
P
os
te
d
on

23
N
ov

20
22

—
T
h
e
co
p
y
ri
gh

t
h
ol
d
er

is
th
e
au

th
or
/f
u
n
d
er
.
A
ll
ri
gh

ts
re
se
rv
ed
.
N
o
re
u
se

w
it
h
ou

t
p
er
m
is
si
on

.
—

h
tt
p
s:
//
d
oi
.o
rg
/1
0.
10
02
/e
ss
oa
r.
10
50
48
07
.1

—
T
h
is

a
p
re
p
ri
n
t
a
n
d
h
as

n
ot

b
ee
n
p
ee
r
re
v
ie
w
ed
.
D
a
ta

m
ay

b
e
p
re
li
m
in
a
ry
.

A sampling-based path planning algorithm for improving

observations in tropical cyclones

Justice Darko1, Larkin Folsom1, Hyoshin Park1, Masashi Minamide2, Masahiro Ono3, and
Hui Su4

1North Carolina Agricultural and Technical State University
2The University of Tokyo
3NASA Jet Propulsion Laboratory
4Jet Propulsion Laboratory, California Institute of Technology

November 23, 2022

Abstract

Lack of high-resolution observations at the inner-core region of tropical cyclones introduces uncertainty into the structure’s true

initial state. More accurate measurements at the inner-core are essential for accurate tropical cyclone forecasts. This study seeks

to improve the estimates of the inner-core structure by utilizing background information from prior assimilated conventional

observations. We provide a scheme for targeted high-resolution observations for platforms such as the Coyote sUAS. In an

effort to identify potential locations of high uncertainty, an exploratory investigation of the background information of the state

variables pressure, temperature, wind speed, and a combined representation of the state variables given by their linear weighted

average is presented. A sampling-based path planning algorithm that considers the Coyote’s energy usage then locates the

regions of high uncertainties along a Coyote’s flight, allowing us to maximize the removal of uncertainties. The results of a data

assimilation analysis of a typical Coyote flight mission using the proposed deployment scheme shows significant improvements

in estimates of the tropical cyclone structure after the resolution of uncertainties at targeted locations.
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Abstract23

Lack of high-resolution observations at the inner-core region of tropical cyclones intro-24

duces uncertainty into the structure’s true initial state. More accurate measurements at25

the inner-core are essential for accurate tropical cyclone forecasts. This study seeks to26

improve the estimates of the inner-core structure by utilizing background information from27

prior assimilated conventional observations. We provide a scheme for targeted high-resolution28

observations for platforms such as the Coyote sUAS. In an effort to identify potential29

locations of high uncertainty, an exploratory investigation of the background informa-30

tion of the state variables pressure, temperature, wind speed, and a combined represen-31

tation of the state variables given by their linear weighted average is presented. A sampling-32

based path planning algorithm that considers the Coyote’s energy usage then locates the33

regions of high uncertainties along a Coyote’s flight, allowing us to maximize the removal34

of uncertainties. The results of a data assimilation analysis of a typical Coyote flight mis-35

sion using the proposed deployment scheme shows significant improvements in estimates36

of the tropical cyclone structure after the resolution of uncertainties at targeted loca-37

tions.38

1 Introduction39

Understanding the fundamental role of the boundary layer (i.e., interface between the ocean40

and atmosphere) of tropical cyclones (TCs) plays a significant role in providing essential41

meteorological information. The boundary layer contains important information about the42

inner core dynamics and requires a true and thorough examination to predict the track and43

intensity of TCs. An undesirable phenomenon such as rapid intensification, which describes44

how TCs can increase in intensity over short periods, can be accurately predicted from45

an observation of the boundary layer (Cione et al., 2013). In recent studies, inner-core46

observations have been done with next-generation weather satellites (F. Zhang et al., 2019).47

Nonetheless, targeted high-resolution observations using platforms such as small Unmanned48

Aircraft System (sUAS) can significantly improve information (Pillar-Little et al., 2020)49

about the inner-core and eventually improve TC estimates for forecast models.50

The Coyote program (Cione et al., 2016; de Boer et al., 2019), introduced by the national51

hurricane center by NOAA’s air reconnaissance programs, well supports the task of moni-52

toring targeted critical layers of a TC. The Coyote program allows the sUAS to be deployed53

to the low altitude boundary layer, which is extremely dangerous for manned in-situ mea-54

surements. However, the Coyote program has several limitations that can be significantly55

improved by the proposed deployment method. First, the Coyote program has focused56

on successfully collecting data with drone flight patterns (e.g., eyewall and inflow module)57

conceived from procedures described in NOAA’s Hurricane Research Division Annual Hur-58

ricane Field Program. However, these predefined navigation procedures do not necessarily59

consider how data gathered from a flight path impacts and improves the posterior estimate60

of the TC at a future time from an earlier prior estimate of the TC. The criteria for location61

selection was “difficult to observe in sufficient detail” in the eye which is the most recog-62

nizable feature of the TC spanning between 20-50 km in diameter, rather than “importance63

of information” gained from the data in a smaller, more precise target location. A Coyote64

sUAS with its limited endurance and range must consider how traversing a given path, or65

flight pattern will maximize the resolution of uncertainties in previous TC estimates. For66

example, in a study by F. Zhang et al. (2019), uncertainties for state variables are estimated67

from the assimilation of conventional in situ data and Geostationary Operational Environ-68

mental Satellite (GOES)-All-Sky Radiances. These uncertainties can provide background69

information for targeted high-resolution observations to maximize the removal of uncertain-70

ties in the prior estimates of the TC, providing a more accurate approximation for forecast71

models.72

Second, current Coyote flight navigation does not explicitly consider how the path affects73

the limited battery life (critical for observations and communication) and total distance74
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covered by the Coyote. For instance, flying at certain angles to the direction of the TC75

wind velocity will severely impact battery usage. A flight pattern that strives to reduce the76

energy utilized for navigation will improve the range for observations. The current study77

seeks to reduce the energy utilized for navigation and improve the distance covered by the78

sUAS by flying as close as possible with the drift of TC winds. To the best of our knowledge,79

this is the first study that uses a sampling-based planning algorithm to locate regions of80

high uncertainties for Coyote sUAS along a path to a target location, and overall, improve81

the efficiency of Coyote battery usage.82

2 Related Work83

Several environmental and storm-related factors have been studied to understand the com-84

bined impacts on the future structure of TCs. Humidity, absolute vorticity, and distribution85

of convection relative to the storm are observed to affect TCs intensification (Munsell et86

al., 2013; Sippel & Zhang, 2008, 2010). A strong relationship has been observed between87

the measurement of the central pressure of TC, and its maximum sustained winds speed88

(Rosendal & Shaw, 1982). The sensitivity of predictive models of TCs to high-resolution89

atmospheric data is currently receiving significant attention (Raavi & Walsh, 2020).90

Table 1. Summary of TC Prediction Parameters of Interest

Parameters Target Observational Equip-

ment

Forecast Previous studies

(Examples)

Wind speed,

Wind Direc-

tion

Eye, Eyewall,

inflow, PBL

Reconnaissance

aircrafts (> 2 km),

Buoys (SST),

UAS (< 2km),

Dropsonde

Intensity,

Structure

Rosendal and Shaw (1982),

Cione et al. (2020), Stern et al.

(2016), DeMaria and Kaplan

(1999), DeMaria et al. (2005,

2014)

Air Temper-

ature, SST*

PBL, Inflow,

Upper-Ocean

Layers

Intensity,

Structure,

Track

Sanabia et al. (2013),

J. A. Zhang et al. (2017),

Cione et al. (2020), Stern

et al. (2016), DeMaria and

Kaplan (1999), DeMaria et

al. (2005, 2014)

Pressure Eye, Eyewall,

Inflow, PBL

Reconnaissance

Aircrafts (> 2 km),

UAS (< 2km),

Dropsonde

Rosendal and Shaw (1982),

Goyal and Datta (2011),

J. A. Zhang et al. (2017),

Cione et al. (2020), Stern

et al. (2016), DeMaria and

Kaplan (1999), DeMaria et

al. (2005, 2014)

Moisture

(RH*)

Eyewall,

Inflow, PBL

Intensity,

Structure

Sippel and Zhang (2008,

2010), Munsell et al. (2013),

Van Sang et al. (2008),

J. A. Zhang et al. (2017),

Cione et al. (2020), Stern

et al. (2016), DeMaria and

Kaplan (1999), DeMaria et

al. (2005, 2014)

TKE

Momentum

Flux

Eyewall, In-

flow, PBL (<

150m)

UAS (< 2km)

Dropsondes

Intensity,

Structure

Cione et al. (2020), Stern et

al. (2016), Pillar-Little et al.

(2020)

*SST: sea surface temeperature; RH: relative humidity; PBL: planetary boundary layer.
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The impact of data assimilation analysis for identifying the role of internal dynamics on91

intensification and structural changes in TCs revealed that hybrid data assimilation tech-92

niques improved the overall quality of prediction compared to individual data assimilation93

methods (Malakar et al., 2020). A flow-dependent sequential assimilation-based targeted94

observation has been developed using the ensemble Kalman filter to minimize the analysis95

error variance (Wu et al., 2020). Data assimilation experiments by Cione et al. (2020) show96

how sUAS data can be used to improve storm structure analysis. A review of continuous97

monitoring of a TCs’ core using sUAS is provided in Tyrrell and Holland (2003). Aircraft98

observations of upper-ocean thermal structures show that there is a strong correlation be-99

tween the upper-ocean thermal variability and the intensity change of TCs (Sanabia et al.,100

2013). Prediction accuracy of TCs in both coupled dynamical and statistical models was101

improved by successful observation and assimilation of upper ocean temperature (Sanabia102

et al., 2013). Table 1 summarizes some common observational parameters that are collected103

for the estimates of a TC structure required for an accurate TC forecast.104

The remainder of this paper’s structure is as follows: section 3 describes the sampling-105

based method, development of a combined measure of uncertainty, and a presentation of a106

constraint for safe and energy-efficient navigation. In section 4, we present an evaluation of107

the model performance and test its robustness through a Monte-Carlo simulation. Section 5108

presents an illustration of a typical Coyote sUAS mission utilizing the proposed deployment109

scheme, with data assimilation analysis to estimate improvement levels. Finally, a summary110

of the study’s findings and future research direction is presented in section 6.111

3 Model, Data, and Methods112

The highly dynamic environment of a TC configuration space is mainly described through113

the wind velocities. To provide easy maneuverability for Coyote sUAS in such environments,114

a rapidly exploring random tree star (RRT*) algorithm which converges to a collision-free115

path presents an appealing approach for an efficient path solution. RRT* algorithm starts116

with a tree that includes the initial drop off location of the Coyote as its single vertex and117

no edges. The algorithm then incrementally grows a tree on the TC configuration space118

by randomly sampling a location within the space and extending it towards that location.119

This study uses the RRT* algorithm to model the Coyotes’ flight for targeted observations.120

The observations are characterized by the uncertainty distribution of three state variables,121

namely pressure, temperature, and wind speed (mainly because of the current capabilities122

of the Coyote sUAS). Based on the aforementioned state variable uncertainties, a combined123

representation of the uncertainties at different locations in the TC configuration space is de-124

veloped through a linear weighted average of the three individual uncertainty distributions.125

The combined representation for uncertainty Ĉi at location i in the TC ’s configuration126

space is therefore written as:127

Ĉi = WP x̂
P
i +WT x̂

T
i +WW x̂Wi , (1)128

where x̂Pi , x̂
T
i , x̂

W
i , are the normalized uncertainties for pressure, temperature, and wind129

speed uncertainty, and WP ,WT ,WW , are the weights for pressure, temperature, and wind130

speed uncertainty. The normalized uncertainties for each state variable xi at location i is131

written as:132

x̂i =
xi − xmin

xmax − xmin
, (2)133

where xmin and xmax are minimum and maximum uncertainty for the given state variable.134

The weights for the state variable uncertainty sums to one, written as:135

WP +WT +WW = 1. (3)136

3.1 TC STRAP-RRT∗.137

Suas navigaTion with en-Route measurement Accumulation Plan (STRAP) is developed as138

an extension of the RRT* algorithm. The main objective is to find random nodes that lower139
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the overall energy for a given path but maximizes the uncertainty removed along the path140

to a target location. In order to guarantee minimal energy is utilized for navigation, a wind141

velocity constraint is implemented as the acceptable angular difference between a sub-path142

segment of the RRT* tree and the wind direction at location i. For this study, the angular143

difference condition is set at less or equal to 50o (allowing some room to navigate around144

the direction of the wind). The set of all the configurations satisfying the wind velocity145

constraints is written as:146

Hcon = {q : fi(q) ≤ εi} , εi ∈ [0; 50),∀i ≥ 0 (4)147

Hcon is TC configuration space and fi(q) is written as:148

fi(q) = cosα =
āi · b̄i
|āi| · |b̄i|

, (5)149

where āi and b̄i are the TC wind and RRT* branch at location i.150

An end result of the wind velocity constraint is an increased range of coverage by the Coyote151

sUAS for the same endurance. The speed of the Coyote sUAS relative to a fixed point on152

the earth’s surface (ocean) is the ground speed (Figure 1).153

Coyo
te airs

peed

Wind speed

Ground speed

Figure 1. Coyote ground speed representation.

The velocity of the Coyote sUAS is thus given as the vector sum of the Coyote airspeed and154

the TC wind speed, written as:155

V̄Ground = V̄Coyote + V̄Wind (6)156

It can be seen from Equation 6 that the relative speed of the Coyote sUAS to the ocean is157

more than the Coyote airspeed. This important deduction is developed as a result of the158

wind velocity constraint. For example, in a scenario where the angular difference between159

the Coyote and wind speed is zero, the speed of the Coyote relative to the ocean will be the160

sum of the TC wind and Coyote’s speed.161

For an illustration of STRAP-RRT* algorithm (Figure 2), we first extend a nearest-neighbor162

vertex towards a randomly sampled location in the TC configuration space. The extension163

process creates a new vertex qnew, at a distance ≤ to a defined step size. The algorithm164

then connects qnew, to the vertex that incurs the maximum total uncertainty (
∑
Munc)165

from our start location within the set of vertices found in a defined vicinity around qnew166

(parent stage). STRAP-RRT* also reevaluates previous connections and extends the new167
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vertex to the vertex that can be accessed through the maximum uncertainty, described as168

the rewire stage. At the point of rewiring, the algorithm searches among all existing nodes169

within the defined vicinity of qnew.170

Figure 2. Stages of RRT* for exploring TC space.

As shown in the pseudocode (Algorithm 1), the Nearest function in STRAP-RRT* (NearestSTRAP)171

considers the uncertainty at the nearest node. NoExceed conditional statement implements172

the wind velocity constraint. The ChooseParent function considers the closest node by173

uncertainty, rather than distance.174

Algorithm 1 : STRAP-RRT*

T ← InitializeTree()
T ← InsertNode(∅,zinit,T)
for i=0 to i=N do
zrand ← Sample(i)
znearest ← NearestSTRAP(T,zrand)
(znew, Unew)← Steer(znearest, zrand)
if NoExceed(znew) then
znear ← Near(T, znew, |V |)
zmax ← ChooseParentSTRAP(znear, znearest, znew)
T ← InsertNode(zmax, znew, T )
T ← Rewire(T, znear, zmax, znew)

end if
end for

4 Model Evaluation175

This section provides an evaluation of the model for different random scenarios. The analysis176

of uncertainty distribution for thermodynamic (pressure and temperature) and kinematic177

(wind speed) observations is performed using the modified sampling-based planning algo-178

rithm STRAP-RRT*. We compare this to a benchmark approach, the minimum distance179

method (MDM) subject to the wind velocity constraint.180

As demonstrated by Cione et al. (2020), Coyote sUAS observations are usually done at a181

constant altitude, thus we assume a level flight for Coyote in situ observations. A typical182

Coyote sUAS battery life supports 3600s endurance, shorter if in a highly turbulent environ-183

ment. At a maximum cruising airspeed of 36 ms−1 (Cione et al., 2016), the total distance184
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that can be covered by Coyote sUAS assuming battery life of 3600s is 80 miles. This dis-185

tance is significantly increased when the wind velocity constraint is factored. To transmit186

data in near-real time during observations, Coyote sUAS are equipped with a 350-MHz data187

link that improves the communication range of the Coyote substantially and allows the P-3188

hurricane hunter aircraft to execute normal flight paths while Coyote sUAS navigates its189

path.190

4.1 Preliminary Analysis of Uncertainty Distribution191

The background information utilized in this study is developed and presented by F. Zhang192

et al. (2019); Minamide et al. (2020). This dataset is generated for Hurricane Harvey from193

the state-of-the-art data assimilation system known as the ensemble Kalman filter (EnKF)194

hurricane analysis and forecast system, developed at the Pennsylvania State University,195

which is built around the Advanced Weather Research and Forecasting Model (WRF-ARW)196

and the Community Radiative Transfer Model (CRTM). The data assimilation process uses197

conventional in-situ observations and all-sky satellite radiance from GOES-16, and produces198

prior estimates of the TC with an hourly temporal resolution. In this study, we assume a199

fixed time window for the background information based on the hourly temporal resolution.200

Figure 3 shows the contour plots of uncertainty distributions (estimated standard deviation)201

for pressure (Figure 3a), temperature (Figure 3b), wind speed (Figure 3c), and the combined202

representation using Equation 1 (Figure 3d) at an altitude of 1.1 km above sea level (ASL).203

Figure 3. Uncertainty distribution for state variables at an altitude 1.1 km (ASL) for Hurricane

Harvey overlaid with wind speeds on 25th August 2017, TIME: 00:00:00.

The contour plots show different degrees of uncertainties at different locations of the hur-204

ricane configuration space. Each plot of uncertainty distribution is overlaid with the hur-205

ricane’s wind speed distribution to show important storm regions such as the eyewall. As206

shown in Figure 3, a mostly homogeneous and regular pattern is observed for pressure and207

wind speed uncertainty estimates. This similarity may be due to the previously observed208
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correlation between pressure and wind speed, presented by Rosendal and Shaw (1982). Al-209

though temperature uncertainties exhibited an irregular pattern, the uncertainties for the210

combined representation is seen to follow the regular patterns of pressure and wind speed.211

By using the knowledge of the background uncertainties of the prior TC estimates, the ac-212

curacy of a posterior estimate of the TC can be improved by targeting the locations of high213

uncertainties.214

4.2 Model Performance215

The simulation results for STRAP-RRT* and MDM are first reported for a random start and216

goal location in the hurricane’s inner-core region (within a radius of 57.539 miles from the217

center of the storm (Shea & Gray, 1973)). Several studies (Cione et al., 2013, 2016) have218

reported this region to provide meaningful data for forecasting the intensity and track of219

hurricanes. The Coyote start location is at 25.23o N, 94.65o W, and the goal location is at220

25.54o N, 94.71o W. Figure 4 shows the tree structure and the Coyote path solutions for221

STRAP-RRT* and MDM overlaid on the uncertainty distribution plots. Comparing the same222

number of observation points in each scenario, the path solution for STRAP-RRT* showed223

considerable potential in improving pressure observations by selecting points of high-pressure224

uncertainties (Figure 4a). Specifically, the total uncertainty removed by STRAP-RRT* and225

MDM are 10751 Pa and 5917.7 Pa respectively, which corresponds to improvement of over226

81%.227

Figure 4. Safe and efficient Coyote path solution at an altitude 1.1 km (ASL) for STRAP-RRT*

and MDM layered with uncertainty distribution plots of Hurricane Harvey on 25th August 2017,

TIME: 00:00:00.

As expected, the Coyote track distance for STRAP-RRT* was higher than MDM, with track228

distances 63.47 miles and 42.26 miles respectively, corresponding to a 50% increase in dis-229

tance for Coyote using STRAP-RRT*. The findings in Figure 4b show significant potential in230

improving observation of temperature using STRAP-RRT*. When compared to MDM, there231
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is an increase in total uncertainty removed from 8 K to 13 K, representing an improvement232

of over 58%. The increase in total uncertainty removed occurred at a 37% increase in Coyote233

track distance for STRAP-RRT*. The findings in Figure 4c show that STRAP-RRT* pre-234

formed better than MDM in removing wind speed uncertainty. Improvement in wind speed235

uncertainty removal from 183 ms−1 to 338 ms−1 is observed for STRAP-RRT* compared to236

MDM, representing a 84% increase. The Coyote track distance for STRAP-RRT* and MDM237

are 60 miles and 42 miles respectively, corresponding to a 43% increase in Coyote track238

distance using STRAP-RRT*. STRAP-RRT* on the combined representation for uncertainty239

distribution (Figure 4d) reported improvements of over 25% when compared to the MDM.240

This occurs at a 40% increase in Coyote sUAS track distance to the goal location. Overall,241

the performance of the model on individual uncertainty distribution tends to be similar to242

that of the combined representation. The trade-off between total uncertainty removed and243

the total distance is reasonable, considering the algorithm allows the Coyote to minimize244

the energy utilized and increase range for navigation by using the wind velocity constraint.245

4.3 Model Robustness Analysis246

To assess the robustness of STRAP-RRT* and MDM, 100 scenarios of start and goal locations247

are drawn from a uniform sample of locations around the eye region (Figure 5). The follow-248

ing notations identify the implementation results for each state variable: Pressure-STRAP249

(P STRAP), Pressure-MDM (P MDM), Temperature-STRAP (T STRAP), Temperature-250

MDM (T MDM), Wind speed-STRAP (W STRAP), Wind speed-MDM (W MDM), Com-251

bined representation-STRAP (C STRAP), and Combined representation-MDM (C MDM).252

253

Figure 5. Distribution of 100 randomly sampled flight start and goal locations.

The results of path solution (STRAP and MDM) for each scenario (flight number) is reported254

considering the same number of observation points. Figure 6 shows the performance of255

STRAP-RRT* compared to MDM on pressure uncertainty. Percentage increase is calculated256

as the change in computed value (total uncertainty and distance covered) for STRAP-RRT*257

relative to MDM. In general, the results indicate good performance for STRAP-RRT* in258

removing uncertainties, with improvements mostly ranging between 5% and 100%. We259

mostly observe an increased Coyote track distance for STRAP-RRT* compared to MDM,260

ranging between 10% and 80%, although a few scenarios of STRAP-RRT* reported decreased261

flight distance than MDM.262
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Figure 6. Pressure uncertainty analysis for P STRAP and P MDM.

Figure 7 shows the performance of STRAP-RRT* compared to MDM on temperature uncer-263

tainty. In most instances, it is seen that STRAP-RRT* resulted in significant improvement264

in removing uncertainty, with improvements ranging between 5% and 60%. STRAP-RRT*265

mostly resulted in increased Coyote track distances, although few scenarios reported lower266

track distances than MDM. A few of these scenarios still resulted in higher uncertainty re-267

moval than MDM. Overall, the increased Coyote track distance for STRAP-RRT* ranged268

between of 1% and 60%.269

Figure 7. Temperature uncertainty analysis for T STRAP and T MDM.

Figure 8 shows the performance of STRAP-RRT* compared to MDM on wind speed uncer-270

tainty. STRAP-RRT* results indicate a similar trend of good performance as seen above for271

pressure (Figure 6), although a few scenarios reported lower improvement levels. Improve-272

ment in uncertainty removal ranged between 2% and 60%. Although multiple scenarios273

reported a lower track distances for STRAP-RRT* than MDM, a few of thee scenarios re-274

ported a higher uncertainty removal than MDM. Increases in Coyote track distance for275

STRAP-RRT* ranged between 1% and 62%.276
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Figure 8. Wind speed uncertainty analysis for W STRAP and W MDM.

Figure 9 shows the performance of STRAP-RRT* compared to MDM on the combined rep-277

resentation for uncertainty. Clearly, STRAP-RRT* results in significant improvements in278

the removal of uncertainty, with improvements mostly ranging between 5% and 75%. A few279

scenarios resulted in lower track distances for STRAP-RRT* than MDM, although a number280

these scenarios reported a higher uncertainty removal than MDM. The increased Coyote281

track distance for STRAP-RRT* ranged between 1% and 90%.282

Figure 9. Combined representation uncertainty analysis for C STRAP and C MDM.

The parallel boxplots in Figure 10 illustrate the distribution of uncertainty removal and283

distance covered for the different observations of state variables for STRAP-RRT* and MDM.284

STRAP-RRT* distribution indicated good performance for uncertainty removal with few285

outlier values. Interquartile ranges for uncertainty removal using STRAP-RRT* are typically286

higher than MDM. In all cases of uncertainty removal analysis, STRAP-RRT* reported a287

higher median than MDM. The uncertainty removal distribution for pressure (P STRAP)288

had the highest number of outliers, while T STRAP, T MDM, C MDM and C STRAP289

reported no outliers.290
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The distribution of total distance covered is as expected. Interquartile ranges for STRAP-291

RRT* are typically larger than MDM, indicating a higher overall track distance. The dis-292

tribution of Coyote sUAS flight distance considering pressure observation (P STRAP) has293

the highest number of outliers. Overall, the mean flight distance for Coyote flights using294

STRAP-RRT* was greater than MDM.295

The findings of the Monte-Carlo simulation suggest good performance for STRAP-RRT*296

in targeting locations of high uncertainties. This determination is mostly due in part to297

STRAP-RRT* evaluating the background uncertainty in deciding which location to visit.298

The implementation of STRAP-RRT* on the combined representation showed excellent per-299

formance, reporting no outliers for total uncertainties removed and distance covered.300

Figure 10. Summary statistics for flight total uncertainty removed and flight distance analysis.

This performance is especially significant since observations of the different state variables301

are made simultaneously as the Coyote sUAS traverses a given path and therefore the302

actual benefit of STRAP-RRT* can be truly deduced from the analysis of the combined303

representation for uncertainty distribution. A significant resolution of uncertainties at the304

inner-core can therefore be achieved using STRAP-RRT*, which will result in an improved305

estimation of the inner-core structure.306
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5 Data Assimilation307

The relative significance in improvement achieved by removing uncertainty can be assessed308

through a data assimilation analysis. Data assimilation adjusts state variables (temperature,309

pressure, and wind speed) directly during a period for which you want estimates of the state310

variables. We perform preliminary data assimilation analysis equivalent to a simple scalar311

illustration of the least-squares estimation for a typical flight mission using STRAP-RRT*.312

5.1 Merging Coyote sUAS Observations and Prior Model Data313

The series of discrete point in situ observations by the Coyote sUAS is assimilated with314

the prior estimates of the TC to provide the best estimate (posterior) of the TC structure.315

The model state estimate is assumed to be univariate and represented as grid-point values.316

Assume two observations given by:317

model background information at location i:318

Mmodel(i) + σ2
model(i), (7)319

and after Coyote sUAS observation at location i:320

Mobs(i) + σ2
obs(i). (8)321

In a scenario where observations are treated as excellent, the data assimilation method will322

replace the model data at the location with the observation. Observations are far from323

perfect; therefore, assimilation is usually carried out through a weighted estimate of model324

and observation based on their respective uncertainty. The best estimate at location i is325

written as:326

Best estimate(i) = (1− β)Mmodel(i) + βMobs(i). (9)327

β is the weight between the model and observation. The best estimate of weight considers328

the uncertainty of simulation model and observation, written as:329

β =
σ2
model(i)

σ2
model(i) + σ2

obs(i)

. (10)330

The uncertainty (error variance) of the best estimate is less than the uncertainty of either331

the model or the observation written as:332

σ2
best estimate(i) = (1− β)σ2

model(i). (11)333

To account for the effect of an influence region around each observation point, we introduce334

a weighting function w(i, j) to update the best estimates of the uncertainty at each grid335

locations j in the vicinity of observation point i written as:336

w(i, j) = max

(
0,
R2 − d2i,j
R2 + d2i,j

)
(12)337

where di,j is a measure of the distance between points i and j. The weighting function338

w(i, j) equals to one if the grid point j is collocated with observation i. It is a deceasing339

function of distance which is zero if di,j ≥ R. R (“the influence region or radius”) is a340

user defined constant beyond which the observations have no weight. In this analysis, we341

assume β from Equation 10 is directly related to the accuracy of the instrument making342

the observation. The modified best estimate of the uncertainty at each grid point location343

j can now be written as:344

σ2
best estimate(j) = (1− β ∗ w(i, j))σ2

model(j). (13)345

5.2 Data Assimilation Analysis346

This section’s focus is to illustrate the resulting improvements from a typical Coyote sUAS347

mission in a TC using the proposed deployment scheme. The analysis is carried out using348
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the combined representation for uncertainty distribution. Although spatial correlation is not349

considered, we still show promising improvements. Future research is expected to have more350

benefits from correlation gains. A typical data assimilation process without considering the351

spatial correlation is shown in Figure 11. Note that uncertainty distribution values along the352

recommended path of the Coyote sUAS are almost reduced to zero. We assume an influence353

region R = 6 miles around each observation point. The mission starts with a fixed drop-off354

location at 25.5495o N, 94.3398o W and a randomly sampled without replacement multiple-355

goal locations. To ensure the utilization of all Coyote’s endurance during a flight, we report356

the results for missions with total distance in the range of 60 ≤ distance ≤ 105. The goal357

location of a previous flight is set to be the start location of the next flight. After Coyote358

finds a goal location, we update the uncertainty distribution to reflect the new distribution359

resulting from our previous observation. We assume a uniformly distributed β between 0.8360

and 0.9 (given that observations are at least 80% more important than the simulation model361

but less than 90% important than the simulation model) at different locations in the TC362

space.363

Figure 11. Illustration of a data assimilation process after Coyote flight mission using STRAP-

RRT* a) Before assimilation of Coyote flight data, b) After assimilation of Coyote flight data.

Table 2 shows the results of improvement in the estimates of the TC structure. Improvement364

in TC estimates is calculated as the difference between the sum of TC error variances before365

data assimilation (Figure 11a) and the sum of TC error variances after Coyote flight data366

assimilation (Figure 11b). State variables pressure and wind speed reported a relatively367

high and similar trend in improvements. This can mainly be due to the similarities in368

the uncertainty distribution for these two state variables. Temperature reported the lowest369

percentage improvement, mainly due to the very sparse distribution of uncertainty. Note370

that the results are the improvements for the entire TC structure, and thus represents an371

underestimate of actual improvement for the inner-core region.372

Table 2. Summary of percentage improvement in simulation model for Hurricane Harvey after

data assimilation using STRAP-RRT*

Destination % Improvement

Distance Covered (miles) Latitude Longitude Pressure Temperature Wind Speed

65.7312 25.7677 -94.9002 2.2747 0.8587 1.6967
81.9842 25.0242 -94.5855 3.6507 1.3229 2.9478
86.9840 25.2747 -94.5087 3.4549 1.2578 2.7544
99.0933 25.0646 -94.6238 3.5981 1.3006 2.9096
102.9406 25.1939 -94.6238 3.4407 1.2513 2.7442
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In general, the analysis indicates the Coyote sUAS mission with goal destination 25.0242o373

N, 94.5855o W would have resulted in the most improvement in the estimates of the TC374

structure although the distance covered in this mission is relatively smaller when compared375

to the last three mission in Table 2.376

6 conclusion377

This study presents a sampling-based path planning algorithm to optimize the use of sUAS378

for useful data collection in TCs. In order to minimize the energy utilized for navigation,379

a directional constraint is implemented as an acceptable angular difference between a sub-380

path segment and the wind velocity allowing the sUAS to mostly follow the strong TCs381

wind direction. The current study highlights a promising solution for sUAV navigation382

as they can fly into the targeted TC inner core to obtain high-resolution meteorological383

observations guided by background estimates (e.g., ensemble spread and sensitivity map)384

from an earlier data assimilation process. The new observations from the TC boundary layer385

(i.e., interface between the ocean and atmosphere) supplement existing partial knowledge386

(Cione et al., 2013) for a better estimate of TC intensity. Although we did not consider387

the spatial correlation in the TC structure, the results showed significant improvement in388

the accuracy of the TC structure after Coyote sUAS followed the recommended path from389

STRAP-RRT*.390

In future research, a systematic investigation using a sensitivity map will be considered,391

incorporating the storm structure’s spatiotemporal dependencies. A sensitivity map indi-392

cates how much each location affects the improvement of the inner-core initialization. We393

will also consider an extension to a multiagent collaborative framework. Past TC missions394

have deployed multiple Coyote sUAS one at a time independently with only a limited area395

of coverage or point measurement. However, this scheme makes the monitoring difficult for396

different sections of the boundary layer, failing to utilize the collaborative framework. A397

previous decision of first location assignment of the Coyote sUAS could turn out to be not398

optimal, after computing the expected benefit of the second assignment of the Coyote sUAS.399

On the contrary, poor information gathered as a result of the first location assignment could400

have a cascading effect on the following Coyote sUAS assignments. A myopic decision may401

focus more on information gain on the one Coyote sUAS assignment in the current stage,402

but if the next assignment location is too far, a relatively late arrival time could lower the403

chance of collecting critical data in the second stage since the TC has already moved.404
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