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Abstract

Sea ice motions play an important role in the polar climate by transporting pollutants, heat, water and salt as well as changing

the ice cover. Numerous physics-based models have been constructed to represent the sea ice dynamical interaction with the

atmosphere and ocean. Here we propose a new data-driven deep-learning approach which utilizes a convolutional neural network

(CNN) to model how Arctic sea ice moves in response to surface winds given its initial ice velocities and concentration a day

earlier. Results show that CNN computes the sea ice response with a correlation of 0.82 on average with respect to reality, which

surpasses a set of pixel-based predictions, such as persistence (PS), linear regression (LR), random forest (RF), multiple layer

perceptrons (MLP) and CICE, a leading physics-based model. The superior predictive skill of CNN suggests the important role

played by the connective patterns of the predictors of the sea ice motion.
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Key Points:5

• The response of Arctic sea ice motions to surface winds can be modeled using a6

convolutional neural network with predictors of the previous-day sea ice velocity7

and concentration and present-day surface wind.8

• The superior performance of convolutional neural network suggests the importance9

of the inter-pixel (across space) dynamical connections of the sea ice motion com-10

pared to pixel-based baseline models that only consider local interactions.11

• The success of the convolutional neural network model of sea ice motion holds promise12

for combining machine learning with physics-based models to simulate sea ice.13

Corresponding author: , jzhai@uw.edu
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Abstract14

Sea ice motions play an important role in the polar climate system by transporting pol-15

lutants, heat, water and salt as well as changing the ice cover. Numerous physics-based16

models have been constructed to represent the sea ice dynamical interaction with the17

atmosphere and ocean. In this study, we propose a new data-driven deep-learning ap-18

proach which utilizes a convolutional neural network (CNN) to model how Arctic sea ice19

moves in response to surface winds given its initial ice velocities and concentration a day20

earlier. Results show that CNN computes the sea ice response with a correlation of 0.8221

on average with respect to reality, which surpasses a set of pixel-based predictions, such22

as persistence (PS), linear regression (LR), random forest (RF), multiple layer percep-23

trons (MLP) and CICE, a leading physics-based model. The superior predictive skill of24

CNN suggests the important role played by the connective patterns of the predictors of25

the sea ice motion.26

Plain Language Summary27

Sea ice, the frozen seawater that floats on the ocean, grows in each hemisphere’s28

winter and retreats in the summer but does not disappear in the current climate. The29

sea ice coverage is discontinuous and thin enough to move with the winds and currents.30

These movements alter the sea ice cover and transport pollutants, heat, water and salt.31

Previous studies have advanced mathematical models that represent the physics of how32

sea ice moves in response to surface winds. In this study, we propose a different type of33

model, called a convolutional neural network (CNN), which is constructed purely from34

observational data without explicitly accounting for the underlying physical insights. Un-35

like other conventional data-driven models that are trained on each geographic local point36

independently, CNN takes into account how a given location connects to its neighbors37

via patterns. The superior performance of CNN suggests that local ice motions depend38

on a large-scale pattern of surrounding winds and that data-based methods are a promis-39

ing alternative to physics-based models.40

1 Introduction41

As an essential element in polar climate and dynamics, the movement of sea ice dis-42

tributes pollutants, transports heat, water and salt and affects the polar energy budget43

by modifying the ice cover. The factors that determine sea ice motion include the sea44

ice inertia, atmospheric and oceanic stress, the Coriolis force, the sea surface tilt and the45

internal ice force that arises from floe interactions such as collisions, rafting and defor-46

mation. Based on an old rule-of-thumb that sea ice moves with a speed of 2% of the sur-47

face wind speed and 45° to the right of the surface wind direction, Thorndike and Colony48

(1982) examined the relation between the ice velocity and geostrophic winds and found49

that for the long-term (multi-month) average, about half of the variance of the ice mo-50

tion is directly related to the surface geostrophic wind, while the other half is due to the51

mean ocean circulation; on shorter time scales from days to months, geostrophic winds52

alone can explain more than 70% of the variance of sea ice motion in the central Arc-53

tic region. Particularly, at daily time scale the unexplained variance is even less than 20%.54

On diurnal time scale or within 400 km of the coasts, however, the ice inertia or coastal55

stress gradients can be as important as the wind stress, which disqualifies the wind-only56

approximation.57

Using daily sea ice velocities recovered from passive microwave satellite images, Kimura58

and Wakatsuchi (2000) showed that a linear relation based on the surface geostrophic59

winds with a speed reduction factor generally explains 70% to 90% of the sea ice veloc-60

ity variance over the Arctic, except along some coastal regions. The spatial variation of61

the speed reduction factor of the sea ice motion relative to the surface winds depends62

on the internal ice stress gradient, which depends on ice thickness and concentration. Gen-63
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erally speaking, thicker and higher sea ice concentration result in a greater internal ice64

stress gradient, leading to a greater speed reduction. For example, sea ice moves at 2%65

of the surface wind speed over the seasonal ice zones but at less than 0.8% over the in-66

terior Arctic (Kimura & Wakatsuchi, 2000).67

Similar conclusions were drawn for Antarctic sea ice from other studies. For ex-68

ample, in the Weddell Sea, nearly 70% to 95% of the variance of daily ice drift velocity69

can be linearly related to the wind velocity, except when the wind speed is below 3.5 m/s70

(Kottmeier et al., 1992). In addition, statistically significant relations between the sea71

ice velocity and local winds were detected from observations in most sectors over the Antarc-72

tic (Holland & Kwok, 2012).73

Several studies have come up with equations-based models of varying complexity74

that utilize a wind-ice relation to model sea ice motion. A simple linear relational rule75

was described by Thorndike and Colony (1982) as follows:76 [
U
V

]
= F

[
cosθ −sinθ
sinθ cosθ

] [
u
v

]
+

[
c̄u
c̄v

]
, (1)

where (U ,V ) and (u,v) are the sea ice velocity and wind velocity, respectively, for the77

same day; F and θ are the speed reduction factor and turning angle, respectively; (c̄u,78

c̄v) is the daily mean surface ocean current velocity. Park and Stewart (2016) introduced79

a more complex nonlinear analytical model that calculates the ice velocity given that the80

surface winds are known and the ocean geostrophic currents are weak.81

Physics-based models compute the sea ice velocity from the ice momentum equa-82

tion (Hibler, 1979), which is primarily driven by surface stresses from winds and ocean83

currents. Specifically, the sea ice velocity tendency is modeled as84

m
∂u

∂t
= ∇ · ~σ + ~τa + ~τo − k̂ ×mfu−mg∇Ho, (2)

where ~σ, ~τa and ~τo are the internal stress tensor, atmosphere stress, and ocean stress,85

respectively; m is the combined mass of ice and snow per unit area; Ho is the sea sur-86

face height; and u represents (u, v). The last two terms on the right hand side are the87

Coriolis force and sea surface tilt term. The parameterization for the atmosphere and88

ocean stresses contains the sea ice concentration as a multiplicative factor in order to89

accommodate the free drift scenario in low ice concentration regions.90

Though having achieved a certain amount of success, physics-based models face chal-91

lenges in practice, which include, but are not limited to, justification for assumptions about92

the sea ice rheology and the requirement for high-resolution observations to verify the93

large set of parametrizations. In this study, our goal is to model the sea ice response in94

an alternative approach that is data-driven and free of physical assumptions. Specifically,95

we aim to construct a convolutional neural network (CNN) model, in order to find how96

Arctic sea ice responds to the future surface winds in general given its current sea ice97

velocity and concentration. The trained CNN model has been shown to outperform the98

persistence and a set of pixel-based baseline predictions. The practice here aims to re-99

cover as much of the general relation between the surface winds and the Arctic sea ice100

motion as possible from the limited measurement.101

The structure of the paper is as follows: Section 2 describes the concept and ar-102

chitecture of the CNN as well as the data used for training and testing; section 3 doc-103

uments the path we took to select the input predictors for the CNN model; section 4 con-104

cludes with the training results and discussions.105

2 Methodology and Data106

CNN is a class of deep-learning neural network first introduced to classify the hand-107

written documents in the field of computer vision (LeCun et al., 1998) and later mostly108
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applied to image analysis. Inspired by the biological process whereby animals visualize109

images through the connectivity between neurons, CNN breaks-down an image composed110

of complex patterns into smaller and simpler pattern feature blocks by employing a math-111

ematical operation called “convolution”. The basic architecture of a CNN consists of the112

following elements:113

• an input layer that is a tensor with dimensions of (number of image samples)×(image114

height)×(image width)×(number of input predictors/channels),115

• convolutional layers that convolve the original images with kernels and acti-116

vation functions into smaller-sized features maps,117

• pooling layers that further reduce the dimensions of the feature maps via down118

sampling, and119

• a fully connected layer that, via multiple layer perceptrons, fully connects the120

flattened (i.e., collapsing a multi-dimensional array into one dimension) output121

tensor from the last convolutional layer to the terminal output of the CNN.122

Our objective is to predict present-day sea ice velocity (ui1, vi1) as accurately as123

possible with a parsimonious set of predictors as features input to the CNN. We inves-124

tigate the importance of a list of candidate input predictors:125

• present-day surface wind velocity (ua1, va1),126

• previous-day sea ice velocity (ui0, vi0), and127

• previous-day sea ice concentration (c0) and thickness (s0).128

All of the predictors except sea ice thickness are readily available from a combi-129

nation of satellite-based observations and atmospheric reanalysis from 1990 to 2018. Un-130

fortunately, satellite-based observations of thickness prior to 2019 have high uncertainty,131

are discontinuous in time, and are completely unavailable in summer. Because we deemed132

observations of thickness to be insufficient for our purpose, we first test the importance133

of predictors with data sets taken exclusively from a climate model by constructing a se-134

ries of CNN models with various combinations of the predictors listed above. Fortunately,135

the process of this feature exploration, as will be discussed in Section 3, reveals a com-136

bination lacking s0 as one of the optimal feature input combinations. Therefore, we re-137

construct the CNN model based on a data sets available from satellite-based observa-138

tions and atmospheric reanalysis.139

For climate model output, we use one historical simulation of the Community Earth140

System Model version 2 (CESM2)(Danabasoglu et al., 2020) in the Coupled Model In-141

tercomparison Project 6 (CMIP6). The resolution is a nominal 1◦ in all components, which,142

for sea ice variables, is a 320x384 grid, with a global average resolution of 64 km approx-143

imately, and a finer resolution of 3 to 11 km over the Arctic. The 850-hPa winds are remapped144

to the sea ice grid to make consistent pixel-by-pixel alignments.145

For reanalysis and satellite-based observations, we use the 10-m surface winds from146

the Japanese 55-year Reanalysis (Kobayashi et al., 2015), which has a resolution of 47147

km on average in the Arctic, Polar Pathfinder Version 4 Daily Sea Ice Motion Vectors148

(Tschudi et al., 2019) and passive microwave sea ice concentrations from the NASA team149

(Cavalieri et al., 1996). The ice data are regridded from their 25-km EASE-grid to the150

JRA55 grid for consistent pixel-wise alignments.151

We use the data sets that span 1990 to 2018 and split it into a training set (1990152

to 2014), a validation set (2015 to 2016) and a testing set (2017 to 2018). The architec-153

ture of the CNN is shown in Fig.1: the input is composed of five channels, which are the154

present-day surface zonal and meridional velocities, the previous-day ice zonal and merid-155

ional velocities, and the previous-day ice concentration over the Arctic field of size 40×640.156

In this example, the input combination does not include thickness. The input is then pro-157
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Input: ua1, va1, ui0, vi0, c0

40x640x5

…

40x640x12

Conv2D,  
Leaky Relu

Max pooling Conv2D,  
Leaky Relu,  
Max pooling

Dense …

40*640*2=51200

Output: ui1, vi1

…

20x214x12

2x3x19210x72x24

Conv2D,  
Leaky Relu 

Max pooling

Dropout 20% 
Flatten, 

…

1152

…… …
Conv2D,  

Leaky Relu 
Max pooling

Figure 1. The CNN architecture. In each layer, the numbers in red are the dimensions of

each channel, i.e. (image height)×(image width), and the numbers in blue specify the number of

input predictors/channels.

cessed through five consecutive layers repeating a block unit: a 2D convolutional layer,158

a LeakyReLU (Leaky Rectified Linear Unit) layer and a 2D max-pooling layer. The out-159

put of this five-time repeated block unit is then passed to a 20% drop-out layer before160

getting flattened to a one-dimensional (1D) vector with a length of 1152. The final step161

is to regress the flattened 1D vector to another 1D layer of a size 51200, which is the con-162

catenated 1D vector of two flattened 40×640 images that represent the present-day zonal163

and meridional ice velocities.164

The kernel size for the 2D convolutions and max poolings are (2,3) or (2,2), where165

the latter is used for later layers since the image size is shrinking as the convolution pro-166

gresses, and strides = (1,1) uniformly for all convolutions and max poolings. The con-167

volutional layers all use a linear activation followed by a LeakyReLU added as a non-168

linear activation with a negative slope coefficient, α=0.1. A root mean square error nor-169

malized by the standard deviation, i.e. the second term in Equation (4), is used as the170

loss function for optimization with the Adam optimizer. The total number of trainable171

parameters is 59,132,828.172

Implemented in Python with the Tensorflow/Keras library (https://keras.io), the173

training takes 50 epochs with a batch size of 365 days on 9862 daily frames (from 1990174

to 2016), the last two years of which (2015 to 2016) are used for validation. Then a fresh175

new set of daily frames (2017 and 2018) are used for final testing. To avoid obtaining176

accidental results due to fixed test sets, we have also performed a set of randomizations177

by shuffling the years for training, validation and testing. For example, one of the ran-178

domized set uses 1992 to 2016 for training, 2017 2018 for validation, and 1990 to 1991179

for testing, etc. The results confirm that the prediction skill is not sensitive to the ran-180

domization and maintains stable metric scores. Therefore, here we present one set of train-181

ing only by focusing on the results obtained using 1990 to 2016 for training and valida-182

tion and 2017 to 2018 for final testing.183
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M1 M2 M3 M4 M5 M6 M7

ua1
va1
ui0
vi0
c0
s0

Corr 0.828 0.829 0.813 0.8001 0.813 0.787 0.828
PPP 0.436 0.438 0.413 0.388 0.413 0.381 0.437

Table 1. Seven CNN models, i.e. M1, M2, ..., M7 with different input combinations con-

structed for comparisons. The prediction skill evaluations of testing using Corr and PPP for the

seven models are listed on the bottom rows.

To evaluate the CNN performance, we set-up four baseline models for comparison:184

persistence (PS), linear regression (LR), random forest (RF) and multiple layer percep-185

tron (MLP). PS predicts the present-day sea ice velocity the same as that of the previous-186

day. LR, RF and MLP all regress the present-day sea ice velocity on the five input pre-187

dictors used by CNN by using each time snapshot at each pixel as an independent sam-188

ple for fitting. It is worth noticing that one advantage of CNN over these baseline mod-189

els lies in the fact that instead of processing each pixel individually, CNN processes them190

in blocks that distill the neighboring connections into useful feature information.191

As for skill metrics, the Pearson correlation (Corr),192

corrx,y =

∑n
i (xi − x̄)(yi − ȳ)√∑n

i (xi − x̄)2
√∑n

i (yi − ȳ)2
, (3)

and Potential Prognostic Predictability (PPP),193

PPP = 1−

√
(yi − xi)2√
(xi − x̄)2

, (4)

are used to quantify the model skill. For a given sample size n of a random variable x194

indexed with i, the skill of its prediction y can be quantified as (1) the covariance be-195

tween the prediction and the truth scaled by their individual standard deviations (i.e.,196

Corr) and (2) the the percentage of the true standard deviation explained by y (i.e., PPP).197

The “¯”s in Equation (3) and (4) denote the sample mean. Both Corr and PPP have198

a range from 0 to 1, with 1 being a perfect skill and 0 no skill. The difference between199

the metrics is that Corr quantifies how much x and y vary together regardless of their200

relative magnitudes to each other, while PPP takes the predicted magnitude into account201

for the accuracy.202

3 Feature exploration203

To explore the effectiveness of the candidate predictors in a nonlinear CNN model,204

we train seven CNN models with different input combinations using the historical sim-205

ulations of CESM2 with the resulting prediction skill evaluations, as shown in Table 1.206

A comparison across the seven models draws the following conclusions:207
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• M3 and M5 are better than M4, indicating that in the absence of the sea ice ve-208

locity persistence (ui0, vi0) as predictor, including the sea ice concentration as pre-209

dictor boosts the prediction accuracy.210

• M3 and M5 are no different in terms of rounded metrics, indicating that there is211

no added benefit to the prediction from including thickness as predictor.212

• Both M2 and M3 are better than M4, meaning that combining predictors of ei-213

ther ice conditions of concentration and thickness (c0 and s0) or velocity persis-214

tence (ui0 and vi0) with surface winds (ua1 and va1) enhances the prediction ac-215

curacy.216

• M2 is slightly better than M3, indicating that the concentration and thickness might217

be correlated with the ice velocity field. This is further supported by the fact that218

adding ice conditions to M2 does not significantly improve the prediction as shown219

in the comparison between M1 and M2220

For the remainder of our study, we select the best two combinations with the least num-221

ber of predictor inputs, M2 and M7, for training using the observational and reanaly-222

sis data.223

4 Results224

By training M2 and M7 using JRA reanalysis data for surface winds and satellite-225

derived data for ice velocities and conditions, we find that M7 is slightly better (by 5%)226

than M2 in terms of the prediction metrics. Therefore we adopt M7 as our final CNN227

model and present its results here.228

From the learning curve (Fig.2c,d), we see that the minimisation of the loss func-229

tion is saturated at around 50 epochs with approximately 50% of the standard devia-230

tion unexplained, which corresponds to a correlation of 0.88 and a PPP of 0.5 approx-231

imately with respect to the truth. The training and validation curves closely link to each232

other to show improvement with the number of epochs, confirming that the model does233

not suffer from overfitting.234

The prediction skill are evaluated in two fashions: local-wise and pattern-wise. Local-235

wise evaluation measures how well the model predicts the time series at a given pixel and236

presents a spatial distribution of the prediction metrics, as shown in Fig.2a,b. Pattern-237

wise evaluation, on the other hand, quantifies how well the prediction recovers the spa-238

tial pattern for each predicted field, quantified by computing Corr or PPP on each field239

flattened as a 1D vector and averaged over an interval such as a month (Fig3).240

For local-wise evaluation, we evaluate the predicted sea ice velocity in terms of speed241

and angle. Figure 2a shows the spatial distribution of the averaged difference between242

the predicted and true speed. We see that most of the prediction errors of the CNN model243

manifest underestimating the speed by 5 cm/s or so (approximately 10% of the average244

speed). In general, most of the underestimations occur away from the central Arctic and245

are greatest (up to 25 cm/s) near the sea ice edge in the Greenland and Barents seas.246

The significant deviations in the angle prediction, on the other hand, are mostly along247

the Siberian coast of the Arctic with an angular deviation of up to 100°(i.e. cos−1(−0.2) ≈248

100◦) from the truth (Fig.2b). On average, the angular error by CNN prediction over249

the interior of the central Arctic is approximately 32°(i.e. cos−1(0.85) ≈ 32◦).250

For pattern-wise evaluation, four baseline models (PS, LR, RF and MLP) are used251

for comparison. As shown in Fig.3, CNN outperforms all the baseline models that make252

pixel-based predictions, indicating the advantage gained from CNN’s nonlinearity and253

the neighboring pixel connections. Specifically, the fact that CNN outperforms persis-254

tence (PS) confirms the influence of surface winds and ice conditions on the sea ice dy-255

namic response.256
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Figure 2. The top row shows the mean prediction errors in terms of (a) speed and (b) angle

averaged over the test data set. Specifically, (a) shows the difference of the predicted speed and

the true speed in cm/s with negative values associated with underestimating the speed; (b) shows

the cosine of θ, the angle between the predicted velocity and the true velocity, with a cosθ closer

to 1 associated with a smaller angular deviation from the truth and a negative cosθ associated

with an angular deviation of greater than 90°. Both (a) and (b) are calculated for a given pixel

at each time and temporally averaged over the two testing years. The bottom row shows (c)

loss function and (d) Corr of prediction in the training and validation sets as indicated by the

legends. The metrics are computed on each flattened 1-D sample frame.
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Figure 3. The averaged (a) Corr and (b) PPP for different models over each calendar month

for the daily frames of the test set. The averages are computed as pattern-wise evaluation for

each frame given a month. The mean and standard deviation (std) of Corr and PPP over the

entire test set for each model are presented in the legends in the form of “mean+/-std”.

In addition, we also compute the Corr and PPP for the daily prediction of sea ice257

motion from a “stand-alone” sea ice simulation that is forced by prescribing the JRA55258

reanalysis. The output is from the CICE5, the 5th version of the Los Alamos Sea Ice Model259

(Hunke et al., 2015), which is also the sea ice component of CESM2. However, we find260

a Corr of 0.27 and PPP of -0.47, very low compared to the predictions of the CNN model.261

This is very likely resulted from the difference in sampling between the CICE5 model262

and verification data sets, which makes the comparison not really legitimate: the CICE5263

daily output is a snapshot at an instant in time, while the Polar Pathfinder ice motion264

is a daily composite composed of mosaic satellite images on a given day (Tschudi et al.,265

2019). In summary, CNN predicts the sea ice motions in response to the surface winds266

with the highest stable predictive skills compared to all the other pixel-based baseline267

models.268

Furthermore, we also developed a CNN model to predict the sea ice motion sim-269

ulated by the CICE5 model on its hourly timestep. In this case, (ua1, va1) were the present-270

hour winds from JRA55 (used to force CICE5) and (ui0, vi0) and c0 were the previous-271

hour output simulated by CICE5. Because the CICE5 model’s motion fields lack mea-272

surement error and the timestep was so small, we expected this CNN model trained on273

hourly CICE5 motion would yield an improved Corr and PPP over the results for pre-274

dicting daily satellite-based motion. However, it turns out that the finer temporal res-275

olution only leads to less than 6% of improvement in the prediction skill. This result sug-276

gests that an upper bound might exist for a data-driven model to learn the relationships277

that predict sea ice motion.278

5 Conclusions279

In this study, we construct a deep-learning model, CNN, to predict how the Arc-280

tic sea ice responds to a given surface wind. Specifically, it takes the previous-day sea281
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ice velocity and concentration as well as the present-day surface wind as input features282

and predicts the present-day sea ice velocity. The result of prediction is evaluated against283

four pixel-fitted baseline models which are PS, LR, RF and MLP. It follows that CNN284

outperforms all four baseline models in terms of Corr and PPP as the accuracy metrics.285

The superior performance of CNN over the pixel-based models suggests the importance286

of connecting the neighboring local dynamics over the Arctic when modeling the sea ice287

rheology. The CNN model is also far superior at predicting the observed motion than288

the standard CICE5 model, which suggests there may be promise for combining a machine-289

learning method with a physics-based model.290
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