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2Université de Lorraine
3CRPG-CNRS
4University of Colorado Boulder

November 26, 2022

Abstract

Our understanding of the nature of crustal formation in the Eoarchean is severely curbed by the scarcity and poor preservation

of the oldest rocks, and variable and imperfect preservation of protolith magmatic signatures. These limitations hamper our

ability to place quantitative constraints on thermomechanical models for early crustal genesis and hence on the operative

geodynamical regimes at that time. Controls on the liquid line of descent responsible for Eoarchean crust petrogenesis could

help us understand more, but these remain vague. Growth of Archean crust may have occurred dominantly via processes akin

to modern oceanic crustal genesis, coupled to a vertical geodynamic regime. Equally, convergent boundary processes, including

subduction, are argued to be important in the development of the crust before about 3.8 Ga. The recently discovered ca. 3.75 Ga

Ukaliq supracrustal enclave (northern Québec) is mainly composed of serpentinized ultramafic rocks and amphibolitized mafic

schists. Inferred protoliths to the Ukaliq serpentinites include dunites, pyroxenites, and hornblendites with compositions similar

to that of arc crust cumulates, whereas the mafic rocks were probably basalts to basaltic andesites. The Ukaliq cumulates record

two liquid lines of descent: (i) a tholeiitic suite, partially hydrated, resulting from the fractionation of a basaltic liquid; and (ii)

a boninitic suite documenting the evolution of an initially primitive basaltic to andesitic melt at ˜0.5 GPa and containing >6

wt% H2O. Together with the presence of negative μ142Nd anomalies, this information points to a deep fluid input via recycling

of Hadean crust in the Eoarchean via modern-style subduction.
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Abstract 25 

Our understanding of the nature of crustal formation in the Eoarchean is severely curbed by the 26 

scarcity and poor preservation of the oldest rocks, and variable and imperfect preservation of 27 

protolith magmatic signatures. These limitations hamper our ability to place quantitative con-28 

straints on thermomechanical models for early crustal genesis and hence on the operative geo-29 

dynamical regimes at that time. Controls on the liquid line of descent responsible for Eoarchean 30 

crust petrogenesis could help us understand more, but these remain vague. Growth of Archean 31 

crust may have occurred dominantly via processes akin to modern oceanic crustal genesis, cou-32 

pled to a vertical geodynamic regime. Equally, convergent boundary processes, including sub-33 

duction, are argued to be important in the development of the crust before about 3.8 Ga. The 34 

recently discovered ca. 3.75 Ga Ukaliq supracrustal enclave (northern Québec) is mainly com-35 

posed of serpentinized ultramafic rocks and amphibolitized mafic schists. Inferred protoliths to 36 

the Ukaliq serpentinites include dunites, pyroxenites, and hornblendites with compositions sim-37 

ilar to that of arc crust cumulates, whereas the mafic rocks were probably basalts to basaltic 38 

andesites. The Ukaliq cumulates record two liquid lines of descent: (i) a tholeiitic suite, partially 39 

hydrated, resulting from the fractionation of a basaltic liquid; and (ii) a boninitic suite docu-40 

menting the evolution of an initially primitive basaltic to andesitic melt at ~0.5 GPa and con-41 

taining >6 wt% H2O. Together with the presence of negative μ142Nd anomalies, this information 42 

points to a deep fluid input via recycling of Hadean crust in the Eoarchean via modern-style 43 

subduction.  44 

 45 

Plain Language Summary 46 

The processes of crust formation that prevailed during the first billion year of Earth's history 47 

remain largely speculative. Based on numerical modeling, two contrasting views of early 48 

Earth's crustal formation have been proposed, involving either a modern-like, plate tectonic 49 
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regime or a vertical, non-plate tectonic regime. Deciphering between these geodynamic models 50 

require understanding the origin and evolution of Eoarchean magmas, but these remain poorly 51 

constrained due to the extreme scarcity and overall poor preservation of Earth's oldest rocks. In 52 

this study, we document the petrography of mafic and ultramafic rocks of the recently discov-53 

ered 3.75 Ga Ukaliq supracrustal belt in northern Québec. We show that the mineralogy and 54 

chemistry of the ultramafic rocks are similar to modern subduction-related arc lower crust while 55 

mafic rocks are comparable to arc-related lavas. This observation allows defining two magmatic 56 

series: (i) a partially hydrous tholeiitic suite; and (ii) a highly hydrated, low pressure boninitic 57 

suite. The high water content inferred for the boninitic suite combined with their anomalous 58 

142Nd signature are symptomatic of the recycling of a Hadean lithosphere via modern-style sub-59 

duction. 60 

 61 

 62 
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1. Introduction 75 

Earth’s crust has been sculpted by plate tectonics for billions of years; the process mainly re-76 

sponsible for this complex dynamic is subduction. It is widely held that since its inception, plate 77 

tectonics has governed the mode of crust formation and cooling, as well as the long-term oper-78 

ation of the geochemical cycles and, hence, the evolution of the atmosphere, hydrosphere, and 79 

biosphere in what has been termed “biogeodynamics” (e.g., Stern, 2002; Von Huene & Scholl, 80 

1991; Zerkle, 2018). Within the plate tectonics milieu, subduction zones generate continental 81 

crust through mantle wedge partial melting and magmatic accretion beneath island arcs (Ring-82 

wood, 1974; Taylor & McLennan, 1985). The record of Hf isotopes in zircon is interpreted to 83 

show that >70% of crustal growth occurred in the Archean, or before about 2.5 Ga (e.g., Bel-84 

ousova et al., 2010; McCulloch & Bennett, 1994). Yet, a petrogenetic process to explain such 85 

a crustal growth trajectory remains widely speculative. This is even more so when the question 86 

of continental development is paired with various geodynamic models. Based mostly on geo-87 

chemical and mechanical-structural constraints, the prevailing view asserts that vertical tecton-88 

ics rather than active subduction molded the Hadean–Archean Earth’s crust (e.g., Bédard et al., 89 

2003; Shirey & Richardson, 2011). Considering a mantle potential temperature 300°C greater 90 

than that of today, mantle melting should have occurred at a greater depth to produce a thick 91 

buoyant crust (Johnson et al., 2014; Korenaga, 2006; McKenzie & Bickle, 1988; Sleep, 2005). 92 

Arguably, the thermal and mechanical properties of such thick crust inhibited subduction pro-93 

cesses to instead favor emplacement of a long-lived lithosphere susceptible to reworking via 94 

what may have been catastrophic vertical transfer (e.g., Bédard, 2006; Bédard, 2018). At odds 95 

with these interpretations are recent numerical models which show that plate tectonics can pro-96 

ceed even under the thermal boundary conditions of very thick and buoyant crust (e.g., Maunder 97 

et al., 2016; Weller et al., 2019). Shirey et al. (2008) present petrological and geochemical 98 

constraints compatible with the initiation of subduction at approximately 3.9 Ga. Similarly, the 99 
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composition of the liquid in equilibrium with the Hadean Jack Hills zircons as well as new Si 100 

isotopes constraints on Eoarchean tonalites–trondjhemites–granodiorites (TTG) lend support to 101 

the idea that the onset of plate tectonics occurred at the Hadean–Eoarchean transition around 4 102 

Ga ago rather than sometime later (Deng et al., 2019; Turner et al., 2020). A competing study 103 

of silicate and sulfide inclusions captured in ancient diamonds argues in favor of the initiation 104 

of plate tectonics after about 3 Ga (Shirey & Richardson, 2011), whereas other work from stud-105 

ies of ophiolites and high-pressure metamorphic terranes (Stern, 2005) proposes that this pro-106 

cess only began as recently as Neoproterozoic time. To resolve these conflicting conclusions 107 

about Earth’s history of plate tectonics requires analysis of the oldest terranes. The main chal-108 

lenge is to identify Eoarchean crustal remnants that preserve petrological and geochemical char-109 

acteristics consistent with protolith formation at convergent margin settings under the hydro-110 

chemical and thermochemical influences of subduction. 111 

One such ancient terrane is the ~12,000 km2 Archean Inukjuak domain in the northeast Superior 112 

Province of Québec, Canada (Greer et al., 2020). Briefly, the Eoarchean  supracrustal enclaves 113 

of the Ukaliq (and nearby Nuvvuagittuq) locality are part of the Innuksuac complex (Simard et 114 

al., 2003), an association of scattered variably-deformed supracrustal rafts which range in size 115 

from <1 m to >1 km and caught up within the granitoid gneisses of the Inukjuak domain. As 116 

described elsewhere (Caro et al., 2017), the Ukaliq rocks comprise a series of mafic schists 117 

interpreted to have volcanic protoliths chemically similar to those found in a modern forearc 118 

environment such as tholeiitic and boninitic lavas. These are also associated with calc-alkaline 119 

andesites, the identification of which brings into question the exclusivity of a vertical tectonic 120 

model for the entirety of the Archean (e.g., Turner et al., 2014). We wish to emphasize that the 121 

Innuksuac complex has parallels with rocks documented in the 3.7–3.81 Ga Isua supracrustal 122 

belt (ISB; southern West Greenland; Szilas et al., 2015), as well as in younger Archean com-123 

plexes (e.g., Cawood et al., 2006). As opposed to the ISB rocks which have well-documented 124 
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higher 142Nd/144Nd values (Caro et al., 2003) relative to bulk silicate Earth (BSE) and reported 125 

in the conventional μ142Nd notation as positive anomalies, the numerous lithologies of the In-126 

nuksuac complex preserve variably negative μ142Nd anomalies (Caro et al., 2017; O’Neil et al., 127 

2008; Roth et al 2013). There are two ways to explain these divergent μ142Nd values for what 128 

otherwise appears to be synchronous Eoarchean terranes: (i) the negative μ142Nd were produced 129 

by in situ decay of 146Sm after emplacement of the rocks, in which case the Nuvvuagittuq belt 130 

is of Hadean age (O’Neil et al., 2008, 2019); or (ii) the negative μ142Nd signature is inherited 131 

from a now-vanished Hadean lithosphere and the μ142Nd–Sm/Nd correlation interpreted by 132 

O'Neil et al (2008) as an isochron represents a mixing line without any geochronological sig-133 

nificance. Such an inherited signal can be duplicated by crustal assimilation or subduction of 134 

Hadean crust (Caro et al., 2017). 135 

However, two key observations belie the assimilation argument. The first of these is that in 136 

spite of the ubiquitous Hadean crustal signatures there are no zircons of Hadean age in rocks of 137 

the Innuksuac complex. This is despite thousands of U–Pb zircon analyses performed on sam-138 

ples of igneous and detrital sedimentary protoliths collected from throughout the terrane 139 

(Chowdhury et al., 2020; Greer et al., 2020 and references therein). A second argument lies in 140 

the absence of crustal (felsic) contaminants with sufficiently unradiogenic 142Nd signature to 141 

account for the μ142Nd values found in the Nuvvuagittuq supracrustal belt (NSB) mafic rocks 142 

(Caro et al., 2017). To account for these observations, we argue here that a scenario where 143 

recycling occurred through a subduction process in the Eoarchean neatly explains not only the 144 

typical forearc sequence preserved in the Innuksuac supracrustals, but also the trace element 145 

concentrations and the enriched 142Nd and 143Nd signatures contained therein.  146 

In this work, we turn our attention to the ultramafic–mafic supracrustal enclave at the Ukaliq 147 

locality to describe (1) the preservation of Eoarchean magmatic features, (2) the cumulate–148 

liquid relationship between the ultramafic and mafic rocks, (3) the cumulate assemblages that 149 
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formed during the ascent of primitive magmas, and (4) the corresponding liquid line of descent. 150 

Based on these observations, we provide an explanation for the chemical evolution of the su-151 

pracrustal rocks that requires transition from a water-undersaturated tholeiitic regime to a wa-152 

ter-rich boninitic sequence. Today, such an evolution corresponds to a subduction initiation 153 

environment. 154 

2. Geological setting 155 

The variably-deformed Eoarchean supracrustal enclaves of the dominantly Neoarchean Inuk-156 

juak domain (Minto bloc, northeast Superior Province, Canada) principally comprise plutonic 157 

and volcano-sedimentary schists; these range in age from 3.5 to 3.8 Ga, and are metamorphosed 158 

to the amphibolite facies (0.4 GPa, 640°C; Cates & Mojzsis, 2009; Greer et al. 2020) with local 159 

retrogressions. Although less well-known than cognate Eoarchean rocks of the ISB, the ca. 3.75 160 

Ga NSB was the first to show evidence of anomalous depletions in 142Nd/144Nd relative to BSE 161 

(negative μ142Nd) that seem to correlate to Sm/Nd (O’Neil et al., 2008). The subject of our study 162 

is another neighboring body of metamorphosed volcano-sedimentary rocks also displaying this 163 

characteristic 142Nd signature: The Ukaliq supracrustal belt (USB) (Caro et al., 2017). The larg-164 

est of the USB enclaves is a poly-metamorphosed and intensely deformed NNW-trending flat 165 

ellipsoidal body of about 100 m × 7 km (Fig. 1) a few kilometers north from the NSB. The USB 166 

is composed of three main lithologies: (i) massive amphibolite composed of hornblende- or 167 

cummingtonite-rich rocks inferred to have volcanic protoliths; (ii) ultramafic boudins and en-168 

claves, mainly serpentinized; and (iii) intercalated siliceous units comprising layered and 169 

strongly tectonized quartz + magnetite ± amphibole ± pyroxene rocks interpreted as banded-170 

iron formations (BIFs), and quartz + biotite schists and massive to banded quartzite (± fuchsite) 171 

of detrital origin (Caro et al., 2017; Greer et al., 2020).  172 

Two forms of ultramafic rocks can be distinguished: (i) a thick layer (~30 m) parallel to the 173 

massive NNW-dipping foliation; and (ii) lenses structurally intruding amphibolites (Fig. 2A). 174 
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The contact between ultramafic and mafic rocks is sharp and comports with the foliation (Fig. 175 

2B). Several thin (~10 cm) BIF layers occur within the mafic rocks and are parallel to the re-176 

gional structural trend of the USB enclave. The quartzites are mostly located near the eastern 177 

contact between USB rocks and encompassing Voizel suite granitoids (Fig. 1). Ultramafic rocks 178 

show a compositional gradient ranging from pure serpentinites in the eastern side to a more 179 

pyroxene-rich composition in the west. The NSB differs from the USB in the occurrence of the 180 

Ca-poor amphibole cummingtonite; it is rare to uncommon at Ukaliq where the amphibole is 181 

hornblende as opposed to the NSB where cummingtonite can be the dominant amphibole in 182 

amphibolite. Earlier U–Pb TIMS geochronology on detrital zircons recovered from micaschists 183 

in the NSB yields an age of 3825 ± 18 Ma (Darling et al., 2013; David et al., 2002) whereas 184 

zircons extracted from intrusive trondjhemitic orthogneisses lead to a minimum emplacement 185 

age of 3751 ± 10 Ma (Cates & Mojzsis, 2007; Greer et al., 2020). Elsewhere in the NSB, detrital 186 

zircons from detrital fuchsitic quartzites and micaschists interpreted to be quartz-pebble con-187 

glomerates provide a maximum age of emplacement for the various volcanic protoliths of ca. 188 

3.78 Ga (Cates et al., 2013; Darling et al., 2013). For a review of the geology of the wider 189 

region, we refer the reader to the synthesis in Greer et al. (2020). 190 

3. Methods 191 

Bulk-rock major and trace elements compositions for the 60 samples reported in Table S1 were 192 

performed at the SARM facility (CRPG, Nancy). Further in situ major element compositions 193 

of minerals from a subset of 16 samples (8 ultramafic rocks and 8 mafic rocks) were determined 194 

using the Cameca SX100 electron microprobe at GeoRessources laboratory (Université de Lor-195 

raine). The acceleration voltage was 15 keV and beam conditions were 12 nA, counting times 196 

were 10 s. Trace elements analyses of clinopyroxenes (cpx), orthopyroxenes (opx), amphiboles 197 

(amph), and garnets (grt) were also performed for 6 samples by laser ablation inductively cou-198 

pled plasma mass spectrometry (LA-ICP-MS) at GeoRessources laboratory using a single-199 
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collector, double-focusing, sector field Agilent 7500 ICP-MS system, coupled with a Geolas 200 

platform hosting a 193 nm excimer laser (Geolas Pro). The ablation process was conducted in 201 

an ablation cell of 30 cm3 in a He atmosphere, then mixed with Ar before entering the plasma. 202 

Acquisition time for blanks and sample analysis was set to 1 min. The laser was used at an 203 

energy of 15 J cm-2 and a frequency of 10 Hz with a spot size ranging from 60 to 80 μm for 204 

cpx, hbl and grt, and from 120 to 150 μm for opx. 29Si was used as an internal standard based 205 

on the electron microprobe analyses. Analyte concentrations were calibrated against the NIST 206 

612 rhyolite glass.  207 

4. Structure and petrography 208 

Three main lithologies were identified during our mapping of the main USB body: (i) ultramafic 209 

rocks (pyroxene-rich to pure serpentinite) present as enclaves or as a decameter-sized layer; (ii) 210 

hornblende- or cummingtonite-bearing amphibolites; and (iii) quartzitic and micaceous rocks 211 

of sedimentary protolith with foliation parallel to that expressed in the amphibolites.  212 

4.1. Ultramafic rocks 213 

At the base of the sequence with foliation that strikes N70, ultramafic rocks are dark green 214 

massive serpentinite (Fig. 2C). These serpentinites are mainly composed of antigorite (atg) and 215 

chlorite (chl). At the microscopic scale, relict opx, amph, and cpx range from <0.1 mm to >2 216 

mm (Figs. 3A to 3D). Anhedral amph form millimeter-sized phenocrysts and are preferentially 217 

altered in chl and atg along cleavage planes. Fresh, rounded cpx (<0.1 mm) is present in one 218 

sample (IN16098b) as inclusions in hornblende (hbl) or at hbl grain boundaries (Fig. 3D). This 219 

sample will hereafter be referred to as a cpx-bearing ultramafic rock. Opx are only present in 220 

cpx-absent ultramafic rocks as submillimeter inclusions in amph or as phenocryst in contact 221 

with amph. The contact between amph and opx is sharp and points to a relict cumulate texture 222 

(Fig. 3B). When opx is present as large crystals (>1 cm), it shows corroded boundaries and atg 223 

pseudomorph lamellae perpendicular to cleavage. We interpret these large opx crystals as 224 
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remnants of a heteradcumulate texture (Campbell, 1968). Brownish, corroded spinels (spl) oc-225 

cur at amph and opx grain boundaries or as inclusions in these two phases. Within two samples, 226 

greenish, millimeter-sized spl is in equilibrium with talc and probably corresponds to late over-227 

printing phases. To summarize, the textural relationships suggest that opx, cpx and amph may 228 

represent relics of the magmatic phases, and that atg, chl, talc, and greenish spl are metamorphic 229 

overprints. 230 

4.2. Amphibolites 231 

Volumetrically, the USB amphibolites are dominated by a dark, massive unit and many other 232 

smaller deformed enclaves of amphibolites and paragneisses scattered throughout the complex 233 

(Chowdhury et al., 2020; Greer et al., 2020). At the mesoscale, the mafic rocks display a fine-234 

grained (<0.5 mm) texture with a typical amph + plagioclase (plag) ± cpx ± quartz (qtz) para-235 

genesis (Fig. 2D). Ilmenite and titanite can occur at grain boundaries (<0.1 mm). Rarely, light 236 

grey to beige amphibolite occurs within the USB and corresponds to the cummingtonite-rich 237 

amphibolite much more widespread throughout the neighboring NSB (David et al., 2002). At 238 

the microscopic scale, amphibolites exhibit a typical isogranular texture with a foliation marked 239 

by millimeter- to centimeter-sized amph which may be colorless (Mg-hbl), green (hbl, tremo-240 

lite, cummingtonite) to bluish green (pargasite) (Figs. 3E and 3F). Tremolites often surround 241 

and grow on top of Mg-hbl. These overgrowths, as well as the presence of cummingtonite, may 242 

be attributed to the metamorphic history of the massif. The Mg-hbl are in equilibrium with 243 

millimeter-sized plag partially altered to sericite that shows thin polysynthetic twinning, qtz 244 

with undulose extinction and subgrain boundaries that are features characteristic of plastic de-245 

formation, and cpx having higher refringence than amph. A few cpx may be corroded by trem-246 

olite. These mineral relationships point to a magmatic origin for Mg-hbl and cpx, while tremo-247 

lite and cummingtonite are of metamorphic origin. 248 

4.3. Rocks of sedimentary protolith 249 
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BIFs are mainly composed of alternating bands of Fe-oxides and silicates, which at weathering 250 

renders them a characteristic reddish color. Silicate layers (qtz) record a NNW striking foliation 251 

that is parallel to the main structural grain of the USB. At the microscale, the BIF Fe-oxides are 252 

associated with ol, cpx and amph, interpreted to form through the isochemical transformation 253 

of Fe-oxides and qtz during amphibolite facies metamorphism (e.g., Klein, 2005). 254 

Micaschists of probable detrital origin share the common NNW striking foliation. They exhibit 255 

a grano-porphyroblastic texture with numerous aluminous phases such as grt and biotite (bt) 256 

that can be used as geothermometer. Porphyric grt (~2 mm) containing bt and qtz inclusions is 257 

surrounded by often chloritized, prismatic, millimeter-sized bt. Millimeter-sized plag, amph, 258 

and qtz with undulose extinction also occur. Pressure and temperature conditions inferred from 259 

grt–bt thermometer and grt compositions are 0.3 ± 0.05 GPa and 650 ± 15°C (Fig. S1). This 260 

result agrees with the last metamorphic peak conditions experienced by the NSB (0.4 GPa, 261 

640°C; Cates & Mojzsis, 2009; Greer et al., 2020). 262 

5. Bulk-rock chemistry 263 

Major and trace elements concentrations allow us to distinguish between five different proto-264 

liths of magmatic origin in the USB. The ultramafic rocks can be divided into two different 265 

groups in accordance with their mineralogy, whereas the amphibolites can be separated in three 266 

groups based on major and trace element chemistry. The composition and description of the 267 

analyzed rocks is provided in Table S2 and S3, respectively. 268 

5.1. Ultramafic rocks 269 

Ultramafic rocks have high XMg (83.8–91.7) and low SiO2 concentrations (37–49 wt%) except 270 

for one sample (IN14011) with lower XMg (75.7) (Fig. 4A). These rocks show a wide range of 271 

Al2O3 contents (0.32–8.48 wt%) associated with a SiO2/MgO ratio ranging from 1 to 3 suggest-272 

ing the presence of ol, opx, and cpx in their protolith (Fig. 4B). Bulk CaO contents define two 273 

distinct groups: (i) a CaO-poor (0.45–6.03 wt%), cpx-absent group; and (ii) a CaO-rich (11.76–274 
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12.62 wt%), cpx-bearing group. Most ultramafic rocks have high NiO content (0.19–0.30 wt%) 275 

suggesting the presence of ol in the protolith (Fig. 4D). Chondrite-normalized rare earth element 276 

(REE) patterns show rather flat segments for heavy REE (HREE; 0.82 < DyN/YbN < 1.29) and 277 

slightly fractionated middle REE (MREE) (0.31 < SmN/DyN < 1.80) (Fig. 5B). Most samples 278 

are enriched in light REE (LREE; 0.66 < LaN/SmN < 6.27) and show a variable Eu anomaly 279 

(Eu* = EuN/[SmN × GdN]1/2; Eu* = 0.13–3.12). Normalized to primitive mantle (PM), ultramafic 280 

rocks display slight U and Th and strong Cs, Rb, Pb, and K enrichments combined with a pro-281 

nounced negative Nb anomaly (Nb* = NbN/[KN × LaN]1/2; 0.06–0.72) (Fig. 5A). A few samples 282 

may exhibit negative Zr and Hf anomalies (Zr* = ZrN/[SmN × NdN]1/2), but most have Zr* ≈ 1. 283 

Ultramafic rocks display Cr contents ranging from 650 to 5000 ppm and are enriched in Sc (7–284 

98 ppm) and depleted in V (2–34 ppm) relative to PM. 285 

5.2. Mafic rocks 286 

Major and trace elements allow distinguishing three main groups of amphibolites in the USB. 287 

The first group has average SiO2 content of about 49 wt% (46.10–53.29 wt%) negatively cor-288 

related with XMg (36.1–69.6; Fig. 4A). Bulk-rock Al2O3 ranges from 10.99 to 16.32 wt% except 289 

for one sample having lower content (Al2O3 = 6.76 wt%). These rocks have high TiO2 contents 290 

(0.72–1.49 wt%; Fig. 4C) resulting in low Al2O3/TiO2 ratios (9–16) as well as high CaO con-291 

centrations (6.80–14.12 wt%). Chondrite-normalized REE patterns show flat HREE (0.97 < 292 

DyN/YbN < 1.23) and MREE (0.97 < SmN/DyN < 1.47) segments and slightly fractionated LREE 293 

(0.74 < LaN/SmN < 1.62) segment (Fig. 5D). Moreover, a slight positive Eu anomaly may occur 294 

in a few samples. These amphibolites are strongly enriched in fluid-mobile elements like Cs, 295 

Rb, Pb, and K (Fig. 5C). Besides, these rocks show a broad range of Sr anomalies (Sr* = 296 

SrN/[CeN × NdN]1/2) ranging from 0.27 to 3.57, a negative Nb anomaly (Nb*=  0.15–0.86) and 297 

no Zr anomaly. Finally, Cr content (36–276 ppm) is low compared to PM, in contrast to V (25–298 

55 ppm) and Sc (135–362 ppm) concentrations, respectively close and enriched relative to PM. 299 
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These amphibolites have major and trace element concentrations characteristics of tholeiitic 300 

basalts and will therefore be referred to as tholeiitic amphibolites. 301 

The second group of amphibolites can be distinguished chemically from the tholeiitic amphib-302 

olites by their higher XMg (52.5–72.6), MgO (8.04–18.63 wt%) and SiO2 concentrations (48.5–303 

52.9 wt%) and lower CaO (0.82–9.34 wt%) and TiO2 (0.49–0.61 wt%) contents resulting in 304 

high Al2O3/TiO2 ratios ranging from 23 to 30 (Figs. 4A and 4C). Chondrite-normalized REE 305 

diagram exhibits a U-shaped pattern with a LREE (1.14 < LaN/SmN < 2.73) and a slightly HREE 306 

(0.81 < DyN/YbN < 0.98) enrichment relative to MREE (Fig. 5H). A particularity of these sam-307 

ples lies in their low concentrations of incompatible elements (∑REE = 15.9–22.5 ppm). None 308 

of the samples shows a Eu anomaly. Additionally, fluid-mobile elements are strongly enriched 309 

in these amphibolites (Fig. 5G). These rocks display a variable Sr anomaly (Sr* = 0.36–2.38), 310 

a negative Nb–Ta anomaly (Nb* = 0.08–0.30) and no Zr anomaly (Zr* 0.85–1.17) except for 311 

one sample (Zr* = 2.81). Bulk-rock Cr content is higher than tholeiitic amphibolites (438–807 312 

ppm) whereas V (40–56 ppm) and Sc (215–257 ppm) concentrations are similar. Bulk SiO2 and 313 

TiO2 contents do not satisfy all the conditions to qualify these samples as boninites s.s., but they 314 

share many characteristics with modern boninites found in subduction settings (e.g., U-shaped 315 

REE pattern; Reagan et al., 2010; Taylor et al., 1994), and will thus be referred to as boninitic 316 

amphibolites. 317 

The third group corresponds to transitional amphibolites which have intermediate composition 318 

between tholeiitic amphibolites and boninitic amphibolites. They have SiO2 contents (46.92–319 

52.23 wt%) and XMg (50.30–76.2) similar to other amphibolite types whereas their CaO content 320 

(7.00–10.73 wt%) and Al2O3/TiO2 ratio (12–23) differ from the two previous categories (Fig. 321 

4A). The REE diagrams exhibit a flat HREE segment (0.95 < DyN/YbN < 1.15) coupled with a 322 

negative LREE slope (0.93 < LaN/SmN < 2.31; Fig. 5F). Furthermore, REE concentrations also 323 

display a transitional depletion between the boninitic and tholeiitic endmembers (∑REE = 25–324 
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41 ppm). PM-normalized, transitional amphibolites show no Zr anomaly (Zr* = 0.83–1.20) and 325 

a strongly negative Nb anomaly (Nb* = 0.11–0.32; Fig. 5E). V (29–48 ppm) and Sc (117–281 326 

ppm) contents are similar to tholeiitic- and boninite-type amphibolites while Cr concentrations 327 

represent a transition between these two groups. 328 

Apart from these three groups, one sample (IN12032) has a peculiar chemistry that differs 329 

markedly from the other amphibolites. Although its SiO2 (52.24 wt%) and CaO (8.40 wt%) 330 

contents as well as XMg (52.5) are similar compared to other rocks (Fig. 4A), the Al2O3/TiO2 331 

ratio (27) is as high as boninitic amphibolites. This sample is, however, different from the bo-332 

ninitic amphibolites by higher REE concentrations (∑REE = 52.1 ppm) typified by a strong 333 

LREE enrichment (LaN/SmN = 4.00) and a HREE depletion compared to N-MORB. When PM-334 

normalized, this sample is depleted in large ion lithophile elements (LILE; ThN + UN >30) and 335 

exhibits a high field strength elements (HFSE) depletion with a negative Nb–Ta anomaly (Nb* 336 

= 0.19; Fig. 5G). Bulk Cr concentration (219 ppm) is lower while V (49 ppm) and Sc (221 ppm) 337 

contents are of the same order of magnitude as the other samples.  338 

Finally, these amphibolite groups can also be distinguished on the basis of their isotopic com-339 

position. Tholeiitic amphibolites show slightly negative to no μ142Nd anomaly (–3.4 < μ142Nd < 340 

0.6) whereas boninitic and transitional amphibolites exhibit negative anomalies (–5.4 < μ142Nd 341 

< –3.2) and IN12032 carries the most negative 142Nd signature (μ142Nd = –9.4; Caro et al., 2017). 342 

These isotopic anomalies are negatively correlated with the bulk rock Th/La ratio, implying 343 

that the trace element chemistry of USB amphibolites is at least partly reflecting the incorpora-344 

tion of an ancient enriched component during their petrogenesis (Caro et al 2017).  345 

5.3.Magmatic signal preservation 346 

It is evident from the mineralogy and geochemistry that the USB underwent at least one meta-347 

morphic episode that reached upper amphibolite facies conditions (0.3 GPa, 650°C) in the same 348 

range as that described for last NSB metamorphism (Cates & Mojzsis, 2009). In detail, the 349 
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Innuksuac complex experienced at least two metamorphic episodes (3622 ± 46 Ma and 2738 ± 350 

25 Ma) at the amphibolite facies (Cates & Mojzsis, 2007, 2009), and that probably correspond 351 

to magmatic intrusions of the Voizel and Boizard suites, respectively (e.g., Greer et al., 2020). 352 

These metamorphic events also likely modified the most fluid-mobile element concentrations 353 

of the USB rock suites. To assess the degree of preservation of the original magmatic signal, 354 

REE, HFSE and LILE concentrations are compared to Zr concentrations (Fig. S2), which is 355 

fluid-immobile at amphibolite conditions (e.g., Fraser et al., 1997). Both average LREE and 356 

average HREE as well as HFSE define a good correlation with Zr (R2 >0.80) but LILE are 357 

uncorrelated to Zr (R2 = 0.128). This observation can either be interpreted as a magmatic signal, 358 

reflecting variable fluid-mediated LILE enrichments in the protolith, or as a late metamorphic 359 

overprint. These processes are not mutually exclusive but cannot be distinguished on the basis 360 

of trace and major element chemistry. As such, only REE and HFSE concentrations will be now 361 

considered as representative of the magmatic signal and used further. 362 

6. Mineral chemistry 363 

6.1. Ultramafic rocks  364 

The clinopyroxenes from the cpx-bearing group of ultramafic rocks in our study do not show 365 

chemical zoning and belong to the diopside–hedenbergite solid-solution. They show moderate 366 

XMg variation delineating a trend of decreasing XMg (95.5–94.6) with increasing Al2O3 (0.62–367 

2.09 wt%; Fig. 6A) and increasing TiO2 (0.11–0.58 wt%; Figs. 6A and 6C). Chondrite-normal-368 

ized REE patterns show slightly fractionated HREE (1.28 < DyN/YbN < 1.64), and MREE (0.97 369 

< SmN/DyN < 1.47) segments and moderately fractionated LREE (0.59 < LaN/SmN < 0.89) seg-370 

ments (Fig. 6E). The TiO2-rich cpx grains display a positive Eu anomaly whereas the TiO2-poor 371 

cpx have no Eu anomaly. When PM-normalized, cpx show little to no LILE enrichment and no 372 

significant HFSE depletion. Li (2.31–3.66 ppm), Zr (4.89–28.05 ppm), Yb (0.11–0.45 ppm), 373 

and Th (0.02–0.05 ppm) contents are positively correlated to XMg (Fig. 7). We interpret the 374 
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composition of high-TiO2, Eu anomaly-bearing cpx as a magmatic signature while the low-375 

TiO2 cpx probably experienced partial re-equilibration during metamorphism. 376 

Orthopyroxenes from cpx-absent ultramafic rocks have variable Al2O3 (1.22–2.16 wt%), Cr2O3 377 

(0–0.31 wt%), and TiO2 (0.01–0.08 wt%) concentrations at constant XMg (90.2–87.6; Figs. 6B 378 

and 6D). Submillimeter-sized opx exhibits lower XMg (76.7–78.2) that are uncorrelated with 379 

Al2O3 and Cr2O3 contents. Chondrite-normalized, high-XMg opx have a highly fractionated 380 

MREE to HREE pattern, with SmN/YbN varying from 0.003 to 0.09, and a contrasting negative 381 

LREE slope (Fig. 6F). High-XMg opx define a trend of decreasing XMg (90.2–87.6) with increas-382 

ing Li (1.22–3.55 ppm), Zr (0.12–0.72 ppm), Yb (0.011–0.114 ppm), and Th contents likely 383 

reflecting the magmatic evolution of the fractionating melts (Fig. 7). 384 

Brownish spl from ultramafic rocks have Cr-Al spl compositions whereas greenish spl compo-385 

sitions are close to the hercynite endmember (Fig. S3). The Cr-Al spl do not show chemical 386 

zoning and define a correlation of increasing Cr# [100 × Cr/(Cr + Al + Fe3+); 19.92–49.43] with 387 

decreasing XMg (65.05–40.69). Further, Cr-Al spl inclusions correspond to the higher XMg values 388 

while opx- and hbl-associated spl have lower XMg, pointing to a magmatic origin. On the other 389 

hand, hercynites display low Cr# (5.20–8.78) and high XMg (48.34–70.80) and are most likely 390 

metamorphic. 391 

Amphiboles from cpx-bearing ultramafic rocks are dominantly Mg-hbl and tremolite, the latter 392 

forming rims around cpx and Mg-hbl porphyroblasts. The evolution from Mg-hbl core to trem-393 

olite rim is sharp, with Si increasing from 7.15 to 7.95 a.p.f.u. while NaK(A) decreases from 394 

0.25 to 0 a.p.f.u. (Fig. 8A). Tremolite represents metamorphic re-equilibration and will not be 395 

considered further. Mg-hbl delineate a trend of increasing NaK(A) (0.00–0.35 a.p.f.u.), TiO2 396 

(0.00–0.89 wt%), and Cr2O3 (0.02–0.98 wt%) contents with decreasing XMg likely recording the 397 

chemical evolution of their parental melt (Figs. 8B and 8C). When chondrite-normalized, these 398 

Mg-hbl exhibit a nearly parallel pattern compared to cpx except for HREE being less 399 



 17 

fractionated (DyN/YbN ≈ 1.20; Fig. 8D). When PM-normalized, Mg-hbl show slight U, Th, and 400 

Pb enrichment and little to no HFSE depletion compared with adjacent elements. Li content 401 

ranges from 0.81 to 1.08 ppm (Fig. 7A). Conversely, amph from the cpx-absent group are ex-402 

clusively Mg-hbl with no chemical zoning. They display a trend of increasing TiO2 concentra-403 

tion with decreasing XMg whereas low NaK(A) and Cr2O3 contents are associated with low XMg 404 

values. Chondrite-normalized, these Mg-hbl have the same U-shaped REE pattern as boninitic 405 

amphibolites (Fig. 8D). Normalized to PM, they display strong Nb–Ta negative anomalies and 406 

U–Pb enrichments. Moreover, these Mg-hbl are usually more depleted in trace elements than 407 

amph from cpx-bearing ultramafic rocks. 408 

Antigorite from the cpx-bearing group has high XMg (89.54–90.94), low Al2O3 concentrations 409 

(0.84–1.20 wt%), and NiO content ranging from 0.00 to 0.11 wt%. Then again, atg from the 410 

cpx-absent group have slightly lower XMg (87.37–88.27), higher Al2O3 (2.44–3.36 wt%) and 411 

NiO (0.14–0.15 wt%) content values. We interpret the high Ni atg as most likely ol pseudo-412 

morphs. 413 

6.2.Amphibolites 414 

Clinopyroxenes from tholeiitic-to-transitional amphibolites have a wide range of XMg (46.2–415 

73.1) and display a rough trend of decreasing XMg with increasing Al2O3 concentrations (Fig. 416 

6A). Al and Ti contents are positively correlated and follow the trend defined by cpx from 417 

ultramafic rocks (Fig. 6C). Chondrite-normalized REE patterns show flat HREE (0.80 < 418 

DyN/YbN < 0.95) and MREE segments (0.89 < SmN/DyN < 1.12) whereas LREE are moderately 419 

fractionated (0.14 < LaN/SmN < 0.70). The cpx displays a negative Eu anomaly and show no 420 

enrichment in fluid-mobile elements (Li ≈ 1 ppm; Fig. 7A). Cpx are not present in boninitic 421 

amphibolites.  422 

Amphiboles from tholeiitic-to-transitional mafic rocks are Mg-hbl, in association with retro-423 

gression tremolite and pargasite (NaK(A) >0.5 a.p.f.u.; Si <6.5 a.p.f.u.). The Mg-hbl and 424 
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pargasite display a broad range of XMg from 36.07 to 84.13 and show a negative correlation with 425 

Na2O while TiO2 content is uncorrelated with XMg (Fig. 8B). Chondrite-normalized, the amph 426 

exhibit a nearly parallel pattern compared to cpx from mafic rocks, but with higher concentra-427 

tions, a feature previously documented in magmatic amphiboles derived from melt reacted cpx 428 

(e.g., Bouilhol et al., 2015). In one sample (IN14020), amph are MREE- and HREE-depleted 429 

(2.81 < SmN/YbN < 5.64) and display high Li content (5.97–10.54 ppm) in comparison with 430 

other samples (1.32 < Li < 2.06 ppm), which points to a metamorphic origin. Amph from bo-431 

ninitic amphibolites are cummingtonites, which corresponds to CaO-poor (0.40–1.17 wt%) 432 

metamorphic amph. These various metamorphic amph will not be further discussed. Overall, 433 

cpx and Mg-hbl cores have compositions similar to those found in arc related basalts and ande-434 

sites (Figs. 6, 7 and 8), and differ from metamorphic phases which usually display Al2O3, TiO2 435 

and Cr2O3 depletion (e.g., Zhao et al., 2000) coupled with fluid-mobile elements enrichment 436 

(e.g., Li). Furthermore, the required metamorphic conditions to form cpx and opx in mafic li-437 

thologies requires upper amphibolite to granulitic facies conditions (Pattison, 2003 and refer-438 

ences therein) which have never been reached by USB rocks, supporting a magmatic origin for 439 

these minerals. 440 

Plagioclase from tholeiitic-to-transitional amphibolites have compositions ranging from labra-441 

dorite to andesine with high Ca (0.23–0.71 a.p.f.u.) and Na (0.29–0.73 a.p.f.u.) contents 442 

whereas K concentrations (0.00–0.32 a.p.f.u.) are low. The plag from boninitic amphibolites 443 

were not analyzed. 444 

7. Discussion 445 

In this section, we use bulk-rock and mineral chemistry to infer the petrogenetic relationship 446 

between ultramafic rocks and amphibolites in the Eoarchean Ukaliq supracrustals. By untan-447 

gling the metamorphic signal from the original magmatic signal, we reconstruct the cumulate 448 
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sequence followed by tholeiitic and boninitic melts, characterize primary magmas, and by ex-449 

tension, their associated liquid lines of descent. 450 

7.1. Protoliths of Ukaliq mafic and ultramafic rocks 451 

As shown in previous section, Ukaliq ultramafic rocks display major element concentrations 452 

typical of dunite (SiO2 ≈ 40 wt%), clinopyroxenite (SiO2 ≈ 48 wt%), orthopyroxenite (SiO2 ≈ 453 

50–52 wt%) and hornblendite (SiO2 ≈ 40 wt%; XMg ≈ 70). High NiO content and low SiO2/MgO 454 

suggest the presence of cumulative ol in their protolith. Furthermore, opx, cpx and Mg-hbl from 455 

ultramafic rocks exhibit a relict magmatic texture as well as compositions that comport with 456 

that of cumulates. This is well demonstrated by the bulk-rock XMg of the ultramafic rocks that 457 

range from 72 to 90 whereas the mantle has higher XMg (~91). The compatible element contents, 458 

such as Ni, Cr, and V, also point to a cumulate origin for the ultramafics. Indeed, refractory 459 

mantle rocks have Ni contents up to 3000 ppm whereas pyroxenitic cumulates have concentra-460 

tions ranging from 200 to 1400 ppm (e.g., Bodinier and Godard, 2014; Bouilhol et al., 2009, 461 

2015). The mineral chemistry also points to a cumulative origin rather than a mantle origin as 462 

cpx and opx from USB ultramafic rocks have REE concentrations up to ten times the chondrite 463 

values, while cpx from sub-arc mantle and from abyssal peridotites have LREE content values 464 

ten to hundred times lower than chondrite (Bodinier and Godard, 2014; Bouilhol et al., 2009). 465 

As such, the two identified ultramafic groups (cpx-present and cpx-absent) correspond to two 466 

different cumulate suites.  467 

Amphibolite samples show basaltic (SiO2 <52 wt%) to andesitic (SiO2 >52 wt%) major element 468 

compositions with XMg ranging from 38.17 to 68.11 which cannot be used to distinguish be-469 

tween an intermediate cumulate and a lava. However, these amphibolites show little to no Eu 470 

anomaly and have relatively high compatible element contents, which corresponds to volcanic 471 

rocks rather than gabbroic cumulates. Indeed, if they were to be gabbroic rocks, Ni and Sc 472 

contents would have been much lower than if those amphibolites were to be undifferentiated 473 
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lavas, as these elements would have been fractionated in the early stage of gabbro formation. 474 

Furthermore, gabbroic rocks usually show a cumulate signal, either cpx-dominated or plag-475 

dominated, resulting in REE pattern with LREE depletion and variable Eu anomaly. Such a 476 

signature is not observed in the amphibolites. These observations point to a volcanic rather than 477 

a gabbroic protolith for USB amphibolites. Specifically, we interpret the protoliths of the cpx-478 

bearing, TiO2-rich amphibolites as tholeiitic basalts and the protoliths of the opx-bearing, TiO2-479 

poor amphibolites as boninitic basalts to andesites 480 

7.2.Relationship between ultramafic cumulates and lavas 481 

Structural and mineralogical evidences suggest that the ultramafic cumulates and the basaltic 482 

lavas are cogenetic. Indeed, amphibolites and ultramafic rocks share an intimate relationship, 483 

whereby the cumulates are always included in the amphibolites suggesting that their respective 484 

protolith were spatially related. Petrologically, the ultramafic cumulates and mafic lavas can be 485 

subdivided in two groups with a cpx-bearing suite and a cpx-absent suite. In order to demon-486 

strate the cogenetic character of the cpx-bearing cumulates and tholeiitic(-to-transitional) lavas 487 

on one hand, and the cpx-absent cumulates and boninitic lavas on the other, we calculated the 488 

REE concentrations of the melts in equilibrium with cpx and opx in the two different cumulate 489 

series. The parental melt calculated for cpx from cpx-bearing cumulates has a XMg of 70.81 and 490 

show a REE pattern similar to that observed in transitional basalts, albeit with slightly lower 491 

HREE concentrations (Fig. 9A). As the calculated melt has a XMg of ~70, whereas the transi-492 

tional basalts have lower XMg (50–60), such HREE discrepancy can be alleviated by fractiona-493 

tion. As such, the cumulative cpx could represent an early cumulative phase of the transitional 494 

suite. The calculated liquid in equilibrium with magmatic opx from cpx-absent ultramafic cu-495 

mulates is slightly depleted in MREE compared to the LREE and HREE, reproducing the typ-496 

ical U-shaped pattern observed in boninitic melts (Fig. 9B). Compared to USB boninitic am-497 

phibolites, the calculated melt shows a more pronounced depletion in MREE. However, as the 498 
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calculated melt has a XMg of ~75, while the boninitic basalts have a lower XMg (55–65), a few 499 

percent of fractionation could explain such a disparity. We therefore interpret the cpx-bearing 500 

ultramafic rocks as cumulate products of tholeiitic-to-transitional basalts and the cpx-absent 501 

ultramafic rocks as cumulates of the boninitic basalts. 502 

7.3. Primitive melts and liquid lines of descent 503 

Most amphibolites have characteristics of liquids, and some of them have chemical attributes 504 

of primitive liquids that can be primary melts in equilibrium with mantle ol (XMg = 87–91; Ni = 505 

1800–4500 ppm) and Cr-spl. With respect to partition coefficients (Roeder and Emslie, 1970) 506 

and Fe3+/Fetot uncertainties, the most primitive amphibolites that have melt-like compositions 507 

with XMg = 60–75, MgO >8 wt%, Ni = 120–500 ppm, and Cr ≤1200 ppm are now considered 508 

as primitive melts. The most primitive tholeiitic melt has XMg = 60, SiO2 = 46.51 wt%, Ni = 394 509 

ppm, and Cr = 356 ppm (Fig. 10A). The primitive boninitic melt displays a XMg of 68, SiO2 = 510 

50.35 wt%, Ni = 162 ppm, and Cr = 807 ppm (Fig. 10C). These primitive melts can be consid-511 

ered as the parental liquids of two distinct differentiation series and used to model the evolution 512 

of these series. 513 

Tholeiitic(-to-transitional) and boninitic liquids SiO2, XMg and REE variations are modeled fol-514 

lowing the method of Jagoutz (2010). The model is based on fixed cumulate compositions sub-515 

traction rather than mineral–liquid partition coefficients to avoid partition coefficient evolution 516 

during differentiation and allowing major element modeling. Parental liquid, cumulate and frac-517 

tionation-derived liquid compositions are related by Eq. 1: 518 

𝐶!! =
""!#$#(%×"%)

(#%
  (1) 519 

Where 𝐶!! represents SiO2, XMg and REE concentrations in the fractionated melt at step n, 𝐶!!#$ 520 

at step n–1, and Cc is the cumulate concentrations. Fractionation step is 1% and is defined by 521 

Eq. 2: 522 

𝑋 = %&#$#%&
%&#$

 (2) 523 



 22 

Where Xm is the percentage of melt remaining at step m, and Xm–1 at step m–1. Cc has been 524 

constrained using USB bulk cumulate compositions for major elements fractionation and USB 525 

mineral chemistry for the REE differentiation model, and 𝐶!' is represented by the tholeiitic 526 

and boninitic primitive melts previously defined. 527 

7.3.1. Tholeiitic(-to-transitional) sequence 528 

Sample IN16098b represents the only cpx-bearing ultramafic rock in our sample collection. 529 

Nevertheless, and as discussed above, the primitive parental melt probably crystallized ol as 530 

the liquidus phase, followed by cpx leading to the formation of dunite and (ol-)clinopyroxenite. 531 

This observation contrasts with the ISB cumulates sequence where no cpx has been observed 532 

nor inferred from the bulk-rock compositions (Szilas et al., 2015). Ol and cpx fractionation 533 

induced an enrichment of SiO2, Al2O3, TiO2, Li and REE coupled with a rapid XMg decrease in 534 

the residual melt as well as in the more evolved cpx. Around 20% of fractionation is sufficient 535 

to reach a basaltic composition (Fig. 10A). Lower Cr content in mafic lavas probably illustrates 536 

spl crystallization in the cumulate sequence, although the latter was not observed in thin section. 537 

The appearance of hbl leads to the formation of hbl-pyroxenite and hornblendite (XMg ≈ 70, 538 

SiO2 ≈ 42 wt%) and marks a turning-point with a strong SiO2 increase in the liquid. With con-539 

tinuous differentiation, Mg-hbl becomes more Na-, Ti-, and HREE-rich, reflecting enrichment 540 

of these elements in the residual melt (Fig. 10B). Both Cpx and Mg-hbl chemistry show little 541 

to no LILE-rich, HFSE-poor fluid signatures. Fractionation of ol, cpx, and Mg-hbl is sympto-542 

matic of a partially hydrous, tholeiitic(-to-transitional) liquid line of descent whose ol crystal-543 

lization as the liquidus phase constrains a pressure as high as 0.7 GPa coupled with an unsatu-544 

rated water content (H2O = 3 wt%) (Nandedkar et al., 2014). Furthermore, positive Eu anomaly 545 

in Mg-hbl suggests that plag and amphibole did not form simultaneously. Lower Al2O3 content 546 

in cpx from mafic lavas is thus probably related to the early fractionation of plag (Al2O3 ≈ 30 547 

wt%) as no grt signature has been documented in these rocks. The potential crystallization of 548 
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plag, modeled using hbl-gabbro compositions from arc middle crust (Bouilhol et al., 2015; 549 

Daczko et al., 2012; Greene et al., 2006), would involve a strong SiO2 enrichment as well as an 550 

Al2O3 and Na2O decrease in the residual liquid. Subsequently, the melt followed a path allowing 551 

fractionation of ol + cpx + hbl ± plag. Finally, the most evolved andesitic compositions of the 552 

tholeiitic suite can be reproduced from a primitive melt undergoing 60% fractionation. The 553 

fractionation sequence described above has been applied to the liquid in equilibrium with cpx 554 

from tholeiitic-to-transitional cumulate. The results (Fig. 9A) show that 30% fractionation of 555 

cpx would allow the liquid to reach transitional melt compositions. The proposed cogenetic 556 

character of the tholeiitic(-to-transitional) cumulates and the tholeiitic(-to-transitional) basalts 557 

is thus confirmed both by partition coefficient and cumulate phase chemistry modeling. 558 

7.3.2.  Boninitic sequence 559 

As discussed above, ol is probably the first phase to appear at the liquidus. Textural observa-560 

tions suggest that the primitive parental liquid did not form dunite but rather ol-orthopyroxenite 561 

whose fractionation yields a rapid XMg decrease (XMg <60) coupled to Zr and Li increase at 562 

constant SiO2 content (SiO2 ≈ 50 wt%) in the residual liquid (Fig. 10C). Moreover, the opx 563 

fractionation enhanced the REE, and especially the LREE, concentrations. Low-XMg opx dis-564 

playing lower Cr2O3 and Al2O3 contents suggest Cr-Al spl fractionation initiating during opx 565 

crystallization. Subsequent Mg-hbl fractionation is documented by amph surrounding opx and 566 

leads to hbl-orthopyroxenite to hornblendite crystallization after ~30% fractionation, which is 567 

characteristic of silica-rich primitive melts (e.g., Grove et al., 2002). Fractionation experiments 568 

on high XMg andesites and modern boninites suggest that crystallization started at ~0.5 GPa (Fig. 569 

6) and, that the parental primitive melt contained >4 wt% H2O (Van der Laan, 1989; Kraw-570 

czynski et al., 2012). At this pressure, amph is expected to fractionate at about 1000°C and H2O 571 

≈ 4.5 wt%, and the resulting amph-saturated melts become fluid-saturated at 980°C and H2O ≈ 572 

6.5 wt% (Foden and Green, 1992). The appearance of Nb and Ta negative anomalies, the 573 
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presence of U and Th enrichment, and the LREE enrichment (especially La and Ce) in opx and 574 

Mg-hbl indicate that fluids play a key role in the genesis and evolution of the melt. Furthermore, 575 

hbl from boninitic cumulates have lower REE contents than hbl from tholeiitic(-to-transitional) 576 

cumulates probably hence supporting the hypothesis of a more depleted mantle source.  577 

With increasing differentiation, hbl become Na-, Ti-, and REE-rich, reflecting the progressive 578 

enrichment of these elements in the melt (Fig. 10D). Plag crystallization and/or fractionation, 579 

yet not observed, may be deduced from Mg-hbl displaying a negative Eu anomaly, and from 580 

bulk-rock compositions of the most evolved boninitic liquids suggesting that plag may form 581 

and lead to hbl-norite-type cumulate. To model the plag fractionation, we used compositions of 582 

arc middle crust hbl-norite from Talkeetna (Greene et al., 2006), Fiordland (Daczko et al., 583 

2012), and Kohistan (Bouilhol et al., 2015) which are in good agreement with this differentia-584 

tion sequence. Our results show that less than 5% fractionation of hbl-norite would allow the 585 

liquid to reach andesitic composition (SiO2 >52 wt%) at constant XMg. Finally, boninitic melt 586 

compositions are best explained by subsequent 40–50% fractionation of subsequent ol + spl + 587 

opx + hbl ± plag. Applying this fractionation sequence to the liquid in equilibrium with opx 588 

from boninitic cumulates shows that 30% fractionation of opx would allow the liquid to reach 589 

boninitic melt REE compositions (Fig. 9B). Thus, both the partition coefficients and mineral–590 

bulk-rock chemistry methods substantiate the cogenetic character of the boninitic cumulates 591 

and the boninitic lavas. 592 

7.4. Eoarchean subduction?  593 

Overall, we demonstrated that USB ultramafic rocks represent the cumulates of the mafic lavas 594 

in which they are sequentially a part. We have shown that this complex formed following two 595 

liquid lines of descent, one from a H2O-undersaturated basaltic primitive liquid, and the other 596 

from a boninitic primitive melt, that are ubiquitous and best produced during low pressure man-597 

tle melting in subduction systems. Tholeiitic(-to-transitional) melts were derived from a near-598 
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primitive mantle while boninitic melts were extracted from a highly refractory mantle over-599 

printed by a LREE-enriched component carrying a crustal 142,143Nd signature (Caro et al., 2017). 600 

The combined petrological, geochemical and isotopic observations point towards melting of a 601 

metasomatized mantle rather than crustal assimilation, to explain the widespread occurrence of 602 

boninite-like amphibolite in the Innuksuac complex. This further imply that the isotopic signa-603 

tures recorded in Innuksuac rocks reflects recycling rather than reworking of Hadean crust. Our 604 

observations thus provide a unique view of a magmatic system associated with the recycling of 605 

the Hadean lithosphere in the mantle, shedding new light on Eoarchean geodynamics, which 606 

otherwise strongly rely on thermomechanical and analog modeling studies (e.g., Sizova et al., 607 

2010; Van Hunen and Van den Berg, 2008). Based on these models, two contrasting views are 608 

provided which nevertheless are supported by the incomplete geological record of the Archean 609 

Earth. They are: (i) the active subduction model (e.g., Van Hunen and Moyen, 2012); and (ii) 610 

the stagnant lid model dominated by episodes of mantle overturns (e.g., Bédard, 2018). We 611 

emphasize that both models satisfy our observations herein, as they can reproduce petrological 612 

processes that would lead to the types of liquids and differentiation series in the Ukaliq supra-613 

crustals. In the subduction model, slab induced corner flow leads to H2O-assisted decompres-614 

sion melting that generates tholeiitic melts. Harzburgitic residue can further melt in a forearc 615 

position at low pressure, in fluid-saturated conditions to yield boninitic melts (Grove et al., 616 

2002; Schmidt and Jagoutz, 2017). These two melting regimes can be juxtaposed in a forearc 617 

sequence and are thought to represent subduction initiation as has been proposed for the nearby 618 

Nuvvuagittuq belt (Turner et al., 2014). Conversely, in the stagnant lid model, it has been pro-619 

posed that crust imbrication against strong continental fragments may trigger similar petroge-620 

netic environments (overriding plate rifting and melt generation via fluid flux; Bédard, 2018). 621 

Going beyond these two scenarios, however, our combined isotopic analyses point to subduc-622 

tion. Indeed, transitional and boninitic rocks from the USB preserve ubiquitous 142,143Nd 623 
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negative anomalies attributable to Hadean crust (Caro et al., 2017). Models of crustal growth 624 

involving crustal imbrication in a stagnant lid regime (Bédard, 2018) would likely result in the 625 

preservation of Hadean lithospheric fragments carrying the 142Nd anomaly, which is not ob-626 

served in the general area of the Innukjuak domain. A simpler way to explain the ubiquitous 627 

presence of Hadean geochemical crustal signature in absence of relict Hadean crustal compo-628 

nents is to recycle this ancient lithosphere through subduction. The devolatilization of a 142Nd 629 

anomaly-bearing slab would then imprint the mantle wedge and its melt derivatives via fluids 630 

carrying the 142,143Nd and HFSE-depleted signatures. Finally, petrological and geochemical fea-631 

tures, coupled with isotopic studies, suggest that Eoarchean ultramafic and mafic rocks from 632 

USB result from two differentiation sequences in a subduction-like environment ultimately in-633 

duced by the recycling of a 4.4 Gyr-old lithosphere into the mantle. This suite of interpretations 634 

would not be possible without the identification of primary magmatic signatures carried by the 635 

Eoarchean rocks of the Ukaliq locality. 636 

8. Conclusions 637 

The Eoarchean (ca. 3.75-3.78 Ga) Ukaliq supracrustal belt is part of the Innuksuac complex 638 

within the ca. 12,000 km2 Inukjuak domain of Québec, Canada. The Ukaliq supracrustals host 639 

mafic and ultramafic rocks which can be subdivided in five categories according to their phase 640 

relationships and bulk-rock chemistry: (i) tholeiitic basalts; (ii) boninitic basalts to andesites 641 

exhibiting TiO2 depletion and U-shaped REE pattern; (iii) transitional basalts representing a 642 

continuum between the two previous categories; (iv) cpx-bearing, tholeiitic(-to-transitional) 643 

cumulates; and (v) cpx-absent, boninitic cumulates. We showed through bulk-rock and mineral 644 

analyses coupled with melt composition calculations, that the ultramafic rocks represent cumu-645 

late products of the mafic lavas and used these data to model a fluid-undersaturated, tholeiitic 646 

liquid line of descent consisting of ol + cpx + hbl ± plag fractionation, and a fluid-saturated, 647 

boninitic differentiation sequence that crystallized ol + spl + opx + hbl ± plag. The liquid lines 648 
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of descent inferred from both bulk-rock and mineral chemistry suggest that the Eoarchean 649 

Ukaliq supracrustals originated in an environment that was capable of reproducing today’s sub-650 

duction zone petrological processes, and thus confirms a subduction origin of the observed 651 

142,143Nd isotopic anomalies. 652 
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Fig. 1. Geological map of the southernmost Ukaliq supracrustal belt and sample localization. 674 

Samples whose 146,147Sm–142,143Nd data are available are represented as well as U–Pb ages for 675 

Voizel and Boizard suites. Modified after Caro et al. (2017). 676 

Fig. 2. Ultramafic and mafic rock associations within the Ukaliq supracrustal belt. (A) Ultra-677 

mafic rocks and amphibolites outcrop exhibiting a subvertical contact or an enclave relationship 678 

(N58°18.542’, W77°41.487’). (B) Sharp contact between amphibolite and ultramafic rocks 679 

showing an orange to brownish alteration color. (C) Ultramafic rock sample (IN14023) dis-680 

playing a dark greenish color associated with high serpentinization (N58°18.559’, 681 

W77°41.490’). (D) Photograph of the widespread amph + plag paragenesis of amphibolites 682 

(IN14004; N58°18.682’, W77°41,547’). 683 

Fig. 3. Photomicrographs in cross-polarized light (A, B, D and F) and plane-polarized light (C 684 

and E) illustrating mineralogy and textural features of USB rocks. Abbreviations as in the text. 685 

(A) Ultramafic sample exhibiting amph in contact with ol inclusion-bearing opx porphyroblast. 686 

(B) Spl inclusions in opx and amph porphyroblasts within an ultramafic rock. (C) Spl inclusion-687 

bearing opx porphyroblasts displaying a typical alteration texture within ultramafic rocks. (D) 688 

Submillimetric cpx inclusions in amph porphyroblasts being surrounded by atg and chl, repre-689 

senting >70% of ultramafic rocks modal abundance. (E) Mafic rocks exhibiting a granoblastic 690 

texture associated with amph + cpx + qtz paragenesis. (F) Fractured centimetric cpx in contact 691 

with amph + qtz within a mafic rock. 692 

Fig. 4. Major elements bulk-rock data of USB rocks. Abbreviations as in the text. (A) SiO2 693 

(wt%) vs. XMg. (B) Al2O3 (wt%) vs. SiO2/MgO. Ol, opx, cpx, grt, and peridotite fields (Bodinier 694 

and Godard, 2014) are represented to infer the protolith type of these poly-metamorphic ultra-695 

mafic rocks. (C) TiO2 (wt%) vs. XMg. (D) NiO vs. XMg. N-MORB, arc basalts and andesites 696 

compositions from Kelemen et al. (2003) are shown for comparison. 697 
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Fig. 5. Bulk-rock chondrite-normalized REE, and PM-normalized trace elements contents. (A), 698 

(B) Ultramafic rocks. (C), (D) Tholeiitic basalts compared to N-MORB and the average bo-699 

ninitic basalts composition. (E), (F) Transitional basalts compositions compared to N-MORB 700 

and the average boninitic basalts composition. (G), (H) Boninitic and calc-alkaline basalts. N-701 

MORB concentrations are represented as comparison. Normalized values are from Sun and 702 

McDonough (1989) and McDonough and Sun (1995). 703 

Fig. 6. Major and trace element compositions of cpx (A, C, E) and opx (B, D, F). Abbreviations 704 

as in the text. (A) Al2O3 (wt%) vs. XMg. (B) Al2O3 (wt%) vs. XMg. (C) Al2O3 (wt%) vs. TiO2. (D) 705 

Cr2O3 (wt%) vs. XMg. (E) Cpx chondrite-normalized REE pattern from ultramafic and mafic 706 

rocks. (F) Opx chondrite-normalized REE pattern from ultramafic rocks. Magmatic and meta-707 

morphic pyroxenes from Bouilhol et al. (2015) and Zhao et al. (2000) are shown for compari-708 

son. Fractionation experiments conducted at various pressures and using different starting ma-709 

terials (Grove et al., 2003; Krawczynski et al., 2012; Nandedkar et al., 2014; Ulmer et al., 2018) 710 

are also represented. Normalization values are from Sun and McDonough (1989). 711 

Fig. 7. Trace elements compositions of cpx, opx and amph. Abbreviations as in the text. (A) Li 712 

(ppm) vs. XMg. High Li contents are from sample IN14020. (B) Zr (ppm) vs. XMg. Mineral com-713 

positions from modern arc lower crust are from Bouilhol et al. (2015). 714 

Fig. 8. Major and trace element compositions of amph. Abbreviations as in the text. (A) Leake 715 

classification diagram of amph. Structural formulas are recalculated assuming no Na on the M4 716 

site. Tremolite and cummingtonite are represented as pale shaded symbols. (B) TiO2 (wt%) vs. 717 

XMg for Mg-hbl and pargasite. (C) Cr2O3 (wt%) vs. XMg for Mg-hbl and pargasite. (D) Mg-hbl 718 

chondrite-normalized REE pattern from ultramafic and mafic rocks. Magmatic and metamor-719 

phic Mg-hbl are shown as comparison and are from Bouilhol et al. (2015) and Zhao et al. 720 

(2000), respectively. Fractionation experiments conducted at various pressures and using dif-721 

ferent starting materials (Grove et al., 2003; Krawczynski et al., 2012; Nandedkar et al., 2014; 722 
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Ulmer et al., 2018) are also represented. Normalization values are from Sun and McDonough 723 

(1989). 724 

Fig. 9. Trace element compositions of (A) cpx and (B) opx and their calculated parental melts 725 

using the partition coefficients of Wood and Blundy (1997) and Bédard (2007) respectively. 726 

The green and brown arrays represent the USB transitional basalts and boninitic basalts com-727 

positions, respectively. Normalization values are from Sun and McDonough (1989). 728 

Fig. 10. Results of the fractionation model for the tholeiitic suite (A) and the boninitic suite (B) 729 

contents. Abbreviations as in the text. (A) SiO2 (wt%) vs. XMg. The black lines and the grey 730 

fields illustrate the liquid lines of descent calculated following the described model and the 731 

cumulate lines of descent, respectively. Crosses indicate a 10% fractionation step. The larger 732 

triangle symbols illustrate the fractionated cumulate composition and the smaller triangle sym-733 

bols represent the measured USB bulk-rock compositions. Hbl-gabbro and hbl-norite compo-734 

sitions are from Greene et al. (2006), Daczko et al. (2012) and Bouilhol et al. (2015). 735 

Fig. 11. Geodynamical model accounting for both the petrological and geochemical character-736 

istics of the Ukaliq supracrustal belt. Legend as in previous figures. The negative 142Nd anom-737 

alies in boninitic basalts to andesites (Caro et al., 2017) are reproduced through melting or 738 

dehydration of a recycled Hadean crust that transfers its isotopic signature to the overlying 739 

mantle. Tholeiitic(-to-transitional) and boninitic primitive lavas are generated through partial 740 

melting of the mantle wedge, carrying the μ142Nd anomalies to the Eoarchean crust. Fractiona-741 

tion starts in the lower crust for the tholeiitic(-to-transitional) and boninitic liquids and contin-742 

ues at shallower depths until andesitic compositions are reached. 743 
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