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Abstract

Despite having offered important hydroclimatic insights, streamflow reconstructions still see limited use in water resources

operations, because annual reconstructions are not suitable for decisions at finer time scales. Attempts towards sub-annual

reconstructions have relied on statistical disaggregation, which uses none or little proxy information. Here, we develop a novel

framework that optimizes proxy combinations to simultaneously produce seasonal and annual reconstructions. Importantly,

the framework ensures that total seasonal flow matches annual flow closely. This mass balance criterion is necessary to avoid

misguiding water management decisions, such as water allocation. Using the framework, and leveraging a multi-species network

of ring width and cellulose δ18O in Southeast Asia, we reconstruct seasonal and annual inflow to Thailand’s largest reservoir. The

reconstructions are statistically skillful. This work is one step closer towards operational usability of streamflow reconstruction

in water resources management.
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Abstract15

Despite having offered important hydroclimatic insights, streamflow reconstructions still16

see limited use in water resources operations, because annual reconstructions are not suit-17

able for decisions at finer time scales. Attempts towards sub-annual reconstructions have18

relied on statistical disaggregation, which uses none or little proxy information. Here,19

we develop a novel framework that optimizes proxy combinations to simultaneously pro-20

duce seasonal and annual reconstructions. Importantly, the framework ensures that to-21

tal seasonal flow matches annual flow closely. This mass balance criterion is necessary22

to avoid misguiding water management decisions, such as water allocation. Using the23

framework, and leveraging a multi-species network of ring width and cellulose δ18O in24

Southeast Asia, we reconstruct seasonal and annual inflow to Thailand’s largest reser-25

voir. The reconstructions are statistically skillful. This work is one step closer towards26

operational usability of streamflow reconstruction in water resources management.27

Plain Language Summary28

Long history of river discharge, or streamflow, can be reconstructed from tree rings.29

These reconstructions help us understand the water cycle in the past, but they have not30

been widely used in water resources operations. This is because reconstructions are of-31

ten annual (having only one data point per year). By combining different tree species32

and different features of tree rings (for example, ring width and stable isotope ratio), it33

is possible to reconstruct seasonal streamflow in addition to the annual one, and that34

is our first goal. But a major challenge arises: how do we ensure that the total flow vol-35

ume of the seasonal reconstructions closely matches the annual one? This criterion is called36

mass balance, and it is important to avoid misguiding water management decisions such37

as allocating water to different sectors. We develop a novel method to reconstruct sea-38

sonal and annual streamflow while accounting for mass balance at the same time. Our39

work is thus a step closer towards operational usability of streamflow reconstructions in40

water resources management.41
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1 Introduction42

Dendrohydrology, the study of past hydroclimate using tree rings, has been largely43

motivated by water resources management. The field traces back to Hardman and Reil44

(1936), who recognized that instrumental records were too short to understand drought45

trends, and demonstrated that better understanding could be gained from exploring the46

links between tree rings and streamflow. Their work was motivated by contemporary droughts47

that affected irrigation. Also to understand droughts, Schulman (1945) established a tree48

ring chronology for the Colorado River Basin, this time motivated by the war effort—49

to examine Hoover Dam’s hydropower production reliability to meet wartime demand.50

While these early works stopped at studying tree ring indices, dendrohydrology took a51

big step when Stockton (1971), leveraging advanced multivariate techniques (Fritts et52

al., 1971), showed that reconstructing streamflow record back in time was feasible—long53

term surface water availability could now be quantified directly. Soon, multiple stream-54

flow reconstructions were developed across the Colorado River Basin (Stockton & Ja-55

coby, 1976), revealing the shortcomings of the Colorado River Compacts (Woodhouse56

et al., 2006), and providing insights about long term hydrology of Lake Powell, the United57

States’ second largest reservoir.58

Streamflow reconstruction has become “an important planning and research tool”59

in water resources management (Meko & Woodhouse, 2011). Yet, its use in practical,60

operational aspects of water management is still limited. That is because reconstructions61

often target specific components of the hydrograph that best correlated with tree ring62

proxies. Perhaps most commonly, reconstructions from ring width often target the growth63

season (e.g., D’Arrigo, Abram, et al., 2011; Güner et al., 2017). Another example is given64

by reconstructions targeting peak flow using tree ring cellulose stable oxygen isotope ra-65

tio (δ18O) (C. Xu et al., 2019). These reconstructions reveal important insights about66

the hydroclimate, but do not provide the total annual surface water availability. Other67

works target the annual flow (e.g., Rao et al., 2018; Nguyen & Galelli, 2018), but even68

so, the annual resolution is not suitable for making operational decisions at finer time69

scales—crop planning, for instance, is often based on seasonal flow; reservoir releases are70

determined at monthly or even weekly time steps.71

The water resources community recognizes the need for sub-annual reconstructions.72

Attempts towards this goal have relied on statistical disaggregation, assuming some sta-73

tistical relationships between the sub-annual and annual flows (Prairie et al., 2008; Sauchyn74

& Ilich, 2017). These assumptions are reasonable but not always valid (Figure S1). More75

importantly, paleoclimatic proxies are not used in these methods, and their rich infor-76

mation are not utilized. Recent progress was made by Stagge et al. (2018), who used multi-77

species chronologies as additional inputs to disaggregation, showing that these inputs78

can be weighted differently for each month to improve the monthly reconstructions.79

The works of Stagge et al. (2018), C. Xu et al. (2019), and others discussed above80

suggest that different proxies have different seasonal sensitivities. Therefore, instead of81

disaggregation, we propose to use multiple proxies to simultaneously reconstruct sub-82

annual (e.g., seasonal) and annual flows. Two challenges arise. How to combine prox-83
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ies optimally for different targets? And how to ensure that the seasonal flows add up to84

the annual flow, i.e., how to account for mass balance? We develop a unified framework85

to address both challenges. Mass balance is accounted for by a term in the regression86

formulation that penalizes the differences between total seasonal flow and annual flow87

(Section 3.1), and proxy combination is optimized with an automatic input selection scheme88

(Section 3.2). We test the framework with a case study in the Chao Phraya River Basin,89

Thailand, pooling together a multi-species network of ring width and cellulose δ18O chronolo-90

gies from Southeast Asia (Section 2). This work is one step closer towards operational91

usability of streamflow reconstruction in water resources management.92

2 Study Site and Data93

2.1 The Southeast Asian Dendrochronology Network94

Over the past three decades, an extensive network of tree ring chronologies have95

been developed in Southeast Asia. This network has been instrumental in improving our96

understanding of Southeast Asia’s hydroclimate and history. Tree ring data from Thai-97

land and northern Vietnam (Buckley, Palakit, et al., 2007; Sano et al., 2009) revealed98

a multidecadal drought, what is later known as the Strange Parallel Droughts (E. R. Cook99

et al., 2010), which coincided with a tumultuous period of Southeast Asian history (Lieberman,100

2003; Lieberman & Buckley, 2012). Further back in time, tree ring data from southern101

Vietnam linked megadroughts in the 14th and 15th centuries to the demise of the Angkor102

Civilization (Buckley et al., 2010, 2014). These findings are among many insights that103

the Southeast Asian Dendrochronology Network has brought forth.104

In this work, we use twenty tree ring chronologies from Vietnam, Laos, Cambodia,105

Thailand, and Myanmar (Figure 1). The chronologies at Kirirom, Petchaburi, Pha Taem,106

and Wiang Haeng are published here for the first time. The metadata of the chronolo-107

gies are provided in Table 1. The common period of most chronologies in our network108

is 1748–2005 (Figure S6), and is the same as the time span of our δ18O network. Sev-109

eral chronologies are some decades shorter. Following Stagge et al. (2018), we imputed110

the missing years using the R package missMDA (Josse & Husson, 2016) (see Figure S7).111

We imputed the tree ring data instead of building nested models because nesting is not112

applicable in our reconstruction framework. As we shall explain in Section 3.1, the frame-113

work is designed to account for mass balance, tuning the regression parameters such that114

the total sub-annual flow matches the annual flow closely. With nesting, the final vari-115

ance correction can disrupt the mass balance.116

2.2 Cellulose δ18O117

We use four chronologies of tree ring cellulose stable oxygen isotope ratio (δ18O)118

that were developed in Laos, Thailand, and Vietnam over the past decade (Figure 1 and119

Table 2). δ18O exhibits strong mechanical and statistical relationship with the hydro-120

climate (C. Xu et al., 2011; Sano et al., 2012), and has been used to reconstruct wet sea-121

son precipitation in the region (C. Xu et al., 2015, 2018). δ18O in Laos was also found122
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Figure 1. Map of the study region, showing the Chao Phraya River, the proxy network, and

the target streamflow station.

to have significant negative correlation with Mekong River water level (C. Xu et al., 2013),123

suggesting promising hydrological applications. Finally, three δ18O chronologies were used124

to reconstruct Chao Phraya River peak season flow (C. Xu et al., 2019). These works125

support recent literature (Treydte et al., 2006; G. Xu et al., 2019) that δ18O has indeed126

moved beyond “potential” (Gagen et al., 2011), and earned its place as a practical, valu-127

able paleoclimate proxy.128

2.3 Streamflow129

The Chao Phraya River Basin covers 30% of Thailand’s area, and is home to about130

25 million people. Thailand’s largest reservoir, the Bhumibol (active capacity 9.7 km3),131

lies on the Ping River tributary. Reliable operations of this reservoir require accurate132

assessment of inflow availability, on both inter- and intra-annual scales.133

Streamflow station P.1 is located upstream of Bhumibol Reservoir. P.1 has the longest134

and most complete record in Thailand: daily data are available from April 1921–present.135

Since 1985, the river upstream of P.1 has been impounded by the Mae Ngat Dam, which,136

at full capacity, stores about 14% of P.1’s mean annual flow. Dam operations modify the137

seasonal streamflow patterns, thereby interfering with the proxy-streamflow relationship.138

Therefore, we naturalized the streamflow data from 1985. The naturalization process is139
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Table 1. Metadata of tree ring width chronologies.

Site Longitude Latitude Species References

Bidoup 108.45 11.97 Fokienia hodginsii Buckley et al. (2010)

Chin Hills 93.50 22.17 Pinus kesiya Rao (2020)

Kim Hy 106.04 22.25 Pseudotsuga sinensis Hansen et al. (2017)

Kirirom 104.10 11.95 Pinus merkusii This studya

Kon Ka Kinh 108.18 14.91 Fokienia hodginsii Buckley et al. (2019)

Mae Hong Son 98.93 19.28 Tectona grandis Buckley, Palakit, et al. (2007)

Maingtha 96.20 23.20 Tectona grandis D’Arrigo, Palmer, et al. (2011)

Mu Cang Chai 104.06 21.40 Fokienia hodginsii Sano et al. (2009)

Nam Nao 101.57 16.73 Pinus merkusii Buckley et al. (1995)

Petchaburi 99.56 12.96 Pinus merkusii This study

Pha Taem 105.00 15.70 Pinus merkusii This study

Phou Khao Khouay 102.79 18.32 Pinus merkusii Buckley, Duangsathaporn, et al. (2007)

Phu Kradung 101.88 16.90 Pinus merkusii D’Arrigo et al. (1997)

Phu Toei 99.43 14.98 Pinus merkusii E. R. Cook et al. (2010)

Pu Mat 104.85 19.06 Fokienia hodginsii Buckley et al. (2019)

Quang Nam 107.33 15.81 Fokienia hodginsii Buckley et al. (2017)

Salaeng Luang 100.55 16.75 Pinus merkusii Buckley et al. (1995)

San Luang 97.93 19.10 Pinus merkusii E. R. Cook et al. (2010)

Wat Chan 98.23 19.02 Pinus merkusii Buckley et al. (1995)

Wiang Haeng 98.64 19.56 Pinus merkusii This study

a Several cores from this site were analyzed by Zhu et al. (2012) for δ18O but the ring width chronology has

not been published until now.

Table 2. Metadata of δ18O chronologies.

Site Longitude Latitude Species References

Mae Hong Son 98.93 19.28 Pinus merkusii C. Xu et al. (2015)

Mu Cang Chai 104.06 21.40 Fokienia hodginsii Sano et al. (2012)

Phou Khao Khouay 102.79 18.32 Pinus merkusii C. Xu et al. (2019)

Umpang 98.87 16.09 Pinus merkusii C. Xu et al. (2018)

described in Text S3. After naturalization, we aggregated daily data into dry season (November–140

June), wet season (July–October), and water year (November–October). The season de-141

lineation was determined by the method of B. I. Cook and Buckley (2009) (Text S2). To142

match the proxies’ time span, we finally used the streamflow data from November 1921143

to October 2005.144
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2.4 Proxy–Streamflow Correlations145

As a preliminary investigation, we performed correlation analyses between stream-146

flow and proxy data. Correlations are calculated at different lags: l = −2 to +2 years.147

Negative lags account for the case when trees use stored carbon from previous years, and148

positive lags for the case when the catchment’s runoff processes are slower than precip-149

itation inputs (Stockton & Jacoby, 1976; Meko et al., 2007). For robustness, we repeated150

the correlation analysis 1,000 times using the stationary bootstrap (Politis & Romano,151

1994). In the following discussion we refer to the median bootstrap correlations (Figure152

2).153

Among the ring width sites, there are multiple correlation patterns (Figure 2a): some154

sites such as Chin Hills and Phu Toei correlate positively, while others (e.g., Phou Khao155

Khouay) correlate negatively. Peculiarly, the Mae Hong Son site displays significant neg-156

ative correlation at l = −2 but significant positive correlations at l = 0 and l = 2.157

Five sites do not correlate with streamflow at all. These various patterns suggest that158

the ring width–streamflow relationship is complex and “noisy”. A large number of sites159

are thus required to extract the strongest signals.160

Unlike ring width, δ18O displays more consistent correlation patterns (Figure 2b):161

all significant correlations are negative, and the strongest correlations are often observed162

at l = 0. Some correlations have magnitudes larger than 0.5, while the largest corre-163

lation magnitude in ring width is only 0.36. These observations corroborate that δ18O164

chronologies may contain stronger climate signals than do ring width chronologies (C. Xu165

et al., 2019; Gagen et al., 2011).166

In general, we observe that ring width tends to correlate more strongly with dry167

season flow than with wet season flow. Conversely, δ18O tends to correlate more strongly168

with wet season flow than with dry season flow. Both proxies correlate well with annual169

flow. The proxy-streamflow correlations observed here are also in agreement with the170

proxy-precipitation correlation analysis (Text S5). Both analyses show that tree ring prox-171

ies have different strength and sensitivity to different parts of the hydrograph, and have172

the potential to be combined for better seasonal reconstructions.173

3 Reconstruction Framework174

The correlation analysis shows diverse seasonal sensitivity among proxy chronolo-175

gies and at different lags. To build reconstruction models, we define an input as a chronology–176

lag combination that significantly correlates with streamflow. For instance, some inputs177

for the annual reconstruction are Chin Hills ring-width at lag -2, and Umpang δ18O at178

lag 0 (Figure 2).179

The reconstruction framework consists of two main modules: Regression and In-180

put Selection. In Regression (Section 3.1), the selected inputs for each target are given,181

and we find the regression coefficients that best match the targets while accounting for182

mass balance simultaneously, using a penalized least squares formulation. In Input Se-183

lection (Section 3.2), we find the best subset of inputs that minimizes the penalized least184

–7–



manuscript submitted to Water Resources Research

Salaeng Luang San Luang Wat Chan Wiang Haeng

Phu Kradung Phu Toei Pu Mat Quang Nam

Maingtha Nam Nao Petchaburi Pha Taem

Kon Ka Kinh Phou Khao Khouay Mu Cang Chai Mae Hong Son

Bidoup Chin Hills Kim Hy Kirirom

-2 -1 0 1 2 -2 -1 0 1 2 -2 -1 0 1 2 -2 -1 0 1 2 -2 -1 0 1 2 -2 -1 0 1 2 -2 -1 0 1 2 -2 -1 0 1 2 -2 -1 0 1 2 -2 -1 0 1 2 -2 -1 0 1 2 -2 -1 0 1 2

-0.4
-0.2
0.0
0.2
0.4

-0.4
-0.2
0.0
0.2
0.4

-0.4
-0.2
0.0
0.2
0.4

-0.4
-0.2
0.0
0.2
0.4

-0.4
-0.2
0.0
0.2
0.4

Lag [years]

C
or

re
la

tio
n 

[-
]

Significance FALSE TRUE Season Dry season Wet season Water year

a) Correlations between ring width and instrumental + naturalized streamflow

Mu Cang Chai Phou Khao Khouay Mae Hong Son Umpang

-2 -1 0 1 2 -2 -1 0 1 2 -2 -1 0 1 2 -2 -1 0 1 2 -2 -1 0 1 2 -2 -1 0 1 2 -2 -1 0 1 2 -2 -1 0 1 2 -2 -1 0 1 2 -2 -1 0 1 2 -2 -1 0 1 2 -2 -1 0 1 2

-0.6
-0.4
-0.2
0.0
0.2

Lag [years]

C
or

re
la

tio
n 

[-
]

b) Correlations between δ¹⁸O and instrumental + naturalized streamflow

Figure 2. Streamflow–proxy correlations. The error bars show the 5th–95th bootstrapped

empirical quantiles obtained from 1,000 replicates, using the stationary bootstrap (Politis & Ro-

mano, 1994). The dots indicate the medians. Lag l denotes correlations between proxy at year t

and streamflow at year t+ l.
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squares. The two modules are unified in a nested optimization framework that includes185

a rigorous cross-validation scheme to assess reconstruction skills (Section 3.3).186

3.1 Mass-balance-adjusted Regression187

Assume that we have a matrix Ud whose columns contain the selected inputs for188

the dry season. We first need to remove multicollinearity within Ud. A common approach189

in dendrohydrology is to perform Principal Component Analysis (PCA) on Ud, then re-190

duce the set of principal components (PCs) to a parsimonious subset that is most rel-191

evant to the streamflow target (Hidalgo et al., 2000; Coulthard et al., 2016). Here, we192

use a backward stepwise PC selection routine (Woodhouse et al., 2006). This transfor-193

mation from the selected inputs to the selected PCs is denoted as the function g(.):194

Xd = g(Ud) (1)195

Similarly, given the selected inputs Uw for the wet season and Uq for the water year,196

we apply g(.) to get197

Xw = g(Uw) (2)198

Xq = g(Uq) (3)199

Now, let yd,yw, and yq be the target time series of dry season, wet season, and200

annual streamflow, respectively (these targets can be log-transformed when necessary).201

Reconstructing streamflow for the three targets means solving the following regression202

equations:203

yd = Xdβd + εd (4)204

yw = Xwβw + εw (5)205

yq = Xqβq + εq (6)206

where βd, βw, and βq are the corresponding regression coefficients; and εd, εw, and εq207

are white noise.208

Next, let209

y =

yd

yw

yq

 , X =

Xd

Xw

Xq

 , β =

βdβw
βq

 , and ε =

εdεw
εq

 . (7)210

Equations 4–6 can then be converted to a more compact form211

y = Xβ+ ε. (8)212

Equation 8 has the canonical form of linear regression. It can be solved as a least-squares213

problem:214

min
β

J1 = (y −Xβ)′(y −Xβ), (9)215

yielding the solution216

β = (X′X)
−1

X′y. (10)217

–9–
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Solving Equation 8 is equivalent to solving Equations 4–6 simultaneously. The three re-218

gression problems in Equations 4–6 are independent of one another, and the above for-219

mulation places no constraints to match the sum of the seasonal flows to the annual flow.220

Therefore, such formulation can yield large differences in the annual mass balance. As221

we shall see later, this happens at station P.1.222

To account for mass balance, it is tempting to impose a constraint,223

Xdβd + Xwβw = Xqβq. (11)224

But, Equation 11 is often overdetermined: it is a system of T equations, one for each year,225

and we almost always have more equations than unknowns in a regression problem. In-226

stead, we can add to the objective function in Equation 9 a penalty term that is based227

on the differences (δ) between the LHS and the RHS of Equation 11.228

δ = Xdβd + Xwβw −Xqβq. (12)229

If the reconstructions involve log-transformed flows, the mass difference is230

δt = log
(

exp(xd,tβd) + exp(xw,tβw)
)
−xq,tβq ∀t = 1, ..., T. (13)231

Just as we minimize the squared differences between prediction and observation, we also232

minimize the squared mass differences. Finally, we add a weight λ to represent the im-233

portance of the penalty term, and obtain a new objective function234

min
β

J2 = (y −Xβ)′(y −Xβ) + λδ′δ (14)235

We call this the penalized least squares problem. Observe that when λ = 0, the penalty236

term disappears, and the penalized least squares problem becomes the canonical least237

squares problem. The higher λ is, the more important the penalty becomes.238

Without flow transformation, δ is linear (Equations 12), so J2 is quadratic. We can239

solve Equation 14 analytically to get240

β = (X′X + λA′A)−1X′y (15)241

where A = [Xd Xw −Xq]. The proof is provided in Text S6.242

When log-transformations are involved, δ is not linear, and Equation 14 cannot be243

solved analytically. But it can be solved numerically using any nonlinear solver. Here,244

we use an efficient quasi-Newton method called L-BFGS-B (Byrd et al., 1995), available245

in the R function optim(). We have implemented the mass-balance-adjusted regression246

procedure in the R package mbr, currently available on GitHub at github.com/ntthung/247

mbr.248

3.2 Optimal Input Selection249

A consolidated approach to input selection in the literature is to use Branch and250

Bound algorithms, such as Leaps and Bounds (Furnival & Wilson, 1974) or its more re-251

cent variants (Duarte Silva, 2001, 2002). These algorithms are conceived to balance goodness-252

of-fit with model simplicity. In this work however, we also need to account for mass bal-253

ance besides goodness-of-fit. Therefore, the input selection routine must explicitly ac-254

count for the penalized least squares objective (Equation 14). If the number of inputs255

–10–
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is small, we can exhaustively search all possible subsets and choose the one that yields256

the minimum penalized least square value (PLSV). However, this method quickly be-257

comes infeasible with increasing input size: there are 2n subsets of n inputs (for station258

P.1, n = 19, 28, and 30). A computationally tractable optimization is necessary (Galelli259

et al., 2014).260

We formulate input selection as a binary optimization problem. Each input has an261

index, and a binary vector p encodes input selection: pi = 1 means the ith input is se-262

lected. For any given p, i.e, for any given input subset, we can solve the mass-balance-263

adjusted regression problem to obtain a PLSV. Our goal then is to find p that has the264

best PLSV over all p’s.265

Note that p has three components: p = [d w q]
′
. Component d represents the266

dry season:267

di =

{
1 if proxy i is used for the dry season

0 otherwise
i = 1, ..., nd. (16)268

So, where di = 1, we take the ith inputs and place into the matrix Ud. Similarly, we269

create Uw from w and Uq from q. Once we have Ud, Uw, and Uq, the mass-balance-270

adjusted regression procedure can be applied. To improve the robustness of the input271

selection, the regression is cross-validated 50 times (Section 3.3), each yields one PLSV272

estimate. The average of all runs, denoted f(p), is used as the final PLSV for p.273

The remaining task is to solve274

min
p

f(p). (17)275

We solve Equation 17 with Genetic Algorithm (Holland, 1975), a metaheuristic op-276

timization technique that allows us to treat the underlying regression as a black-box while277

searching for the best subset of inputs (Kohavi & John, 1997), and is well suited for bi-278

nary optimization (Whitley, 1994). We use the R package GA (Scrucca, 2013). Details279

about the implementations are provided in Text S8.280

3.3 Model Assessment281

We set up a reconstruction experiment involving two models: Model 0 runs with-282

out the mass balance adjustment (λ = 0 in Equation 14) and Model 1 has the adjust-283

ment (λ = 1). Other than the different values for λ, both models are trained exactly284

the same way, following Sections 3.1 and 3.3.285

During optimization, multiple reconstructions are created while the optimal p is286

sought for each model. These reconstructions are assessed with the PLSV. The final re-287

constructions, created with the optimal inputs, are further assessed post hoc with the288

commonly used metrics: coefficient of determination (R2), reduction of error (RE), and289

coefficient of efficiency (CE) (Nash & Sutcliffe, 1970; Fritts, 1976). All metrics are cal-290

culated over 50 cross-validation runs.291

Following Nguyen et al. (2020), we adopt a leave-25%-out cross-validation scheme,292

where each hold-out chunk is contiguous. The contiguous chunks aim to test whether293

–11–
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the reconstruction can capture regimes in the time series, in line with the traditional split-294

sample scheme. The 50 repetitions provide a distribution for each skill metric, allowing295

more robust estimation of the mean skill score. More importantly, the distributions en-296

able us to assess the statistical significance of skills. For example, a reconstruction is con-297

sidered statistically skillful with respect to CE at α = 0.1 if the probability of nega-298

tive CE is less than 0.1.299

4 Results300

4.1 Reconstructions301

For Model 0’s dry season and annual reconstructions, all metrics are at least 0.40,302

and the reconstructions match their targets closely (Figure 3a). Furthermore, these re-303

constructions are statistically skillful at α = 0.1. Conversely, Model 0’s wet season re-304

construction is not statistically skillful. Although the mean RE and CE are positive (RE305

= 0.35, CE = 0.23), these scores vary widely over the cross-validation runs (Figure S12),306

suggesting that the wet season reconstruction is sensitive to training data. The large vari-307

ability of skills is also consistent with the high variability of streamflow (Figure S5). These308

observations suggest that there may be nonlinearity in the streamflow–proxy relation-309

ships at the extremes. In future studies, nonlinear reconstruction models (e.g., Nguyen310

& Galelli, 2018) could be incorporated to address this problem.311

Model 1, with the penalty term, makes visible adjustments to the seasonal recon-312

structions but minimal changes to the annual one for the instrumental period (Figure313

3a). Dry season skills slightly decrease, wet season’s RE and CE increase, and annual314

skills remain almost the same. While the mean skill scores of both models are similar,315

Model 1 produces notably narrower distributions of RE and CE for the wet season (Fig-316

ure S12). Consequently, Model 1’s wet season reconstruction becomes statistically skill-317

ful. Overall, Model 1 is more robust.318

To understand Model 1’s robustness, let us recall the models’ formulation. Model319

0 reconstructs the dry season, wet season, and annual flows independently. Each recon-320

struction is geared towards its own target, and can become sensitive to training data—321

the wet season reconstruction does. Contrarily, Model 1 links all three reconstructions322

together via the penalty term (Equations 12–14). This link provides each reconstruction323

with additional information from the other two, thus preventing each reconstruction from324

overfitting to its own target. In our case, the wet season reconstruction benefited sig-325

nificantly from this additional information to become statistically skillful, with minimal326

trade-off from the other two reconstructions.327

The selected input subsets by both models provide further insights into their sim-328

ilarities and differences. Both models use similar input subsets, with identical ones for329

the water year. However, Model 1 uses fewer inputs than does Model 0 for the wet and330

dry seasons (Figure 4). Therefore, the models behave similarly, but Model 1 is more par-331

simonious.332
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Figure 3. (a) Reconstruction skills and time series for the instrumental period, produced us-

ing two models: without mass balance penalty (λ = 0) and with penalty (λ = 1) in the regression

problem (Equation 14). Grey lines show naturalized observations. Underlined scores show where

the reconstruction is not statistically skillful at α = 0.1. (b) Full reconstructions with λ = 1.
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Figure 4. Selected inputs for each streamflow target (columns) in each models (panels). Only

inputs that were selected at least once are shown. The stable oxygen isotope (OX) inputs are

marked in dark red. Bold numbers at the bottom row of the x-axis are the number of selected

inputs in each column.

Surprisingly, the Mu Cang Chai and Mae Hong Son δ18O chronologies were con-333

sistently selected by both models for all reconstructions, including the dry season recon-334

structions where we expected ring width chronologies to dominate, based on the observed335

tendencies of ring width to correlate more with wet season flow and δ18O to correlate336

more with dry season flow. Upon closer examinations of the correlation analysis (Fig-337

ure 2), the puzzle is solved. First, the δ18O chronologies are intercorrelated (C. Xu et338

al., 2019), and the input selection algorithm correctly selected the two sites that exhibit339

the strongest correlations. Second, while these δ18O chronologies correlate less with dry340
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season flow than they do with wet season flow, the correlations are still stronger than341

those observed at many ring width sites.342

Over the whole study horizon, we observe similar results to those of the instrumen-343

tal period (Figure S13). The two models agree with each other. Model 1’s adjustments344

are generally small. The largest adjustments are in the wet season (±400 Mm3); smaller345

but notable adjustments are seen in the dry season (±200 Mm3), and minute adjustments346

(< 90 Mm3) are seen in the annual reconstruction. We will examine the effects of these347

adjustments in Section 4.2.348

The reconstructions provide some interesting insights into the inter- and intra-annual349

variability of the river (Figure 3b). Between 1825–1855, sustained low flow was observed350

in the wet season and water year reconstructions. However, in the dry season, the low351

flow period ended 15 years earlier, around 1840. Conversely, a period of sustained high352

flow was observed in all three reconstructions between 1790–1820, especially for the dry353

season. Most notably, dry season flow in 1815 was so high that it accounted for more than354

50% of the annual flow—a rare event that occurred in only 8 of 254 years (Figure S14,355

see also Text S9).356

4.2 Annual Mass Balance357

For each model, we compare the total seasonal flow with the annual flow. To pre-358

serve the annual mass balance, these two time series should ideally be the same. How-359

ever, for Model 0, large discrepancies are seen between the two time series (Figure 5a).360

For Model 1, the two time series agree with each other better. As each time series pro-361

vides an estimate of the annual water budget, we are also interested in their distribu-362

tions. We observe that the distributions produced by Model 0 are notably different from363

each other, but those produced by Model 1 are almost identical (Figure 5b). This im-364

plies that the distributions derived from Model 1 are more reliable. Using the same anal-365

ysis, we show that Model 1 also produces more reliable distributions of the dry and wet366

season’s water budget than does Model 0 (Figure S15).367

Next, for each model, we calculate the mass difference, ∆Q, between the total sea-368

sonal flow and the annual flow, then examine its trajectory and distribution (Figures 5c369

and 5d). The mass difference for Model 0 ranges from −640 Mm3 to 600 Mm3, while that370

range for Model 1 is −270 Mm3 to 370 Mm3; a 50% reduction in range. Moreover, Model371

0 yields a mass difference outside the interval ±190 Mm3 (±10% of the mean annual flow;372

shaded region in Figure 5d) in 28% of the years. That figure for Model 1 is only 11%.373

By these metrics, Model 1 is twice better than Model 0 in terms of preserving mass bal-374

ance.375

5 Discussion and Conclusions376

In Section 4.1, we showed that the optimal input selection procedure yields good377

reconstruction skills for both model setups, and that Model 1, by imposing a mass bal-378

ance adjustment, produces more robust reconstructions than does Model 0. More im-379

–15–



manuscript submitted to Water Resources Research

λ = 1

λ = 0

1750 1800 1850 1900 1950 2000

1000

1500

2000

2500

3000

1000

1500

2000

2500

3000

Year

Q
 [m

ill
io

n 
m

³]

a)

λ = 1

λ = 0

0.0005 0.0010

Density

Dry + Wet

Water year

b)

-600

-400

-200

0

200

400

600

1750 1800 1850 1900 1950 2000

Year

Δ
Q

 [m
ill

io
n 

m
³]

c)

0.000 0.001 0.002 0.003

Density

λ = 0

λ = 1

d)

Figure 5. (a) Comparison between the total seasonal flow (TSF; Wet + Dry) and the annual

flow (AF; Water year) for Model 0 (λ = 0) and Model 1 (λ = 1). (b) Distributions of the annual

water budget, estimated by either the TSF or the AF for both models. (c) The differences, ∆Q,

between the TSF and the AF. (d) Distributions of ∆Q. The shaded region denotes the ±190

Mm3 range, equivalent to ±10% of the mean annual flow.

portantly, the adjustment significantly reduces the differences between the total seasonal380

flow and the annual flow (Section 4.2). Without the adjustment, the mass difference can381

be as large as 640 Mm3, or about 30% of the mean annual flow. It amounts to 90% of382

the irrigation demand from the Ping River downstream of Bhumibol Reservoir (Divakar383

et al., 2011). Such a discrepancy may lead to water allocation disputes. With the ad-384

justment, both the frequency and magnitude of discrepancies are reduced—this is cru-385

cial for water availability assessment, a major goal of dendrohydrology.386
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We also showed that the mass-balanced-adjusted regression produces reliable dis-387

tributions of the seasonal and annual streamflow. These distributions can be used for388

probabilistic studies in water resources applications. For example, sub-annual stochas-389

tic time series can be generated from the distributions to be used in bottom-up vulner-390

ability assessments of water systems (Pielke et al., 2012; Herman et al., 2016). In Text391

S10 we illustrate one simple way to do so (by sampling from a bivariate distribution fit-392

ted to the seasonal reconstructions), but more advanced methods are available (e.g., Bor-393

gomeo, Farmer, & Hall, 2015; Borgomeo, Pflug, et al., 2015).394

The framework that we proposed here can be reapplied and expanded in several395

ways. First, analysts adopting our framework have the choice to tune λ, depending on396

how important it is to preserve mass balance in their applications. In this case, a sen-397

sitivity analysis with respect to λ may be informative. Second, the mass balance formu-398

lation is applicable to other climate variables such as precipitation, and to other contexts399

where a penalty term in the regression equation is desirable. For example, if one wishes400

to reconstruct streamflow at two tributaries as well as the main stream of a river, the401

mass balance adjustment should be used to minimize the difference between the total402

flow of the tributaries and the flow on the main stream. Finally, the mass balance for-403

mulation is readily extendable to higher resolutions, e.g., quarterly or monthly (Text S7),404

as long as the proxy network is sensitive enough to the higher resolution targets. These405

directions can help dendrohydrology realize its value in operational water management,406

an area where annual, unconstrained streamflow reconstructions have had limited suc-407

cess.408
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