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Abstract

To fully benefit from remotely sensed observations of the terrestrial water cycle, bias and random errors in these datasets need

to be quantified. This paper presents a Bayesian hierarchical model that fuses monthly water balance data and estimates the

corresponding data errors and error-corrected water balance components (precipitation, evaporation, river discharge, and water

storage). The model combines monthly basin-scale water balance constraints with probabilistic data error models for each

water balance variable. Each data error model includes parameters that are in turn treated as unknown random variables to

reflect uncertainty in the errors. Errors in precipitation and evaporation data are parameterized as a function of multiple data

sources, while errors in GRACE storage observations are described by a noisy sine wave model with parameters controlling phase,

amplitude and randomness of the sine wave. Error parameters and water balance variables are estimated using a combination of

Markov Chain Monte Carlo sampling and iterative smoothing. Application to semi-arid river basins in Iran yields (i) significant

reductions in evaporation uncertainty during water-stressed summers, (ii) basin-specific timing and amplitude corrections of the

GRACE water storage dynamics, and (iii) posterior water balance estimates with average standard errors of 4-12 mm/month

for water storage, 3.5-7 mm/month for precipitation, 2-6 mm/month for evaporation, and 0-2 mm/month for river discharge.

The approach is readily extended to other datasets and other (gauged) basins around the world, possibly using customized

data error models. The resulting error-filtered and bias-corrected water balance estimates can be used to evaluate hydrological

models.
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Abstract16

To fully benefit from remotely sensed observations of the terrestrial water cycle, bias and17

random errors in these datasets need to be quantified. This paper presents a Bayesian18

hierarchical model that fuses monthly water balance data and estimates the correspond-19

ing data errors and error-corrected water balance components (precipitation, evapora-20

tion, river discharge, and water storage). The model combines monthly basin-scale wa-21

ter balance constraints with probabilistic data error models for each water balance vari-22

able. Each data error model includes parameters that are in turn treated as unknown23

random variables to reflect uncertainty in the errors. Errors in precipitation and evap-24

oration data are parameterized as a function of multiple data sources, while errors in GRACE25

storage observations are described by a noisy sine wave model with parameters control-26

ling phase, amplitude and randomness of the sine wave. Error parameters and water bal-27

ance variables are estimated using a combination of Markov Chain Monte Carlo sam-28

pling and iterative smoothing. Application to semi-arid river basins in Iran yields (i) sig-29

nificant reductions in evaporation uncertainty during water-stressed summers, (ii) basin-30

specific timing and amplitude corrections of the GRACE water storage dynamics, and31

(iii) posterior water balance estimates with average standard errors of 4-12 mm/month32

for water storage, 3.5-7 mm/month for precipitation, 2-6 mm/month for evaporation,33

and 0-2 mm/month for river discharge. The approach is readily extended to other datasets34

and other (gauged) basins around the world, possibly using customized data error mod-35

els. The resulting error-filtered and bias-corrected water balance estimates can be used36

to evaluate hydrological models.37

1 Introduction38

The increasing availability and accuracy of remote sensing data of the terrestrial39

water cycle holds great promise for calibration and validation of large-scale hydrologi-40

cal models. Several modeling studies have already taken advantage of these data for eval-41

uating and constraining hydrological models, including water storage data from GRACE42

satellites (L. Zhang et al., 2017; Bai et al., 2018; Scanlon et al., 2018, 2019) and satellite-43

based evaporation data (Rientjes et al., 2013; Lopez et al., 2017; Odusanya et al., 2019;44

Jiang et al., 2020). A challenge with using remotely sensed data for model evaluation45

is that data errors need to be properly accounted for. Data errors are due to e.g. dif-46

ferences in scale, errors in the retrieval algorithms, and sensor insensitivities. However,47

without a reference ”ground-truth” dataset, these errors are difficult to quantify, thereby48

undercutting the potential of remote sensing data for advancing large-scale hydrology.49

For example, ignoring or misrepresenting systematic data errors (bias) during calibra-50

tion leads to biased parameter estimates and limits learning, especially when water bal-51

ance data are hydrologically inconsistent, i.e. they do not close the water balance. Fur-52

thermore, proper characterization of random errors (noise) and information content of53

the data is important: underestimating or even ignoring data noise may lead to overfit-54

ting, while overestimating data noise limits learning by not fully exploiting information55

content of the data.56

Processing and use of remotely sensed water balance data therefore requires (i) a57

methodology for estimating systematic and random errors in the data, and (ii) a method-58

ology that corrects bias, filters out noise, and yields a hydrologically consistent set of wa-59

ter balance data that closes the water balance. These are of course well-known challenges,60

and the following paragraphs review some of the approaches that have been proposed61

in the literature to tackle error estimation and correction of water balance data.62

A common approach for estimating bias and random data errors of individual wa-63

ter balance variables is to compare the data to a reference ground-truth dataset (Moreira64

et al., 2019). For example, satellite-based precipitation estimates are often evaluated by65

using rain gauge data as ground truth (Beck et al., 2017; Massari & Maggioni, 2020),66
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while errors in evaporation data products have been estimated by comparing to ground-67

based measurements from eddy covariance flux towers (Chen et al., 2016; Yang et al.,68

2017) and soil moisture sensors (Martens et al., 2017). Another approach to error esti-69

mation is to create a reference dataset for the variable of interest by computing it as resid-70

ual of the water balance, with all other water balance components assumed known. This71

approach has mainly been used for evaporation (Wan et al., 2015; Liu et al., 2016; Weeras-72

inghe et al., 2019). Regardless of the approach used for creating the reference dataset,73

a conceptual drawback of the ”ground-truth” approach is that the ”true” values are never74

actually measured, since no dataset or estimate is completely error-free. For example,75

traditional ground observations, such as rain gauges, are limited in capturing variabil-76

ity across large areas, whereas remote sensing data suffer from uncertainties in convert-77

ing electromagnetic signals into water balance variable estimates. Nevertheless, in prac-78

tice the ground-truth approach may be justified as long as errors in the reference dataset79

are sufficiently small relative to the data errors being estimated (Massari & Maggioni,80

2020).81

Alternative error estimation techniques that do not assume a reference ground-truth82

dataset have also been developed. The main idea is to use an ensemble of (three or more)83

datasets of the same water balance variable, and either estimate errors based on vari-84

ability across the ensemble (Tian & Peters-Lidard, 2010; Y. Zhang et al., 2018), or based85

on a triple collocation or three-cornered hat method, as has been applied to precipita-86

tion (Alemohammad et al., 2015; Massari et al., 2017) and evaporation (Long et al., 2014;87

Khan et al., 2018) error estimation.88

A separate group of studies focuses on bringing together estimates of the different89

water balance variables and modifying the original estimates so as to close the water bal-90

ance (Pan & Wood, 2006; Sahoo et al., 2011; Pan et al., 2012; Aires, 2014; Munier et al.,91

2014; Wang et al., 2015; Allam et al., 2016; Simons et al., 2016; Y. Zhang et al., 2016,92

2018; Pellet et al., 2019; Hobeichi et al., 2020). In closing the water balance, variables93

with large errors are adjusted more than variables with small errors, a process that can94

be formalized by what Pan and Wood (2006) called a constrained Kalman filter. A cru-95

cial input of these water balance fusion studies is therefore specification of the magni-96

tude of errors in each water balance variable. In existing water balance fusion studies,97

error estimates are typically fixed a priori based on expert judgment or on results from98

the error estimation techniques mentioned in the previous paragraphs. However, com-99

bining error estimates from different studies for water balance closure easily leads to in-100

consistencies, e.g. when error estimates of the different variables are based on conflict-101

ing underlying ground-truth assumptions, or on data from different regions. Furthermore,102

by fixing the data errors in advance, existing water balance fusion studies forego the op-103

portunity to improve data error estimates: as we show in this paper, the idea of estimat-104

ing errors by bringing together multi-source data, as used in triple collocation for a sin-105

gle variable, can also be applied to water balance fusion where data on the different wa-106

ter balance variables are combined.107

The current paper builds on previous efforts and combines the error estimation and108

water balance fusion steps into a single methodology that removes the need for a refer-109

ence ground-truth dataset. Instead, each water balance variable is assumed to be sub-110

ject to unknown bias and random errors, and a single iterative approach is used to es-111

timate an internally consistent set of data errors and water balance variables that close112

the water balance. The methodology relies on the formulation of a probabilistic model113

that combines monthly basin-scale water balance constraints with data error models for114

each water balance variable. The data error models relate observations to the underly-115

ing unknown true values and contain unknown parameters to account for uncertainty116

in the data errors. The overall probabilistic model takes the form of a Bayesian hierar-117

chical model with two levels of uncertainty: unknown water balance variables are con-118

strained by probability distributions with parameters that themselves are treated as un-119

–3–



manuscript submitted to Water Resources Research

known random variables with specified prior distributions. After conditioning on avail-120

able water balance data, posteriors of all unknowns, i.e. error parameters and water bal-121

ance variables, are computed using a combination of Markov Chain Monte Carlo sam-122

pling and an iterative form of (Kalman) smoothing. The posteriors automatically fuse123

all available information and yield best estimates with uncertainty for all water balance124

variables and error parameters. We note that (Kalman) smoothing, i.e. estimating wa-125

ter balance variables using data from the entire time-series, has not been used in pre-126

vious water balance fusion studies, which have sometimes used additional postprocess-127

ing steps to remove high-frequency artefacts in the estimates (Munier et al., 2014).128

The paper starts by introducing the river basins used in this study. Water balance129

data for these basins is used to motivate development of the probabilistic data error mod-130

els in section 3. Section 4 details how the probabilistic water balance model is solved,131

i.e. how posteriors of interest are computed. Section 5 then presents results of apply-132

ing the methodology to river basins in Iran, followed by an evaluation of different assump-133

tions in the analysis (section 6) and a summary of the main findings.134

2 Case study: river basins in Iran135

Figure 1 shows locations of the Iranian river basins used in this study. The basins136

were selected for their availability of river discharge data, their relatively large size, and137

their geographical location across the country from west to east. Basin boundaries were138

identified by delineating the topographically upstream areas for each stream gauge pro-139

viding river discharge data (Table 1). The endorheic Jazmoorian basin drains to an in-140

ternal lake without natural outlet and hence does not have a stream gauge recording out-141

flow. The basins range in size from 1,600 to 70,000 km2 and are generally semi-arid or142

arid with potential evaporation equal to 1.4 to 5 times average precipitation. Consequently,143

runoff ratios (Q/P in Table 1) are small, mostly 0.1 or less, with the exception of the rel-144

atively steep mountainous Karoon basin. Surface and groundwater withdrawals for ir-145

rigation are common and tend to further reduce runoff ratios. All basins have pronounced146

seasonality in precipitation and runoff, with relatively wet winters and dry summers, trans-147

lating into seasonal wetting and drying cycles.148

The generally water-stressed nature and complex topography of the selected river149

basins, coupled with significant interventions in the natural water cycle in the form of150

dams, irrigation, and groundwater pumping, provide a good test-bed for the proposed151

water balance methodology.152

Table 1. River basin characteristics

ID Basin Stream gauge (◦N, ◦E) Area (km2) Elevation (m)
Ep

P

∗ Q
P

∗

1 Sepidrood Gilvan (36.83, 49.02) 49246 332-3478 1.78 0.06

2 Karkheh Abdolkhan (31.83, 48.36) 45497 36-3528 1.61 0.11

3 Karoon Karoon-IV (32.25, 48.83) 32840 66-4199 1.36 0.38

4 Mond Ghantareh (28.25, 51.87) 35397 68-3105 2.54 0.04

5 Jazmoorian (endorheic) 70102 365-4226 5.04 0.00

6 Gorganrood Bustan Dam (37.42, 55.41) 1620 85-1994 2.04 0.06

∗P , Q, and Ep are average precipitation, river discharge and potential evaporation
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Figure 1. Topographic map of Iran with location of river basins and their outlets.

3 Probabilistic water balance model153

Our interest is in estimating all terms in the monthly basin-scale water balance:154

St = St−1 + Pt − Et −Qt (1)

where St−1 and St are total water storage (surface and subsurface) in the basin at the155

start and end of month t, Pt and Et are basin average precipitation and evaporation (in-156

cluding transpiration), and Qt is river discharge at the basin outlet for month t. Each157

term is normalized by basin area and expressed in consistent water depth units (e.g. mm).158

Eq. 1 assumes negligible net lateral groundwater flow into or out of the basin. It also159

assumes no significant surface water flows crossing the basin boundary, except for river160

discharge at the basin outlet. Thus, upstream inflows and inter-basin water transfers are161

considered negligible, although intra-basin water transfers, e.g. via water diversions and162

groundwater pumping for irrigation, are captured by Eq. 1. Inter-basin water transfer163

is known to occur from the upstream part of Karoon basin (Fig. 1) into the semi-arid164

Zayanderood basin to the north; the transferred amount of water is however negligible165

compared to total runoff in Karoon basin (Abrishamchi & Tajrishy, 2005).166

In principle, each term in Eq. 1 can be measured or estimated independently. How-167

ever, bringing such independent estimates together does not typically lead to water bal-168

ance closure, because all measurements and estimates are subject to systematic and ran-169

dom errors. Conceptually, it is then useful to distinguish between ”true” and ”observed”170

versions of each water balance variable: by definition, the true water balance variables171

close the water balance, and true and observed versions of each water balance variable172

are related via data error models that capture systematic and random deviations between173

observed and underlying true values.174
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Each data error model consists of parametric probabilistic relations between ob-175

served and true values, where parameters quantify the magnitude of systematic and ran-176

dom data errors. Since the magnitude of these errors is not known a priori, the param-177

eters are themselves treated as random variables with specified prior distributions. The178

resulting model can hence be viewed as a Bayesian hierarchical model with two levels179

of uncertainty, i.e. one for error parameters and the other for water balance variables.180

The monthly water balance data used here are summarized in Table 2. We follow181

previous water balance fusion studies and focus as much as possible on observational data182

instead of hydrological model outputs as source for the water balance data, thereby min-183

imizing the impact of hydrological process assumptions. An exception is the GLEAM184

evaporation product, which internally relies on a soil water balance model. All data were185

spatially averaged across each basin to obtain monthly basin-scale data values. The fol-186

lowing sections describe data sources and probabilistic data error models for each wa-187

ter balance variable (P , E, Q, S).188

Table 2. Monthly water balance data

Variable Symbol Data source Resolution Reference

Precipitation Pobs1 GPM IMERG Final V06B 0.1◦ Huffman et al. (2019)

Pobs2 CHIRPS v2.0 0.05◦ Funk et al. (2014)

Evaporation Eobs1 SSEBop v4 0.01◦ Senay et al. (2020)

Eobs2 GLEAM v3.3b 0.25◦ Martens et al. (2017)

River discharge Qobs Stream gauges Basin IWRMC (2020)

Storage Sobs GRACE JPL Mascon RL06v02 3◦ Wiese et al. (2018)

3.1 Precipitation error model189

The first dataset used is GPM IMERG (Table 2), which provides monthly precip-190

itation values and associated standard errors. Monthly IMERG precipitation merges satellite-191

based estimates with the GPCC rain gauge dataset, while standard error estimates are192

based on the methodology of Huffman (1997). There is generally a good correspondence193

between IMERG and spatially interpolated rain-gauge precipitation for the basins stud-194

ied here (Fig. 2, Fig. S1-S2), with the exception of Gorganrood basin. A recent evalu-195

ation of IMERG across Iran (Maghsood et al., 2020) reported small but systematic over-196

estimation of monthly precipitation in dry regions and underestimation in the wettest197

parts of the country. To account for potential bias in IMERG, we included CHIRPS as198

a second precipitation dataset. In the semi-arid Mond basin for example (Fig. 2), CHIRPS199

tends to give lower precipitation than IMERG during the wet winter months.200

The following error model was then used to relate observed and true precipitation:201

mP,t = (1− wP )Pobs1,t + wPPobs2,t (2)

sP,t = max

(
σP,t,

1

2
rP |Pobs1,t − Pobs2,t|

)
(3)

Pt ∼ N (mP,t, s
2
P,t) (4)

Pt ≥ 0 (5)

The first equation models bias in the observations by describing prior mean precipita-202

tion mP,t in month t as a weighted average of IMERG (Pobs1,t) and CHIRPS (Pobs2,t)203

monthly basin precipitation. Parameter wP represents the weight; since it is unknown204

a priori, it is given a quasi-uniform prior between 0 and 1 (specifically, a logit-normal205
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Figure 2. Monthly precipitation and evaporation data for Mond basin during 2006-2010. The

IMERG data include standard errors and are plotted as 90% uncertainty bands. Spatially inter-

polated basin-average rain-gauge precipitation is included for comparison, but was not used in

the model. Potential evaporation from the GLEAM dataset is shown as Ep.

prior with location parameter µ = 0 and scale parameter σ = 1.4) to reflect prior un-206

certainty about the bias.207

The second equation models random errors in the observations by describing prior208

standard deviation sP,t of precipitation in month t as the largest of either (i) the IMERG209

standard error σP,t, or (ii) the scaled absolute difference between the two precipitation210

datasets in each month, using rP as the scaling parameter. The reasoning behind this211

is that large differences between the two datasets may not only indicate systematic but212

also significant random errors. Parameter rP is given a quasi-uniform prior between 0213

and 1 to reflect prior uncertainty about the relation between bias and random errors. In214

the limit when rP = 1, the prior standard deviation is half the absolute difference be-215

tween the two datasets. However, to avoid unrealistically small prior uncertainty in pre-216

cipitation, e.g. when rP is near 0 or the two datasets are in close agreement, the value217

of sP,t is not allowed to be less than the IMERG standard error σP,t. The latter is ob-218

tained by arithmetic averaging of the gridded ”random error” variable in the IMERG219

dataset. This implicitly assumes that IMERG random errors are spatially perfectly cor-220

related across the basin. As such, it provides a conservative estimate of the magnitude221

of basin-scale random errors, since averaging partially uncorrelated grid-scale random222

errors would result in some error cancellation and therefore smaller values for σP,t at the223

basin scale.224
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Finally, the last two equations in the precipitation error model treat true precip-225

itation Pt in month t as a random draw from a truncated normal distribution. Trunca-226

tion at zero constrains precipitation to be non-negative.227

3.2 Evaporation error model228

To capture uncertainty and errors in evaporation, two different remote sensing evap-229

oration products are used, i.e. GLEAM and SSEBop (Table 2). These datasets use dif-230

ferent methods for estimating evaporation from remote sensing data. GLEAM uses Priestley-231

Taylor for potential evaporation and estimates actual evaporation as a function of mi-232

crowave vegetation optical depth and soil moisture, in combination with a root-zone wa-233

ter balance. On the other hand, SSEBop uses Penman-Monteith for potential evapora-234

tion and estimates actual evaporation based on a surface energy balance and remotely235

sensed land surface temperature. For the basins studied in this paper, these two approaches236

translate into similar evaporation estimates under energy-limited conditions (wet win-237

ters), but significantly different evaporation estimates under water-limited conditions (dry238

summers). Figure 2 illustrates this for the Mond basin, with similar patterns observed239

in other basins (see Supporting Information): in the absence of significant rainfall dur-240

ing summer, GLEAM evaporation decreases to near-zero values, while SSEBop evapo-241

ration shows a peak in summer, suggesting water remains available to natural vegeta-242

tion or crops (irrigation). These differences result in significant prior uncertainty in evap-243

oration during summers.244

A similar error model as for precipitation is adopted for evaporation:245

mE,t = fE [(1− wE)Eobs1,t + wEEobs2,t] (6)

sE,t = max

(
0.1mE,t,

1

2
rE |Eobs1,t − Eobs2,t|

)
(7)

Et ∼ N (mE,t, s
2
E,t) (8)

Et ≥ 0 (9)

Bias is modeled with two time-invariant parameters: wE is a weight that interpolates246

between SSEBop Eobs1,t and GLEAM Eobs2,t evaporation, and fE is an additional scal-247

ing factor that provides an additional degree of freedom to e.g. account for bias outside248

the range of the two datasets. Random errors are modeled using the same approach as249

for precipitation, with parameter rE controlling to what extent prior uncertainty scales250

with the absolute difference between the two evaporation datasets. If difference between251

the two datasets is small, e.g. during energy-limited conditions in winter, a minimum252

relative error of 10% is assumed by setting sE,t = 0.1mE,t. As with precipitation, true253

evaporation Et in month t is treated as a random draw from a truncated normal distri-254

bution. Truncation at zero constrains evaporation to be non-negative.255

Since values of the error parameters are not known a priori, they are given vague256

prior distributions: quasi-uniform priors between 0 and 1 for wE and rE (specifically, flat257

logit-normal priors between 0 and 1 with location parameter µ = 0 and scale param-258

eter σ = 1.4), and a log-normal prior for fE with mode at 1 (no bias) and a coefficient259

of variation CV of 50%.260

3.3 River discharge error model261

We assume the basin is gauged and a, possibly incomplete, record of measured monthly262

river discharge data Qobs is available. A proportional error model is used to relate these263
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data to underlying true discharge values Q:264

mQ,t = N (Qobs,t, vQobs,t
) (10)

sQ,t = aQQobs,t + bQ (11)

Qt ∼ N (mQ,t, s
2
Q,t) (12)

Qt ≥ 0 (13)

For months with observations, we set vQobs,t
= 0, so that the first equation becomes265

equivalent to mQ,t = Qobs,t, i.e. the mean of Qt is equal to the (unbiased) observation266

for that month. For months with missing observations, Qobs,t and vQobs,t
are set equal267

to the mean and variance of river discharge observed for that month across the entire268

observation record. This procedure works as long as only a few observations are miss-269

ing. For the basins studied in this paper, Gorganrood basin has 1 month with missing270

data and Mond basin has 3 months with missing observations.271

The magnitude of random observation errors is controlled by standard deviation272

sQ,t, which is modeled as a linear function of the observed discharge for that month (or,273

the mean historical discharge for that month in case of a missing observation). This model274

assumes that observation errors increase linearly with discharge and includes two time-275

invariant parameters, aQ and bQ. Parameter aQ is given a log-normal prior with mode276

at 0.1 (i.e. a relative error of 10%) and a small CV of 1%, while bQ is given a log-normal277

prior with mode at 0.001 and also a CV of 1%. Sensitivity of the results to these assumed278

narrow priors will be evaluated in section 6.279

As with precipitation and evaporation, monthly discharge Qt is constrained to be280

non-negative.281

3.4 Water storage error model282

The JPL-mascon GRACE water storage data used here (see Table 2) consist of monthly283

total terrestrial water storage anomalies relative to the period 2004-2009 at a spatial res-284

olution of 3◦. The data come post-processed with the Coastline Resolution Improvement285

(CRI) filter of Wiese et al. (2016) to reduce leakage errors across land-ocean boundaries.286

Figure 3 shows measurement errors of the GRACE data across Iran.287

Wiese et al. (2016) used simulations with the Community Land Model to down-288

scale the coarse 3◦ storage data to a 0.5◦ global grid. Here, we use an alternative approach289

and instead downscale the data directly to the river basin of interest without using a hy-290

drological model: first, the 3◦ data are weighted-area averaged over each river basin, and291

then an error model is specified to quantify systematic and random differences between292

the basin-averaged storage data and the true storage changes in the basin.293

The monthly basin-scale data and true storages both typically have a seasonal cy-294

cle, but with possibly different amplitudes and phases, because the coarse-scale data are295

polluted by storage dynamics outside of the basin (”leakage”). This motivates the fol-296

lowing noisy sine wave error model for quantifying differences between GRACE basin-297

scale water storages Sobs,t and underlying true storages St:298

mS,t = St +A sin

(
ω(

t

12
− δ)

)
(14)

sS,t = σS (15)

Sobs,t ∼ N (mS,t, s
2
S,t) (16)

Here, A is amplitude (mm), ω is frequency (radians per year), and δ is phase (in years)299

of the errors. This model accounts for systematic differences in amplitude and phase be-300

tween the observed and true values by means of time-invariant error parameters A and301

δ. Furthermore, time-invariant parameter σS quantifies magnitude of random errors in302
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Figure 3. Time-averaged (2006-2015) measurement errors of the JPL GRACE data for each

3◦ mascon across Iran (based on the ”uncertainty” variable in the JPL netcdf dataset). Errors

tend to be smaller in arid parts of the country (east and central).

the basin-scale data, which may be caused by (i) inadequacies of the sine wave model303

and (ii) noise in the GRACE mascon inversion (Wiese et al., 2016), as shown by mea-304

surement errors in Fig. 3. We assume here σS is unknown and, in section 5, will com-305

pare its estimated value for each basin with the measurement errors in Fig. 3.306

The value of ω is fixed at 2π radians per year, yielding a sine wave with a 12-month307

period, while A, σS , and δ are given vague priors to reflect prior uncertainty in the val-308

ues of these parameters. Specifically, A is given a log-normal prior with mode at 30 mm309

and a CV of 200%, σS is given a log-normal prior with mode equal to 10 mm and a CV310

of 200%, and δ is given a flat logit-normal prior between 0 and 1 year with location pa-311

rameter µ = 0 and scale parameter σ = 1.4. Note that parameter δ represents phase312

of the errors; it should not be interpreted as phase difference between the observed and313

true signals. For example, if the observed and true signals are in phase, then δ will be314

equal to the shared phase of these signals, not equal to zero.315

Note that the sine wave error model does not include a trend correction: it assumes316

that any long-term increasing or decreasing trend in the GRACE data is representative317

for water storage dynamics in the basin. If this assumption is invalid, then this may re-318

sult in biased posterior estimates for precipitation and evaporation. However, this bias319

is likely to be relatively small, because water storage trends are sensitive to small changes320

in precipitation and evaporation. For example, a bias of 1 mm in monthly precipitation321

adds or removes 120 mm of water over a period of 10 years.322
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While the precipitation and evaporation error models rely on multiple datasets, the323

use of multiple GRACE solutions (e.g. the CSR mascon solution (Save, 2020) in addi-324

tion to the JPL solution) is not expected to capture prior uncertainty caused by leak-325

age or scaling errors, since the different solutions are generally limited by the same coarse326

spatial resolution of the GRACE observations. Therefore, the error model uses a single327

GRACE solution. Results in section 5 use the JPL data, while the effect of using the CSR328

data is evaluated in section 6.329

4 Inference330

The probabilistic water balance model described in the previous section defines a331

joint distribution over the data and all unknown variables, namely the 10 parameters (wP ,332

rP , wE , fE , rE , aQ, bQ, σS , A, δ) and the 4N+1 monthly water balance variables (S0,333

Pt, Et, Qt, St), where N is the number of months and S0 is initial basin water storage334

at the start of the first month. This paper considers 10 years of data, so N = 120. Con-335

ceptually, we can write the joint distribution of the model as p(x,θ,Sobs), where x rep-336

resents all 4N + 1 water balance variables, θ is the vector of 10 parameters, and Sobs337

represents the entire time-series of storage observations. Formally, this distribution de-338

pends on the input observations Pobs, Eobs, and Qobs, but for notational simplicity this339

dependence is omitted here.340

The goal is now to estimate posterior distributions for x and θ. The posteriors merge341

all available information and data, while accounting for all uncertainties in the model.342

We first describe the general form of the posteriors and then discuss the specific infer-343

ence algorithm used.344

4.1 Posterior distributions345

The posterior for parameter vector θ can be written as:346

p(θ|Sobs) ∝ p(θ)p(Sobs|θ) (17)

where p(θ) is the prior distribution for the parameters, and p(Sobs|θ) is the likelihood.347

The prior is equal to the product of the individual parameter priors defined in the pre-348

vious section. The likelihood on the other hand is obtained by computing the normal-349

izing constant of the conditional water balance posterior p(x|Sobs,θ), as will be shown350

below.351

The likelihood defines a scoring function for the parameters that quantifies how well352

storage predicted from the water balance matches the storage observations Sobs. A good353

match can generally be achieved by picking bias parameters (fE , wP , etc) that move the354

storage predictions closer to the observations, and by making the noise parameters (rE ,355

σS , etc) as small as possible: this yields narrow predictive distributions centered on the356

observations, and thus large likelihood p(Sobs|θ) for the parameters. However, since the357

error parameters are all time-invariant, such near-deterministic predictions generally can-358

not be achieved for all months simultaneously. Large likelihood is therefore achieved by359

setting the bias parameters to yield a good match on average across the entire time-series,360

and setting the noise parameters just large enough to ”capture” all observations. Clearly,361

many error parameter combinations may yield large likelihood; this non-uniqueness is362

captured by characterizing the entire posterior distribution, rather than only determin-363

ing the parameters with maximum likelihood or maximum posterior density. As described364

in the next section, the parameter posterior distribution is estimated using a Markov Chain365

Monte Carlo algorithm.366

The joint posterior for all water balance variables x can be written as:367

p(x|Sobs) =

∫
p(x|Sobs,θ)p(θ|Sobs)dθ (18)
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where p(x|Sobs,θ) = p(x,Sobs|θ)
p(Sobs|θ) is the posterior distribution of x, conditioned on spe-368

cific values for the parameters. Note that the normalizing constant of this posterior is369

equal to the parameter likelihood function p(Sobs|θ) in Eq. 17.370

Instead of the joint posterior in Eq. 18, we are interested in marginal posterior dis-371

tributions p(x|Sobs) over individual water balance variables x, where x is a scalar vari-372

able equal to one of (S0, Pt, Et, Qt, St). For example, if x corresponds to St, then we373

aim to compute the posterior distribution for St based on all observations before, on, and374

after time t. Such posterior distributions can be computed, as in Eq. 18, by averaging375

conditional posterior distributions p(x|Sobs,θ) over the parameter posterior distribution376

p(θ|Sobs). An efficient way of computing all conditional posteriors p(x|Sobs,θ) is to use377

a smoothing algorithm, such as a Kalman smoother, as discussed next. Incidentally, a378

smoothing algorithm also computes normalizing constant p(Sobs|θ) of p(x|Sobs,θ), which379

is used to compute the likelihood in Eq. 17, without explicitly constructing the (4N+380

1)-dimensional joint water balance posterior.381

4.2 Algorithm382

Following the discussion in the previous section, posterior distributions are com-383

puted using a double-loop algorithm that combines Markov Chain Monte Carlo (MCMC)384

sampling for the parameter posteriors with Expectation Propagation (EP) (Minka, 2001),385

an iterative smoothing algorithm, for the water balance posteriors. Essentially, the MCMC386

algorithm forms an outer loop that iteratively proposes and accepts/rejects new param-387

eter values, while the EP algorithm forms an inner loop that iteratively computes (i) the388

(unnormalized) posterior density, Eq. 17, of parameter values proposed by the MCMC389

algorithm, and (ii) conditional water balance posteriors p(x|Sobs,θ) for specific param-390

eter vectors sampled by the MCMC algorithm.391

For linear-Gaussian models, the EP algorithm is equivalent to a Kalman smoother392

for St, and computes exact Gaussian water balance posteriors via a single forward-backward393

pass through the time series, with the backward pass also updating the Pt, Et and Qt394

posteriors (see Appendix B). The forward-backward pass ensures that water balance pos-395

teriors are estimated using data from the entire time-series. Given values for the error396

parameters, the probabilistic water balance model in this paper consists of a linear tran-397

sition model at each time step (i.e. water balance equation, Eq. 1) with Gaussian stor-398

age observations. However, as discussed in the previous section, the model also uses phys-399

ical non-negativity constraints for each Pt, Et, and Qt. These constraints render the in-400

put distributions and water balance posteriors non-Gaussian. The EP algorithm used401

here approximates the exact non-Gaussian water balance posteriors with Gaussian dis-402

tributions that have the same moments (mean and variance) as the exact posteriors. This403

strategy is called moment-matching. Since moment-matching is applied to the posterior,404

not the prior, approximations made in one month affect approximations in other months405

and the algorithm is iterative: instead of a single forward-backward pass, multiple forward-406

backward passes are used, where each pass further refines the approximations until con-407

vergence, i.e. until there is no more change in the approximate posteriors.408

We implement the probabilistic water balance model in C# using the open-source409

probabilistic programming library Infer.NET (Minka et al., 2018). The resulting model410

code (see Fig. A1) uses the Infer.NET modeling API to implement the model equations411

listed in the previous section. This code is then automatically translated by the Infer.NET412

compiler into code for running inference, i.e. for computing the water balance posteri-413

ors with EP.414

The MCMC algorithm used in this paper is a single-chain version of the differential-415

evolution MCMC algorithm of ter Braak and Vrugt (2008). The algorithm iteratively416

proposes new parameter vectors and evaluates their posterior density, Eq. 17, by call-417

ing the EP inference code. The latter computation is done in Infer.NET by placing the418
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entire model inside a stochastic if-block and using EP to compute the posterior odds of419

being inside vs outside the block, i.e. of the model being ”true”.420

Finally, since the EP algorithm only computes conditional water balance posteri-421

ors (conditioned on specific parameter values), a post-processing step is used that av-422

erages computed water balance posteriors over the MCMC sampled parameter sets, as423

in Eq. 18. That way, the final water balance posteriors account for posterior uncertainty424

in the data error parameters. For example, if p(x|Sobs,θ) represents the (Gaussian) pos-425

terior for variable x (e.g. Et), conditioned on data Sobs and on parameter vector θ, then426

the final marginal posterior p(x|Sobs) is computed from n posterior parameter samples427

θi as:428

p(x|Sobs) =

∫
p(x|Sobs,θ)p(θ|Sobs)dθ ≈

1

n

n∑
i=1

p(x|Sobs,θi) (19)

As such, each marginal water balance posterior is strictly speaking a (Gaussian) mix-429

ture distribution, although empirically it turns out to be well approximated by a single430

Gaussian distribution using moment matching. While this last approximation is not strictly431

necessary, it avoids storing the entire Monte Carlo mixture (for each water balance vari-432

able and each month).433

5 Results434

First, detailed results are presented for one of the basins (Mond), followed by a sum-435

mary of results for all basins. Detailed results for all basins are available in the Support-436

ing Information.437

5.1 Mond basin438

Mond basin is one of the drier basins in this study (Table 1). Water balance pos-439

teriors for Mond basin are shown in Fig. 4, and error parameter posteriors are shown440

in Fig. 5. In Fig. 4, inferred precipitation tends to more closely follow the CHIRPS data441

than the IMERG data, especially during the wet winter months, with IMERG appar-442

ently overestimating precipitation. This is reflected in the inferred value for parameter443

wP (last row in Fig. 4), which is shifted towards 1, indicating greater weight on CHIRPS444

than on IMERG for this basin. The wide posterior for noise scaling parameter rP indi-445

cates that this parameter does not play an important role here, and the posterior un-446

certainty in precipitation is not markedly different from the prior uncertainty shown in447

Fig. 2.448

In contrast, posterior uncertainty in evaporation is significantly smaller than its prior449

uncertainty, as shown by the posterior uncertainty bands in Fig. 4 (second row) and pos-450

terior values of rE < 0.5, indicating that random errors in evaporation are smaller than451

the absolute difference between the SSEBop and GLEAM data. Estimated evaporation452

lies more or less right between the two datasets, with an estimated wE value around 0.5453

(equal weights) and no additional bias (fE around 1). Posterior uncertainty increases454

during dry summers when differences between the two datasets are largest.455

River discharge in this basin is an order of magnitude smaller than the other wa-456

ter balance variables. With the assumed 10% relative error, this results in small poste-457

rior uncertainty that closely follows prior uncertainty (third row in Fig. 4). Note how-458

ever the significant increase in discharge uncertainty at the end of the time series: no river459

discharge observations are available in the basin for the last three months of 2015, and460

historical discharge variability is instead used as prior for these months, as discussed in461

section 4. The larger posterior uncertainty in discharge for these months does not ap-462

pear to affect uncertainty in the other water balance components. This will be further463

explored in section 6.464
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Figure 4. Monthly water balance estimates for Mond basin, shown as 90% posterior uncer-

tainty bands. Each year label indicates start of the year (January). All values are in mm/month.
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Figure 5. Normalized prior and posterior densities of error parameters for Mond basin.

The last row of Fig. 4 shows that the inferred water storage dynamics largely fol-465

low the GRACE observations, with a small increase in seasonal amplitude in the pos-466

teriors compared to the data. The corresponding inferred storage error parameters are467

shown in the second row of Fig. 5. All three parameters (A, δ, σS) have well defined pos-468

terior distributions compared to their vague priors. Residual noise in the data, after mak-469

ing amplitude (A) and phase adjustments (δ), is relatively small as indicated by an in-470

ferred value for σS of around 10 mm. Note that inferred posteriors for months with miss-471

ing GRACE observations (e.g. May-June 2015, October-November 2015) do not markedly472

differ from months with observations. This is because error parameter values learned from473

months with data are shared across all months, and because smoothing infers posteri-474

ors using data from all months. A more dramatic example of this effect will be seen in475

section 6.476

5.2 Other basins477

The Supporting Information contains posterior plots for all other basins, similar478

to the ones for Mond basin shown above. Here, we highlight the main findings from these479

results. In terms of water storage posteriors, the basins can roughly be divided into basins480

without a significant change in amplitude or phase between the estimated posteriors and481

the GRACE data (Mond, Karoon, Karkheh), basins with only a change in phase (Sepidrood),482

basins with only a change in amplitude (Jazmoorian), and basins with both a change in483

amplitude and phase (Gorganrood).484

Figure 6 illustrates this for the Sepidrood and Gorganrood basins. In both basins485

the inferred storage dynamics (posteriors shown in green) are shifted earlier in time than486

the corresponding GRACE observations. Apparently, the observed GRACE dynamics487
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do not fit with the other water balance observations in terms of water balance closure.488

Interestingly, both basins are in the north of the country where the large footprint of the489

GRACE observations (Fig. 3) is possibly affected by the Caspian Sea to the north, which490

is not included in the Coastline Resolution Improvement (CRI) filter of the JPL GRACE491

dataset. The sine wave error model appears to restore the underlying water storage dy-492

namics, including an increase in amplitude for the relatively small Gorganrood basin.493

The increase in amplitude can be explained by the strong spatial smoothing inherent in494

the coarse-scale GRACE data, which tends to be more severe in smaller basins.495
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Figure 6. 90% uncertainty bands of storage posteriors (S) and GRACE posterior predictive

distributions (Sobs), along with GRACE data, for Sepidrood and Gorganrood basins.

Fig. 6 also shows posterior predictive distributions for the GRACE observations496

(Sobs), conditioned on the posterior mean of the true water storage (S). These plots il-497

lustrate validity of the proposed sine wave model, since the original GRACE observa-498

tions fall within the posterior predictive distributions obtained by taking the inferred pos-499

terior mean of St in each month and applying the noisy sine wave model to generate a500

predictive distribution for the corresponding observation Sobs,t. This however does not501

mean that the probabilistic water balance model is generally suitable for making water502

balance predictions, as will be illustrated in section 6.503

Error parameter posterior distributions for all basins are shown in Fig. 7. The third504

row in this figure shows that for most basins IMERG fits better with the other water bal-505

ance data than does CHIRPS, since inferred values for wP are mostly less than 0.5 (more506

weight on IMERG). Mond basin is the exception, with wP > 0.5, as discussed above.507

The insensitivity of parameter rP that was already observed in Mond basin, also occurs508

in two other basins (Sepidrood and Karkheh), while in the three other basins rP does509

matter and tends toward a value of 1.510

The three evaporation error parameters are mostly well identified (first row in Fig.511

7). In most basins, more weight is given to the GLEAM dataset (wE > 0.5), with the512

exception of the wettest basin (Karoon), where SSEBop provides a better fit. However,513

in all basins a weighted average of the two datasets is preferred to using either dataset514

alone. Inferred values for bias parameter fE range between 0.5 and 1.5, with the largest515
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values for Karkheh and Sepidrood basins. While a multiplicative bias of 1.5 may seems516

excessive, the inferred evaporation posteriors remain at or below potential evaporation517

(see Supporting Information), even though potential evaporation was not used in the model.518

Finally, the reduction in prior evaporation uncertainty found in Mond basin also occurs519

in other basins, as evidenced by inferred values for rE below 0.5, with the exception of520

Karkheh and Sepidrood basins, where prior evaporation uncertainty is less pronounced521

than in the other basins.522
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Figure 7. Posterior error parameter distributions for all basins.

The storage error parameters (second row in Fig. 7) are also well identified in all523

basins. Standard deviation σS of random errors in the GRACE observations, after am-524

plitude and phase corrections, is 10 mm or less for the drier basins in the east (Mond,525

Jazmoorian, Gorganrood) and 15-20 mm for the wetter basins in the west (Sepidrood,526

Karkheh, Karoon). As shown in Fig. 8, the inferred posterior mean values for σS closely527

follow a similar west-to-east decreasing trend as the JPL-mascon GRACE measurement528

errors, with an increase in inferred noise for the smaller Gorganrood basin. These results529

suggest that the sine wave model adequately captured and corrected systematic errors530

in the GRACE data due to a mismatch in scale, yielding random errors similar to and531

even smaller than the reported GRACE measurement errors.532

Finally, Table 3 summarizes and compares posterior standard deviations for the533

different water balance variables. The table includes results for a second scenario with534

vague prior on aQ, which is further discussed in section 6. Results in this table show that535

posterior uncertainty, in terms of posterior standard deviation, decreases from water stor-536

age (4-12 mm/month), to precipitation (3.5-7 mm/month), to evaporation (2-6 mm/month),537

and to discharge (0-2 mm/month). The small posterior uncertainty in river discharge538

is a direct consequence of the assumed 10% error and the generally small discharge val-539
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Figure 8. Posterior mean of σS compared to mascon-scale standard error of the JPL GRACE

observations.

ues in the semi-arid basins studied here. At the extreme end, the endorheic Jazmoorian540

basin has no outflow, and thus zero discharge and error.541

The reported posterior standard deviations result from the fusion of all water bal-542

ance data. For example, the posterior of St in a particular month t results from the fu-543

sion of three noisy information streams: the GRACE observation for that month (if not544

missing), the water balance constraint for month t, and the water balance constraint for545

month t + 1, for which St provides the initial storage. Combination of these three in-546

formation streams results in a posterior that is narrower than any of the individual streams,547

with each stream or distribution more or less constraining the final posterior estimate548

of St. A similar process happens when inferring the other water balance variables (Pt,549

Et, Qt), although for those variables only two information streams are involved (one from550

the prior, and the other from the water balance of month t).551

Table 3. Average posterior standard deviation (mm/month) of each water balance variable for

two cases: (i) relative river discharge error aQ fixed at 0.1 (10%) and (ii) a vague lognormal prior

for aQ with mode at 0.1 and CV equal to 0.9.

aQ = 0.1 Vague prior on aQ

Basin P E Q S P E Q S

Sepidrood 6.0 5.1 0.2 10.1 6.0 5.1 0.4 10.1

Karkheh 6.1 6.1 0.4 11.2 6.2 6.1 1.0 11.1

Karoon 6.9 4.8 1.7 11.3 6.8 4.6 5.6 11.7

Mond 4.7 3.5 0.1 6.7 4.7 3.6 0.3 6.8

Jazmoorian 3.5 1.9 0.0 4.1 3.5 1.9 0.0 4.0

Gorganrood 6.7 4.9 0.2 8.3 6.8 5.0 0.4 8.3
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6 Discussion552

This section evaluates how results are affected when changing some of the data and553

assumptions of the probabilistic water balance model.554

6.1 Sensitivity to assumed river discharge errors555

Results in the previous section were based on a narrow prior for the relative error556

aQ of monthly river discharge data centered on 0.1 (10%). To test sensitivity of the re-557

sults to this choice, an alternative vague lognormal prior for aQ was used, i.e. one with558

mode at 0.1 and with a coefficient of variation of 0.9. Table 3 shows that this change in-559

creases the posterior standard deviation of monthly river discharge, but has otherwise560

little effect on posterior uncertainty of the other water balance variables. The largest ab-561

solute increase in posterior standard deviation of Q is observed for Karoon basin, which562

is the wettest basin included in the analysis. In fact, for Karoon basin, the posterior stan-563

dard deviation of river discharge becomes larger than that of evaporation (Table 3).564
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Figure 9. Posterior distributions (cdf) for aQ when using a vague prior (dashed) for aQ.

When using a vague prior, posterior distributions for relative error aQ in Fig. 9 show565

that the posteriors are generally close to the prior. Most basins show a slight contrac-566

tion of the posterior relative to the prior toward smaller relative errors, with the excep-567

tion of Karoon basin, where the posterior moves to larger, likely unrealistic, values for568

aQ around 0.3-0.4. These large values suggest that uncertainty in river discharge increases569

to compensate for errors somewhere else in the water balance. Due to the small mag-570

nitude of river discharge relative to the other water balance terms, a large relative er-571

ror is needed to get a sizeable effect.572

These results indicate that, for the semi-arid basins studied here, the value of aQ573

cannot reliably be estimated from water balance data, and instead river discharge errors574

should be estimated independently, e.g. using a formal rating curve error analysis (Horner575

et al., 2018; Kiang et al., 2018). The value of aQ can then be fixed a priori, or given a576

narrow prior, based on the independent estimate. On the other hand, accurate estimates577

of aQ are only relevant for estimating uncertainty of the river discharge data. For the578

goal of estimating the other water balance variables, approximate estimates of aQ suf-579

fice, at least when river discharge is the smallest term in the water balance.580
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6.2 Effect of missing GRACE observations581

Results in section 5 already showed that missing GRACE observations do not sig-582

nificantly affect the inferred posteriors. Sharing of error parameters across the entire time-583

series, combined with fusion of all data via smoothing, allows the model to fill in occa-584

sional gaps in the data record. It is however instructive to evaluate a few more drastic585

scenarios of missing GRACE observations to gain additional insight into the predictive586

capabilities and limitations of the probabilistic water balance model.587
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Figure 10. Storage posteriors for Karoon basin for three scenarios of missing GRACE obser-

vations: (i) no GRACE observations in the last 5 years, (ii) one GRACE observation per year in

the last 5 years, (iii) using all available observations.

Two fictitious scenarios are evaluated. The first scenario assumes that all GRACE588

observations after 2010 are missing; the first five years provide a complete data record589

to learn the model error parameters, which are then applied to infer and predict stor-590

age posteriors in the next five years. Fig. 10 shows that in the absence of constraining591

GRACE observations in the second part of the period, posterior uncertainty grows over592

time, and an increasing trend in storage is (wrongly) predicted. In the second scenario,593

which assumes a single annual observation is available after 2010, this trend is removed594

and posterior uncertainty is smaller, although it remains larger than when the full GRACE595

observation record is used.596
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These results illustrate that the model is less suitable for long-range predictions597

without storage observations: uncertainties quickly accumulate, and small imbalances598

between precipitation and evaporation easily lead to erroneous trend predictions. On the599

other hand, the model works well for interpolating and filling in gaps when observations600

are occasionally missing.601

6.3 Using a different GRACE solution602

The results in this paper are based on the JPL-mascon GRACE data. The model603

can also use other GRACE solutions by simply replacing Sobs in the model by the rel-604

evant dataset. Fig. 11 compares inferred posterior distributions for σS when using the605

CSR mascon solution instead of the JPL mascon solution. For the basins studied in this606

paper, the JPL data consistently yield smaller noise, i.e. smaller posterior values for σS .607

This indicates that the JPL data provide a better fit with the other monthly water bal-608

ance data used in this study.609

0 20 40
σS  (mm)

0

0.5

1

Cu
m

ul
at

iv
e 

pr
ob

ab
ili

ty

0 20 40
σS  (mm)

0

0.5

1

Figure 11. Posterior distributions (cdf) of σS for two different GRACE mascon solutions:

JPL (left) and CSR (right).

6.4 Effect of positivity constraints610

As described in section 4, the model includes positivity constraints on water bal-611

ance variables P , E, and Q, since these variables cannot physically be negative. To what612

extent do these constraints affect the inferred posteriors? This can be assessed by remov-613

ing the positivity constraints from the model, which is achieved by commenting out the614

three Variable.ConstrainPositive statements in Fig. A1) and recomputing the pos-615

teriors. Conditional on the model parameters, the model now only contains Gaussian616

and linear relations. As such, inference does not require any iteration and a single forward-617

backward pass over the monthly time-series is sufficient to compute all water balance pos-618

teriors. The Infer.NET compiler in fact automatically detects this and, in the absence619

of positivity constraints, generates inference code that is equivalent to a Kalman smoother.620

Fig. 12 shows that constraining the water balance variables to be positive results621

in smaller posterior uncertainty when the unconstrained posterior extends into the neg-622

–21–



manuscript submitted to Water Resources Research

2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016

0

100

Ev
ap

or
at

io
n 

(m
m

)

E
SSEBop
GLEAM
Ep

2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016

0

100

Ev
ap

or
at

io
n 

(m
m

)

E
SSEBop
GLEAM
Ep

Figure 12. Posterior 90% uncertainty bands for monthly evaporation in Karkheh basin with

(top) and without (bottom) positivity constraints in the model.

ative domain. In this case (Karkheh basin), the unconstrained evaporation posterior has623

a negative tail whenever there is a large difference between the two evaporation datasets624

(e.g. summer 2009), because then the (prior) uncertainty is large. However, overall for625

the basins analyzed here, the effect of the positivity constraints is fairly limited and does626

not significantly change the results. This is also why the number of EP iterations to achieve627

convergence is small (we used 3 iterations); the studied problems are only mildly non-628

Gaussian. However, the positivity constraints do maintain physically realistic posteri-629

ors and thus are useful for general applicability of the model.630

7 Conclusions631

The paper presents a probabilistic model to estimate monthly basin-scale precip-632

itation, evaporation, terrestrial water storage and river discharge based on independent633

observations of each water balance term and monthly water balance constraints. The main634

contribution compared to previous water balance fusion studies is that data errors are635

not fixed a priori but are treated as unknown random variables that are estimated from636

the data. This results in a data fusion approach that combines data error and water bal-637

ance estimation into a single coherent methodology.638

The approach is based on formulating a Bayesian hierarchical model that ties to-639

gether all data, water balance variables and data error parameters, followed by comput-640

ing posteriors of all unknown parameters and water balance variables in the model. The641

model combines monthly basin-scale water balance constraints with data error models642

for each water balance variable (precipitation, evaporation, river discharge, water stor-643

age) that account for random and systematic data errors.644

Specifically, bias in precipitation and evaporation data is modeled as a weighted645

average of two different datasets (IMERG and CHIRPS for precipitation, and SSEBop646

and GLEAM for evaporation), where the weight is treated as an unknown parameter.647

For evaporation, a second unknown bias parameter is included for additional flexibility648

in modeling bias. Random errors in precipitation and evaporation are modeled as a func-649
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tion of differences between the two respective datasets, with unknown parameters con-650

trolling magnitude of the random errors. The JPL-mascon GRACE data are used as basin-651

scale water storage observations. Measurement and scaling errors in the GRACE data652

are described by a noisy sine-wave error model, with amplitude, phase and noise of the653

sine wave controlled by unknown parameters. Finally, monthly river discharge data are654

taken from river gauging stations, with random errors described by a relative error pa-655

rameter.656

The resulting probabilistic model is solved for the unknown water balance variables657

and data error parameters using Markov Chain Monte Carlo sampling (for the param-658

eters) in combination with an iterative smoothing algorithm (for the water balance vari-659

ables) that maintains non-negativity of the water balance variables. Computed poste-660

riors provide (i) hydrologically consistent, error-filtered and bias-corrected water balance661

estimates, and (ii) statistically consistent, basin-specific error estimates of the water bal-662

ance data.663

Application to semi-arid river basins in Iran illustrates usefulness of the approach.664

First, computed evaporation posteriors achieve significant reductions in prior evapora-665

tion uncertainty during water-stressed summers. Other studies have also reported reduc-666

tions in errors by combining multiple evaporation products (Mueller et al., 2011; Hobe-667

ichi et al., 2018). Second, the approach leads to basin-specific phase and amplitude cor-668

rections of the GRACE data, and is able to extract the underlying water storage dynam-669

ics. Third, by fusing all water balance data, posterior water balance estimates are ob-670

tained with time-averaged standard errors of 4-12 mm/month for water storage, 3.5-7671

mm/month for precipitation, 2-6 mm/month for evaporation, and 0-2 mm/month for river672

discharge. Data error parameters are generally well identified, with the exception of rel-673

ative error of the river discharge data, which is best estimated using an independent rat-674

ing curve analysis. This lack of sensitivity however also means that the other water bal-675

ance estimates are not strongly affected by the assumed discharge errors, and an approx-676

imate estimate suffices as long as river discharge is the smallest term in the water bal-677

ance, as is the case for the semi-arid basins studied here.678

The proposed methodology is data-driven in that no hydrological process assump-679

tions are made beyond the monthly water balance constraints. As such, the water bal-680

ance posteriors can be used for independent evaluation and calibration of monthly wa-681

ter balance models. Nevertheless, an interesting extension could be to embed the data682

errors models used here into a monthly water balance model, and perform joint estima-683

tion of all error and hydrological parameters. Another modification would be to consider684

spatially distributed error models, e.g. using land cover specific error models for evap-685

oration and elevation or temperature specific error models for precipitation, and shar-686

ing these parameters across multiple basins to ensure identifiability.687

The approach can also be extended to other datasets and other (gauged) basins688

around the world, possibly using tailor-made data error models. Modifications may be689

warranted to describe data errors in different climates and landscapes, e.g. in snow-dominated690

basins, where satellite data may underestimate snow accumulation. A benefit in this re-691

spect is that the model is implemented in a general-purpose and extensible probabilis-692

tic programming tool (Infer.NET) that separates model assumptions from inference (model693

solving): when the individual data error models are modified, inference code is automat-694

ically generated to compute posteriors for the new model.695
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Appendix A Implementation of the probabilistic water balance model696

in Infer.NET697

Figure A1 shows how the probabilistic water balance model in section 3 translates698

directly into a probabilistic program implemented with the Infer.NET modeling API.699

The Infer.NET compiler automatically translates the model code into an iterative smooth-700

ing algorithm for computing water balance posteriors using Expectation Propagation (EP).701

The complete code is at http://doi.org/10.5281/zenodo.4116451.

Figure A1. Implementation of the probabilistic water balance model using the Infer.NET

probabilistic programming API in C#.

702

Appendix B Details of EP703

Here, we give details of how Expectation Propagation (EP) computes conditional704

water balance posteriors. EP uses ”messages”, i.e. Gaussian distributions in this case,705
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to propagate uncertainty through the model. If we write the water balance at each time706

as S = S0 +P −E−Q (omitting time index for simplicity), then the forward message707

(Gaussian distribution) to S is computed by propagating Gaussian distributions for the708

inputs (S0, P , E, Q) through the water balance:709

forward message to S = N (S|mS0 +mP −mE −mQ, vS0 + vP + vE + vQ) (B1)

where mx and vx represent mean and variance of input x. Mean and variance of P , E,710

and Q are given by the model priors described in section 3, modified for truncation at711

zero, see below. Mean and variance of previous storage S0 is given by multiplying two712

Gaussian distributions: the forward message that was sent to S0 in the previous time713

step and the Gaussian likelihood of a GRACE observation, if any. Mean and variance714

of the resulting Gaussian message (distribution) is given by the general Gaussian mul-715

tiplication formula:716

N (x|m1, v1)N (x|m2, v2) ∝ N (x|m, v) (B2)

m = w2m1 + w1m2 (B3)

v = w2v1 = w1v2 (B4)

where w1 = v1
v1+v2

, w2 = v2
v1+v2

, and x in this case would be S0. This formula is the717

scalar version of the Kalman filter update equation. Forward messages are computed by718

a forward pass through the entire time series.719

Likewise, backward messages represent (Gaussian) distributions that propagate un-720

certainty through the model in backward direction. They are computed by a backward721

pass through the entire time series, analogous to a Kalman smoother. The backward mes-722

sage (Gaussian distribution) to S0 is computed by propagating Gaussian distributions723

for the inputs (P , E, Q) and for S through the water balance back to S0:724

backward message to S0 = N (S0|mS −mP +mE +mQ, vS + vP + vE + vQ) (B5)

where mean mS and variance vS of the backward message from S are obtained by mul-725

tiplying the backward message to S (computed in previous step of backward pass) with726

the Gaussian likelihood of a GRACE observation, if any, using the same Gaussian mul-727

tiplication formula given above. The posterior for each S (or S0) is obtained by multi-728

plying the forward and backward message it receives, as well as a GRACE likelihood mes-729

sage, if any.730

Backward messages to the inputs are computed in a similar way:731

backward message to P = N (P |mS −mS0
+mE +mQ, vS0

+ vS + vE + vQ) (B6)

backward message to E = N (E|mS0
−mS +mP −mQ, vS0

+ vS + vP + vQ) (B7)

backward message to Q = N (Q|mS0
−mS +mP −mE , vS0

+ vS + vP + vE) (B8)

These backward messages correspond to what Pan and Wood (2006) call a ”constrained732

Kalman filter”. The product of these backward messages and the corresponding priors733

gives the posterior for each input. However, since P , E, and Q are constrained to be pos-734

itive, the actual posteriors are truncated Gaussians. Moments of each truncated poste-735

rior are given by:736

E[xn] = Z−1
∫ ∞
0

xnp(x)b(x)dx (B9)

where x is P , E, or Q, n = 1, 2, p(x) is the unconstrained Gaussian prior of x, b(x) is737

the backward message to x (Eq. B6-B8), and Z =
∫∞
0
p(x)b(x)dx. The posterior is then738

approximated by a Gaussian with mean equal to E[x] and variance equal to E[x2]−E[x]2.739

Finally, using a Gaussian division formula analogous to the Gaussian multiplication for-740

mula given earlier, the input messages used in Eq. B1 and B5 are computed by divid-741

ing the approximate Gaussian posterior by the corresponding backward message b(x).742

–25–



manuscript submitted to Water Resources Research

This creates a mutual dependence that is solved by iteration: repeat forward and back-743

ward passes over the entire time-series until the approximate posteriors don’t change any-744

more.745
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