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Abstract

Over the last decades, climate science has evolved rapidly across multiple expert domains. Our best tools to capture state-of-

the-art knowledge in an internally self-consistent modelling framework are the increasingly complex fully coupled Earth System

Models (ESMs). However, computational limitations and the structural rigidity of ESMs mean that the full range of uncertainties

across multiple domains are difficult to capture with ESMs alone. The tools of choice are instead more computationally efficient

reduced complexity models (RCMs), which are structurally flexible and can span the response dynamics across a range of domain-

specific models and ESM experiments. Here we present Phase 2 of the Reduced Complexity Model Intercomparison Project

(RCMIP Phase 2), the first comprehensive intercomparison of RCMs that are probabilistically calibrated with key benchmark

ranges from specialised research communities. Unsurprisingly, but crucially, we find that models which have been constrained
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to reflect the key benchmarks better reflect the key benchmarks. Under the low-emissions SSP1-1.9 scenario, across the RCMs,

median peak warming projections range from 1.3 to 1.7{degree sign}C (relative to 1850-1900, using an observationally-based

historical warming estimate of 0.8{degree sign}C between 1850-1900 and 1995-2014). Further developing methodologies to

constrain these projection uncertainties seems paramount given the international community’s goal to contain warming to

below 1.5{degree sign}C above pre-industrial in the long-term. Our findings suggest that users of RCMs should carefully

evaluate their RCM, specifically its skill against key benchmarks and consider the need to include projections benchmarks

either from ESM results or other assessments to reduce divergence in future projections.
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Key Points:39

• Probabilistic global-mean temperature projections often use reduced complexity40

climate models (RCMs) because of their low computational cost41
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multiple research domains for policy relevant projections43

• No RCM is able to capture all forcing, warming, heat uptake and carbon cycle met-44

rics we evaluate, however some come close across a range45
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Abstract46

Over the last decades, climate science has evolved rapidly across multiple expert47

domains. Our best tools to capture state-of-the-art knowledge in an internally self-consistent48

modelling framework are the increasingly complex fully coupled Earth System Models49

(ESMs). However, computational limitations and the structural rigidity of ESMs mean50

that the full range of uncertainties across multiple domains are difficult to capture with51

ESMs alone. The tools of choice are instead more computationally efficient reduced com-52

plexity models (RCMs), which are structurally flexible and can span the response dy-53

namics across a range of domain-specific models and ESM experiments. Here we present54

Phase 2 of the Reduced Complexity Model Intercomparison Project (RCMIP Phase 2),55

the first comprehensive intercomparison of RCMs that are probabilistically calibrated56

with key benchmark ranges from specialised research communities. Unsurprisingly, but57

crucially, we find that models which have been constrained to reflect the key benchmarks58

better reflect the key benchmarks. Under the low-emissions SSP1-1.9 scenario, across59

the RCMs, median peak warming projections range from 1.3 to 1.7°C (relative to 1850-60

1900, using an observationally-based historical warming estimate of 0.8°C between 1850-61

1900 and 1995-2014). Further developing methodologies to constrain these projection62

uncertainties seems paramount given the international community’s goal to contain warm-63

ing to below 1.5°C above pre-industrial in the long-term. Our findings suggest that users64

of RCMs should carefully evaluate their RCM, specifically its skill against key bench-65

marks and consider the need to include projections benchmarks either from ESM results66

or other assessments to reduce divergence in future projections.67

Plain Language Summary68

Our best tools to capture state-of-the-art knowledge are complex, fully coupled Earth69

System Models (ESMs). However, ESMs are expensive to run and no single ESM can70

easily produce responses which represent the full range of uncertainties. Instead, for some71

applications, computationally efficient reduced complexity climate models (RCMs) are72

used in a probabilistic setup. An example of these applications is estimating the likeli-73

hood that an emissions scenario will stay below a certain global-mean temperature change.74

Here we present a study (referred to as the Reduced Complexity Model Intercompari-75

son Project (RCMIP) Phase 2) which investigates the extent to which different RCMs76

can be probabilistically calibrated to reproduce knowledge from specialised research com-77

munities. We find that the agreement between each RCM and the benchmarks varies,78

although the best performing models show good agreement across the majority of bench-79

marks. Under a very-low emissions scenario median peak warming projections range from80

1.3 to 1.7°C (relative to 1850-1900, assuming historical warming of 0.8°C between 1850-81

1900 and 1995-2014). Investigating new ways to reduce these projection uncertainties82

seems paramount given the international community’s goal to limit warming to below83

1.5°C above pre-industrial in the long-term.84

1 Introduction85

Coupled Earth System Models (ESMs) have evolved for decades as primary climate86

research tools (Kawamiya et al., 2020). They represent the state of the art of complex87

Earth system modelling. Nonetheless, they are not the tool of choice to assess the full88

breadth of scenario and Earth system response uncertainty that has been identified in89

the scientific literature. It is infeasible to assess the climate implications of hundreds to90

thousands of emissions scenarios with the world’s most comprehensive ESMs, such as91

those participating in the Sixth Phase of the Couple Model Intercomparison Project (CMIP6)92

(Eyring et al., 2016), because of ESMs’ computational cost, the complexity in setting93

up input data and the sheer volume of output data generated. Yet, large scenario assess-94
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ments are vital for understanding the consequences of various policy choices and their95

residual climate hazards.96

Similarly, while some ESMs perform large, perturbed physics experiments (e.g., Mur-97

phy et al., 2014) that aim to explore a range of potential Earth system long-term annual-98

average responses, the ability to capture full uncertainty ranges is limited. The ability99

to capture full uncertainty ranges is limited because these ESMs are relatively rigid in100

their structure - lacking the ability to completely explore uncertainties in vital compo-101

nents like the carbon cycle or effective radiative forcings.102

An answer to both of these challenges, i.e. (a) limited computational resources and103

(b) structural scope and flexibility to represent long-term uncertainties in key metrics104

like global-mean surface air temperatures, are Reduced Complexity Models (RCMs), of-105

ten also referred to as simple climate models (SCMs). RCMs can play the vital role of106

extending the knowledge and uncertainties from multiple domains, particularly a mul-107

titude of ESM experiments, to probabilistic long-term climate projections of key vari-108

ables over a wide range of scenarios. Earth System Models of Intermediate Complexity109

(EMICs) may initially appear to be another option. However, due to the process-based110

representations used by EMICs, their computational complexity and data requirements111

are still orders of magnitude greater than RCMs. As a result, even EMICs are not a fea-112

sible choice for the large-scale, probabilistic assessment discussed here.113

Typically, RCMs achieve computational efficiency and structural flexibility by lim-114

iting their spatial and temporal domains to global-mean, annual-mean quantities i.e the115

domains of relevance to long-term, global climate change. In general, RCMs don’t in-116

clude representations of interannual variability, although the EMGC model (Table 1) is117

a clear exception to this rule. Rather than aiming to represent the physics of the climate118

system at the process level and high-resolution, RCMs use parameterisations of the sys-119

tem which capture its large-scale behaviour at a greatly reduced computational cost. This120

allows them to perform 350-year long simulations in a fraction of a second on a single121

CPU, multiple orders of magnitude faster than our most comprehensive ESMs which would122

take weeks to months on the world’s most advanced supercomputers.123

A key example of large-scale emissions scenario assessment, and the one we focus124

on in this paper, is the climate assessment of socioeconomic scenarios by the Intergov-125

ernmental Panel on Climate Change (IPCC) Working Group 3 (WG3). Hundreds of emis-126

sion scenarios were assessed in the IPCC’s Fifth Assessment Report (AR5, see Clarke127

et al. (2014)) as well as its more recent Special Report on Global Warming of 1.5°C (SR1.5,128

see Rogelj et al. (2018); Huppmann et al. (2018)). (Scenario data is available at https://129

secure.iiasa.ac.at/web-apps/ene/AR5DB and https://data.ene.iiasa.ac.at/iamc130

-1.5c-explorer/ for AR5 and SR1.5 respectively, both databases are hosted by the IIASA131

Energy Program). For the IPCC’s forthcoming Sixth Assessment (AR6), it is anticipated132

that the number of scenarios will be in the several hundreds to a thousand (an initial133

snapshot of scenarios based on the SSPs is available at https://tntcat.iiasa.ac.at/134

SspDb).135

Running WG3-type scenarios requires at least some representation of greenhouse136

gas cycles, atmospheric chemistry and dynamic vegetation modules. While some of the137

world’s most comprehensive ESMs have the required components, they could not be used138

to sample scenario and parametric uncertainty for reasons of computational cost. The139

most comprehensive RCMs include parameterised representations of the required com-140

ponents (including feedbacks of climate on permafrost and wetland methane emissions),141

enabling the exploration of interacting uncertainties from multiple parts of the climate142

system in an internally consistent setup.143

While RCMs do not include the detail of ESMs across the emissions-climate change144

cause-effect chain, they do tend to include uncertainty representations for more steps in145
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the chain (i.e. RCMs tradeoff depth for breadth compared to ESMs). For example, many146

RCMs include the relationship between methane emissions and concentrations (includ-147

ing temperature and other feedbacks) whereas few ESMs do in their long-term exper-148

iments. On the other hand, few RCMs directly use land-cover information within their149

carbon cycles, and none consider it in the detailed way which ESMs do. In addition, there150

are clearly applications where RCMs are not a feasible tool. For example, near-term at-151

tribution studies, such as the World Weather Attribution project (Uhe et al., 2016). For152

this latter application, large-ensemble ESM runs are vital - as only they can reflect nat-153

ural variability and weather patterns. Overall, there is no question that ESMs are by far154

the most important research tool to project future climate change. RCMs complement155

the ESM efforts. Within this paper, we focus on a very specific niche of this complement-156

ing role, i.e. the degree to which RCMs can synthesise multiple lines of evidence across157

the emissions-climate change cause-effect chain.158

Typically, RCMs attempt to perform this synthesis using probabilistic parameter159

ensembles (see also Section 3), which are distinct from the emulator mode in which RCMs160

can also be run (see Z. R. J. Nicholls et al. (2020) for a discussion of emulation with RCMs).161

These probabilistic parameter ensembles are derived based on knowledge of specific Earth162

system quantities drawn from multiple, often independent, research communities, e.g.163

historical global mean temperature increase, effective radiative forcing due to different164

anthropogenic emissions, ocean heat uptake, or cumulative land and ocean carbon up-165

take. The resulting distributions can then be used in a variety of applications, e.g. to166

assess the likelihood that different warming levels are reached under a specific emissions167

scenario (e.g. 50% and 66%) based on the combined available evidence. As a result of168

their probabilistic nature, the ensembles resulting from RCMs are conceptually differ-169

ent from an ensemble of multiple model outputs that has not been constructed with any170

relative probabilities in mind (such as those from CMIP6) taken without constraining171

or any other sort of post-processing.172

Within the IPCC, RCMs’ synthesising niche facilitates the transfer of knowledge173

from Working Group I (WG1), which assesses the physical science of the climate sys-174

tem, to WG3, which assesses the socioeconomics of climate change mitigation. The goal175

of this knowledge transfer is consistency between WG3’s scenario classification and the176

physical science assessment of WG1 - a key precondition to have confidence that WG3’s177

conclusions about the socioeconomic transformation required to mitigate anthropogenic178

climate change to specific levels are based on our latest scientific understanding. Here,179

we describe RCMs as ‘integrators of knowledge’ because they integrate (a relevant sub-180

section of) the assessment from WG1, providing WG3 with a tool that can be used for181

assessing the climate implications, particularly global-mean temperature changes, of a182

wide range of emissions scenarios.183

Due to their role in the IPCC assessment (and for analysing mitigation options in184

line with temperature targets more generally), understanding the degree to which RCMs185

can reflect a range of independent radiative forcing, warming, heat uptake and concen-186

tration assessments simultaneously is of vital importance. Given that these assessments187

are independent, a single, internally consistent, model may not be able to capture them188

all. If RCMs are inherently biased in some way or they are unable to simultaneously cap-189

ture the independent assessments, this will affect the WG3 climate assessment and in-190

terpretation of the RCMs’ outputs should be adjusted accordingly.191

This study’s scope, in terms of number of climate dimensions considered and num-192

ber of climate models evaluated, is unique. While there have been studies with single193

models which choose parameter sets that match various assessments of ECS and TCR194

(e.g. Meinshausen et al., 2009; Rogelj et al., 2012) and Smith, Forster, et al. (2018) com-195

pared two models’ probabilistic outputs, no previous study into RCM probabilistic dis-196

tributions is of the same breadth.197
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Here, in the second phase of RCMIP, we evaluate the degree to which multiple RCMs198

are able to synthesise Earth system knowledge within a probabilistic distribution. We199

then examine the implications of differences in these probabilistic distributions for cli-200

mate projections. We extend previous probabilistic evaluation work and build on the progress201

made in the first phase of RCMIP (Z. R. J. Nicholls et al., 2020) and other RCM inter-202

comparison studies (van Vuuren et al., 2011; Harmsen et al., 2015; Schwarber et al., 2019).203

We widen the first phase’s scope both in terms of number of climate dimensions consid-204

ered and the number of models evaluated. To our knowledge, this is the most compre-205

hensive evaluation performed to date of the ability of RCMs to capture a broad range206

of climate metrics and key indicators, such as those assessed in by IPCC WG1.207

2 Participating models208

Nine models have participated in RCMIP Phase 2 (Table 1 and Supplementary Text209

S1). Models were invited to participate via an open invitation made available at rcmip210

.org and circulated via relevant researcher networks. All interested modelling teams were211

included. These models and their components range from simpler, regression-based ap-212

proaches to more complex representations with detailed processes and regions. The mod-213

els have been constrained in a number of different ways, using statistical techniques rang-214

ing in complexity from Monte Carlo Markov Chains to using pass/fail criteria to deter-215

mine valid parameter values. As a result, the models and techniques cover (to the best216

of our knowledge) the full range of techniques seen in the literature and their results al-217

low us to evaluate the implications of different choices.218

3 Methods219

In this study, the RCMs are run in a probabilistic setup, also referred to as a prob-220

abilistic distribution. As discussed in the introduction, a probabilistic setup means that221

each RCM is run with an ensemble of parameter configurations. Specifically, for a given222

experiment, each RCM is run multiple times, each time in a different configuration i.e.223

with different parameter values. All of these different runs are then combined to form224

a probabilistic set of outputs. With these probabilistic sets, we can then calculate ranges225

of each output variable of interest (e.g. global-mean surface temperatures).226

Modelling groups use a range of techniques to derive their parameter ensembles i.e.227

to constrain their models (Table 1). In each probabilistic run, the parameter ensemble228

is fixed i.e. the same set of parameter configurations will be used in each experiment.229

This choice ensures that the model outputs are deterministic, rather than including a230

random element due to e.g. sampling parameter values from a range or probability dis-231

tribution for each run. Typically, modelling groups will also use different data to derive232

their parameter ensemble. This can lead to differences in model projections which are233

simply based on choices made by the modelling groups and are not related to model struc-234

ture or constraining technique at all. In this study, two models (MAGICC7 and MCE-235

v1-2) have used a common set of target assessed ranges, i.e. benchmarks, to derive their236

probabilistic distributions. For these models, we are able to rule out the choice of data237

as the cause of difference between these models. Accordingly, we can more clearly iden-238

tify the importance of model structure and constraining technique for future projections.239

In this study, our target assessment is a ‘proxy assessment’, which uses assessed240

climate system characteristics in line with IPCC AR5 as its starting point and updates241

key values using more recent literature (Table 2). We explicitly use the name ‘proxy as-242

sessment’ throughout to make clear that we are not constraining to any ranges coming243

from the formal IPCC assessment, rather an approximation thereof. Notably, in this study,244

the proxy assessment does not include any future projections. While we examine future245

projections coming from the models, we do not explicitly compare them against future246

projections coming from another line of evidence because there is no obvious choice for247
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Table 1. Overview of the models and constraining approaches used in this paper. Detailed

descriptions of each model are available in Supplementary Text S1.

Model Constraining technique Key references

CICERO-SCM 591 members sub-sampled from a posterior
of 30 040 members to form a set that match
the proxy assessment ocean heat content
distribution while excluding parameter sets
with unrealistic aerosol ERF or unrealistic
surface air temperature change from 1850-
1900 to 1985-2014

Schlesinger et al. (1992);
Joos et al. (1996); Et-
minan et al. (2016);
Skeie et al. (2017, 2018);
Z. R. J. Nicholls et al.
(2020); Skeie et al. (2021)

EMGC 160 000 sample members, retaining the 1 000
that minimize reduced-chi-squared between
modeled and observed GMST and OHC
from 1850-1999

Canty et al. (2013);
Hope et al. (2017, 2020);
McBride et al. (2020)

FaIRv1.6.1 3 000 sample members retaining the 501
that minimise RMSE between modelled and
observed 1850-2014 GMST

Millar et al. (2017); Smith,
Forster, et al. (2018)

FaIRv2.0.0-alpha 1 million member raw ensemble, constrained
with likelihood of 2010-2019 level and rate
of attributable warming, calculated using
the Global Warming Index methodology
(Haustein et al., 2017). 5000 members ran-
domly drawn from the constrained ensemble
for use here.

Millar et al. (2017);
Haustein et al. (2017);
Smith, Forster, et al.
(2018); Leach et al. (2020)

Hectorv2.5.0 10 000 sampled ensemble from Markov chain
Monte Carlo chains constrained with global
surface temperature and ocean heat content

Vega-Westhoff et al. (2019)

MAGICCv7.5.1 7 million member Monte Carlo Markov
Chain, 600 member sub-sample selected to
match proxy assessed ranges

Meinshausen et al. (2009,
2011, 2020)

MCE v1.2 600 members sampled with a Metropolis-
Hastings algorithm through Bayesian updat-
ing to reflect an ensemble of complex climate
models constrained with the proxy assessed
ranges

Tsutsui (2017, 2020) (see
also Joos et al. (1996);
Hooss et al. (2001))

OSCARv3.1 10 000 Monte Carlo members, weighted us-
ing their agreement with a set of assessed
ranges (Supplementary Text S1)

Gasser et al. (2017, 2018,
2020)

SCM4OPT v2.1 For each emission scenario, 2 000 sample
members are used to reflect uncertainties
resulting from carbon cycle, aerosol forcings
and temperature change, while constrained
by the historical mean surface temperature
of HadCRUT.4.6.0.0 (Morice et al., 2012).

Su et al. (2017, 2018,
2020)
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Table 2. The proxy assessed ranges used in this study. The assessed ranges are labelled as

‘vll’ (very-likely lower i.e. 5th percentile), ‘ll’ (likely lower, 17th percentile), ‘c’ (central, 50th per-

centile), ‘lu’ (likely upper, 83th percentile) and ‘vlu’ (very-likely upper, 95th percentile). Sources

are described in Section 3.

Assessed range vll ll c lu vlu
Metric Unit

2000-2019 GMST rel. to 1961-1990 K 0.46 0.54 0.61
Equilibrium Climate Sensitivity K 2.30 2.60 3.10 3.90 4.70
Transient Climate Response K 0.98 1.26 1.64 2.02 2.29
Transient Climate Response to Emissions K / TtC 1.03 1.40 1.77 2.14 2.51
2014 CO2 Effective Radiative Forcing W / m2 1.69 1.80 1.91
2014 Aerosol Effective Radiative Forcing W / m2 -1.37 -1.01 -0.63
2018 Ocean Heat Content rel. to 1971 ZJ 303 320 337
2011 CH4 Effective Radiative Forcing W / m2 0.47 0.60 0.73
2011 N2O Effective Radiative Forcing W / m2 0.14 0.17 0.20
2011 F-Gases Effective Radiative Forcing W / m2 0.03 0.03 0.03

such a line of evidence - apart from the ‘assessed ranges’ of SSP scenarios that will be248

communicated in the forthcoming IPCC report (but are not available for this study). As249

discussed in more detail in Section 4.3, the inclusion of future projections in the proxy250

assessment would narrow the range of model projections but any such narrowing should251

be carefully considered because - depending on the types of constraints - it may lead to252

underestimates of uncertainty.253

In order to keep the study’s scope manageable, our proxy assessment focuses on254

climate response parameters, with the carbon cycle examined only via the TCRE. We255

aim to perform a detailed analysis on carbon cycle response in the next phase of RCMIP.256

We use surface air ocean blended temperatures from the HadCRUT.4.6.0.0 dataset257

(Morice et al., 2012). HadCRUT4.6.0.0 is a widely used observational data product and258

is representative of other observations of changes in surface air and ocean temperatures259

(Simmons et al., 2017). Our key metric for evaluating RCM temperature projections is260

the warming between the 1961-1990 and 2000-2019 periods (using the SSP2-4.5 scenario261

to extend the CMIP6 historical experiment to 2019). We choose a relatively recent pe-262

riod to match the increase in global observations since the 1960s.263

For ocean heat content, we use the recent work of von Schuckmann et al. (2020).264

We focus on the change in ocean heat content between 1971 and 2018, when the largest265

set of observations are available.266

We use the recent assessment of Sherwood et al. (2020) for equilibrium climate sen-267

sitivity (ECS). ECS is defined as the equilibrium warming which occurs under a dou-268

bling of atmospheric CO2 concentrations relative to pre-industrial concentrations. The269

ECS assessment is combined with the constrained transient climate response (TCR) as-270

sessment of Tokarska et al. (2020). TCR is defined as the surface air temperature change271

which occurs at the time at which atmospheric CO2 concentrations double in an exper-272

iment in which atmospheric CO2 concentrations rise at one percent per year (a 1pctCO2273

experiment). Carbon cycle behaviour is considered only via the transient climate response274

to emissions (TCRE). TCRE is defined as the ratio of surface air temperature change275

to cumulative CO2 emissions at the time when atmospheric CO2 concentrations double276

in a 1pctCO2 experiment. We use the TCRE assessment from Arora et al. (2020), which277

is based on the latest generation of Earth System Models which have participated in CMIP6278
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(Eyring et al., 2016). There is a potential inconsistency between our ECS, TCR and TCRE279

ranges, which arises because the ECS assessment comes from a study which uses mul-280

tiple lines of evidence, the TCR assessment is based on a constrained set of CMIP6 mod-281

els and the TCRE assessment is based on unconstrained CMIP6 Earth System Models.282

We discuss the importance of this inconsistency and its consequences in Section 4.283

The other key metrics are related to effective radiative forcing (ERF, Forster et al.,284

2016). These values generally follow the AR5 assessment, except for aerosol, CO2 and285

methane ERF. For aerosol and CO2 ERF, we use the more recent work of Smith et al.286

(2020). For methane ERF, we increase the AR5 assessment following Etminan et al. (2016)287

although we note that this increase may be offset by an updated understanding of the288

impact of rapid adjustments (Smith, Kramer, et al., 2018).289

At this point, we stress that our proxy assessed ranges are only one of a range of290

possible choices. Assessing all the available literature is a demanding task that is well291

undertaken by the IPCC. We do not attempt to reproduce this task here. Instead, the292

key is that our proxy assessed ranges are a) reasonable and b) were available at the time293

of the study’s inception.294

Following this intercomparison consortium’s choice of proxy assessed ranges, mod-295

elling groups then had the opportunity to develop parameter ensembles which best re-296

flected these assessed ranges. As previously discussed, this allowed some modelling teams297

(although crucially not all) to use the same ‘constraining benchmarks’ (with a number298

of different techniques being employed to consider the constraining benchmarks, see Ta-299

ble 1). We use these consistently constrained models to gain unique insights into the im-300

pact of differences in model structure and constraining techniques when RCMs are used301

as integrators of knowledge, free from a typical source of disagreement between the mod-302

els, namely that they were constrained to reproduce different understandings of the cli-303

mate. The inclusion of results from models which were not constrained using the same304

benchmarks allows us to quantify the importance of constraining when using reduced305

complexity climate models as integrators of knowledge.306

The modelling groups submitted a range of concentration-driven, emission-driven307

and idealized scenarios for their chosen parameter subsets (see scenario specifics below).308

Subsequently, several metrics were calculated, such as TCR from the idealised CO2-only309

1pctCO2 experiment (in which atmospheric CO2 concentrations rise at 1% per year from310

pre-industrial levels). Calculating derived metrics on each individual ensemble member311

ensures that all metrics are calculated from internally self-consistent model runs, which312

is of particular importance when the metric is based on more than one output variable313

from the model (e.g. TCRE, which relies on both surface air temperature change and314

inverse emissions of CO2). If we instead calculated results based on percentiles of dif-315

ferent variables, we would not be using an internally self-consistent set. Where modelling316

groups felt it was more appropriate (e.g. OSCARv3.1), they performed their own weight-317

ing of ensemble members before submitting.318

The one metric which is not easily calculated from model results is ECS because319

it is defined at equilibrium. Accordingly, modelling groups reported their own diagnosed320

ECS for each ensemble member, rather than performing experiments which would al-321

low it to be calculated after submission had taken place.322

When evaluating model performance, we are interested not only in how well a model323

can reproduce the best estimate, but also the range, of a given quantity. A key part of324

any climate assessment is the uncertainty and it is critical that RCMs reflect the assessed325

likely and very likely ranges if they are to be used as integrators of knowledge. We as-326

sess the relative difference between the model and the assessed ranges at the very likely327

lower (5th percentile, also referred to as ‘vll’), likely lower (17th percentile, ‘ll’), central328

(50th percentile, ‘c’), likely upper (83th percentile, ‘lu’) and very likely upper (95th per-329
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centile, ‘vlu’). Assessing deviations using relative differences allows us to quickly eval-330

uate how models perform over a range of metrics on the same scale.331

The set of scenarios that each modelling group was asked to run follow the exper-332

imental protocols of CMIP6’s ScenarioMIP (O’Neill et al., 2016). The SSPX-Y.Y exper-333

iments (e.g. SSP1-1.9, SSP2-4.5, SSP5-8.5) are defined in terms of concentrations of well-334

mixed greenhouse gases i.e. CO2, CH4, N2O, hydrofluorocarbons (HFCs), perfluorocar-335

bons (PFCs) and hydrochlorofluorocarbons (HCFCs), emissions of ‘aerosol precursor species336

emissions’ i.e. sulfur, nitrates, black carbon, organic carbon and ammonia and natural337

effective radiative forcing variations. As described in Z. R. J. Nicholls et al. (2020), where338

required, models may use prescribed effective radiative forcing if they do not include the339

required gas cycles or radiative forcing parameterisations.340

The esm-SSPX-Y.Y experiments are identical to the SSPX-Y.Y experiments, ex-341

cept CO2 emissions are prescribed instead of CO2 concentrations, following the CMIP6342

C4MIP protocol (Jones et al., 2016). Finally, we also perform esm-SSPX-Y.Y-allGHG343

experiments. These are identical to the esm-SSPX-Y.Y experiments, except they are de-344

fined in terms of emissions of all well-mixed greenhouse gases, not only CO2, rather than345

concentrations. There is no equivalent of these esm-SSPX-Y.Y-allGHG experiments in346

the CMIP6 protocol, however it is these experiments which are of most interest to WG3,347

given that WG3 focuses on scenarios defined in terms of emissions alone. We use the data348

sources described in Z. R. J. Nicholls et al. (2020) to specify the inputs for each of these349

scenarios. The input dataset compilations, comprising emission, scenario and forcing data,350

as well as the protocols are archived with Zenodo (Z. Nicholls & Lewis, 2021) - and can351

contribute to scientific studies beyond this intercomparison as they largely reflect the CMIP6352

experimental designs.353

The protocol designed for this study requires that each RCM modelling group runs354

every probabilistic ensemble member once for each scenario and then submits their out-355

put for further analysis. With nine modelling groups participating, this intercompari-356

son project compiled a database of results containing thousands of runs for each RCM,357

from which we can calculate different warming, effective radiative forcing or ocean heat358

uptake percentiles for a wide range of scenarios.359

4 Results and discussion360

4.1 Fit to assessed ranges361

The ability of RCMs to match the assessed ranges varies (Table 3, Figure 1, Sup-362

plementary Table S1 and Supplementary Figures S1 - S9). In general, the RCMs cap-363

ture the central assessed values better than the likely and very likely ranges. Historical364

warming, TCR and the TCRE are notable exceptions to this. For the TCR, the upper365

likely and very likely upper assessed values are captured by the RCMs about as well as366

the central value. For TCRE and historical warming, the very likely lower and likely lower367

assessed values are better captured by the RCMs than the central values.368

Considering the variation between metrics, we see that the proxy assessment of the369

ocean heat content and effective radiative forcing metrics is better captured by the RCMs370

than the other metrics. For the ocean heat content and effective radiative forcing met-371

rics, the median multi-model difference is less than or equal to 10% for the central proxy372

assessed range. However, there is less close agreement with the very likely and likely proxy373

assessed ranges for the effective radiative forcing metrics, with median multi-model dif-374

ferences being up to 19% (aerosol effective radiative forcing).375

For the other metrics (historical warming, ECS, TCR and TCRE), the median multi-376

model difference is greater than 20% for at least one of the assessed ranges. However,377

there is significant variation across the likelihood levels. For example, the multi-model378

–9–
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Figure 1. Distribution of Equilibrium Climate Sensitivity (ECS) from each RCM (coloured

lines) and the proxy assessed range (solid black line). a) Distribution of ECS; b) Very likely

(whiskers), likely (box) and central (white solid line) from the proxy assessment and each RCM.

median matches the very likely lower historical warming (rows labelled ‘2000-2019 GMST379

rel. to 1961-1990’ in Table 3) to within 7%. However, the multi-model median differs from380

the central and very likely upper historical warming by 11% and 25%, indicating that381

the models are having greater difficulty capturing the upper-end warming estimates.382

There is also significant spread in performance across the models. MAGICCv7.5.1383

performs better than the multi-model median across all metrics and assessed ranges (very384

likely lower, likely lower, central, likely upper, very likely upper) except for ECS while385

MCE-v1-2 performs better than the multi-model median across all metrics and assessed386

ranges except for three metrics (ECS, TCR and TCRE). However, all RCMs had at least387

one metric where they matched the proxy assessment at all likelihood levels to within388

20% (bolld cells in Table 3). For many applications, agreement to within 20% will be389

sufficient given the uncertainty associated with assessed ranges. However, for some ap-390

plications, using an RCM’s probabilistic distribution which has differences greater than391

5-10% (for certain metrics) may be problematic as such differences could bias projections392

to an unacceptably large degree. For example, the WG3 classification of scenarios in terms393

of their peak warming levels should ideally be consistent with the range of evidence as-394

sessed in IPCC WG1. To have confidence that such an application is reflecting the WG1395

assessment, the RCMs should be within 5-10% of the assessed results (particularly for396

any future warming assessment).397

When interpreting these results it is vital to keep in mind that, for some models,398

the same benchmarks are used to both constrain and evaluate the models. The reason399

for this choice is that we are evaluating the ability of the models to act as integrators400

of knowledge i.e. to simultaneously capture all the independent assessments (see also dis-401
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cussion in Section 1). We are not attempting to do a calibration followed by an out-of-402

sample evaluation, instead we are looking at how well the RCMs can act as integrators403

of knowledge.404

As a result, it is not so surprising that the models which calibrated to the bench-405

marks, specifically MAGICC7 and MCE-v1-2, better reflect the benchmarks during the406

evaluation phase. However, the results presented here highlight just how important it407

is to calibrate if the model is to be used as an integrator of knowledge. If the goal is an408

integrator of knowledge which reflects key benchmarks, our results suggest that mod-409

els which are calibrated will perform better.410

4.2 Projection results411

For each probabilistic setup, the RCMs also submitted projections of global-mean412

surface temperature, effective radiative forcing (split into total, aerosols and CO2) and413

atmospheric CO2 concentrations for the SSPX-Y.Y, ESM-SSPX-Y.Y and ESM-SSPX-414

Y.Y-allGHG experiments.415

4.2.1 Global-mean Surface Air Temperature416

Under SSP1-1.9, median end of century (2081-2100) projections relative to 1995-417

2014 vary by 0.4°C across the models (from Hector with 0.3°C of warming to SCM4OPTv2.1418

with 0.7°C, Figure 2 a)-c)). Variations in 5th percentile warming show a similar range,419

from 0.0°C to 0.4°C. In contrast, upper-end, 95th percentile warming shows far greater420

variation, from 0.8°C to 1.9°C. For the SSP1-1.9 scenario, the spread in RCMs’ proba-421

bilistic projections is similar to the spread in the CMIP6 multi-model ensemble. Nonethe-422

less, the most extreme CMIP6 model projections are outside the range of most RCMs’423

5-95th percentiles. We discuss reasons for this difference in Section 4.3.424

A slightly smaller spread is seen in peak temperature (Figure 2 f)-g)). Across the425

RCM ensemble, SSP1-1.9 median peak warming ranges from 0.55°C to 0.8°C while the426

5th and 95th percentiles range from 0.3°C to 0.7°C and 0.9°C to 2.0°C, respectively. The427

year of peak warming shows much more variation, particularly at the upper end (Fig-428

ure 2 d)-e)). While the median peak year is fairly consistent across the RCMs’ ensem-429

bles, around 2045 (although SCM4OPTv2.1’s 2055 peak is a clear outlier), and the 5th430

percentile peak year varies from 2030 to 2040, the 95th percentile varies from 2050 to be-431

yond the end of this century. In the EMGC, FaIR1.6 and FaIRv2.0.0-alpha probabilis-432

tic distributions, there is a significant area of parameter space which results in ongoing433

warming even after CO2 emissions have reached net zero. These models also drive the434

spread in end of century temperature projections, particularly in the 95th percentile (Fig-435

ure 2 b)-c)).436

In the SSP1-2.6 scenario (Supplementary Figure S10), median peak warming ranges437

from 0.65-1.1°C (0.1-0.3°C higher than in SSP1-1.9). Median end of century warming438

(relative to 1995-2014) ranges from 0.6°C to 1.0°C. End of century 5th percentile warm-439

ing ranges from 0.2°C to 0.8°C and 95th percentile warming ranges from 1.2°C to 2.0°C.440

As in SSP1-1.9, a number of CMIP6 model projections lie above the upper end of the441

constrained RCMs.442

Under SSP1-2.6, the RCMs diverge more in their peak temperature projections,443

both compared to end of century warming and compared to SSP1-1.9. Once again, the444

5th percentile and median are fairly consistent (ranging from 0.3°C to 0.9°C and 0.65°C445

to 1.1°C respectively). However, 95th percentile projections vary from 1.2°C to 2.8°C.446

The divergence in upper-end warming between SSP1-2.6 and SSP1-1.9 is driven by FaIR1.6,447

and appears to be the result of persistent warming after CO2 emissions reach net zero448

given that its 83rd percentile peak warming year is after 2100. Across the models, peak449

warming year shows a similar range to SSP1-1.9, albeit occurring 25-30 years later in the450
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a)

Figure 2. Surface air temperature (also referred to as global-mean surface air tempera-

ture, GSAT) change under the very low-emissions SSP1-1.9 scenario. a) GSAT projections from

1995 to 2100. We show the median RCM projections (coloured lines), GMST observations from

HadCRUT4.6.0.0 (Morice et al., 2012) up to 2019 (dashed black line) and CMIP6 model pro-

jections (thin blue lines, we show a single ensemble member for each CMIP6 model to preserve

the CMIP6 models’ natural variability signal); b) distribution of 2081-2100 mean GSAT from

each RCM; c) very likely (whiskers), likely (box) and central (white line) 2081-2100 mean GSAT

estimate from each RCM; d) as in b) except for the year in which GSAT peaks; e) as in c) except

for the year in which GSAT peaks; f) as in b) except for the peak GSAT; g) as in c) except for

the peak GSAT. All results are shown relative to the 1995-2014 reference period.
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median (ranging from 2065 to 2075). Once again, the 5th percentile (ranging from 2050451

to 2060) shows a much smaller spread across the models than the 95th percentile (rang-452

ing from 2075 to beyond the end of the 21st Century).453

The warmest RCMs in mitigation scenarios are also the warmest under the high-454

emissions, SSP5-8.5, scenario (Supplementary Figure S11). The exceptions to this are455

MAGICC7, which is one of the warmest models in SSP5-8.5 even though it was around456

the median in mitigation scenarios, and SCM4OPTv2.1, which was the warmest model457

in mitigation scenarios but is slightly cooler than the warmest models in SSP5-8.5. Un-458

der SSP5-8.5, median end of century warming ranges from 2.5°C to 3.6°C across the RCMs.459

Unlike the mitigation scenarios, there is a similar level of disagreement in 5th and 95th460

percentile warming, with the 5th percentile ranging from 1.7°C to 3.1°C and the 95th per-461

centile ranging from 3.8°C to 5.4°C. The RCMs all make future warming projections in462

the lower-half of the CMIP6 multi-model ensemble. Such a difference is largely explained463

by the constraints applied to the RCMs (see discussion in Section 4.3).464

If we consider long-term (2250-2300) warming under the SSP5-8.5 scenario (Fig-465

ure 3, see Supplementary Figure S12 and Supplementary Figure S13 for long-term warm-466

ing under SSP1-1.9 and SSP1-2.6 respectively), the difference between RCMs and CMIP6467

is even clearer (although the few CMIP6 models which have run the SSP5-8.5 extension468

are all at or above the median of the CMIP6 multi-model ensemble in 2100). On these469

timescales, MAGICC7 is clearly the warmest model, despite having slightly lower long-470

term effective radiative forcing than FaIR1.6, FaIR-v2.0.0-alpha and MCE-v1-2 (Sup-471

plementary Figure S14). There is a significant spread in long-term projections across the472

RCMs, with the median ranging from 4.5°C to 8.0°C, 5th percentile from 3°C (ignoring473

SCM4OPTv2.1 as an outlier) to 5.8°C and 95th from 7.8°C to 12.3°C. Even these up-474

per end projections are well below the highest CMIP6 projections, which reach over 16°C475

of global-mean warming (again, likely due to constraining, see discussion in Section 4.3).476

Across all the RCMs, only CICERO-SCM shows any sign of temperatures peaking by477

2300 under such a high-emissions scenario.478

4.2.2 Effective Radiative Forcing479

Compared to temperatures, there is less variance in end of century total effective480

radiative forcing projections (Figure 4, Supplementary Figure S15 and Supplementary481

Figure S16). This finding reinforces the understanding that the parameterisation of the482

climate response to effective radiative forcing is a key driver of climate projection un-483

certainty.484

In SSP1-1.9, 2081-2100 mean total effective radiative forcing varies from 2.2 W /485

m2 to 2.6 W / m2. The 5th percentile ranges from 1.8 W / m2 to 2.1 W / m2 across the486

models (excluding CICERO-SCM which has an extremely narrow range). The spread487

is larger for the 95th percentile, which ranges from 2.4 W / m2 to 3.2 W / m2. This pat-488

tern, of uncertainty being higher for upper percentiles than lower percentiles, is seen across489

other key scenarios and highlights that the high-end effective radiative forcing projec-490

tions are much more uncertain than the best case and low-end effective radiative forc-491

ing projections.492

In SSP1-2.6 (Supplementary Figure S15, once again excluding CICERO-SCM be-493

cause of its narrow range) median 2081-2100 total effective radiative forcing ranges from494

2.9 W / m2 to 3.4 W / m2 while the 5th percentile only ranges from 2.4 W / m2 to 2.7495

W / m2 and the 95th percentile has a much wider range of 3.1 W / m2 to 4.1 W / m2.496

Under SSP5-8.5 (Supplementary Figure S16, excluding EMGC and CICERO-SCM as497

outliers), median 2081-2100 total effective radiative forcing ranges from 8.0 W / m2 to498

9.3 W / m2 while the 5th percentile only ranges from 7.4 W / m2 to 7.8 W / m2 and the499

95th percentile has a much wider range of 8.4 W / m2 to 11.0 W / m2.500
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Figure 3. Long-term surface air temperature (also referred to as global-mean surface air tem-

perature, GSAT) change under the high-emissions SSP5-8.5 scenario. a) GSAT projections from

1995 to 2300. We show the median RCM projections (coloured lines), GMST observations from

(Morice et al., 2012) up to 2019 (dashed black line) and available CMIP6 model projections (thin

blue lines, we show a single ensemble member for each CMIP6 model to preserve the CMIP6

models’ natural variability signal); b) distribution of 2250-2300 mean GSAT from each RCM; c)

very likely (whiskers), likely (box) and central (white line) 2250-2300 mean GSAT estimate from

each RCM. All results are shown relative to the 1995-2014 reference period.

–16–



manuscript submitted to Earth’s Future

The approximate agreement in total effective radiative forcing is reflected in the501

agreement of each of the key contributors to this total, namely CO2 and aerosol effec-502

tive radiative forcing (Figure 5 and Supplementary Figures S17 - S29, which also show503

ERF output up to the year 2300). The key exceptions to this are SCM4OPTv2.1 and504

OSCARv3.1’s aerosol effective radiative forcing. This negative aerosol forcing is driven505

by SCM4OPTv2.1 and OSCARv3.1’s inclusion of a climate feedback on aerosol effec-506

tive radiative forcing. The climate feedback makes their median end of century aerosol507

effective radiative forcing 0.3 - 0.8 W / m2 more negative than other RCMs across the508

scenarios, although the effect is stronger in OSCARv3.1 than in SCM4OPTv2.1. The509

strong aerosol forcing is somewhat compensated by other forcing agents although both510

these models have long-term ERF which is at the low end of the RCM ensemble under511

SSP5-8.5 (Supplementary Figure S14). The different aerosol ERF parameterisations war-512

rant further attention, particularly because models without this aerosol ERF - climate513

feedback may be underestimating the spread in future temperature projections.514

4.2.3 Carbon Cycle515

Moving beyond effective radiative forcing and its temperature response, we con-516

sider the behaviour of the carbon cycle in the different RCMs. Clearly, the analysis pre-517

sented here covers only a limited subset of the full range of carbon cycle behaviour and518

metrics. The analysis is intended to highlight variance in carbon cycle behaviour across519

the RCMs, providing the motivation for a more detailed future analysis. We use the emissions-520

driven ESM-SSPX-Y.Y set of scenarios, in which emissions of CO2 are prescribed and521

atmospheric CO2 concentrations are allowed to freely evolve (in contrast to the SSP ex-522

periments in which CO2 concentrations are prescribed).523

There are considerable variations between the RCMs which submitted relevant re-524

sults (Supplementary Figure S30, Supplementary Figure S31 and Figure 6). In esm-SSP1-525

1.9 (Supplementary Figure S30, excluding CICERO-SCM because of its narrow range),526

the spread in median peak atmospheric CO2 concentrations (430 ppm to 450 ppm) is527

similar to the spread in 2081-2100 median concentrations (385 ppm to 410 ppm). Sim-528

ilarly, in esm-SSP1-2.6 (Supplementary Figure S31, again excluding CICERO-SCM), the529

spread in median peak atmospheric CO2 concentrations (450 ppm to 480 ppm) shows530

a spread similar to the spread in 2081-2100 median concentrations (430 ppm to 460 ppm).531

Under both scenarios, there are wide variances in percentile ranges across the models,532

with MAGICC7 showing the largest uncertainty in 2081-2100 atmospheric CO2 concen-533

trations and SCM4OPTv2.1 showing the least (arguably, this model’s range is overly con-534

fident). The considerable spread in projections from the models highlights the impor-535

tance of carbon cycle uncertainty for emissions-driven projections. The spread reinforces536

the need for a detailed study into available techniques for evaluating and potentially con-537

straining carbon cycle behaviour. Such a study would provide information about whether538

any of these projections can be ruled out based on other lines of evidence.539

Next, we consider esm-SSP5-8.5, the only scenario with available CMIP6 Earth Sys-540

tem Model results (Figure 6). Median 2081-2100 atmospheric CO2 concentrations range541

from 920 ppm to 1 000 ppm while 5th percentile and 95th percentile concentrations range542

from 800 ppm to 930 ppm and 910 ppm to 1 130 ppm respectively. MAGICC7 once again543

shows the largest uncertainties, but is more similar to the other RCMs than in the other544

scenarios. These comparisons highlight differences in the dynamics of the carbon cycle545

(and its feedbacks) in the various RCMs: uncertainties widen to a greater extent in higher-546

warming scenarios in FaIR1.6. FaIRv2.0.0-alpha, MCE-v1-2, OSCARv3.1 and SCM4OPTv2.1547

compared to MAGICC7.548

Median atmospheric CO2 projections from all of the RCMs lie within the plume549

of available CMIP6 results (Figure 6). FaIR1.6 lies at the top end of the CMIP6 plume,550

and its 5-95th range does not include low end CMIP6 results. In contrast, SCM4OPTv2.1551
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Figure 4. Effective radiative forcing under the very low-emissions SSP1-1.9 scenario. a) Me-

dian effective radiative forcing projections from 1995 to 2100 for each RCM; b) distribution of

2081-2100 mean effective radiative forcing from each RCM; c) very likely (whiskers), likely (box)

and central (white line) 2081-2100 mean effective radiative forcing estimate from each RCM; d)

as in b) except for the year in which effective radiative forcing peaks; e) as in c) except for the

year in which effective radiative forcing peaks; f) as in b) except for the peak effective radiative

forcing; g) as in c) except for the peak effective radiative forcing.
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Figure 5. As in panels a), b) and c) of Figure 4, except for effective radiative forcing due to

aerosols.
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Figure 6. Atmospheric CO2 concentration projections in the esm-SSP5-8.5 experiment. a)

Atmospheric CO2 concentration projections from 1995 to 2100. We show the median RCM

projections (coloured lines), prescribed CMIP6 ScenarioMIP input concentrations from the

SSP5-8.5 concentration-driven experiment (dashed black line) and available CMIP6 model pro-

jections (thin blue lines, we show a single ensemble member for each CMIP6 model to preserve

the CMIP6 models’ natural variability signal); b) distribution of 2081-2100 mean atmospheric

CO2 concentration projections from each RCM; c) very likely (whiskers), likely (box) and cen-

tral (white line) 2081-2100 mean atmospheric CO2 concentration projections estimate from each

RCM. Note that FaIR1.6 data is taken from the esm-SSP5-8.5-allGHG simulations because esm-

SSP5-8.5 simulations are not available.
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lies at the bottom end of the CMIP6 plume. FaIR-v2.0.0-alpha, MAGICC7, MCE-v1-552

2 and OSCARv3.1 approximately span the CMIP6 range, with FaIR-v2.0.0-alpha’s and553

MCE-v1-2’s ranges being almost exactly in line with the CMIP6 range whilst MAGICC7’s554

projections are slightly wider than the CMIP6 range and OSCARv3.1’s projections are555

slightly narrower than the CMIP6 range. CICERO-SCM does not include uncertainty556

in the carbon cycle, nor temperature feedbacks on the carbon cycle, hence produces only557

a single best-estimate projection.558

Despite the limits of our carbon cycle evaluation, it is notable that the CMIP6 Sce-559

narioMIP input concentrations are generally higher than the RCMs’ medians in emissions-560

driven runs across all considered scenarios. Emissions-driven scenario data from CMIP6561

ESMs is almost exclusively related to the esm-SSP5-8.5 experiment. Hence, while the562

pattern appears to be that the prescribed SSP5-8.5 CMIP6 concentrations are at the high-563

end of the range compared to the esm-SSP5-8.5 CMIP6 ESM results, there is little data564

with which to determine whether the prescribed CO2 concentrations in the low-emissions565

scenarios would be within the projected concentration change by emission-driven ESM566

models. In hindsight, the input atmospheric CO2 concentrations used in the concentration-567

driven runs may turn out to be at the high-end of CMIP6 ESM results across a range568

of scenarios. Given that only one set of input concentrations can be used in CMIP6, it569

is not surprising that the CO2 concentrations prescribed for CMIP6 experiments do not570

sit exactly in the middle of later emissions-driven runs. The opposite was observed in571

CMIP5: the input CO2 concentrations (derived with MAGICC6) were found to be in572

the lower-half of the CMIP5 emissions-driven runs that later emerged from the CMIP5573

emissions-driven runs (Friedlingstein et al., 2014). The CMIP6 concentrations were de-574

rived using an alpha version of MAGICC7, calibrated to approximately the median of575

the CMIP5 ESM carbon cycle responses with the inclusion of permafrost CO2 and methane576

feedbacks (Meinshausen et al., 2020). Choosing a carbon cycle parameterisation more577

in line with the median of CMIP5 models appears to have lead to CO2 concentrations578

which are now in the upper-half of CMIP6 ESM projections (Figure 6). Whenever a sin-579

gle estimate of the relationship between CO2 emissions and concentrations is used, there580

is always the risk that it will not be the central estimate of the next generation of ESMs581

as our understanding of the carbon cycle improves and the ensembles of participating582

ESMs changes in each intercomparison phase. While this does not invalidate the design583

of concentration-driven experiments which are developed in this way, it must be kept in584

mind when relating emissions scenarios and the output of concentration-driven CMIP585

experiments.586

4.2.4 All greenhouse gas emissions-driven runs587

The final set of experiments we present are the experiments which are most rele-588

vant to WG3: all greenhouse gas emissions-driven runs. As discussed in Section 1, WG3589

describes scenarios in terms of their emissions hence needs models which can run in a590

fully-emissions driven setup. The cost of running ESMs for a large number of scenarios591

and parameter configurations in such a setup is computationally prohibitive (and few592

ESMs include key feedbacks such as methane permafrost and wetland emissions), hence593

there is a paucity of data against which to evaluate the projections of RCMs in such ex-594

periments. Nonetheless, here we present the results of such experiments in the hope that595

they will inspire further efforts into how to validate RCMs in this fully-coupled, all green-596

house gas emissions driven setup.597

Five models (CICERO-SCM, FaIR1.6, FaIRv2.0.0-alpha, MAGICC7 and SCM4OPTv2.1)598

have submitted results for the all greenhouse gas emissions-driven scenarios. The results599

suggest that the all greenhouse gas emissions-driven runs are cooler and peak earlier than600

the concentration-driven runs (Figure 7, Supplementary Figure S32 and Supplementary601

Figure S33). However, the magnitude of the difference varies across the models. For me-602

dian projections, MAGICC7 suggests the smallest difference between concentration-driven603
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and all greenhouse gas emissions-driven runs while CICERO-SCM and SCM4OPTv2.1604

imply differences of up to 0.3°C for peak and 2081-2100 warming and a peak in warm-605

ing up to ten years earlier. The range of projections in the all greenhouse gas emissions-606

driven runs are generally about the same or slightly wider than in the concentration-driven607

runs, with MAGICC7 showing the largest increase in projection ranges.608

The lower-warming and wider projection ranges seen in all greenhouse gas emissions-609

driven runs are consistent with two other bits of knowledge. The first is that median CO2610

concentrations are lower in all greenhouse gas emissions-driven runs than in concentration-611

driven runs (Section 4.2.3). The second is that carbon cycle and other greenhouse gas612

cycle uncertainties are included in temperature projections in all greenhouse gas emissions-613

driven runs, whilst these uncertainties are missing in concentration-driven runs. The dif-614

ference between the all greenhouse gas emissions-driven runs and concentration-driven615

runs reinforces the need for further consideration of RCM behaviour beyond the climate616

response to ERF.617

4.3 Further Discussion618

Our results prompt consideration of a number of further points. Firstly, the assess-619

ment performed here provides a way to easily identify differences between an RCM’s be-620

haviour and the assessed range of a particular metric. Such differences are important to621

quantify, as they can reveal biases in a probabilistic distribution. The quantification makes622

it possible for the users of these distributions to identify where the biases might impact623

their own conclusions.624

There are, however, cases where the issue lies in the combination of the proxy as-625

sessed ranges taken together, rather than in the probabilistic distributions. In this study,626

we used a combination of ECS from the literature (based on multiple lines of evidence),627

TCR from constrained CMIP6 models and TCRE from unconstrained CMIP6 Earth Sys-628

tem Models. This combination is likely to be slightly inconsistent. Unfortunately, incon-629

sistency between metric values is an inevitable risk of using independent lines of evidence.630

The potential inconsistency could in part explain our finding that the RCMs’ TCR ranges631

are generally too high, while their ECS and TCRE ranges are generally too low. To ex-632

plain the inconsistency in more detail, firstly consider the ratio between TCR and ECS633

i.e. the realised warming fraction. The realised warming fraction implied by our TCR634

and ECS distributions is around 0.5. This is at the low end of the assessment by Millar635

et al. (2015). Hence, it can be argued that greater consistency within the proxy assess-636

ment would be achieved if either our proxy assessed TCR values were larger, or our proxy637

assessed ECS values were smaller. Similarly, the airborne fraction implied by our TCR638

and TCRE assessment is around 0.65. This is at the high-end of the CMIP5 and CMIP6639

range quantified by Arora et al. (2020). Once again, it can be argued that greater con-640

sistency within the proxy assessment would be achieved if either our proxy assessed TCR641

values were larger, or our proxy assessed TCRE values were smaller. Identifying such642

inconsistencies is a useful secondary benefit of exercises such as the one performed here.643

Next, while they are a useful way of quickly visualising a model’s agreement with644

the (here proxy) assessed ranges, summary tables of the form of Table 3 hide the full story.645

Specifically, for timeseries based variables, assessed ranges can only consider the trend646

or change between specific reference periods and don’t consider the entire timeseries as647

a whole.648

Not considering the entire timeseries can lead to problematic interpretations of the649

agreement between a model and the assessment. A clear example here is historical sur-650

face air ocean blended temperature change. In our proxy assessment, we focussed on 2000-651

2019 warming relative to the 1961-1990 reference period. On this measure, many of the652

RCMs were too warm compared to observations. However, the level of agreement is clearly653

reference period dependent (Figures 8a) and 8b)). In Figure 8a), which uses a 1961-1990654
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Figure 7. Surface air temperature (also referred to as global-mean surface air temperature,

GSAT) change in the concentration-driven SSP1-1.9 experiment and the all greenhouse gas

emissions driven esm-SSP1-1.9-allGHG experiment. a) GSAT projections from 1995 to 2100.

We show the median RCM projections (coloured lines) for the concentration-driven experiment

(solid) and all greenhouse gas emissions driven experiment (dashed) as well as observations up to

2019 (dashed black line); b) distribution of 2081-2100 mean GSAT for each scenario from each

RCM; c) very likely (whiskers), likely (box) and central (white line) 2081-2100 mean GSAT esti-

mate for each scenario from each RCM; d) as in b) except for the year in which GSAT peaks; e)

as in c) except for the year in which GSAT peaks; f) as in b) except for the peak GSAT; g) as in

c) except for the peak GSAT. All results are shown relative to the 1995-2014 reference period.
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reference period, MAGICC7, MCE-v1-2 and OSCARv3.1 show the best agreement with655

observations (as also seen in Table 3). However, if we use a different reference period,656

e.g. 1850-1900 (Figure 8b)), that impression changes with Hector, MAGICC7, and OS-657

CARv3.1 being the closest to observations in the recent period.658

Considering the entire timeseries provides a more robust check on model behaviour.659

Fitting only to one evaluation and reference period can be achieved by slightly adjust-660

ing different model behaviour e.g. aerosol effective radiative forcing. However, if the en-661

tire timeseries are considered with multiple reference periods, such tuning quickly be-662

comes impossible and the check provides detail into how well a model’s dynamics are con-663

sistent with observations.664

Moving away from evaluating the models, we find that higher historical warming,665

ECS and TCR values generally lead to higher warming projections (an intuitive result).666

Hector provides an exception to this pattern, with relatively low temperature projections,667

especially in SSP1-1.9, despite its relatively high historical warming and TCR.668

In the strong mitigation scenarios (SSP1-1.9 and SSP1-2.6), there is agreement to669

within ∼ 0.1°C in future projections (both best-estimate and range) between the mod-670

els which best reflect historical warming (MAGICC7, MCE-v1-2 and OSCARv3.1). This671

agreement suggests that constraining greatly increases confidence in future projections.672

However, a limited set of models also provided probabilistic distributions that are con-673

strained to match HadCRUT.5.0.1.0 (Morice et al., 2021), which is significantly warmer674

than the HadCRUT.4.6.0.0 based constrained used in the rest of the study. The future675

projections from these HadCRUT.5.0.1.0-constrained distributions are noticeably warmer676

(Supplementary Figures S34 - S36) than projections from HadCRUT.4.6.0.0-constrained677

distributions, which demonstrates that projections are sensitive to the choice of constraint.678

Given the sensitivity of conclusions to the constraint, the use of constraints must679

be carefully considered as it could lead to overconfidence (Sanderson et al., 2017). Even680

though considerable care is taken both here and elsewhere to identify and use relevant,681

physically justifiable, constraints, it is still possible that future research may show that682

the constraints are leading to overconfident future projections. Having said this, Herger683

et al. (2019) suggest that using multiple constraints, as is done by many RCMs here, re-684

duces the likelihood of overconfidence.685

Studies which constrain the raw CMIP6 model ensemble help explain the differ-686

ence between the RCM-based results presented here and the raw CMIP6 model ensem-687

ble. Brunner et al. (2020), Liang et al. (2020) and Tokarska et al. (2020) all find signif-688

icant reductions in both the best-estimate and 5-95% range GSAT projections after ap-689

plying observed-warming constraints to the CMIP6 model ensemble. For the SSP1-2.6690

and SS5-8.5 scenarios respectively, these studies find 5-95% GSAT (relative to 1995-2014)691

ranges of: Tokarska et al. (2020): 0.41-1.46°C and 2.26-4.60°C; Liang et al. (2020) 0.52-692

1.66°C and 2.72-4.77°C and Brunner et al. (2020) 0.61-1.85°C and 2.72-4.86°C. These es-693

timates, particularly for the SSP1-2.6 scenario, are slightly wider than our results based694

on RCMs. However, the constrained CMIP6 estimates are much closer to our RCM-based695

estimates than the raw CMIP6 model ensemble, in particular for the 95th percentile. This696

suggests that the majority of the difference between our RCM-based results and the raw697

CMIP6 model ensemble is explained by the constraining applied to the RCMs, rather698

than structural differences between RCMs and CMIP6 models (although structural dif-699

ferences may explain the disagreement between constrained CMIP6 output and our re-700

sults). Further studies are needed to explore the validity of the constraining approaches701

for both ESMs and RCMs - as investigated here - but this study lays the foundation for702

systematically investigating probabilistic RCM ensembles in more detail.703

Given the proxy assessment and results, we make one final observation: to extrap-704

olate assessed warming ranges from one set of scenarios (e.g. the RCP or SSP-based sce-705

–23–



manuscript submitted to Earth’s Future

2000 2005 2010 2015 2019
Year

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Su
rfa

ce
 A

ir 
O

ce
an

 B
le

nd
ed

 T
em

pe
ra

tu
re

C
ha

ng
e 

re
l. 

to
 1

96
1-

19
90

 (K
)

Source
HadCRUT.4.6.0.0
Cicero-SCM
EMGC
FaIR1.6
FaIRv2.0.0-alpha
Hector
MAGICCv7.5.1
MCE-v1-2
OSCARv3.1
SCM4OPTv2.1

c)

Pr
ox

y 
as

se
ss

m
en

t
C

ic
er

o-
SC

M
EM

G
C

Fa
IR

1.
6

Fa
IR

v2
.0

.0
-a

lp
ha

H
ec

to
r

M
AG

IC
C

v7
.5

.1
M

C
E-

v1
-2

O
SC

AR
v3

.1
SC

M
4O

PT
v2

.1

e)

Relative probability
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
20

00
-2

01
9 

Su
rfa

ce
 A

ir 
O

ce
an

 B
le

nd
ed

 T
em

pe
ra

tu
re

C
ha

ng
e 

re
l. 

to
 1

96
1-

19
90

 (K
)

d)

1950 1960 1970 1980 1990 2000 2010
Year

-0.25

0.00

0.25

0.50

0.75

Su
rfa

ce
 A

ir 
O

ce
an

 B
le

nd
ed

 T
em

pe
ra

tu
re

C
ha

ng
e 

re
l. 

to
 1

96
1-

19
90

 (K
)

a)

1950 1960 1970 1980 1990 2000 2010
Year

0.00

0.25

0.50

0.75

1.00

1.25

Su
rfa

ce
 A

ir 
O

ce
an

 B
le

nd
ed

 T
em

pe
ra

tu
re

C
ha

ng
e 

re
l. 

to
 1

85
0-

19
00

 (K
) b)

Figure 8. Historical surface air ocean blended temperature change (also referred to as

global-mean surface temperature, GMST) from each RCM. We compare observations from Had-

CRUT4.6.0.0 (Morice et al., 2012) (solid black line) to the distribution from each RCM (coloured

lines). All panels use 1961-1990 as the reference period, the same reference period as is used

in our proxy assessed ranges, except b) which uses 1850-1900. a), b) median GMST from 1950

to 2019; c) median GMST from 2000 to 2019 (the proxy assessment period); d) distribution of

2000-2019 mean GMST from each RCM and the proxy assessed range; e) Very likely (whiskers),

likely (box) and central (white line) estimate of 2000-2019 mean GMST from each RCM and the

proxy assessed range. The historical simulation has been extended with SSP2-4.5 for the period

2015-2019.
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narios) to a wider set of scenarios, it may be beneficial to include a benchmark of assessed706

future warming under the benchmark scenarios. This benchmark could be taken from707

other studies, e.g. those that constrain CMIP projections (for the limited number of sce-708

narios run by CMIP) based on historical observations (e.g. Brunner et al., 2020; Liang709

et al., 2020; Tokarska et al., 2020). Adding such a benchmark to the historical observa-710

tions, present-day assessments and idealised metrics used in this study would highlight711

where future warming significantly diverges from other lines of evidence. Including sce-712

narios with similar end of century total ERF but different transient evolutions (like the713

SSP4-3.4 and SSP5-3.4-overshoot scenario pair) would provide an even stronger check714

of the models’ transient response. Such quantifications could be key when assessing fu-715

ture projections under large sets of scenarios, like the WG3 scenario database climate716

assessment. Of course, the risk of adding such benchmarks is an artificial narrowing of717

uncertainty in projected warming. Hence, future projections should only be included where718

there is a clear need and justification for consistency between the RCMs’ projections and719

the projections from other lines of evidence.720

5 Future work721

This exercise is a first step towards more comprehensive, routine evaluation of RCMs’722

probabilistic parameter ensembles and their corresponding projections. However, there723

is still much room for future work to improve on this study and the first phase of RCMIP.724

As a first suggestion, repeating this exercise with the assessed ranges from Working Group725

1 of the Intergovernmental Panel on Climate Change’s Sixth Assessment Report (due726

in mid 2021) would provide an evaluation of the extent to which RCMs can capture the727

latest international assessment of the scientific literature.728

This future work could go beyond evaluation and also diagnose the root causes of729

differences between the models. One obvious area for examination would be the aerosol730

ERF, particularly the inclusion of a climate feedback in aerosol ERF parameterisations.731

Such an exercise could also provide greater insights into differences between the constrained732

RCMs’ probabilistic distributions, the raw CMIP6 multi-model ensemble and constrained733

CMIP6 output (building on the discussion in Section 4.3).734

A clear limitation of this study is the relative lack of examination of carbon cycle735

behaviour and carbon cycle related metrics. Given the importance of the carbon cycle736

for emissions-driven projections, this is another clear area for future work. In the lim-737

ited examination we have performed, we chose to focus on emissions-driven simulations.738

This choice provides the cleanest comparison between RCMs and CMIP6 models, given739

that many RCMs do not separate the land and ocean carbon pools, although it limits740

us to a relatively small set of CMIP6-comparison data (given that only few emissions-741

driven simulations (Jones et al., 2016) have been run by CMIP6 models). An increase742

in the number of emissions-driven CMIP6 ESM model output, particularly for mitiga-743

tion scenarios, would greatly aid such evaluations. Using the concentration-driven sim-744

ulations in future work will also provide a greater set of comparison data and will facil-745

itate evaluation of RCMs’ land and ocean carbon cycles under more varied scenarios.746

Finally, given how RCMs are typically used by WG3, it appears that a truly thor-747

ough evaluation would need to consider a larger set of individual steps in the emissions-748

climate change cause-effect chain. Such an evaluation would provide insights into the drivers749

of differences between future projections based on the concentration-driven experiments750

typical of CMIP and results based on the all greenhouse gas emissions-driven experiments751

required by WG3. While it is not completely clear to us which components would need752

to be considered (and which could be ignored), a first suggestion of important compo-753

nents is: the carbon cycle, other earth system feedbacks e.g. representation of permafrost,754

representation of aerosols, non-CO2 greenhouse gas cycles, translation between changes755

in greenhouse gas concentrations and effective radiative forcing, ozone representation,756
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land-use change albedo representation, temperature response to effective radiative forc-757

ing and all the feedbacks and interactions. To see the full picture, a broad range of lit-758

erature would need to be considered as a validation source and a wide range of exper-759

iments, spanning historical, scenario-based and idealised experiments, would need to be760

performed. In performing a more thorough evaluation, an updated evaluation technique761

may be required. Specifically, using percentage differences from the assessed range will762

lead to problems when the assessed range is close to or spans zero. Hence, more sophis-763

ticated ways of evaluating the agreement between model results and assessed ranges may764

be required. For reasons of scope, we haven’t achieved such a thorough evaluation here,765

but we hope that this work provides a basis upon which future work can aim for the lofty766

goal of more complete evaluation of all of the relevant parts of the climate system.767

6 Conclusions768

We have found that the best performing RCMs can match our proxy assessment769

across a range of climate metrics. However, no RCM matched the proxy assessment across770

all metrics. At the same time, all RCMs matched the proxy assessment well for at least771

one metric.772

Our evaluation is the first multi-model comparison of probabilistic projections from773

RCMs. This exercise provides a unique insight into RCMs probabilistic parameter en-774

sembles, specifically how they compare with a set of proxy assessed ranges, which reflect775

wider scientific understanding of key climate metrics, and the implications of differences776

in probabilistic distributions for climate projections across a range of climate variables777

and scenarios.778

Notably, although unsurprisingly, we found that models whose probabilistic dis-779

tribution were constrained to the proxy assessed ranges were better able to reflect the780

proxy assessed ranges. This point is notable because it makes clear that if RCMs are to781

be used as integrators of knowledge, conveying multiple lines of evidence from one do-782

main to another (e.g. IPCC WG1 to IPCC WG3), then RCMs whose probabilistic dis-783

tributions have been constrained to the intended lines of evidence are likely to be the784

best tool.785

Even amongst models which had similar levels of agreement with the proxy assess-786

ment, some divergence in future projections was observed. Given the various model struc-787

tures that the reduced complexity models employ, ranging from linearised impulse re-788

sponse functions to 50-layer ocean models, it is not surprising that models may diverge789

in scenarios that go significantly beyond the domain of the validation data. Adding con-790

straints on future performance i.e. extending the domain of validation data (for exam-791

ple based on an independent assessment of warming in a limited subset of scenarios) would792

likely reduce the divergence, although such extra constraints should be carefully consid-793

ered given that they risk artificially narrowing projection uncertainty.794

While exercises such as the one performed here can provide helpful information about795

where the biases may lie, they cannot provide definitive answers about what the future796

holds. It is possible to make judgements about what is more reasonable based on the eval-797

uation performed here, and to rule out clearly incorrect projections, yet it must be recog-798

nised that a definitive answer is impossible: we will not know which projections are cor-799

rect until we get there, by which time it is too late for climate policy. Hence, while it800

is important to continue to evaluate and improve our models to remove as many sources801

of error as possible, it is also important that research into decision making under uncer-802

tainty (e.g. Weaver et al., 2013; Dittrich et al., 2016) continues to develop and be used803

because the uncertainty in projections will not disappear anytime soon, never in fact.804

In addition, those who use RCMs for climate projections should carefully consider how805
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they’re going to use the RCMs and how they’re going to validate them before making806

conclusions about the implications of their projections.807

In addition, we found that many of the RCMs did not reproduce the high warm-808

ing seen in CMIP6 models. However, studies which constrain CMIP6 models based on809

observational constraints also exclude such high warming which suggests that the lack810

of high warming is due to the constraining applied to the RCMs, rather than structural811

differences between RCMs and CMIP6 models. Beyond the question of temperature pro-812

jections, we found that the prescribed CO2 concentrations used in the CMIP6 SSP-based813

experiments are at the high-end of projections made with historically constrained car-814

bon cycles. Although, further investigations into carbon cycle behaviour are required to815

provide a clearer picture of the influence of carbon cycle uncertainties on emissions-driven816

projections. Finally, we observed that a change in reference period significantly altered817

how well some models agreed with observations, reinforcing the need to consider more818

than one reference period when evaluating models.819

With sufficient validations, RCMs provide a unique synthesis tool to integrate the820

latest scientific understanding, including its uncertainties, along the complex cause-effect821

chain from emissions to global-mean temperatures. Integrating this understanding in an822

internally consistent RCM framework, with all the implicit cross-correlations, is our best823

method to inform decision-making and other scientific domains, for example the likeli-824

hood of exceeding a given global-mean temperature threshold under a specific emissions825

scenario. Further developing these tools opens vast opportunities to go beyond global-826

mean variables and temperature changes, and to robustly represent the complex science827

beneath.828
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Text S1.

CICERO-SCM

The CICERO Simple climate model (CICERO-SCM) consists of a carbon cycle model

(Joos et al., 1996), simplified expressions relating emissions of components to forcing, ei-

ther directly or via concentrations (Etminan et al., 2016; Skeie et al., 2017) and an energy

balance/upwelling diffusion model (Schlesinger et al., 1992). A detailed description of

the CICERO-SCM is presented in Skeie et al. (2017) with recent updates in Nicholls et

al. (2020). The energy balance/upwelling diffusion model calculates warming separately

for the two hemispheres and includes 40 vertical layers in the ocean. The parameters

that govern the mixing of heat in the ocean as well at the climate sensitivity and radiative

forcing is estimated in a Bayesian approach using observational based time series of global

mean surface temperature change and ocean heat content and prior estimates of radiative

forcing times series (Skeie et al., 2018). The posteriori distribution of the parameters in

the energy balance/upwelling diffusion model including the climate sensitivity and aerosol

forcing are used in the probabilistic run. Uncertainties in other climate drivers are ig-

nored. The climate sensitivity estimated in Skeie et al. (2018) is the inferred effective

climate sensitivity (ECSinf), known to be lower than the equilibrium climate sensitivity

(ECS). This is due to the use of global-mean surface temperature instead of global-mean

surface air temperature as well as feedback on long time scales that have not come into

play when inferring the climate sensitivity from the historical record. The assessed range

for the equilibrium climate sensitivity is therefore shifted by 0.9°C (Skeie et al., 2018)
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to lower values when selecting the parameter set to be used in the probabilistic simula-

tions. Another selection criterion is the assessed range of surface air temperature change

in 1985-2014 relative to the baseline 1850-1900. The 30 040 original parameter set from

Skeie et al. (2018) is subsetted using the RCMIP defined ECS distribution as the primary

constraint. By binning the data, a subset following this same distribution is built. Si-

multaneously, the surface air temperature constraint is used as a hard cutoff to choose

between parameter sets in this distribution, producing a final subset of between 550 and

600 ensemble members.

EMGC

The University of Maryland Empirical Model of Global Climate (EMGC) is a multiple

linear regression energy balance representation of various factors (both natural and an-

thropogenic) that control global-mean surface temperature (GMST) (Canty et al., 2013;

Hope et al., 2017). Values of climate feedback and ocean heat uptake efficiency are found

in a regression framework constrained by observed time series of GMST, the radiative

forcing due to tropospheric aerosols (AER RF), and ocean heat content. Several natural

and anthropogenic components that affect GMST are also considered. Recently, we have

added an interactive ocean module that represents the warming of the ocean profile in

response to rising GMST (Hope et al., 2020; McBride et al., 2020). As a result, transport

of heat from the atmosphere to the world’s oceans evolves over time in a more realistic

fashion compared to earlier versions of our model.

The EMGC forecasts of GMST all use values of radiative forcing due to future green-

house gas abundances and aerosols prescribed by RCMIP. Values of climate feedback and

ocean heat uptake for each simulation are found based upon regression analysis of the data
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record for GMST from HadCRUT4 (Morice et al., 2012) that spans 1850 until the end of

1999 (an alternate parameter set is also submitted based on using the HadCRUT.5.0.1.0

dataset instead) and an ocean heat content record that is the average of data from five

groups that spans 1955 to 1999 (Hope et al., 2020; McBride et al., 2020). The time series

of radiative forcing due to tropospheric aerosols is scaled such that the values in 2011

(AER RF2011) statistically sample the uncertainty in the value of AER RF2011 given by

Chapter 8 of AR5 (Myhre et al., 2013). Projections of GMST are based upon analyses

of the subset of the 160,000 possible combinations of climate feedback and AER RF2011

that provide a good fit (reduced-chi-squared metric less than or equal to 2) to the ob-

served variation in GMST and OHC, as described in Hope et al. (2020) and McBride et

al. (2020). The largest factor driving spread in our future projections of GMST from the

ensemble of model runs that satisfy the reduced-chi-squared metric is imprecise knowl-

edge of the radiative forcing of climate by tropospheric aerosols over the historical time

period. Ensemble members with largest future warming are characterized by values of

AER RF2011 towards the low end of the distribution (i.e., -1.5 W m-2 to -1.9 W m-2) and

the ensemble members with smallest future warming are characterized by values of AER

RF2011 towards the high end of the distribution (i.e., -0.1 W m-2 to -0.4 W m-2).

FaIRv1.6.1

The Finite-amplitude Impulse Response (FaIR) model is an emissions-driven simple

climate model written in Python. Since the v1.3 model description paper (Smith et

al., 2018), a number of features have been added. FaIR v1.6 separately reports green-

house gas forcings from 28 different fluorinated species (which were all aggregated in FaIR

v1.3), and breaks aerosol forcing down into five direct species and indirect aerosol forcing.
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Functionality has been added for running experiments in concentration-driven mode and

for deriving CO2 emissions from prescribed concentrations, enabling a greater set of the

RCMIP experiments to be run. Additionally, it is now possible to run FaIR using the

parameters of the two-layer model defined by Geoffroy, Saint-Martin, Bellon, et al. (2013),

given that this model is simply a mathematical transformation of FaIR’s impulse response

setup (as shown by Geoffroy, Saint-Martin, Olivié, et al. (2013)). Finally, the carbon cycle

has been optimised following FaIR 2.0.0, speeding up runtime (Leach et al., 2020).

An initial ensemble of 3000 members were drawn for RCMIP. Forcing uncertainties for

CH4, N2O, other GHGs, tropospheric ozone, stratospheric ozone, contrails, black carbon

on snow, land use change, solar and volcanic are taken from AR5 uncertainty ranges

(Myhre et al., 2013). Two-layer model parameters for ocean heat exchange coefficient,

climate feedback parameter, efficacy of deep ocean heat uptake and heat capacity of the

mixed layer and deep ocean are sampled with distributions informed by 44 CMIP6 models

built from joint kernel density distributions that take correlations of terms into account

(Smith et al., submitted). The ERF from 4xCO2 is also taken from the ensemble based

on abrupt-4xCO2 experiments from CMIP6 models and used to inform the uncertainty

range for CO2 forcing. For ESM runs, the carbon cycle parameters (pre-industrial airborne

fraction, and sensitivity to temperature and atmospheric CO2 burden) are sampled from

normal distributions as in Smith et al. (2018). Direct aerosol forcing from SO2, BC and

OC is sampled from CMIP6 models participating in RFMIP and AerChemMIP (Smith et

al., submitted). Nitrate and secondary organic aerosol are not included. Indirect aerosol

forcing is sampled by scaling the 1850-2010 aerosol forcing to a Gaussian distribution

centred on -0.85 W / m2 with standard deviation of 0.91 W / m2. The 3000-member
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prior ensemble is reduced to a final ensemble of 501 members, where this ensemble was

selected from the members with the smallest RMSE for their GMST from historical (1850-

2014) integrations compared to the Cowtan and Way (2014) dataset (v2.0.0) for 1850-2014.

FaIR does not report GMST, but the simple assumption that GSAT anomalies are 4%

greater than GMST is used based on CMIP6 models and reanalysis datasets.

FaIRv2.0.0-alpha

FaIRv2.0.0-alpha (Leach et al., 2020) is an update to the FaIR model (version 1.6 is

described above). This update reduces the model’s structural complexity as comprehen-

sively as possible. The result is a set of six equations - the five equations that made up the

impulse-response model used for GHG metric calculations in the IPCC 5th Assessment Re-

port (Myhre et al., 2013), plus one additional equation that introduces a state-dependence

to the carbon and methane cycles (Millar et al., 2017).

A 1 million-member ensemble is generated by perturbing parameters relating to the

modelled carbon-cycle, ERF and thermal response. Prior carbon-cycle and thermal re-

sponse distributions are inferred from parameter samples obtained by tuning the model to

idealised experiments in the CMIP6 ensemble. The carbon-cycle was tuned to 11 models

from C4MIP (Arora et al., 2020); the thermal response cycle was tuned to 28 models using

a maximum likelihood method (Cummins et al., 2020). Prior ERF parameter uncertain-

ties were taken from AR5 uncertainty ranges (Myhre et al., 2013) for all forcing classes

except for aerosol-radiation and -cloud interaction. These were sampled from distribu-

tions informed by tuning the aerosol ERF parameterisations to 10 CMIP6 models (Smith

et al., submitted) and then quantile mapped to match the process-based assessment in

Bellouin et al. (2020).
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This large prior ensemble is constrained by setting the selection probability of an indi-

vidual member equal to the likelihood of its corresponding present-day level and rate of an-

thropogenic warming calculated using the Global Warming Index methodology (Haustein

et al., 2017) (with the HadCRUT.4.6.0.0 timeseries for the main results but also the

HadCRUT.5.0.1.0 timeseries for illustration). A 5 000-member subset of this constrained

ensemble (total size 250 651) is used in RCMIP phase 2.

Hector v2.5.0

Hector is an open-source globally resolved, process-based carbon-climate model that

calculates the annual energy fluxes between the ocean, atmosphere, and terrestrial bio-

sphere (Hartin et al., 2015). As of Hector v2.0 (Vega-Westhoff et al., 2019), the model

uses an implementation of the 1-D ocean heat diffusion model, DOECLIM (Kriegler, 2005;

Urban et al., 2014). Recent model updates to v2.5.0 include: reorganizing the code as

an R package, constraining pre-industrial atmospheric CO2 to a prescribed value during

model spin-up, and updating the OH lifetime.

For each scenario, Hector was run 10 000 times with parameters (equilibrium climate

sensitivity, ocean heat diffusivity, and aerosol forcing) randomly sampled from the joint

posterior distribution from the Vega-Westhoff et al. (2019) MCMC calibration against

historical global surface temperature observations and ocean heat content. Using the

parametrization from the posterior distribution we produced probabilistic Hector output

for global mean air temperature, air-ocean blended temperature, and aerosol radiative

forcing.

MAGICC7
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MAGICC’s climate core is based on a 50-layer, hemispherically resolved upwelling-

diffusion-entrainment ocean model coupled to a four-box (hemispheric land/ocean) spa-

tial resolution for effective radiative forcing. MAGICC and runs on monthly timesteps,

which improves its representation of the response to volcanic eruptions compared to an

annual timestep. The version of MAGICC used here (v7.4.1) is an update of MAGICC6

(Meinshausen et al., 2011) and the setup used to generate the GHG concentration pro-

jections (Meinshausen et al., 2020) for the historical and SSP-based CMIP6 experiments

(Eyring et al., 2016; O’Neill et al., 2016). The key updates are the inclusion of a state-

dependent climate feedback factor (previously it was only forcing-dependent) which has

been calibrated to CMIP6 models (Nicholls et al., 2020), accounting for the effect of large

historical anthropogenic biomass burning aerosol precursor emissions on aerosol effective

radiative forcing, a nitrate aerosol forcing scheme which accounts for the sulfate competi-

tion for ammonia based on Hauglustaine, Balkanski, and Schulz (2014) and the inclusion

of a non-ocean heat uptake parameterisation which represents land surface and cryosphere

heat uptake in each hemisphere. In addition, it includes an updated effective radiative

forcing parameterisations for CO2, CH4 and N2O that capture results by Etminan et al.

(2016), while allowing for a wider range of input concentrations (see Meinshausen et al.

(2020)] for details).

We derive a posterior parameter distribution using the methodology of Meinshausen et

al. (2009), updated to use observations of global-mean temperature up to 2019 based on

HadCRUT4.6.0.0(Morice et al., 2012) (an alternate set which uses HadCRUT.5.0.0.0 is

also included for sensitivity analysis) and ocean heat content up to 2018 based on von

Schuckmann et al. (2020) as well as the proxy effective radiative forcing assessment used
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in this study. We run a Monte Carlo Markov Chain with 20 million steps, from which

we draw every 200th member, resulting in a 100 000 member posterior distribution. The

probabilistic distribution used here is the result of sub-sampling the posterior distribution

to draw a set of 600 parameter sets which best match the proxy assessed ranges and

also maintain the covariance of MAGICC’s parameters as derived from the posterior

distribution.

MCE

MCE consists of a thermal response module and a carbon cycle module. These are rep-

resented by impulse response functions (Hooss et al., 2001; Joos et al., 1996), responding

to anthropogenic carbon input which then alters the ERF of the atmospheric CO2 and

natural processes in the ocean and terrestrial carbon cycle. The carbon cycle incorporates

temperature feedbacks via dissociation constants in the chemical equilibrium of the car-

bonic acid system in seawater and the respiration of organic materials in the terrestrial

biosphere. After being used in RCMIP Phase 1, the CO2 forcing scheme was slightly

changed, and schemes for non-CO2 well-mixed GHGs were newly incorporated instead

of using prescribed scenario data. The CO2 scheme has two control parameters: one for

scaling in terms of the logarithm of CO2 concentrations, and the other for amplifying

deviations from the logarithmic increase (Tsutsui, 2017). The latter is activated when

the concentration exceeds a two-times level with a quadratic term, but was modified here

to be linear when the concentration further exceeds a four-times level. The non-CO2

schemes use those by Etminan et al. (2016) for CH4 and N2O, and a simple linear formula

for halocarbon gases with their lifetimes and radiative efficiencies assessed in AR5.
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The probabilistic runs were conducted with 600-member parameter sets, varied for (1)

CO2 forcing and thermal response, (2) non-CO2 forcing scaling, and (3) ocean and land

CO2 uptake. The first sets were generated from a multivariate normal distribution built

on principal components of individual parameters adjusted to CMIP5 and CMIP6 models

(Tsutsui, 2017, 2020). Cross-correlation between the parameters of this group reflects the

variation of the CMIP models, such that the ratio of TCR-to-ECS tends to decrease with

increase in ECS, and that CO2 forcing is weakly correlated with response properties. The

second sets were implemented as scaling factors of non-CO2 forcing, and individually gen-

erated from a probability distribution modeled for each of the prescribed likely ranges, the

third sets were implemented as perturbations on the amplitudes of the impulse response

function for the ocean CO2 uptake, and on two land-CO2 parameters for the fertilization

effect and the temperature dependency of respiration. These perturbations were individ-

ually generated from a uniform distribution so that resulting carbon budgets encompass

the range of those from CMIP5 and CMIP6 Earth system models presented in Arora

et al. (2020). A Bayesian updating was applied to constrain the parameter sets with a

Metropolis-Hastings sampling algorithm sequentially as to land CO2 uptake, the ERF of

CO2, TCR, and the two metrics for the surface blended temperature and the ocean heat

content. The land CO2 constraint was targeted for the excess carbon at doubling along

a CO2 concentration pathway under an idealized 1%-per-year increase scenario from the

CMIP Earth system models while the other constraints follow the assessed ranges. It

is supposed that the second posterior conforms to the CMIP ensemble and the assessed

forcing ranges, and that the last (fourth) posterior, from which the 600 members were

sampled, is a compromised distribution reflecting all the metrics together with the CMIP
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ensemble. For constraining the temperature and heat content metrics, a bivariate nor-

mal distribution was built with factors of 1.04 and 1.08 for conversion from the blended

temperature to the air temperature, and from the ocean heat content to the total heat

content, respectively.

OSCARv3.1

OSCAR v3.1 is an open-source reduced-form Earth system model, whose modules mimic

models of higher complexity in a probabilistic setup (Gasser, Ciais, et al., 2017). The

response of the global surface temperature to radiative forcing is the two-layer model

(Geoffroy, Saint-Martin, Bellon, et al., 2013). OSCAR calculates the effective radiative

forcing caused by greenhouse gases (CO2, CH4, N2O, 37 halogenated compounds), short-

lived climate forcers (tropospheric and stratospheric ozone, stratospheric water vapor,

nitrates, sulfates, black carbon, primary and secondary organic aerosols) and changes in

surface albedo. The ocean carbon cycle is based on the mixed-layer response function of

Joos et al. (1996), albeit with an added stratification of the upper ocean derived from

CMIP5 (Arora et al., 2013) and with an updated carbonate chemistry. The land car-

bon cycle is divided into five biomes and five regions, and each of the 25 biome/region

combinations follows a three-box model (soil, litter and vegetation). Land cover change,

wood harvest and shifting cultivation are also accounted for, thanks to a dedicated book-

keeping module that allows OSCAR to estimate its own CO2 emissions from land-use

change (Gasser, Peters, et al., 2017; Gasser et al., 2020). Permafrost thaw and the conse-

quent emission of CO2 and CH4 is also modeled (Gasser et al., 2018). In addition, biomass

burning emissions are calculated endogenously following the book-keeping module and the
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wildfire feedback. These emissions were therefore subtracted from the input RCMIP data

used to drive OSCAR to avoid double counting.

In RCMIP phase 2, the same 10 000 elements of the Monte-Carlo ensemble used in

RCMIP phase 1 are used. Each simulation is run using all these configurations. The

parameters of OSCARv3.1 are not tuned to reflect the assessed ranges required, but

instead, each configuration is weighted. The weights are determined by comparing the

performances over the emissions-driven historical experiment to the assessed ranges for the

cumulative net land to atmosphere and ocean to atmosphere fluxes to constrain long-term

dynamics, and the rate of increase in atmospheric CO2 for short-term dynamics. More

details about this weighting approach can be found in Gasser et al. (2020). We choose not

to use the historical surface air-ocean blended temperature as an additional constraint,

as it causes the final range of the equilibrium climate sensitivity of OSCARv3.1 to be

drastically reduced. All final outputs are provided as the resulting quantiles.

SCM4OPT v2.1

The Simple Climate Model for Optimization version 2.1 (SCM4OPT v2.1) (Su et al.,

2020) is a simple climate model which can simulate the radiative forcing and global tem-

perature change resulting from a full suite of greenhouse gases, pollutants and aerosols,

as well as land-use albedo. The SCM4OPT v2.1 is designed to be lightweight and capable

of being used in an integrated assessment model (IAM) with a large-scale optimization

process. Compared to the older version (Su et al., 2017, 2018), we updated the ocean

carbon cycle following Hector v1.0 (Hartin et al., 2015) and used the Diffusion Ocean

Energy balance CLIMate (DOECLIM) model (Kriegler, 2005; Tanaka et al., 2007) to

calculate global-mean temperature change. We fitted the CO2 concentration and temper-
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ature change of the SCM4OPT v2.1 to the associated outputs of four RCP experiments

(RCP2.6, RCP4.5, RCP6.0 and RCP8.5) of 26 coupled atmosphere ocean general circu-

lation models (AOGCMs) in CMIP5. In addition, the method used to estimate aerosol

forcing was also renewed based on OSCAR v2.2 (Gasser, Ciais, et al., 2017). However,

we removed a few parameter sets which could generate unrealistic outliers, and re-tuned

the forcing efficiencies and other related parameters against the aerosol forcings presented

in IPCC AR5 (IPCC, 2013). An ensemble of 2000 members was adopted for RCMIP to

represent the uncertainties caused by the carbon cycle, aerosol forcings and temperature

change by using randomized parameter sets as described above.
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Figure S1. As in Figure 1, except for 2000-2019 mean global-mean surface temperature

(GMST) change relative to 1961-1990.
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Figure S2. As in Figure 1, except for TCR.
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Figure S3. As in Figure 1, except for TCRE.
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Figure S4. As in Figure 1, except for 2014 CO2 effective radiative forcing.
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Figure S5. As in Figure 1, except for 2014 aerosol effective radiative forcing.
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Figure S6. As in Figure 1, except for 2011 CH4 effective radiative forcing.

March 17, 2021, 8:57pm



: X - 39

Relative probability
0.05

0.10

0.15

0.20

0.25

0.30

20
11

 E
ffe

ct
iv

e 
Ra

di
at

iv
e 

Fo
rc

in
g 

N2
O 

(W
 / 

m
^2

)

a)

Pr
ox

y 
as

se
ss

m
en

t
Ci

ce
ro

-S
CM

EM
GC

Fa
IR

1.
6

Fa
IR

v2
.0

.0
-a

lp
ha

M
AG

IC
Cv

7.
5.

1
M

CE
-v

1-
2

OS
CA

Rv
3.

1
SC

M
4O

PT
v2

.1

b)

Figure S7. As in Figure 1, except for 2011 N2O effective radiative forcing.
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Figure S8. As in Figure 1, except for 2011 F-Gases effective radiative forcing.
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Figure S9. As in Figure 1, except for 2018 ocean heat content change relative to 1971.
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Figure S10. As in Figure 1 except for the low-emissions SSP1-2.6 scenario.
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Figure S11. As in panels a), b) and c) of Figure 1 except for the high-emissions SSP5-8.5

scenario.
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Figure S12. As in Figure 2 except for the low-emissions SSP1-1.9 scenario.

March 17, 2021, 8:57pm



: X - 45

2000 2050 2100 2150 2200 2250 2300
Year

-0.5

0.0

0.5

1.0

1.5

2.0

2.5

S
ur

fa
ce

 A
ir 

T
em

pe
ra

tu
re

 C
ha

ng
e

re
l. 

to
 1

99
5-

20
14

 (
K

)

Source
HadCRUT.4.6.0.0
CMIP6 MME
Cicero-SCM
EMGC
FaIR1.6
FaIRv2.0.0-alpha
Hector

MAGICCv7.5.1
MCE-v1-2
OSCARv3.1
SCM4OPTv2.1
Scenario
Historical
SSP1-2.6

a)

Relative probability

-0.5

0.0

0.5

1.0

1.5

2.0

2.5

22
50

-2
30

0 
S

ur
fa

ce
 A

ir 
T

em
pe

ra
tu

re
 C

ha
ng

e
 r

el
. t

o 
19

95
-2

01
4 

(K
)

b)

C
ic

er
o-

S
C

M

E
M

G
C

F
aI

R
1.

6

F
aI

R
v2

.0
.0

-a
lp

ha

M
A

G
IC

C
v7

.5
.1

M
C

E
-v

1-
2

O
S

C
A

R
v3

.1

S
C

M
4O

P
T

v2
.1

-0.5

0.0

0.5

1.0

1.5

2.0

2.5
c)

Figure S13. As in Figure 2 except for the low-emissions SSP1-2.6 scenario.
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Figure S14. Long-term effective radiative forcing under the high emissions SSP5-8.5 scenario.

a) Effective radiative forcing projections from 1995 to 2300 for each RCM; b) distribution of

2250-2300 mean effective radiative forcing from each RCM; c) very likely (whiskers), likely (box)

and central (white line) 2250-2300 mean effective radiative forcing estimate from each RCM.
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Figure S15. As in Figure 3 except for the low-emissions SSP1-2.6 scenario.
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Figure S16. As in panels a), b) and c) of Figure 3 except for the high-emissions SSP5-8.5

scenario.
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Figure S17. As in Figure S14 except for the low-emissions SSP1-1.9 scenario.
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Figure S18. As in Figure S14 except for the low-emissions SSP1-2.6 scenario.
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Figure S19. As in Figure S14 except for effective radiative forcing due to aerosols in the

low-emissions SSP1-1.9 scenario.
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Figure S20. As Figure 3, except for effective radiative forcing due to CO2.
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Figure S21. As in Figure S14 except for effective radiative forcing due to CO2 in the low-

emissions SSP1-1.9 scenario.
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Figure S22. As in panels a), b) and c) of Figure 3, except for effective radiative forcing due

to aerosols under the low-emissions SSP1-2.6 scenario.
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Figure S23. As in Figure S14 except for effective radiative forcing due to aerosols in the

low-emissions SSP1-2.6 scenario.
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Figure S24. As Figure 3, except for effective radiative forcing due to CO2 under the low-

emissions SSP1-2.6 scenario.
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Figure S25. As in Figure S14 except for effective radiative forcing due to CO2 in the low-

emissions SSP1-2.6 scenario.
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Figure S26. As in panels a), b) and c) of Figure 3, except for effective radiative forcing due

to aerosols under the high-emissions SSP5-8.5 scenario.
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Figure S27. As in Figure S14 except for effective radiative forcing due to aerosols in the

high-emissions SSP5-8.5 scenario.
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Figure S28. As in panels a), b) and c) of Figure 3, except for effective radiative forcing due

to CO2 under the high-emissions SSP5-8.5 scenario.
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Figure S29. As in Figure S14 except for effective radiative forcing due to CO2 in the high-

emissions SSP5-8.5 scenario.
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Figure S30. Atmospheric CO2 concentration projections in the esm-SSP1-1.9 experiment.

a) Atmospheric CO2 concentration projections from 1995 to 2100. We show the median RCM

projections (coloured lines) and prescribed CMIP6 ScenarioMIP input concentrations from the

SSP1-1.9 concentration-driven experiment (dashed black line); b) distribution of 2081-2100 mean

atmospheric CO2 concentration projections from each RCM; c) very likely (whiskers), likely (box)

and central (white line) 2081-2100 mean atmospheric CO2 concentration projections estimate

from each RCM. d) as in b) except for the year in which atmospheric CO2 concentrations peak;

e) as in c) except for the year in which atmospheric CO2 concentrations peak; f) as in b) except

for the peak atmospheric CO2 concentrations; g) as in c) except for the peak atmospheric CO2

concentrations. Note that FaIR1.6 data is taken from the esm-SSP1-1.9-allGHG simulations

because esm-SSP1-1.9 simulations are not available.
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Figure S31. As in Figure S30 except for the esm-SSP1-2.6 experiment. Note that FaIR data

is taken from the esm-SSP1-2.6-allGHG simulations because esm-SSP1-2.6 simulations are not

available.
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Figure S32. As in Figure 6 except for the SSP1-2.6, esm-SSP1-2.6-allGHG scenario pair.
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Figure S33. As in panels a), b) and c) of Figure 6 except for the SSP5-8.5, esm-SSP5-8.5-

allGHG scenario pair.
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Figure S34. Surface air temperature (also referred to as global-mean surface air temperature,

GSAT) change in the concentration-driven SSP1-1.9 experiment. For each model, two different

probabilistic distributions are shown. One is constrained to HadCRUT.4.6.0.0 (Morice et al.,

2012, as used in the main study), the second is constrained to HadCRUT.5.0.1.0 (Morice et

al., 2021), which makes higher estimates of historical-warming. a) GSAT projections from 1995

to 2300. We show the median RCM projections for the probabilistic distributions which used

HadCRUT.4.6.0.0 (solid lines) and HadCRUT.5.0.1.0 (dashed lines) as constraints; b) very likely

(whiskers), likely (box) and central (white line) 2250-2300 mean GSAT for each RCM for each

probabilistic distribution. All results are shown relative to the 1850-1900 reference period.
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Figure S35. As in Figure S35, except for the concentration-driven SSP1-2.6 experiment.
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Figure S36. As in Figure S36, except for the concentration-driven SSP5-8.5 experiment.
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