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Abstract

The COVID-19 pandemic led to widespread reductions in mobility and induced observable changes in the atmosphere. Recent

work has employed novel mobility datasets as a proxy for trace gas emissions from traffic, yet there has been little work evaluating

these emission numbers. Here, we systematically compare these mobility datasets to traffic data from local governments in

seven diverse urban and rural regions to characterize the magnitude of errors in emissions that result from using the mobility

data. We observe differences in excess of 60% between these mobility datasets and local traffic data, which result in large

errors in emission estimates. We could not find a general functional relationship between mobility data and traffic flow over all

regions. Future work should be cautious when using these mobility metrics for emission estimates. Further, we use the local

government data to identify emission reductions from traffic in the range of 7-22% in 2020 compared to 2019.
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Key Points:12

• In light of the COVID-19 pandemic, vehicle emission reductions are in the range13

of 7-22% in seven investigated urban and rural regions.14

• Recent work used mobility data for assessing the impact of the pandemic on traf-15

fic emissions. However, we observe errors in excess of 60%.16

• Referencing and representation errors are the main drivers for the discrepancies,17

which can not be described by functional relationships.18
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Abstract19

The COVID-19 pandemic led to widespread reductions in mobility and induced ob-20

servable changes in the atmosphere. Recent work has employed novel mobility datasets21

as a proxy for trace gas emissions from traffic, yet there has been little work evaluating22

these emission numbers. Here, we systematically compare these mobility datasets to traf-23

fic data from local governments in seven diverse urban and rural regions to character-24

ize the magnitude of errors in emissions that result from using the mobility data. We25

observe differences in excess of 60% between these mobility datasets and local traffic data,26

which result in large errors in emission estimates. We could not find a general functional27

relationship between mobility data and traffic flow over all regions. Future work should28

be cautious when using these mobility metrics for emission estimates. Further, we use29

the local government data to identify emission reductions from traffic in the range of 7-30

22% in 2020 compared to 2019.31

Plain Language Summary32

The government-imposed mobility restrictions due to the COVID-19 pandemic led33

to observable changes in our atmosphere. We identify atmospheric traffic emission re-34

ductions in the range of 7-22% in 2020 compared to 2019 in seven diverse urban and ru-35

ral regions using traffic data from local governments. Previous studies investigating these36

observed changes used new datasets from tech companies that track user mobility. How-37

ever, our work identifies important shortcomings using these new mobility datasets to38

directly estimate emissions from traffic, with calculated emission errors larger than 60%.39

Further, we could not find a simple functional relationship between these new mobility40

datasets and data from local governments on traffic flow, implying caution when using41

these mobility metrics for assessing emissions.42

1 Introduction43

The COVID-19 pandemic induced widespread changes in society, impacted the global44

economy, and has indirectly impacted the environment. Specifically, the emergence of45

COVID-19 led to government restrictions on mobility including shelter-in-place orders46

and bans on social events (World Health Organisation (WHO), 2020). There has been47

much interest in understanding and quantifying how these regulations modulated both48

emissions to the atmosphere and the chemical composition of the atmosphere (e.g., Tanzer-49

Gruener et al., 2020; Turner et al., 2020; Dietrich et al., 2020). Recent studies have tried50

to quantify the impact of the enforced and voluntary restriction of human activities (travel51

and work related) on global greenhouse gas (GHG) emissions (Forster et al., 2020; Le Quéré52

et al., 2020; Liu et al., 2020) and air pollution (e.g., Venter et al., 2020; Grange et al.,53

2020). Many of these studies employed global mobility datasets from Apple Inc. (2020),54

Google LLC (2020), and TomTom International BV (2020) and concluded that decrease55

in mobility was one of the leading reason of decreased global GHG emissions and air pol-56

lution during COVID-19 lockdown periods. These global mobility datasets are highly57

attractive as they provide a near-real time estimate of changes in human activity across58

nations and over time (Forster et al., 2020). However, in many cases, there is a lack of59

transparency about the methodology and, as such, we are left wondering how exactly these60

datasets relate to emissions (Forster et al., 2020). Further understanding of what these61

datasets can tell us about trace gas emissions and atmospheric composition is warranted.62

Here we investigate these measures of mobility and compare them to data from lo-63

cal governments regarding their utility as a proxy for trace gas emissions from traffic.64

Through a series of case studies in seven urban and rural regions, we highlight cases where65

the mobility data is consistent with local governmental data on traffic flow and, impor-66

tantly, cases where the mobility data is inconsistent. We then quantify the potential er-67

rors in emission estimates when using these mobility datasets timely and regionally di-68
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vided with a particular focus on CO2. Finally, we provide an estimate of emission changes69

due to COVID-19 based on the available local government data for the regions analyzed70

in our case studies.71

2 Regions for case studies and investigated datasets72

We selected seven regions (Oslo, Munich, San Francisco Bay Area, Los Angeles,73

Cape Town, Norway, California; Supplemental Table S1) as case studies to identify the74

impact of COVID-19 on traffic emissions. These seven regions encompass both urban75

and rural regions from four countries on three different continents. They were chosen for76

their latitudinal coverage and availability of data from local governments on traffic. The77

distribution of the regions over the latitudes and the coverage of the northern and south-78

ern hemisphere enable a comprehensive data analysis. Diverse seasonal climate behav-79

iors are covered, for example the strong and weak temperature seasonality in Oslo and80

in California (Supplemental Figure S2). While Norway and California are comparable81

in size, the population of California is around 8 times higher than in Norway. From Sup-82

plemental Table S1 we see that all of these regions first enacted restrictions on the mo-83

bility of their populations between March 13 and March 26 in 2020. Los Angeles shows84

similar effects to San Francisco Bay Area (see Supplemental Section S10).85

It is important to note that the measures of mobility do not all report the same86

quantity. Additionally, the metric reported in the mobility datasets differs from the met-87

rics that are traditionally used to estimate emissions to the atmosphere (e.g., Janssens-88

Maenhout et al., 2019; Oda et al., 2018).89

The Apple Inc. (2020) mobility trends report represents the relative request vol-90

ume of Apple Maps in the categories driving, walking, and public transportation glob-91

ally. The baseline is the request volume as of Monday, January 13, 2020, reaching from92

midnight to midnight of the corresponding day in Pacific Time Zone. Apple Inc. (2020)93

themselves state that increases of their index can occur due to usual seasonality. Also94

they do not collect user or demographic information and Apple Maps is only available95

on Apple devices. Therefore, it is unknown whether the use is representative for the en-96

tire population.97

The TomTom International BV (2020) traffic index provides congestion levels for98

416 cities in 57 countries of the world. Due to the COVID-19 pandemic the daily per-99

centage congestion value for the year 2020 and also the deviation from 2019 are published.100

The percentage congestion value represents the extra time needed for a trip compared101

to the uncongested traffic situation. For example, if an uncongested trip takes 30 min-102

utes and the congestion index currently is 50%, then the trip takes 15 minutes longer.103

Each weekday is related to the annual average congestion of that same weekday in 2019.104

The traffic index is calculated with the data of more than 600 million global users who105

navigate with TomTom technology in navigation devices, smartphones or other techni-106

cal devices. The uncongested situation is analyzed by looking at free-flow local traffic107

situations.108

Here we focus on vehicle traffic and therefore we do not investigate Google LLC109

(2020) data which provides information about the stay of people at different locations,110

like e.g. transit stations. As it is included in some recent studies (e.g., Forster et al., 2020;111

Venter et al., 2020) we have included our investigation in the supplemental material (Sup-112

plemental Section S11).113

In contrast to mobile device based data gathering, the local governments measure114

traffic by point counting stations using microwave radar detectors or induction loops on115

roads and at traffic lights. For California, we consider the vehicle miles traveled (VMT)116

metric (California State Senate SB 743, 2015). For all other regions we use the total av-117

erage daily traffic volume of all point detectors. Data was downloaded directly from the118

websites or requested from the local governmental departments. For Oslo we reduce the119

data of Norway by cropping a square with 10 km distance to the city center of Oslo. (Statens120
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vegvesen, 2020; Bayerisches Landesamt fuer Umwelt (LfU), 2020; Caltrans, California121

Department of Transportation, 2020; Western Cape Government, Road Network Infor-122

mation System, 2020)123

From Figure 1, we can see that all of the data show an abrupt drop in early March124

2020. Interestingly, all of the regions show a nearly synchronous decline even though the125

actual government restrictions were implemented over a 3 week period (Supplemental126

Table S1). Hence, the San Francisco Bay Area, Munich, and Cape Town show decreases127

prior to their actual governmental restriction. We identify deviations, such as the large128

increase in summer time in Munich, Oslo, and Norway in the Apple data when compared129

to governmental traffic data and TomToms congestion index. All of the regions analyzed130

here show substantial differences between mobility and traffic. As such, we are interested131

in characterizing what drives these differences and the impacts on bottom-up emissions132

inferred using mobility data.133
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Figure 1. Time series trend comparison of different mobility and traffic datasets.

Apple data is relative to its request volume on January 13, 2020. There is no 2019 data for the

Apple mobility index as this product was only made public in response to the COVID-19 pan-

demic. The governmental traffic data each weekday is related to the same weekday of the same

calendar week in 2019 and for TomTom data each weekday is related to the annual average con-

gestion of that weekday in 2019. A seven day rolling mean is applied to the data to remove the

weekly cycle.

3 Assessing differences between the datasets134

As mentioned above, all regions analyzed here show sizable differences between the135

temporal evolution of the mobility data and local traffic data (see Figure 1). Addition-136

ally, the temporal evolution of these differences varies across regions, and not in an eas-137

ily predictable manner. Nevertheless, we are interested in identifying the underly causes138
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of these differences to establish a relationship between mobility and traffic to facilitate139

their use in developing bottom-up emission estimates and inferring processes driving changes140

in atmospheric composition.141

Figure 2a shows the monthly deviation from the annual mean traffic flow for six142

of the seven study regions using governmental data. We observe little seasonality in Cal-143

ifornia (deviations are less than 5%, similar to McDonald et al. (2014)), in contrast to144

other regions, which is due, in part, to the temperate climate. The European regions Mu-145

nich, Oslo, and Norway show deviations peak of up to 9-12%. Further, we observe the146

inverse seasons in the southern to the northern hemisphere in the annual traffic cycle when147

we compare Cape Town with the urban study sites Munich and Oslo. Generally the traf-148

fic is weaker in the local winter months than in the local summer months in all inves-149

tigated regions. The traffic seasonality at higher latitude is larger than at lower latitude150

e.g. in California.151

Figure 2. Annual and weekly cycle of traffic and mobility data a) Annual traffic cycle.

Deviation of the mean monthly local governmental data of the corresponding month in 2019 to

the mean of the year 2019. b) Weekly traffic cycle. Deviation of the daily data of the correspond-

ing weekday to the mean of the corresponding calendar week with 2σ error bars for the time span

from 01/14/20 until 11/30/20.

Figure 2b shows the daily deviation in traffic flow relative to the weekly mean traf-152

fic flow for data from the local government, Apple, and TomTom. All regions show a pro-153

nounced decrease in governmental data and TomToms congestion index on the weekend.154

A particularly interesting regional difference is the weekly cycle in the TomTom data for155

Munich with positive anomalies from Monday through Thursday and a sharp decrease156

from Friday through Sunday. This feature is observed in both TomTom and the local157

government data, but not Apple mobility data. A similar pattern is seen in Oslo and Cape158

Town, but is notably different than San Francisco where all datasets indicate the largest,159
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positive, anomaly on Friday. Apple data indicates the largest positive anomaly on Fri-160

days across all regions. The lower traffic values seen on weekends in local governmen-161

tal data and TomToms congestion index is also notably smaller in the Apple Maps mo-162

bility data.163
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Figure 3. Comparison of different measures of traffic flow. The scatter shows the daily

comparison between the governmental data to Apples mobility data and TomToms congestion

index. All datasets are referred to their value on January 13, 2020. The coloring of the dots is

done by the distance to the first day of local governmental COVID-19 restrictions.

The annual traffic cycle (Fig. 2a) and the weekly traffic cycle (Fig. 2b) reveals the164

importance of taking annual and weekly seasonality into account, which is however not165

the case for Apple data. TomTom data includes weekly cycles but neglects its annual166

cycle. Supplemental Figure S1 shows the timeseries of all datasets related to January167

13, 2020. We observe large differences between datasets which reveals that the referenc-168
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ing issue only partially explains the differences in Figure 1. These remaining differences169

can be attributed to the representation discrepancies that are listed in Section 2.170

We have highlighted differences between Apple mobility, TomTom congestion and171

governmental traffic data (Figure 1). In Figure 3 we assess the relationship between these172

metrics using scatterplots. We are interested in comparing the representation of these173

metrics and therefore we remove the different baselines by referring all datasets to their174

value on January 13, 2020. The coloring of the dots represents the distance to the first175

day of governmental COVID-19 restrictions. With increasing brightness the dots are longer176

before the first restrictions, while with more darkness they are longer after.177

From Figure 3 we can see the differences between these metrics cannot be charac-178

terized by a relationship that generalizes over all regions. The relationship differs between179

cities and is highly scattered for some regions. Removing the impact of weekly cycles by180

only comparing weekly means shows a similar trend (Supplemental Figure S5). This in-181

dicates that work should be cautious when attempting to estimate trace gas emissions182

in response to COVID-19 using (scaled) mobility data, as a number of recent studies have183

done (e.g., Forster et al., 2020; Le Quéré et al., 2020; Liu et al., 2020). In supplemen-184

tal Figure S15 we have applied the functional relationship of Liu et al. (2020) to the Tom-185

Tom congestion index in our study regions and observe big regional differences to real186

governmental traffic data.187

4 Impact of mobility datasets on estimated atmospheric emission change188

We identify that different measures of traffic and mobility that are currently used189

for bottom-up emission estimates deviate strongly from each other. This begs the ques-190

tion, “What do these different measures of traffic and mobility imply about emission changes?”.191

We assess this by assuming that the data from the local governments is the most accu-192

rate and look at differences relative to these datasets.193
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Figure 4. Estimated atmospheric emission change. Traffic emission change in the time

span 01/13/2020 until 11/30/20 for six urban and rural regions. Apple data is referenced to

January 13, 2020 whereas TomTom and governmental data are to 2019.
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Figure 4 shows the estimated atmospheric emission change based on those datasets194

from January 13, 2020 until November 30, 2020. The bars show the average daily change195

of the time series.196

We quantify the impact of the COVID-19 pandemic on governmental traffic data197

which ranges from a decrease of 7.0% to 21.6% depending on the region. The TomTom198

congestion index typically indicates a higher decrease than the governmental data. In199

the extreme case of the San Francisco Bay Area the TomTom data reduction is about200

four times higher than the governmental data reduction. Apple even shows an increase201

in Munich, Oslo, and Norway. In Cape Town and the San Francisco Bay Area it shows202

a decrease and in California it indicates nearly no change in average over the investigated203

period. Supplemental Figure S7 shows the same comparison but also governmental and204

TomTom data are related to January 13, 2020 there. Supplemental Figure S8 shows the205

time dependent estimated traffic emission change in 2020.206

Figure 5 shows the difference in trace gas emissions since January 13, 2020 until207

the corresponding day on the horizontal axes when TomToms congestion index or Ap-208

ples mobility data is used as a proxy for traffic changes instead of governmental traffic209

data following Equation 1. If the deviation is negative the usage of the mobility dataset210

results in a lower estimated emission number than using the local governmental data:211

∆E(d, g, t) =

t∑
i=1

(di − gi)

t∑
i=1

gi

(1)

where ∆E is the difference in trace gas emissions on the vertical axes in percent; t is the212

day on the horizontal date axes; g the local governmental data; and d the datasets of Ap-213

ple or TomTom. In Figure 5, the data are denoted as d13,Jan, d2019, and g2019, depend-214

ing on the baselines that are used for the referencing. In Supplemental Section S8 we use215

Eq. 1 with combinations of different baselines for both the local government and mobil-216

ity data.217
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Figure 5. Timeseries of the emission difference (∆E, Equation 1) of TomToms and

Apples data compared to governmental data. The value assigned to one day is the differ-

ence in integrated emissions calculation from January 13, 2020 to the corresponding day t using

Apples or TomToms data (d) instead of governmental traffic data (g) following Equation 1.

We observe in Figure 4 and 5 that the difference between emissions estimates based218

on governmental traffic data to estimates based on TomTom congestion index or Apple219

mobility data differ for each study region and depend on the timepoint of investigation220

(day t after the reference day). The datasets can be a good proxy at one location at a221
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specific time but deviate at another location at the same time (e.g. San Francisco Bay222

Area vs. California in end of March). Reasons for this can be caused by the regional an-223

nual traffic seasonality that is not taken into account by Apple or TomTom. Relation-224

ships between TomTom and Apple data to govermental data can be linear or non-linear225

depending on the region (Figure 3, Supplemental Figs S6, and S7). The usual regional226

congestion level may also impact the TomTom congestion reduction (Supplemental Fig-227

ure S4). The lack of historical data from TomTom and Apple makes it difficult to inves-228

tigate the regional differences in the data. The resulting emission differences using mo-229

bility datasets are in the range of -13% to 66% and -52% to 21% for Apple and Tom-230

Tom, respectively.231

Taking the San Fracisco Bay Area as an example, we calculated the discrepancies232

in emission estimates using different datasets. We use Caltrans, California Department233

of Transportation (2020) VMT measure (governmental dataset) for the San Francisco234

Bay Area as input to the California Air Resources Board’s EMFAC (2014) model to cal-235

culate the vehicle trace gas emissions on January 13, 2020. We use the default vehicle236

fleet of the model for the ratio of vehicle classes. We then apply the deviations of the237

three datasets from January 13, 2020 to the previously calculated vehicle emissions on238

that day. For the period of 01/13/20 to 30/11/20 the total differences in the Bay Area239

when using Apple instead of VMT are 0.45 Mt CO2, 452 t NOx, and 67 t PM which is240

a relative vehicle emission difference of -4.55%. Using TomTom instead of VMT results241

in an emission difference of 5.7 Mt CO2, 5653 t NOx, and 848 t PM (-56.78% in vehi-242

cle emission ). The percentage error can also be observed in Figure 5 and in Supplemen-243

tal Figure S9 and compared to other regions. These errors in traffic emission estimates244

affect the total CO2 emissions of the San Francico Bay Area by an underestimate of -245

1.6% and -20% using Apple and TomTom, respectively (Supplemental Section S9).246

5 Discussion and conclusions247

In this study, we investigated the estimated traffic emission change in 2020 due to248

the COVID-19 pandemic in seven urban and rural regions using different measures of249

traffic and mobility. Using governmental traffic data, we identify emission reductions in250

the range of 7-22% compared to 2019. We compare these results to mobility data pro-251

vided by Apple and TomTom and identify two major error sources in emission estimates252

when using them as a proxy for vehicle traffic:253

1. Referencing error. The impact of the weekly and annual traffic cycle is signif-254

icant. Use of a fixed (arbitrary) time-point reference value may yield incorrect con-255

clusions (see Figs 1, and 2).256

2. Representation error. The datasets investigated here measure different quan-257

tities. Local governments typically measure traffic volume and/or vehicle miles trav-258

eled, Apples mobility dataset is a measure of their request volume from naviga-259

tion systems (Apple Maps), and TomToms congestion index measures urban con-260

gestion levels. Even when using the same baseline the deviation of the datasets261

is, again, non-trivial (Figure 3, Supplemental Figs S1, S5, S7, and S9).262

These error sources do not allow us to develop a generalizable relationship between263

mobility data and traffic flow over all regions (see Figs 1, 3, 5 and Supplemental Figs S5,264

S6, S7, S8), like assumed in Liu et al. (2020) and Forster et al. (2020). Supplemental Fig-265

ure S15 shows the error induced by the regression function between TomTom conges-266

tion and governmental data used in Liu et al. (2020).267

We quantify vehicle trace gas emission deviations of -13% to +66% and -52% to268

+21% for Apple and TomTom, respectively, compared to data from the local government.269

These percentage values depend on the region of interest and time of investigation. In270

the case of the San Francisco Bay Area, using the mobility data from Apple and Tom-271
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Tom results in transportation emission estimates that are, respectively, 0.45 Mt CO2 and272

5.7 Mt CO2 lower than government traffic data implies, resulting in total emission es-273

timates that differ by -1.6% and -20%.274

Despite the widespread use of these mobility metrics, there is a lack of understand-275

ing about what exactly they are telling us about changes in trace gas emissions due to276

COVID-19. Here we quantified the potential errors that might be inferred by using these277

mobility metrics as a proxy for changes in trace gas emissions. The findings presented278

here should serve to caution others from directly using these mobility measures as a proxy279

without additional investigation or adaptation.280
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