987). Three power-law simulations (b=0.84±0.14)

are indicated by the blue symbols (diamond, cross, and pentagon), circle, square, and triangle

symbols indicate that profile coefficients (Eq. S1–S6) were derived by minimizing the relative fit

error (“RFIT”), minimizing the absolute fit error (“AFIT”), and fixing the e-folding depth of

remineralization (“EFD”) to the reference power-law curve. Values are given in Tables S2 and S3.

remineralization, due to larger exponent value, resulting instead in reduced export flux200

anomalies through 1 km depth (∆E1km, Table S2), and vice versa when b is decreased201

(e.g. global experiments in Kwon et al., 2009; Kriest & Oschlies, 2011). The global ocean202

reservoir of biological carbon changes proportionally with ∆E1km (Figs. 2, blue symbols,203

S2g–l, and ∆Cbio, Table S2) and inversely-proportional to ∆Emld (Fig. S3a).204

3.2 Impact of alternative remineralization curve shape.205

Generally speaking, the six alternative remineralization profiles (Eq. S1–S6) ob-206

jectively characterized by statistically fitting parameters to match the reference power-207

law curve (b=0.84) do reproduce similar sinking particle remineralization rates (Fig. 1b–208

–8–



manuscript submitted to Geophysical Research Letters

d). This is perhaps not a surprise, since we would not consider these functions to be plau-209

sible alternatives to the Martin Curve if they could not describe export fluxes at least210

as well as a power-law.211

Nevertheless, the simple exponential and gamma function curves do not fit the ref-212

erence power-law profile as well as the other functions (Fig. 1b–d) because these profiles213

cannot capture a strong depth-change in remineralization. The ballast profile has a more214

complex distribution of biological carbon anomalies in surface, intermediate, and deep215

waters such that the relationship between export flux and ∆Cbio is better captured by216

considering deeper horizons (e.g. green symbols in Fig. 2 at the 1 km horizon, versus 2 km217

in Fig. S3b).218

Simulations with lower-attenuation profiles result in increased export fluxes (Fig. S4),219

and vice versa, as with the simulations varying b (Fig. 2). These particulate flux anoma-220

lies translate into changes in the distribution of biological carbon, with positive export221

flux anomalies through the 1 km depth horizon (∆E1km) corresponding to increase in222

the biological carbon pool (Cbio, Fig. 2), while negative export flux anomalies result in223

lower biological carbon concentrations. For instance, in RFIT simulations, the exponen-224

tial and gamma function profiles show an increase in 1 km export fluxes and biological225

carbon storage, while the reverse occurs for exponential and gamma profiles in AFIT and226

EFD simulations.227

Geographically, stronger ocean interior sinking fluxes tend to redistribute biolog-228

ical carbon into the Southern Ocean and deep North Pacific at the expense of the North229

Atlantic (Fig. S5–S7), while shallower remineralization tends to increase North Atlantic230

biological carbon concentrations whilst decreasing concentrations in the Southern Ocean231

and deep North Pacific. This is a reflection of the accumulation of Cbio as a water mass232

transits the global meridional overturning circulation with the oldest waters upwelling233

in the Southern Ocean and North Pacific (Kwon & Primeau, 2006; Kwon et al., 2009;234

Kriest & Oschlies, 2011; Kriest et al., 2012; Romanou et al., 2014). These anomalies of235

Cbio (Fig. S5–S7) account for the direct effects of organic and inorganic particle fluxes.236

At the same time, changes in biological activity affect surface alkalinity both through237

carbonate export and surface charged nutrient abundance, which reinforces ocean car-238

bon uptake or outgassing due to the inverse relationships relating carbon and alkalin-239

ity to CO2 solubility (Kwon et al., 2009). However, atmospheric CO2 anomalies driven240
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by different remineralization profiles integrate several compensating processes. Indirect241

carbon changes, including the effect of alkalinity on ocean carbon saturation, regener-242

ated carbon upwelling, as well as unrealized air-sea exchange due to the finite timescale243

of atmosphere-ocean CO2 fluxes (Ito & Follows, 2005; Lauderdale et al., 2013, 2017), that244

are captured by preformed carbon anomalies actually counteract approximately two-thirds245

of the direct biological ocean carbon storage.246

3.3 Evaluating structural uncertainty of the biological pump.247

Altering the strength of the biological pump leads to changes in air-sea carbon bal-248

ance. The reference simulation has a steady-state atmospheric pCO2 of 269.3µatm. In-249

creasing b from 0.70 to 0.98 increases pCO2 by 46.36µatm in this model (range: -21.6–250

24.8µatm, wide grey bars in Fig. 3a, Table S2). This is higher than the “nutrient restor-251

ing” case in Kwon et al. (2009), but lower than their “constant export” case, consistent252

with our model’s dynamic biological productivity and interactive biogeochemistry response.253

Alternative profiles with reduced export flux through 1 km and reduced biological254

carbon storage result in increased atmospheric pCO2, and vice versa (Fig. 3a, Table S3).255

The double exponential function has the most free parameters (four) and therefore fits256

the power-law extremely well, producing small differences in atmospheric pCO2 (less than257

2µatm). The rational function also agrees well, but could produce larger anomalies if258

the reference profile’s b-value was further from 1.00, i.e. 0.70. Stretched exponential and259

ballast curves produce moderate changes in atmospheric pCO2 but are generally smaller260

than, or similar to, the 0.14 changes in b for the power-law curves (Fig. 3a). However,261

the simple exponential and gamma function anomalies clearly deviate from the other sim-262

ulations, with greater biological carbon concentrations and drawdown of atmospheric CO2263

for the RFIT simulations, and the inverse for AFIT and EFD simulations. Export fluxes264

and remineralization are significantly different in the upper ocean for these parameter-265

izations, which can be explained by their largely invariant attenuation rates with depth266

(Fig. 1 insets): simple exponential and gamma parameterizations cannot have both short267

remineralization lengthscales in the upper ocean and long remineralization lengthscales268

in the deep ocean.269

There are multiple ways to compare parametric and structural uncertainty quan-270

titatively. Parametric uncertainty is found by varying the power-law exponent within271
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Figure 3. Impact of alternative remineralization curve shape on the air-sea carbon balance

(a) atmospheric pCO2 anomalies (µatm) for remineralization profiles with respect to the ref-

erence power-law (b=0.84) for power-law exponent values b=0.70 and 0.98, and statistical fits

of alternative profiles “RFIT” (left), “AFIT” (middle), and “EFD” (right). Values are given in

Tables S2 and S3; (b) comparison of a simulation with no particulate organic matter production

(“NOPOM”), i.e. no biological pump, to the simple exponential profile, and reference power law

profile for “AFIT” (left), and “EFD” (right) fits. From a “NOPOM” ocean, establishing (i) a

biological pump with an exponential remineralization curve and constant attenuation of sinking

particles with depth only draws down roughly 80µatm atmospheric CO2, while a further 80µatm

drawdown can be achieved by establishing (ii) a biological pump with a power-law remineraliza-

tion profile that has decreasing particle attenuation, or increasing remineralization lengthscale,

with depth. Thus, biological pump non-linearity appears to be equally important for air-sea

carbon partitioning as export and storage of biological carbon.
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its plausible global range (b = 0.84±0.14), producing absolute atmospheric pCO2 anoma-272

lies of 21.6–24.8µatm (Fig. 3a, Table S3). For structural uncertainty, the median change273

in absolute atmospheric pCO2 is 12.47±10.67µatm (b-anomaly equivalent of 0.07±0.06)274

across all simulations with alternate functional forms. We choose the median±median275

absolute deviation so that our result is robust to large anomalies associated with sim-276

ple exponential and gamma functional forms. For RFIT, AFIT, and EFD simulations277

separately, the medians are 15.15±10.40, 10.65±7.30, and 20.57±15.37µatm, respectively,278

giving a 15.15±4.51µatm grand median (b-anomaly equivalent of 0.09±0.03). Exclud-279

ing profiles with largely invariant attenuation rates with depth, i.e. exponential and gamma280

function profiles, the overall medians for RFIT, AFIT, and EFD are 10.07±2.32, 7.96±2.69,281

and 10.57±1.98µatm, respectively, with a 10.07±0.50µatm grand median (b-anomaly282

equivalent of 0.06±0.00). In summary, our results are largely robust, indicating a struc-283

tural uncertainty of 10–15µatm, roughly half of parametric uncertainty for the biolog-284

ical pump (22–25µatm, b = 0.84± 0.14), analogous to a ∼0.08 change in b.285

3.4 Role of nonlinearity in the biological pump.286

Much emphasis is placed on the biological pump’s effect on climate by significantly287

lowering atmospheric CO2 levels, but our exponential and gamma function simulations288

indicate that having a biological pump (i.e. uptake, export, and depth-dependent rem-289

ineralization) and an associated biological carbon store is not necessarily sufficient to pro-290

duce atmospheric carbon drawdown of the expected magnitude, such as a ∼200µatm dif-291

ference between biotic and abiotic oceans (Volk & Hoffert, 1985). To understand what292

aspects of the biological pump are important for significantly lowering atmospheric CO2,293

we ran a simulation (“NOPOM”) that represents a hypothetical ocean with no partic-294

ulate organic matter export. Instead, biological production is channelled into dissolved295

organic matter that is remineralized near the surface.296

Atmospheric pCO2 in NOPOM increases 165.4µatm (Table S2) with respect to our297

reference power-law: slightly less outgassing than Volk and Hoffert (1985), but the NOPOM298

ocean does have biological activity and a small biogenic carbon store. This is roughly299

twice as large as the outgassing resulting from the use of a simple exponential reminer-300

alization profile fit to the reference power-law curve in AFIT and EFD simulations (70.3301

and 92.6 µatm), despite these simulations supporting significant 1 km export fluxes (1.460302

and 1.238 PgC y−1, only 20% less than the reference power law) as well as large stores303

–12–



manuscript submitted to Geophysical Research Letters

of biological carbon (1830 and 1900 PgC, compared to 176 PgC for NOPOM). Thus, only304

about half of the biological pump’s effect on atmosphere-ocean carbon drawdown (∼80µatm)305

can be attributed to export of particulate organic matter and biological carbon storage306

(Fig. 3b).307

The remaining ∼80µatm drawdown in atmospheric carbon content is due to the308

change in shape of remineralization curves between a biological pump represented by AFIT309

and EFD exponential curves compared to a biological pump represented by the refer-310

ence power-law profile. Exponential profiles have a constant rate of change of reminer-311

alization, or attenuation of the sinking particle flux, with depth (Fig. 1c and d, insets),312

which results in the majority of the sinking particle flux from the surface ocean being313

remineralized in the upper 2 km. Export fluxes through this horizon are 0.204 and 0.140314

PgC y−1. Alternatively, attenuation for the power-law curve decreases significantly with315

depth, leading to a substantial 2 km export flux of 0.802 PgC y−1. Thus, for AFIT and316

EFD exponential profiles, there is much less abyssal biological carbon storage to act as317

a long-term reservoir of atmospheric CO2, whereas rapidly decreasing attenuation in the318

reference power-law supports long-term biological carbon storage.319

In other words, decreasing upper ocean particle attenuation, or increasing reminer-320

alization lengthscale with depth, appears to be equally important for air-sea carbon par-321

titioning as export and storage of biological carbon (Fig. 3b).322

4 Discussion and Conclusions323

Atmospheric CO2 levels are intimately tied to the strength of the ocean’s biolog-324

ical pump (Volk & Hoffert, 1985; Ito & Follows, 2005). The challenge of measuring par-325

ticulate fluxes via sediment traps, optical proxies, or geochemical methods (Martin et326

al., 1987; Berelson, 2001; Honjo et al., 2008; Henson et al., 2012; Guidi et al., 2015; Pavia327

et al., 2019), the spatiotemporal variability of fluxes, and the complexity of the govern-328

ing mechanisms introduce uncertainty into representation of the biological pump in ocean329

biogeochemistry, ecosystem, and climate models. We explored the impact of structural330

uncertainty—remineralization profile shape—on atmosphere-ocean carbon partitioning,331

using seven mechanistically-distinct functional forms of particulate organic matter flux332

that capture observational spread equivalently well (Cael & Bisson, 2018). In our model,333

a 0.14 change in the power-law exponent, b, results in a 22–25µatm change in atmospheric334
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pCO2, indicating that the structural uncertainty revealed by our simulations of 10–15µatm335

is equivalent to ∼0.08 change in the global b value. Thus structural uncertainty is roughly336

half the size of parameteric uncertainty, making it a substantial one-third contribution337

to our overall estimate of total uncertainty (the sum of structural and parametric un-338

certainties) in understanding the biological pump. In addition our result is in the up-339

per range of the 5-15µatm uncertainty associated with regional variation in b (Wilson340

et al., 2019).341

Historically, the focus been on remineralization lengthscale (Kwon et al., 2009), but342

our results, indicating that vertical gradient in attenuation is a first-order control on cli-343

mate, imply that multiple lengthscales of attenuation are critical to the biological pump’s344

global impact. Thus, not only is the existence of a biological pump that maintains in-345

terior ocean biological carbon stores a key factor in the biological pump’s modulation346

of atmospheric CO2 levels (Volk & Hoffert, 1985), but also a significant decrease of at-347

tenuation with depth is necessary to achieve the full amount of drawdown usually at-348

tributed to the biological pump (Fig. 3b). Even when the exponential profiles’ param-349

eters are determined by matching the e-folding remineralization depth of the reference350

power-law curve (Kwon et al., 2009), the result is still large atmospheric pCO2 anoma-351

lies caused by largely invariant attenuation rates with depth.352

Our study evaluates structural uncertainty in the ocean’s biological pump in a sys-353

tematic way. Although previous studies have compared individual, or a subset, of the354

alternative remineralization curves used here (e.g., Yamanaka & Tajika, 1996; Gehlen355

et al., 2006; Kriest & Oschlies, 2008; Schwinger et al., 2016; Gloege et al., 2017; Niemeyer356

et al., 2019; Kriest et al., 2020) with a focus on minimizing model-observational differ-357

ences, none has attempted to evaluate this structural uncertainty by just changing the358

shape of the remineralization profile, which we do here by comparing six alternative func-359

tional forms statistically fit in three different ways to a reference power-law profile. De-360

spite these profile choices resulting in non-negligible differences in ocean biogeochemi-361

cal distributions (Kriest et al., 2012; Aumont et al., 2017) and atmospheric CO2 levels362

(Kwon et al., 2009), comparison of model output to climatological data (Boyer et al., 2018;363

Garcia et al., 2018) does not significantly change (Fig. S8), such that all the curves still364

quantitatively reproduce the observations to a similar degree.365
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As Earth System Models continue to rely on simple biological pump parameter-366

izations, our estimate of structural uncertainty underscores the importance of research367

aimed at improving the basic mechanistic characterization of the biological pump (Boyd368

et al., 2019), and particularly the depth-dependence or evolution of these mechanisms.369

One such improvement is to consider the spectrum of sinking particle properties, such370

as size (Schwinger et al., 2016; Niemeyer et al., 2019), sinking speeds (Kriest & Oschlies,371

2008) or material lability (Aumont et al., 2017), and how they effect export fluxes. These372

studies often derive components that rely on upper and lower incomplete gamma func-373

tions, as well as gamma distributions, but ultimately do not produce gamma function374

flux profiles. The Rothman and Forney (2007) profile (Eqn. S6) is a special case of the375

upper incomplete gamma function (where the order, a=0). However, statistical fits of376

integer orders of the upper incomplete gamma function where a>0 to the reference power-377

law (b=0.84) are poor (See Fig. S1, including the simple exponential curve, which is pro-378

portional to an upper incomplete gamma function of order a=1), and as stand-alone rem-379

ineralization parameterizations may include particle classes whose remineralization pro-380

files may not exist in the ocean. On the other hand, a more general three-parameter up-381

per incomplete gamma function parameterization, CgΓ(ag, z/`g), fits the Martin curve382

very well with ag≈-0.8 (Fig. S1), and would correspond to a constant-sinking reactiv-383

ity continuum model (Aumont et al., 2017) with a power-law reactivity distribution. How-384

ever, reactivity continuum models do not a describe reactivity using a power law, and385

instead use lighter-tailed distributions such as the gamma (Boudreau & Ruddick, 1991),386

beta (Vähätalo et al., 2010), or log-normal distribution (Forney & Rothman, 2012). Thus387

we did not include these additional profiles in our biological pump structural error en-388

semble as there is not a justifiable basis for a>1, nor a plausible mechanism for a<0, un-389

like the six alternative remineralization curves presented.390

A better process-based understanding is critical to choosing between these param-391

eterizations based on their mechanistic underpinnings and thus reducing structural un-392

certainty, because empirical fits to flux measurements alone cannot currently do so (Gehlen393

et al., 2006; Cael & Bisson, 2018). Indeed, there are also no guarantees that more ex-394

tensively sampled ocean nutrient distributions are able to distinguish between the per-395

formance of idealized and more explicit remineralization schemes either (Niemeyer et al.,396

2019; Schwinger et al., 2016).397
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In our simulations, the parameterizations were forced to be as similar as possible398

with regard to the three different criteria (minimizing misfit error or matching the ref-399

erence e-folding depth of remineralization), but functional forms based on different pro-400

cesses will have different sensitivities to temperature and other phenomena, and there-401

fore will produce divergent projections and different climate feedbacks. Futhermore, each402

alternative functional form will be associated with its own parametric uncertainty. Un-403

fortunately, significantly less is known about the natural range of parameters associated404

with the alternative remineralization profiles in the real ocean, because they have not405

been used as widely as the Martin Curve.406

There are other factors that could affect the distribution, export, and depth de-407

pendent remineralization of sinking particles, and therefore ocean carbon sink/atmospheric408

CO2 sensitivity, that we held the same between simulations. For example, our assump-409

tion of a closed carbon cycle with no sediment burial or riverine fluxes may underesti-410

mate the biological pump effect on atmospheric CO2 for the different remineralization411

profiles by 4–7 times (Roth et al., 2014) on timescales of 10–100 thousand years. Between412

different models, the overall strength of the deep ocean carbon store may be more de-413

pendent on remineralization profile parameters than on different ocean circulations, al-414

though circulation impact on upper ocean production would modify the overall relation-415

ships shown here (Romanou et al., 2014; Kriest et al., 2020). Vertical grid resolution and416

numerical diffusion might also result in changes to the ocean carbon sink (Kriest & Os-417

chlies, 2011), although again these changes may not manifest in the short timespan that418

many more complex coupled ocean-ecosystems are integrated for (Kwon et al., 2009; Schwinger419

et al., 2016). Despite these challenges, it would be valuable to compare these different420

functional forms within state-of-the-art Earth System Models, either directly or via im-421

plied remineralization profile shape, to improve confidence in projections involving biosphere-422

climate interactions.423
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Introduction

This Supplementary Information contains supporting materials and methods, figures

for individual model simulations presented in aggregated form in the main text, as well

as tables containing additional globally-aggregated values and anomalies. Model input,
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code, and output processing routines can be accessed via http://bit.ly/lauderdale

-cael-export-profile-shape (Lauderdale & Cael, 2021)

Alternative remineralization profile shapes.

Here we outline the derivation and assumptions behind six different remineralization

profiles. Assuming timescales of sinking (≤1 month) are shorter than transport by ocean

circulation (∼1 year), biological material can be approximated as instantaneously redis-

tributed and remineralized in the vertical. f(z) is the fraction of the flux of particulate

organic matter from a productive layer near the surface (Buesseler et al., 2020) sinking

through the depth horizon z [m].

The most basic curve is a “simple exponential”, assuming constant first-order reminer-

alization kinetics and velocity (Banse, 1990; Dutkiewicz et al., 2005; Marsay et al., 2015;

Gloege et al., 2017):

fe(z) = Cee
− z

`e , (1)

where and Ce is a scaling coefficient and `e [m] is a characteristic lengthscale-the ratio of

remineralization timescale and sinking speed.

Including an additional flux of refractory material c to increase the net sinking flux

produces the “ballast” model (Armstrong et al., 2001; Gloege et al., 2017):

fb(z) = Cbe
− z

`b + c, (2)

while explicitly considering the transformation of labile particles with a characteristic

lengthscale, `d1, and more refractory material with a characteristic length scale, `d2 results
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in a “double exponential” profile (Lutz et al., 2002):

fd(z) = Cd1e
− z

`d1 + Cd2e
− z

`d2 . (3)

Relaxing the assumption of constant remineralization timescale, and considering a de-

crease in the rate of remineralization as labile material is preferentially transformed and

refractory material is left behind (as in Eq. 1), leads to a “stretched exponential”:

fs(z) = Cse
−z(1−s)

, (4)

where s is a scale factor between 0–1, for example, if marine particles are degrade simi-

larly to marine sediments, s ≈ 0.95 (Middelburg, 1989; Cael & Bisson, 2018). A three-

parameter stretched exponential with z normalized by zo is used in many applications.

However, fitting zo and s simultaneously is ill-conditioned, i.e. parameter values are not

identifiable, so we have used the simpler two-parameter stretched exponential function,

which still provides fits well within global particle flux uncertainty (see Fig. 1).

Second-order degradation kinetics leads to a rational form (Suess, 1980):

fr(z) =
Cr

z + a
(5)

where Cr [m] is determined by remineralization and sinking while a [m] is determined by

remineralization, sinking, and the initial flux (Cael & Bisson, 2018).

One can model sinking particles as heterogeneous media containing organic carbon,

ballast minerals, and heterotrophic bacteria where remineralization slows with time

(Rothman & Forney, 2007). This translates to an upper incomplete “gamma” function

March 11, 2021, 10:11pm



X - 4 LAUDERDALE & CAEL:

curve, Γ(a, x), of zeroth order (Cael & Bisson, 2018):

fg(z) = CgΓ

(
0,
z

`g

)
, (6)

where `g [m] relates to sinking speed and intraparticle bacterial concentration (Rothman

& Forney, 2007; Cael & Bisson, 2018). The upper incomplete gamma function can take

any value for order a, and is a component of other remineralization profile studies (e.g.

Aumont et al 2017, Kriest and Oschlies 2008). For positive integer values of a, when

a = 1 then CgΓ(1, z/`g) = Cge
−z/`g (which is the simple exponential profile), and if a = 2

then there is a recursion relation where CgΓ(2, z/`g) = CgΓ(1, z/`g)+Cgz/`ge
−z/`g , and so

on. We repeated our statistical fit to the reference power law curve for upper incomplete

gamma functions with orders of a between 0–3 (Figure S1). The best fits to the reference

power-law (b=0.84) are in fact when a = 0 regardless of minimizing absolute or relative

errors (AFIT or RFIT), and also in the EFD case. The simple exponential case, equivalent

to a = 1, is a poor fit to the power-law for all three cases, and the dissimilarity increases

where a > 1. Indeed, if a = 2 or 3 then attenuation increases with depth in the upper

ocean, which is uncharacteristic of sinking particle observations and the Martin Curve,

and the existence of a particle class whos flux profile would depend on Cgz/`ge
−z/`g is

unlikely. Thus, we do not run simulations where a > 1, which do not correspond to a

plausible mechanism for sinking particle remineralization.

A more general three-parameter upper incomplete gamma function parameterization

CgΓ(ag, z/`g) fits the Martin curve very well with ag ≈ −0.8 (Figure S1), and would

correspond to a constant-sinking reactivity continuum model (Aumont et al., 2017) with a

power-law reactivity distribution. However, reactivity continuum models do not a describe
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reactivity using a power law, and instead use lighter-tailed distributions such as the gamma

(Boudreau & Ruddick, 1991), beta (Vähätalo et al., 2010), or log-normal distribution

(Forney & Rothman, 2012) that do not permit closed-form solutions. Again, we do not

consider this parameterization as a plausible alternative to the Martin Curve for this

reason.

Finally, we note that the “power-law” (Eq. 1) assumes either an increase in sinking

speed with depth or a decrease in remineralization rate (Kriest & Oschlies, 2011; Cael &

Bisson, 2018).

Coefficients derived by non-linear statistical fit of profiles given by Eqn. S1–S6 to the

reference power-law curve are given in Table S1.

Supporting simulation results:

Fig. S2 shows steady-state zonal averages for the power-law simulations where

b=0.84±0.14. Particulate organic carbon fluxes in the ocean interior increase when the

power-law exponent decreases to 0.70 (Fig. S2, left column) and decrease when the power-

law exponent is increased to 0.98 (Fig. S2, right column). The negative feedback between

nutrient availability and biological production of particles (e.g. global experiments in

Kriest & Oschlies, 2011) can be seen in the surface export flux anomalies (Fig. S2d, f).

More efficient export and lower rates of upper ocean remineralization leads to a decrease in

recycled nutrient availability, and therefore less overall biological productivity, and lower

shallow particulate organic carbon flux when b is reduced (also see globally-integrated

community production, ∆BC , and integrated export fluxes through the deepest annual

mixed layer, ∆Emld, values in Fig. S3a and Table S2). However, reduced shallow export
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across the deepest mixed layer depth is compensated by lower upper ocean flux attenua-

tion, due to reduced exponent value, resulting instead in enhanced export flux anomalies

integrated at 1 km depth. Nutrient availability increases when the remineralization profile

is more attenuating in the upper ocean, driving enhanced shallow particulate production

and export, but this flux is quickly depleted by the same remineralization profile attenu-

ation, resulting in lower interior ocean export fluxes to the deep ocean.

Biological carbon concentration (Cbio) integrates these export fluxes, so that when in-

terior ocean export increases, the deep ocean biological carbon store increases (Fig. S3b),

particularly in the Southern Ocean (Fig. S2g), and the deep North Pacific (Fig. S2j),

but decreases in the North Atlantic (Fig. S2g) and vice versa (Fig. S2f, i, l) (Kwon &

Primeau, 2006; Kriest & Oschlies, 2011; Kriest et al., 2012; Romanou et al., 2014).

The deep ocean store of biological carbon is directly linked to air-sea carbon partition-

ing, thus greater ∆Cbio indicates uptake of atmospheric carbon by the ocean, and pCO2

declines. Conversely, when ∆Cbio decreases, that carbon outgasses from the ocean causing

atmospheric pCO2 to increase (Table S2).

Fig. S4 shows zonally-averaged anomalies with respect to the reference power-law of

export fluxes for the three sets of parameter values and the six different functional forms

of remineralization profile. Anomalies largely have an inverse surface-deep ocean contrast,

which is captured by the differences in fluxes through the deepest annual mixed layer depth

(∆Emld, Table S3) for the surface ocean changes in particulate export, and fluxes though

the 1 km depth horizon (∆E1km, Table S3) for the deep ocean changes in particulate

export. However, the ballast functional form (Eq. S2) has a more complex distribution of
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particulate flux anomalies in surface, intermediate, and deep waters associated with the

additional refractory flux c, which becomes important when the exponentially decaying

labile portion of the sinking flux becomes attenuated to low levels.

Fig. S5–S7 shows Atlantic and Pacific Ocean zonally-averaged anomalies with respect to

the reference power-law of the concentration of biological carbon (∆Cbio, Table S3), which

integrates the vertical flux and remineralization of particulate organic matter. Again,

anomalies largely have an inverse surface-deep ocean contrast, with similar sign anomalies

in the older upwelling waters of the Southern Ocean and deep North Pacific, in contrast

to the youngest waters in the North Atlantic (Kwon & Primeau, 2006; Kriest & Oschlies,

2011; Kriest et al., 2012; Romanou et al., 2014). The deep ocean store of Cbio is inversely

proportional to atmospheric CO2 content (Table S3).

Finally, Fig. S8 shows a comparison of model phosphate fields with the World Ocean

Atlas climatology (WOA2018, Boyer et al., 2018; Garcia et al., 2018) for the 21 sim-

ulations with different remineralization profiles. Despite reorganization of carbon and

nutrient concentrations, comparison of model output to climatological data does not sig-

nificantly change, underscoring that although these profile choices result in non-negligible

differences in ocean biogeochemical distributions (Kriest et al., 2012; Aumont et al., 2017)

and atmospheric CO2 levels (Kwon et al., 2009), the differences are small enough that all

the curves still quantitatively reproduce the observations to a similar degree.
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Figure S1. Fraction of sinking particulate organic matter exported from the 50 m sur-

face layer remaining at each depth for different evaluations of the upper incomplete gamma

function, Γ(a, x), with varying values of the order a (increasing greyscale tones) and co-

efficients (e.g. Eqn. S6) statistically fit to the reference power-law curve (b=0.84) by (a)

statistically minimizing the relative error (“RFIT”), or (c) the absolute error (“AFIT”),

and (d) matching the e-folding depth scale of 164 m (“EFD”). “Gamma(a,x)” profiles are

cases where the order is determined as part of a three-parameter non-linear fit giving

a ≈ −0.8. Profiles for the reference power-law (b=0.84), simple exponential, and gamma

function (Eqn. S6) curves from the main text (Fig. 2) are shown in colored, dashed, lines.

Plots b, d, and f show the attenuation rate of the export flux with depth
[
1
f
∂f
∂z
,m−1

]
.
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Figure S2. Zonal-average properties for power-law simulations where b = 0.84±0.14 (a–

c) particulate organic carbon export fluxes (mol C m−2 y−1), (d–f) anomalies of sinking

particle export flux compared to the reference power-law simulations (i.e. the middle

column, mol C m−2 y−1), and biological carbon concentration (Cbio, µmol C kg−1 in the

(g–i) Atlantic Ocean, and (j–l) Pacific Ocean. Reference Cbio concentrations are shown in

the middle column, with anomalies for the decreased and increased values of the power-law

exponent, b, in the left and right columns.
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Figure S3. Change in the integrated particle export flux rate [PgC y−1] passing

through (a) the horizon of deepest annual mixed layer depth, and (b) the 2 km depth

horizon, against integrated biological carbon reservoir anomaly [PgC], both with respect

to the power-law curve where b=0.84. Three power-law simulations (b = 0.84 ± 0.14)

are indicated by the blue symbols (diamond, cross, and pentagon), circle, square, and

triangle symbols indicate that profile coefficients (Eq. S1–S6) were derived by minimizing

the relative fit error (“RFIT”), minimizing the absolute fit error (“AFIT”), and fixing the

e-folding depth of remineralization (“EFD”) to the reference power-law curve. Values are

shown in Table S3.
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Figure S4. Zonally-averaged export flux anomaly with respect to the reference power-

law curve where b=0.84, for the parameter sets where the relative error of the fit is

minimized (RFIT, left column), where the absolute error of the fit is minimized (AFIT,

middle column), and where the e-folding depth of remineralization is matched to the 164 m

of the control curve (EFD, right column), where (a–c) is the simple exponential profile,

(d–f) is the ballast profile, (g–i) is the double exponential profile, (j–l) is the stretched

exponential profile, (m–o) is the rational profile, and (p–r) is the gamma profile.
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Figure S5. Zonally-averaged biological carbon (Cbio, µmol C kg−1) anomalies with

respect to the reference power-law curve for coefficients minimizing the relative error of

the fit (RFIT) in the Atlantic Ocean (left column) and Pacific Ocean (right column) using

(a–b) exponential, (c–d) ballast, (e–f) double exponential, (g–h) stretched exponential,

(i–j) rational, and (k–l) gamma function remineralization profiles.
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Figure S6. Zonally-averaged biological carbon (Cbio, µmol C kg−1) anomalies with

respect to the reference power-law curve for coefficients minimizing the absolute error of

the fit (AFIT) in the Atlantic Ocean (left column) and Pacific Ocean (right column) using

(a–b) exponential, (c–d) ballast, (e–f) double exponential, (g–h) stretched exponential,

(i–j) rational, and (k–l) gamma function remineralization profiles.

March 11, 2021, 10:11pm



LAUDERDALE & CAEL: X - 19

4

3

2

1

De
pt

h 
[k

m
]

Ex
po

ne
nt

ia
l

A Atlantic

4

3

2

1

De
pt

h 
[k

m
]

B Pacific

4

3

2

1

De
pt

h 
[k

m
]

Ba
lla

st

C

4

3

2

1

De
pt

h 
[k

m
]

D

4

3

2

1

De
pt

h 
[k

m
]

Do
ub

le

E

4

3

2

1

De
pt

h 
[k

m
]

F

4

3

2

1

De
pt

h 
[k

m
]

St
re

tc
he

d

G

4

3

2

1

De
pt

h 
[k

m
]

H

4

3

2

1

De
pt

h 
[k

m
]

Ra
tio

na
l

I

4

3

2

1

De
pt

h 
[k

m
]

J

90 60 30 0 30 60 90
Longitude

4

3

2

1

De
pt

h 
[k

m
]

Ga
m

m
a

K

90 60 30 0 30 60 90
Longitude

4

3

2

1

De
pt

h 
[k

m
]

L

50
40
30
20
10

0
10
20
30
40
50

50
40
30
20
10

0
10
20
30
40
50

50
40
30
20
10

0
10
20
30
40
50

50
40
30
20
10

0
10
20
30
40
50

50
40
30
20
10

0
10
20
30
40
50

50
40
30
20
10

0
10
20
30
40
50

50
40
30
20
10

0
10
20
30
40
50

50
40
30
20
10

0
10
20
30
40
50

50
40
30
20
10

0
10
20
30
40
50

50
40
30
20
10

0
10
20
30
40
50

50
40
30
20
10

0
10
20
30
40
50

50
40
30
20
10

0
10
20
30
40
50

EFD Biological Carbon Anomaly [ mol C kg 1]

Figure S7. Zonally-averaged biological carbon (Cbio, µmol C kg−1) anomalies with

respect to the reference power-law curve for coefficients matching the 164 m e-folding

depth (EFD) in the Atlantic Ocean (left column) and Pacific Ocean (right column) using

(a–b) exponential, (c–d) ballast, (e–f) double exponential, (g–h) stretched exponential,

(i–j) rational, and (k–l) gamma function remineralization profiles.
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Figure S8. Model phosphate concentrations [PO4, µmol kg−1] for each remineralization

profile against observations from the World Ocean Atlas 2018 (WOA18, Boyer et al., 2018;

Garcia et al., 2018) colored by model depth. The black dashed line indicates a 1:1 rela-

tionship. Model-data likeness is evaluated by the Pearson correlation coefficient, R, and

the root-mean-squared concentration error, RMSE. Although remineralization profile

choices result in non-negligible differences in macronutrient distributions, the differences

are small enough that all the curves still quantitatively reproduce the observations to a

similar degree.

March 11, 2021, 10:11pm



LAUDERDALE & CAEL: X - 21

Table S1. Parameter values and fit statistics for remineralization functions (Eq. S1–

S6). Each function was matched to the reference power-law (Eq. 1) with exponent

b=0.84 by statistically minimizing the relative (“RFIT”) or absolute (“AFIT”) misfit of

the curves, or by matching e-folding remineralization depth scale (“EFD”), Fig. 2b–d.

Note different units of coefficients. Goodness of fit is evaluated by S, the Standard Error

of Regression (smaller numbers indicate better fit).

Shape Parameter Units RFIT AFIT EFD

Exponential

Ce 1.059 1.451 1.548

`e m 871.5 134.2 114.5

S 1.107 0.0701 0.0700

Ballast

Cb 1.200 1.487 1.530

`b m 226.8 108.6 101.9

c 0.03111 0.04159 0.04139

S 0.3838 0.0453 0.0440

Double
Exponential

Cd1 1.326 1.583 1.522

`d1 m 124.3 70.38 75.09

Cd2 0.08668 0.1466 0.1492

`d2 m 2521 1144 1170

S 0.1559 0.0175 0.0175

Stretched
Exponential

Cs 10.88 13.91 15.81

s 0.7776 0.7526 0.7404

S 0.2499 0.0260 0.0314

Rational

Cr m 88.75 69.87 66.61

a m 38.75 19.87 16.61

S 0.1174 0.0112 0.0119

Gamma
Function

Cg 0.3214 0.6003 0.7267

`g m 1950 419.6 300.6

S 0.6272 0.0499 0.0543
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Table S2. Supplementary quantities for power-law remineralization simulations with

exponents of b=0.70, 0.84, and 0.98, as well as the “NOPOM” simulation where there are

no particulate organic matter export fluxes. Reference rates/concentrations are presented

for the control power-law curve where b=0.84, while values presented for simulations where

b=0.70, 0.98, and NOPOM are anomalies with respect to the control. ∆BC is the change in

globally-integrated rate of net community production, ∆Emld, ∆E1km, and ∆E2km are the

change in areally-integrated particulate organic carbon export flux through the deepest

mixed layer depth, 1 km, and 2 km horizons, respectively, ∆Cbio is the globally-integrated

change in biological carbon (evaluated as dissolved inorganic carbon minus the preformed

carbon concentration), and ∆pCOatm
2 is the change in atmospheric CO2 partial pressure.

Exponent (b)

0.70 0.84 0.98 NOPOM

Cp mb 1.000 1.000 1.000

∆BC PgC y−1 -5.231 29.570 5.175 39.65

∆Emld PgC y−1 -0.236 2.349 0.230 -2.349

∆E1km PgC y−1 0.141 1.749 -0.173 -1.749

∆E2km PgC y−1 0.172 0.802 -0.159 -0.802

∆Cbio PgC 112.32 2363.4 -109.30 -2187

∆pCOatm
2 µatm -21.59 269.33 24.77 165.4
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Table S3. Supplementary anomalies for alternative remineralization profile simulations.

Reference power-law values (b=0.84) are given in Table S2. ∆BC is the change in globally-

integrated net community production rate, ∆Emld, ∆E1km, and ∆E2km are the change in

areally-integrated particulate organic carbon export flux through the deepest mixed layer

depth, 1 km, and 2 km horizons, respectively, ∆Cbio is the globally-integrated change in

biological carbon (evaluated as dissolved inorganic carbon minus the preformed carbon

concentration), and ∆pCOatm
2 is the change in atmospheric CO2 partial pressure.

Shape Parameter Units RFIT AFIT EFD

Exponential

∆BC PgC y−1 -17.39 7.866 11.01

∆Emld PgC y−1 -0.558 0.745 0.845

∆E1km PgC y−1 0.6860 -0.2890 -0.511

∆E2km PgC y−1 0.5250 -0.5980 -0.662

∆Cbio PgC 357.1 -463.9 -533.3

∆pCOatm
2 µatm -62.94 70.28 92.59

Ballast

∆BC PgC y−1 -5.218 2.549 3.108

∆Emld PgC y−1 0.124 0.205 0.201

∆E1km PgC y−1 0.3380 -0.244 -0.292

∆E2km PgC y−1 -0.097 -0.138 -0.130

∆Cbio PgC -38.40 -47.16 -43.58

∆pCOatm
2 µatm -12.39 10.99 12.55

Double
Exponential

∆BC PgC y−1 -1.099 -0.2730 -0.553

∆Emld PgC y−1 0.111 -0.017 -0.011

∆E1km PgC y−1 0.019 -0.021 -0.010

∆E2km PgC y−1 -0.069 0.031 0.025

∆Cbio PgC -24.66 4.514 3.255

∆pCOatm
2 µatm -1.761 -1.082 -1.821

Stretched
Exponential

∆BC PgC y−1 -5.272 1.226 4.483

∆Emld PgC y−1 -0.127 0.188 0.329

∆E1km PgC y−1 0.234 0.056 -0.075

∆E2km PgC y−1 0.085 -0.142 -0.253

∆Cbio PgC 51.61 -90.93 -180.2

∆pCOatm
2 µatm -17.92 10.31 28.60

Rational

∆BC PgC y−1 -2.525 0.892 1.593

∆Emld PgC y−1 -0.025 0.100 0.124

∆E1km PgC y−1 0.120 0.000 -0.026

∆E2km PgC y−1 0.009 -0.069 -0.085

∆Cbio PgC 8.479 -41.63 -52.47

∆pCOatm
2 µatm -7.745 5.612 8.583

Gamma
Function

∆BC PgC y−1 -11.42 4.023 8.622

∆Emld PgC y−1 -0.330 0.454 0.653

∆E1km PgC y−1 0.471 -0.009 -0.282

∆E2km PgC y−1 0.279 -0.370 -0.514

∆Cbio PgC 172.29 -273.74 -399.44

∆pCOatm
2 µatm -40.38 35.70 66.35
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