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on ice-physical properties and data provided by the ESA’s Soil Moisture and Ocean Salinity (SMOS) mission. However,

retrieval accuracy is limited due to seasonally and regionally variable surface conditions during the formation and melting of

sea ice. In this work, Arctic sea ice is segmented using a Bayesian unsupervised learning algorithm aiming to recognize spatial

patterns by harnessing multi-incidence angle brightness temperature observations. The approach considers both statistical

characteristics and spatial correlations of the observations. The temporal stability and separability of classes are analyzed to

distinguish ambiguous from well-determined regions. Model uncertainty is quantified from class membership probabilities using

information entropy. The presented approach opens up a new scope to improve current SIT retrieval algorithms, and can be

particularly beneficial to investigate merged satellite products.
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Abstract17

Microwave radiometry at L-band is sensitive to sea ice thickness (SIT) up to ∼ 60 cm.18

Current methods to infer SIT depend on ice-physical properties and data provided by19

the ESA’s Soil Moisture and Ocean Salinity (SMOS) mission. However, retrieval accu-20

racy is limited due to seasonally and regionally variable surface conditions during the21

formation and melting of sea ice. In this work, Arctic sea ice is segmented using a Bayesian22

unsupervised learning algorithm aiming to recognize spatial patterns by harnessing multi-23

incidence angle brightness temperature observations. The approach considers both sta-24

tistical characteristics and spatial correlations of the observations. The temporal stabil-25

ity and separability of classes are analyzed to distinguish ambiguous from well-determined26

regions. Model uncertainty is quantified from class membership probabilities using in-27

formation entropy. The presented approach opens up a new scope to improve current28

SIT retrieval algorithms, and can be particularly beneficial to investigate merged satel-29

lite products.30

Plain Language Summary31

Remote sensing techniques are commonly used to provide maps of sea ice thick-32

ness (SIT). Methods to obtain these maps are based on the sea ice composition and on33

the signal measured by satellite. Sea ice Composition is spatially complex and changes34

during its formation and melting. Currently used data from observations of ESA’s Soil35

Moisture and Ocean Salinity (SMOS) mission depend on several sea ice parameters, which36

hinders good estimation of almost any specific sea ice parameter. In this work, a new37

method to combine the information contained in SMOS brightness temperature data is38

investigated, with the aim to divide the Arctic region into a number of smaller areas –39

so called classes. Useful information about sea ice is contained in the spatial and sta-40

tistical distribution of SMOS data, which are collected at different incidence angles. The41

relationship between the observations and the statistical properties of the obtained classes42

allow an assessment of its degree of separability and uncertainty. How classes change in43

time is used to estimate their temporal stability. The presented approach can be used44

to investigate the link between a variety of spatial datasets to improve current SIT prod-45

ucts, and can be applied in many scientific fields.46

1 Introduction47

The Arctic region shows strong positive feedback to global warming and is very sen-48

sitive to climate change. Arctic sea ice has been declining, with the sea ice minimum for49

September 2020 ending up being the second lowest in the 42-year satellite record (NSIDC,50

2020). Sea ice governs heat transfer and influences atmospheric circulation, which is par-51

ticularly important because low- and mid-latitude’s climates are closely related to po-52

lar climate (Overland & Wang, 2010; Francis & Vavrus, 2012). Monitoring of both sea53

ice concentration (SIC), as the fraction of sea-ice cover within an observed cell, and sea54

ice thickness (SIT) are necessary for a consistent determination of sea ice dynamics. Mi-55

crowave radiometry is independent of daylight and at lower microwave frequency it is56

mostly unaffected by atmospheric conditions. The emissivity in the microwave spectrum57

depends on the dielectric properties of sea ice, which are a function of its physical com-58

position including salinity, density, surface temperature, and surface roughness. In ad-59

dition, the signal is emitted from a radiating layer which depends on the penetration depth60

of the sensor. Therefore, the separability of surface properties, such as open water and61

sea ice including SIT, is - in theory - feasible.62

Several algorithms to retrieve SIT and SIC from brightness temperature (Tb) of63

satellite observations at Arctic scale have been developed, and various products have been64

deployed (Huntemann et al., 2014; Tian-Kunze et al., 2014; Kaleschke et al., 2016; Ricker65

et al., 2017; Gupta et al., 2019; Lavergne et al., 2019). ESA’s Soil Moisture Ocean Salin-66
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ity (SMOS) mission (Font et al., 2009; Kerr et al., 2010) provides multi-incidence angle67

full-polarization Tb maps at L-band (1.4 GHz), which show sensitivity to thin sea ice.68

However, sea ice is under continuous transformation showing regional and seasonal vari-69

ability. Physics-based methods to retrieve SIT strongly rely on knowledge of the ice-physical70

parameters. These parameters are estimated from empirically determined properties of71

different ice types (e.g. first- or multi-year ice). Thus, models can be subject to over-simplification,72

and model uncertainty is difficult to estimate, especially at Arctic scales considering an73

entire year. Validation capability is also limited due to sparsely available, only region-74

ally and seasonally acquired, in-situ and airborne data. SIT retrieval algorithms perform75

well during Arctic freeze-up (Kaleschke et al., 2016), whereas heterogeneous conditions76

of sea ice during summer melt and limited spatial resolution of satellite observations make77

SIT estimation highly ambiguous. Therefore, SIT maps of sufficient quality are only avail-78

able from mid-October to mid-April.79

In this study, a data-based approach is investigated to segment Arctic sea ice, as-80

suming that independent information about its properties are captured in the SMOS multi-81

incidence angle Tb dataset. The aim is to yield a framework to reveal spatial patterns82

from differences and similarities in the sensitivity of Tb observations to sea ice proper-83

ties using an unsupervised learning algorithm. A Bayesian inferential model based on84

Gaussian Mixture Models (GMM) and Hidden Markov Random Fields (HMRF) consid-85

ers both the statistical characteristics and the spatial correlations of the observations (Wang86

et al., 2017). The Arctic region is reduced to a relevant number of spatial classes, while87

keeping the probabilistic distribution for subsequent cluster analysis and uncertainty quan-88

tification. Spatial information is provided in terms of a latent field in physical space and89

statistical information is indicated by the means and covariances of the obtained classes90

in the feature space. A direct inference of sea ice properties, particularly at the ocean-91

ice-boundary, is ambiguous because SMOS observations can be sensitive to both SIC and92

thin sea ice. Therefore, Tb observation consisting of open water, and low SIC are cor-93

rected using SIC maps of the OSI-401-b product, provided by the European Organisa-94

tion for the Exploitation of Meteorological Satellites (EUMETSAT). The polarization95

ratio (PR) between horizontally and vertically polarized values is selected for segmen-96

tation to increase the sensitivity to sea ice signatures by reducing the effect of physical97

surface temperature.98

2 Data and Methods99

In this study, PR maps at multi-incidence angles are obtained from SMOS Tb ob-100

servations and OSI-401-b SIC maps, and are used to segment the Arctic ocean into sub-101

regions based on different sea ice properties. The proposed unsupervised machine learn-102

ing approach is based on a Bayesian inference framework (Wang et al., 2017). The aim103

is to indicate patterns in a latent field in physical space according to the most relevant104

Tb observations. The temporal evolution of these patterns can be analyzed in terms of105

cluster separability and correlation of the input features to investigate the correspond-106

ing sea ice signatures.107

2.1 SMOS multi-incidence angle Tb data108

ESA’s SMOS mission was originally designed to provide global and frequent maps109

of soil moisture and ocean salinity, but measurements also show sensitivity to different110

sea ice properties (thin SIT and SIC). The SMOS satellite is equipped with the Microwave111

Imaging Radiometer with Aperture Synthesis (MIRAS), an interferometric radiometer112

operating at L-band (∼ 1.4 GHz) that acquires multi-incidence angle (0 - 60 ◦) full polar-113

ization Tb in ascending (6 a.m.) and descending (6 p.m.) sun-synchronous orbit (Corbella114

et al., 2005). Tb maps are retrieved with a radiometric resolution between 0.8 - 2.2 K, a115

spatial resolution of ∼ 35 km at centre of field of view, and a revisit time of ∼ 1 - 3 days116
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(Famiglietti et al., 2008). The retrograde polar orbit (98.42 ◦ inclination and 758 km al-117

titude) limits the observations to a maximum latitude of ∼ 84 ◦, resulting in missing val-118

ues around the poles (’polar hole’). The input dataset for this study is given by the SMOS119

Level 1B data product consisting of the Fourier components of Tb in the antenna po-120

larisation reference frame. The high jump discontinuities in Tb between land and sea ob-121

servations lead to oscillations after image reconstruction at coastal areas (Gibbs phenomenon).122

These contaminated zones, as well as continental land mass, were removed in the data123

product. Ascending and descending SMOS observations show only small differences in124

Tb. Therefore, Tb of both orbits are averaged. A daily multi-angular dataset with 2 ◦125

sampling is created similar to Gabarró et al. (2016) with Tb provided in horizontal and126

vertical polarization.127

2.2 Input features selection128

The study period includes the late summer melt and the first half of the freeze up129

period from September 1 to December 31, 2016. Tb data are averaged over 5 days to guar-130

antee full coverage of the Arctic ocean. Pixels of Tb images either consist of sea ice with131

(0 < SIC ≤ 1), or purely consist of open water (SIT = 0). The sea ice surface repre-132

sents a grey body, and Tb is the product of the emissivity (ε) and the physical temper-133

ature (TPhys), which is non-negligible in the lower microwave spectrum and varies de-134

pending on the atmospheric conditions among the Arctic. Therefore, input data for seg-135

mentation are selected with the objective to correct for SIC and to reduce the effect of136

spatial and temporal variability of TPhys on Tb. In addition, direct inference of specific137

sea ice properties, particularly at the ocean-ice-boundary, is ambiguous by the fact that138

Tb can be sensitive to both SIC and thin SIT.139

In a first step, Tb(SI)
was determined from the observed Tb, SIC, and the freezing140

point of seawater (Tb(OW )
) (eq. 1).141

Tb = αTb(SI)
+ (1− α)Tb(OW )

with α ∈ [0, 1] and Tb = ε Tphys (1)142

Hereby, OSI-401-b SIC maps are provided in a polar stereographic projection grid at 10 km143

resolution and are regridded and upscaled to SMOS resolution using kd-tree resampling.144

Tb(OW )
are determined at different incidence angles and polarizations by evaluating the145

coldest values obtained for observations with low SIC located at latitudes above 75 ◦N.146

SIC is often underestimated with respect to SIT, resulting in an overestimation of Tb,147

which particularly influences the segmentation of areas covered by thin ice along sea ice148

edges. Therefore, a SIC threshold of α=0.5 was chosen to provide an open water mask149

and to exclude observations classified with low SIC, which limits the overestimation er-150

ror.151

In a second step, to account for variations in TPhys, the polarization ratio (PR)152

is computed as the normalized difference between vertically and horizontally polarized153

values (Tb(SI,V )
and Tb(SI,H)

) as follows154

PR =
Tb(SI,V )

− Tb(SI,H)

Tb(SI,V )
+ Tb(SI,H)

=
ε(SI,V ) − ε(SI,H)

ε(SI,V ) + ε(SI,H)
, (2)155

which reduces to the emissivities of sea ice with the advantage of enhancing the sensi-156

tivity to the actual sea ice properties. Tb(SI,V )
is higher than Tb(SI,H)

with larger differ-157

ences for increasing incidence angles. Also, emissivity depends on the optical path length158

through sea ice, and PR increases for observations at higher incidence angles. PR‘s ob-159

tained for high incidence angles showed sufficient sensitivity range over ice-covered area160

with values reaching from 0 (thick ice, saturation) to ∼ 0.3 (thin ice) and its distribu-161

tion depends on the observed period. Selecting PR values for high angles increases the162

content of independent information about sea ice, whereas values at lower angles are more163

likely to contain redundant information, which may lead segmentation biases. An assess-164

ment of the dominant features of SMOS data showed that sufficient angular variability165
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of SMOS Tb can be already obtained using three incidence angles. Therefore, PR maps166

at 40 ◦, 48 ◦ and 56 ◦ are used as input features for segmentation.167

2.3 Bayesian unsupervised machine learning algorithm168

A Bayesian unsupervised machine learning approach Wang et al. (2017) is employed,169

previously applied to extract patterns of subsurface heterogeneity from geophysical multi-170

source data (Wang et al., 2019; Herbert et al., 2019). A Gaussian Mixture Model (GMM)171

is used to fit N data points (image pixels) in an M -dimensional space (M number of fea-172

tures) to find an optimal set of multivariate Gaussian distributions (L classes). The dis-173

tributions are parametrized by their means µθ,l and covariances Σθ,l for each cluster l174

and incidence angle θ. Since features originate from satellite observations, a Hidden Markov175

Random Field (HMRF) is used to consider the statistical characteristics of data points176

in feature space as well as their spatial dependencies. A directional smoothing coefficient177

β accounts for anisotropy conditions with the assumption that neighboring pixels are more178

likely to belong to the same class. The segmentation results in a latent field x of hid-179

den variables, which indicates the most probable class membership as well as the prob-180

ability p(xi)l of each pixel i to belong to class l ∈ L. The segmentation procedure is181

described in detail in Wang et al. (2017). The model parameters (µ,Σ, β) as well as the182

latent field x are obtained through Bayesian optimization in an iterative sampling pro-183

cess using a Markov Chain Monte Carlo (MCMC) approach after an initial Expectation-184

Maximization step. Prior to segmentation, the number of classes was predefined regard-185

ing the distribution of PR values. During late summer melt, only two significant classes186

are expected, comprising the remaining thick multi-year ice and regions of thinner ice.187

After sea ice minimum in mid-September, an additional third class is introduced, rep-188

resenting newly formed sea ice during freeze up. This choice is further approved by an189

a posteriori evaluation of cluster separability.190

2.4 Cluster analysis191

Results of the Bayesian segmentation are analyzed regarding the obtained patterns192

in physical space, and the location and orientation of clusters in feature space. The information-193

theoretic measure of entropy (H) is used to provide model uncertainty. It was initially194

defined by (Shannon, 1948) in the context of communication and has since been adapted195

to geosciences (Goodchild et al., 1994; Wellmann & Regenauer-Lieb, 2012). It is used196

to distinguish well-classified from uncertain regions and is defined by197

H(xi) = −
L∑
l=1

p(xi)l log(p(xi)l), (3)198

where p(xi)l denotes the probability in the physical space of pixel i to belong to class199

l. H can reach values close to zero (pixel clearly assigned to one class) and Hmax = L[1−200

log(L)] (uniform distribution for L classes).201

Sea ice properties, to which SMOS multi-incidence Tb are sensitive to, are dissim-202

ilar between classes and show similarities within the same class. Clusters in feature space203

are investigated regarding their location and orientation by analyzing the model param-204

eters µ and Σ. The correlation coefficient ρ quantifies the intra-cluster cohesion and can205

be used to distinguish between informative and redundant observations (Benesty et al.,206

2009). It is derived for each cluster from Σ in two-dimensional marginal space between207

features j and k ∈ {40◦, 48◦, 56◦}208

Σl =

[
Σjj Σjk
Σkj Σkk

]
l

=

[
σ2
j σj σkρjk

σk σjρkj σ2
k

]
l

, (4)209
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where σj,k correspond to the standard deviations with respect to feature j, k and ρjk =210

ρkj denote the correlation coefficients between two features, given by211

ρjk =
Σjk
σjσk

=
Σjk

Σ
1/2
jj Σ

1/2
kk

, −1 ≤ ρjk ≤ 1. (5)212

The Geometric Separability Index (GSI) (Thornton, 1998) is a distance-based measure213

to analyze inter-cluster separability and is widely used for cluster interpretation (Greene,214

2001; Mthembu & Marwala, 2008). GSI compares all N data points with their nearest215

neighbor regarding their class membership and is defined by216

GSI(f) =

N∑
i=1

(f(xi) + f(x′i) + 1) mod 2

N
with f(xi) =

{
1, if x′i = xi

0, if x′i 6= xi
, (6)217

where f is a binary target function, and x′i is the nearest neighbor of xi in the feature218

space of pixel i. GSI∈ [0.5, 1] and for values reaching its lower or upper limit, clusters219

are completely entangled or ideally separable, respectively. In this study, both global and220

cluster-specific separability are estimated. Global separability is computed based on Eu-221

clidean distance for all data points, and cluster-specific separability is obtained based222

on Mahalanobis distances (xi−µ) Σ−1 (xj −µ)T , considering the data points and co-223

variances of the specific cluster (Mahalanobis, 1936). GSI is investigated along the study224

period to evaluate the dynamics of the underlying sea ice properties and the stability of225

the segmentation.226

3 Results227

Arctic sea ice is segmented independently for 5-day intervals into classes during the228

periods of late summer melt and early freeze up from September 1 to December 31, 2016.229

The latent field in physical space and the corresponding multivariate Gaussian distri-230

butions of data points in feature space are presented as an example for the segmenta-231

tion step interval between October 24 - 28, 2016 (sections 3.2 and 3.1). The temporal evo-232

lution of model parameters (cluster means and variation) is evaluated in section 3.3. Class233

membership and separability are assessed in section 3.4 to indicate cluster stability and234

performance of the algorithm.235

3.1 Latent field of classes in physical space236

The Figures 1a and 1b show the resulting latent field and the model uncertainty237

quantified by information entropy, respectively. The latent field indicates spatial patterns,238

which are acquired from the final iteration of the segmentation by assigning the class with239

highest probability to every pixel. Pixels with the probability to belong to two or more240

clusters have larger entropy and reflect therefore uncertain pixels. These pixels comprise241

regions at the boundary between classes and pixels, which are generally difficult to as-242

sign to any cluster. In the latter case, these pixels may point out sub-regions with dif-243

ferent sea ice properties (anomalies), which are characterized with high model uncertainty.244

The segmented spatial patterns are compared to those of the SMOS L3 Sea Ice Thick-245

ness product, provided by the Alfred Wegener Institute (AWI) for Polar and Marine Re-246

search (Tian-Kunze et al., 2014). SIT means were computed according to the indicated247

spatial classes in each segmentation step, and averaged values are determined during freeze248

up from October 15 to December 31, 2016. The three classes can associated to differ-249

ent ice thickness (in meters) of 1.24± 0.10, 0.54± 0.24 and 0.13± 0.07, respectively. The250

classes are labeled as (0 =̂ thick ice up to sensor saturation), (1 =̂ transition zone with251

higher thickness variability, containing various ice types), and (2 =̂ newly-formed thin252

ice).253
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Figure 1. Segmentation result for observations between October 24 and October 28, 2016. [a]

Latent field result for three classes. [b] Model uncertainty represented by information entropy

based on label probabilities. [c] PR in marginal feature space between the incidence angles 48

and 56 ◦ and correlation for each cluster. [d] Variation of PR cluster means with incidence angle.

3.2 Clusters in feature space254

Figure 1d illustrates the PR cluster means for different incidence angles. Higher255

values are obtained for higher incidence angles, characterized by different slopes within256

the same class, showing that the set of selected input features provides independent in-257

formation about the sea ice surface. The multivariate Gaussian distributions with the258

corresponding clusters in marginal features space between the incidence angles 48 and259

56 ◦ are illustrated in figure 1c. The correlation between the input features is generally260

higher for thick ice resulting in a well-determined cluster with higher intra-cluster co-261

hesion. In contrast, newly-formed thinner ice shows less correlation between input fea-262

tures. This enables to discriminate classes of similar surface characteristics, to which multi-263

incidence angle observations show a different signature. However, sea ice is a complex264

medium and sea ice growth can occur under rougher or calmer ocean conditions, caus-265

ing newly formed ice to be heterogeneous. These differences in the origin of sea ice for-266

mation might be captured in the input features, indicated by a broader distribution in267

marginal features space. On the contrary, the structures of multi-year thick ice appear268

more homogeneous.269
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3.3 Temporal evolution of clusters270

Figure 2 shows the temporal evolution of cluster means and standard deviations271

(StDev) in marginal feature space for θ = 56 ◦, and the distribution of PR and the cor-272

responding class membership at three particular dates. The late summer melt comprises273

two significant classes until annual sea ice extent reaches its minimum (September 6, 2016).274

The evolution of cluster means is compared to the mean Arctic temperature, which is275

computed from daily 2 m temperature ERA5 reanalysis data for latitudes above 75 ◦N276

and downloaded from the European Centre for Medium-Range Weather Forecasts (ECMWF)277

(C3S, 2017). Once Arctic temperatures drop long enough below the freezing point of saline278

sea water (∼ -1.8 ◦C) to allow sufficient heat transfer towards the atmosphere, new sea279

ice starts to form. Hence, a third class can be determined, which is represented by a sig-280

nificant number of PR values above 0.15. Cluster mean of thick ice is widely stable over281

the entire study period. Two phenomena can be observed regarding new thin ice. Firstly,282

its cluster mean decreases and gradually closes up with the transition zone. Secondly,283

an overlap between clusters can be observed in relation to strong positive temperature284

anomalies in the Arctic. This can be due to class imbalance arising from a decreasing285

amount of newly-formed ice, comparing to the total sea ice extent. Also, as the sea ice286

edge reaches lower latitudes during freeze up, which are characterized by different cli-287

mate conditions, a decrease in PR values can be observed although a significant amount288

of sea ice is still being formed.289

Figure 2. Temporal evolution of clusters. [a] Temporal evolution of cluster means and stan-

dard deviations at 56 ◦ incidence angle and mean Arctic temperature for latitudes > 75 ◦N. [b]

PR distribution with respect to class membership at three particular dates (September 4-8,

October 24-28 and December 24-28, 2016).

Figure 3a shows the evolution of the number of pixels per class membership for fil-290

tered sea ice (SIC> 0.5) in comparison to the total sea ice extent (SIE). SIE comprises291
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sea ice cover for SIC> 0.15 and daily data was downloaded from the data archive of the292

National Snow and Ice Data Center (NSIDC, 2020). Deviations and offsets between SIE293

and the total pixel counts are due to missing values within the ‘polar hole’ and contam-294

inated zones at the sea-land boundary. The increase of the total number of pixels is equiv-295

alent to a monthly growth rate in SIE of about 2.5× 106 km2. The number of pixels con-296

sisting of newly-formed ice is broadly stable, whereas the number pixels classified as tran-297

sition zone are slightly increasing during freeze up. As sea ice grows, thick sea ice be-298

comes more abundant, leading to a log-normal-shaped PR distribution with increasing299

expected value (Figure 2b,3). Although thin ice becomes less representative in the data300

during freeze up, the algorithm is still capable of separating three classes as long as sea301

ice formation continues.302

3.4 Separability of clusters303

Global and cluster-specific separability are shown in figure 3b. The solid lines show304

the GSI for a choice of two classes in late summer melt and three classes during freeze305

up. High global separability is achieved along the entire study period with values around306

0.9. The cluster-specific GSI indicates separable classes with mean values of 0.95, 0.83307

and 0.83 for thick ice, transition zone and new sea ice, respectively. Along the freeze up,308

new thin ice starts to overlap with the transition zone and a threshold of minimum GSI309

needs to be defined to specify the appropriate number of classes for each segmentation310

step. For comparison, GSI is shown for the end of the summer melt period for a segmen-311

tation with three classes (dashed lines). In this case, classes highly overlap and the choice312

of two initial clusters from the beginning of the study period leads to higher separabil-313

ity.314

Figure 3. [a] Temporal evolution of class membership and sea ice extent, with indicated sea

ice minimum and SIC. [b] Global and cluster-specific GSI along the observation period, deter-

mined from nearest-neighbor evaluation using Euclidean and Mahanalobis distances, respectively.
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4 Discussion315

A novel approach is evaluated to obtain sea ice maps from SMOS observations us-316

ing Bayesian segmentation. The estimation of a constant number of stable and separa-317

ble classes revealed periods, when Tb observations show similar sea ice signatures. The318

information content obtained by linking Tb data at multiple incidence angles and po-319

larizations is reduced to a number of most significant classes, with good inter-cluster sep-320

arability. The corresponding spatial patterns, which are indicated in the latent field re-321

sult, can be used to extract the heterogeneity of the underlying sea ice properties.322

Information entropy points out both uncertain zones between segmented classes323

and anomalies which can form sub-classes. As an example, ponded sea ice during sum-324

mer melt has different surface characteristics, which may result in a further discriminable325

class only during that particular period. Since cluster means represent the most signif-326

icant observations at every segmentation step, their temporal evolution can be used to327

define dynamic tie points. These tie points can be analyzed to investigate how sensitive328

input features respond to changes in sea ice signatures.329

The implemented method serves as a framework to integrate multi-source datasets330

and is capable of recognizing patterns by considering the statistical characteristics and331

spatial correlations. The relationship of satellite observations at multiple frequencies can332

be used to select an appropriate set of input features and to enhance the sensitivity to333

ice-physical parameters, such as SIT. A combination of the presented data-driven seg-334

mentation approach with a physics-based inference model build upon the estimated dis-335

tribution of classes may increase the retrieval accuracy of existing large-scale sea ice prod-336

ucts.337

5 Conclusion338

In this work, Arctic sea ice is classified using a Bayesian unsupervised learning ap-339

proach by making full use of the information about sea ice properties contained in the340

PR of SMOS multi-incidence angle Tb data. Sea ice properties are considered anisotropic341

as well as regionally and seasonally variable among the Arctic and Tb cannot be assumed342

to be sensitive to similar properties over an entire year. Therefore, both statistical char-343

acteristics of observations are evaluated and the segmentation is carried out by means344

of a discretized number of spatially regularized classes. The number of classes was de-345

termined a priori from the PR distribution and was verified a posteriori using GSI. Model346

uncertainty was determined using information entropy and enabled to distinguish well-347

determined from uncertain regions. High global separability was achieved considering348

two classes during late summer melt and three classes during freeze up, respectively. A349

comparison with existing SMOS-SIT maps indicated that classes can be attributed to350

SIT ranges. During late summer melt, two classes could be attributed to remaining thick351

ice and a transition zone, showing differences in the correlations of the input features.352

With the beginning of the formation of new thin ice during freeze up, an additional class353

could be discriminated based on the occurrence of higher PR values. However, the de-354

crease in relative abundance of newly formed ice to the total sea ice during freeze up re-355

sulted thin sea ice to be less significant and led to higher overlap between classes. The356

underlying sea ice properties and the corresponding variation in PR have to be better357

understood to draw conclusions of the obtained classes, considering an entire annual cy-358

cle of Arctic sea ice formation and melting.359
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Introduction

The choice of the appropriate number of classes is justified from the distribution of

input features and the class separability. Figure F1 shows the marginal distribution of the

polarization ratio (PR) at an incidence angle of 56◦ at 4 particular dates including the end

of summer melt and the early freeze-up. PR distributions are shown for segmentation with

2 and 3 classes, respectively. During late summer melt until sea ice minimum (September

10, 2016), the choice of two classes was expected from the shape of the PR distribution.

With the beginning of the freeze-up period, higher PR values become more frequent and an

additional class is expected. Class separability is indicated by the Geometric Separability

Index (GSI) and was obtained subsequent to segmentation. From the segmentation step

at September 16, 2016 onwards, segmentation with a choice of 3 classes results in higher

separability.

The classes were labeled according to the sea ice thickness estimates of the available

SMOS-SIT product (Tian-Kunze et al., 2014). Figure F2 visualizes the latent field result

in comparison to SMOS-SIT maps at the segmentation step intervals October 19-23,

November 8-12, and December 23-27, 2016. Class 0 predominately contains consolidated

thick ice beyond the sensitivity range of L-band >∼ 0.6 m (sensor saturation), class 1

refers to a transition zone of multiple thickness and types, and class 2 can be attributed

to newly-formed thin ice.

Table T1 summarizes the obtained class mean values and standard deviations, averaged

over the freeze-up period from October 15 to December 31, 2016. At each segmentation

step interval, SIT mean values for each class are calculated according to the spatial pat-
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terns of the latent field result. The obtained values at each segmentation step are then

averaged over the freeze-up. The classes 0 and 2 show less variation and form stable clus-

ters along the entire period, whereas class 1 contains higher variation. All three classes

show sufficient separability along the entire period.

Caption Animation A1 Animation of the spatial patterns of the latent field result in

physical space at each segmentation step interval from September 1 to December 31, 2016,

including the distribution of the PR at 56◦ incidence angle.
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Figure F1. Distribution of PR values at 56◦ incidence angle for late summer melt

and early freeze up from September 1 to September 16, 2016, including the indicated

class membership and global separability (GSI), obtained for segmentation with 2 classes

(left-hand side) and 3 classes (right-hand side), respectively.
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Figure F2. Comparison of the obtained latent field result with SIT maps of the SMOS-

SIT product, averaged over the corresponding segmentation period (5-day interval).
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Table T1. Summary of the temporal evolution of classes, evaluated within the freeze-up

period from October 15 to December 31, 2016. Comparison of PR cluster mean values and

standard deviations (StDev) at 56◦ incidence angle, including global separability (GSI),

with the SMOS-SIT product.

Class Label PR mean PR StDev GSI SMOS-SIT [m]

0 Thick ice 0.061± 0.005 0.014± 0.004 0.95± 0.02 1.24± 0.010

1 Transition zone 0.112± 0.012 0.028± 0.006 0.83± 0.04 0.54± 0.24

2 New thin ice 0.187± 0.03 0.048± 0.009 0.83± 0.08 0.13± 0.07
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