
P
os
te
d
on

23
N
ov

20
22

—
T
h
e
co
p
y
ri
gh

t
h
ol
d
er

is
th
e
au

th
or
/f
u
n
d
er
.
A
ll
ri
gh

ts
re
se
rv
ed
.
N
o
re
u
se

w
it
h
ou

t
p
er
m
is
si
on

.
—

h
tt
p
s:
//
d
oi
.o
rg
/1
0.
10
02
/e
ss
oa
r.
10
50
46
83
.1

—
T
h
is

a
p
re
p
ri
n
t
a
n
d
h
as

n
ot

b
ee
n
p
ee
r
re
v
ie
w
ed
.
D
a
ta

m
ay

b
e
p
re
li
m
in
a
ry
.

The Quadratic Magnetic Gradient and Complete Geometry of

Magnetic Field Lines Deduced from Multiple Spacecraft

Measurements

Chao Shen1, Chi Zhang2, Zhaojin Rong2, Zuyin Pu3, Malcolm W Dunlop4, Christopher
Philippe Escoubet5, C. T. Russell6, Gang Zeng7, Nian Ren8, James L Burch9, and Yufei
Zhou8

1Harbin Institute of Technology
2Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics,
Chinese Academy of Sciences
3Peking University
4Beihang University
5ESA / ESTEC
6University of California
7Jingchu University of Technology
8School of Science
9Southwest Research Institute

November 23, 2022

Abstract

Topological configurations of the magnetic field play key roles in the evolution of space plasmas. This paper presents a novel

algorithm that can estimate the quadratic magnetic gradient as well as the complete geometrical features of magnetic field

lines, based on magnetic field and current density measurements by a multiple spacecraft constellation at 4 or more points. The

explicit estimators for the linear and quadratic gradients, the apparent velocity of the magnetic structure and the curvature and

torsion of the magnetic field lines can be obtained with well predicted accuracies. The feasibility and accuracy of the method

have been verified with thorough tests. The algorithm has been successfully applied to exhibit the geometrical structure of a

flux rope. This algorithm has wide applications for uncovering a variety of magnetic configurations in space plasmas.
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 44 

Abstract  45 

 46 

Topological configurations of the magnetic field play key roles in the evolution of 47 

space plasmas. This paper presents a novel algorithm that can estimate the quadratic 48 

magnetic gradient as well as the complete geometrical features of magnetic field lines, 49 

based on magnetic field and current density measurements by a multiple spacecraft 50 

constellation at 4 or more points. The explicit estimators for the linear and quadratic 51 

gradients, the apparent velocity of the magnetic structure and the curvature and 52 

torsion of the magnetic field lines can be obtained with well predicted accuracies. The 53 

feasibility and accuracy of the method have been verified with thorough tests. The 54 

algorithm has been successfully applied to exhibit the geometrical structure of a flux 55 

rope. This algorithm has wide applications for uncovering a variety of magnetic 56 

configurations in space plasmas. 57 

 58 
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Plain Language Summary 66 

 67 

The magnetic field plays a key role in the dynamical evolution of space plasmas; it 68 

traps and stores plasma particles, and controls the transfer, conversion and release of 69 

the energies. The Magnetic field can form various structures, where the magnetic field 70 

lines can be bending and twisting. At the present time full imaging of the magnetic 71 

field has not been achieved. Therefore, it is very important to estimate the magnetic 72 

gradients at every order, as well as the geometrical features (curvature and torsion) of 73 

the magnetic field lines (MFLs), from the in situ observations. Although we have 74 

successfully deduced the first order magnetic gradient and the curvature from multiple 75 

S/C magnetic measurements, it is still not solved how to estimate the high order 76 

magnetic gradients and the torsion of MFLs. The research reported here has, for the 77 

first time,  put forward a novel explicit algorithm, which can acquire the quadratic 78 

magnetic gradient and the torsion of MFLs with the 4-point magnetic field and current 79 

density measurements as the input. This algorithm has stable accuracies and can be 80 

applied effectively to analyze the observations of MMS. This method can find a 81 

plenty of applications in space exploration and research. 82 

 83 

 84 

 85 

 86 

 87 



 

 88 

1. Introduction 89 

 90 

A magnetic field can trap plasma populations; control the transfer, conversion 91 

and release of energy in planetary magnetospheres; play a key role in the spatial 92 

distribution of the plasmas and development of instabilities, as well as controlling the 93 

evolution of substorms and storms. The measurement of the magnetic field in space 94 

has been carried out by a limited number of sometime collocated spacecraft placed in 95 

various locations. It is therefore important and possible to establish the continuous 96 

distribution of the magnetic field, based on multi-point magnetic observations. With 97 

two point measurements the gradient of the magnetic field along the spacecraft (S/C) 98 

separation line can be obtained; With three point magnetic measurements, the 99 

magnetic gradient within the S/C constellation plane can be yielded; while with four 100 

or more point magnetic measurements, the three dimensional linear magnetic gradient 101 

can be estimated (McComas et al.,1986; Harvey, 1998; Chanteur, 1998; Vogt et al., 102 

2008; Shen et al., 2012a, b; Dunlop et al., 2015; Dunlop et al., 2016; Dunlop et al., 103 

2018; Dunlop et al., 2020). In order to get the quadratic magnetic gradient, 10 S/C 104 

magnetic measurements are needed (Chanteur, 1998).  105 

In the past, magnetic measurements have been performed with two S/C 106 

(ISEE-1/2, DSP, RBSP, ARTEMIS, etc.) [Ogilvie et al., 1977; Liu et al., 2005; Shen et 107 

al., 2005; Angelopoulos, 2008], three S/C constellations (THEMIS, Swarm) 108 

[Angelopoulos, 2008; Friis-Christensen et al., 2006], and four S/C constellations 109 



 

(Cluster and MMS) [Escoubet et al., 2001; Balogh et al., 2001; Burch et al., 2016; 110 

Russell et al., 2016]. However, presently 10 S/C magnetic field observations in space 111 

are on the drawing boards. Deducing the various orders of magnetic gradients fully 112 

with a limited number of S/C observations remains an important question.   113 

Attempts to partially solve this problem, have used physical constraints to assist 114 

the complete determination of the magnetic gradients [Vogt et al., 2009]. The 115 

symmetries in plasma structures and the electromagnetic field laws can also be useful. 116 

It has been found by Shen et al., [2012a] that, for a force-free magnetic structure in 117 

which the current is field-aligned, the 3 dimensional (3-D) magnetic gradient can be 118 

completely obtained with 3 spacecraft magnetic measurements. In their derivation, 119 

Ampere’s law 0=B j
 and the solenoidal condition of the magnetic field 120 

0 =B are used to reduce the equations. Furthermore, if the force-free magnetic 121 

structure is steady and moving with a known relative velocity, only two S/C magnetic 122 

observations are needed to gain the complete 9 components of the linear magnetic 123 

gradient [Shen et al., 2012b]. Liu et al. (2019) have suggested a method to get the 124 

nonlinear distribution of the magnetic field in a stable plasma structure by fitting the 125 

second-order Taylor expansion based on 4 S/C magnetic measurements and one S/C 126 

current density observations. Torbert et al. (2020) have successfully obtained the 3 D 127 

distribution of the magnetic field by using the 4 point magnetic and particle/current 128 

density measurements of MMS. In their exploration, they have applied a fitting 129 

method to the magnetic field to the third order in magnetic gradient, named the 130 



 

“25-parameter fit”. However, there still exists no explicit solution to the determination 131 

of the quadratic magnetic gradient based on multiple spacecraft measurements. 132 

With multiple S/C magnetic observations, geometrical features of the magnetic 133 

field lines can be obtained [Shen et al., 2003, 2008a, b, 2011, 2014; Rong et al., 2011; 134 

Lavraud et al., 2016; Xiao et al., 2018]. The geometry of the magnetic field lines 135 

(MFLs) so obtained includes the tangential direction (just the direction of the 136 

magnetic vector), principal direction (along the curvature vector), binormal vector 137 

(the normal of the osculation plane of one MFL), curvature and torsion. However,  138 

the torsion of the MFLs has not been obtained in these previous methods. The reason 139 

for this is that the torsion of the MFLs depends on the quadratic magnetic gradient, 140 

which needs 10 point S/C magnetic measurements [Chanteur, 1998] to be deduced. 141 

Therefore, it is necessary to explore the calculation of the torsion of MFLs based on 142 

observations of a limited number of S/C, in order to learn this more complete of 143 

MFLs in space.  144 

This problem is addressed herein, where an explicit algorithm has been derived 145 

to estimate the quadratic magnetic gradient as well as the complete geometrical 146 

parameters of the MFLs based on measurements with a limited number of spacecraft. 147 

This approach has a wide range of applications for analyzing the magnetic structure in 148 

space plasmas. 149 

 150 

2. The estimators for the linear and quadratic gradients of magnetic field 151 

 152 



 

It is very important to obtain the quadratic gradient of the magnetic field. With it, 153 

we can grasp more accurately the structure of the magnetic field and, uncover the 154 

complete geometrical structure of the MFLs, including the Frenet coordinates and 155 

curvature, as well as the torsion. In this section, we obtain the explicit estimator of the 156 

quadratic magnetic gradient based on magnetic field and current density 157 

measurements from a multi-S/C constellation. 158 

We present the derivations of this algorithm as follows. 159 

 160 

The configuration of the four-spacecraft constellation (Cluster or MMS) is 161 

illustrated in Figure 1.  162 

 163 

 164 

Figure 1. The exploration on the magnetic field in space in the S/C constellation 165 

frame of reference. （ 1 2 3, ,x x x ）are the Cartesian coordinates in the S/C constellation 166 

reference frame. The S/C constellation is composed of four spacecraft (the number of 167 

spacecraft can be more 4), whose barycenter is at the point C. The apparent motional 168 

velocity of the magnetic field structure relative to the S/C constellation reference is 169 



 

V . Conversely, the velocity of the S/C constellation relative to the proper reference of 170 

the magnetic field structure is '=-V V . 171 

 172 

In the S/C constellation frame of reference, the simultaneous position vectors of 173 

the four spacecraft are ( )=1,2,3,4 r  and the position vector of the barycenter of 174 

the four S/C is  175 

 
4

c

1

1

4


=

= r r .  (1) 176 

In this study, the Greek subscripts or superscripts apply to spacecraft, and 177 

 =   ， ， ， 1,2,3,4 ; while the Latin subscript c indicates the barycenter. 178 

The apparent motional velocity of the magnetic field structure relative to the S/C 179 

constellation reference frame is denoted as V , which may vary from point to point 180 

[Hamrin, et al.(2008)]. The velocity of the S/C constellation relative to the proper 181 

reference frame of the magnetic field structure is '= −V V . We establish the 182 

Cartesian coordinates （ 1 2 3, ,x x x ）in the S/C constellation reference, and choose the 183 

3x  axis along the direction of '= −V V  with its basis 3
ˆ / V= −x V . The 184 

configuration of the S/C constellation is characterized by the volume tensor, which is 185 

defined [Harvey, 1998; Shen et al., 2003] as 186 

 ( )( )
4

kj k ck j cj

1

1
R r r r r

4
 

=

= − − .   (2) 187 

We have applied some Latin subscripts or superscripts (other than c) to denote 188 

Cartesian coordinates with i,  j,  k,  e,  m,  n=1, 2, 3  and p,  q,  s,  r=1, 2 . 189 

 190 



 

(i) The linear gradients of the magnetic field and current density at the 191 

barycenter 192 

As the MMS S/C cross a magnetic structure, the four S/C measure the magnetic 193 

field with high accuracy and time resolution [Russell et al. 2014; Burch et al. 2015]. 194 

The magnetic field observed by the th  S/C at position r  is 195 

 ( ) ( )t t, , 1,  2,  3,  4  = =B B r .  (3) 196 

The MMS S/C can measure the distributions of ions and electrons with an 197 

efficient accuracy to yield the local current density [Torbert et al., 2015, 2020] as 198 

 ( ) ( )t t, , 1,  2,  3,  4  = =j j r .  (4) 199 

To obtain the magnetic field and its first order gradient at the barycenter of the 200 

MMS constellation, we first neglect the second order magnetic gradient under the 201 

linear approximation. With four S/C, simultaneous magnetic observations, the 202 

magnetic field and its linear gradient at the barycenter of the S/C constellation can be 203 

obtained with the previous methods established by Harvey (1998) and Chanteur 204 

(1998). In order to suppress the fluctuating components in the magnetic field and 205 

obtain the magnetic gradient at higher accuracy, we make use of the time series of the 206 

magnetic observations by the four S/C to get the magnetic gradient with the method 207 

first put forward by De Keyser, et al. (2007). In their approach, the time series data of 208 

the four S/C do not need to be synchronized. Appendix A gives the explicit estimator 209 

of the linear gradient of magnetic field in space and time from this approach.  210 



 

Based on equations (A14) and (A15) in Appendix A, the magnetic field and its 211 

first order derivatives at the barycenter of the MMS constellation under the linear 212 

approximation are as follows.    213 

( )
4n

i c c i a a

a=1

1
B (t , ) B t ,

4n
= r r ,                           (5) 214 

( )( ) ( )
4n

1

c c 0 a a

1
(t , ) R t ,

4n
i ia

a=1

B = x x B 

 

−  −r r .               (6) 215 

And the above formulas in the vector format are   216 

( )
4n

c c a a

a=1

1
(t , ) t ,

4n
= B r B r ,                           (7) 217 

( )( ) ( )
4n

1

c c 0 a a

1
(t , ) R t ,

4n
a

a=1

= x x 

 

−  −B r B r .               (8) 218 

In the above formulas (5)-(8), the general volume tensor R  in spacetime is 219 

defined by (A9). These equations will yield the time series of magnetic field c c(t , )B r , 220 

its time derivative t c c(t , ) B r  and first order gradient ( )c ct ,B r  at the barycenter 221 

of the S/C constellation. 222 

In the above formulas (5)-(8), the accuracy is found to first order due to omission 223 

of the second order gradients. We will correct the magnetic field and its first order 224 

derivatives at the barycenter with the second order derivatives of the magnetic field 225 

according to Appendix A and will further obtain the corrected quadratic magnetic 226 

gradient by iteration (see (vii) later). The corrected magnetic field and its first order 227 

gradient at the barycenter will then have second order accuracy. 228 

In this investigation, we have neglected the magnetic gradients with orders 229 

higher than two, so that the current density can be regarded as linearly varying. 230 



 

According to the Equations (A14) and (A15) in Appendix A, the current density at 231 

the barycenter is 232 

 ( )
4n

c c c a a

a 1

1
(t , ) t ,

4n =

= = j j r j r ,   (9) 233 

and the linear gradient of the current density at the barycenter is 234 

 
( )( ) ( )

4n
1

c c 0 a a

1
(t , ) R t ,

4n
a

a=1

= x x 

 

−  −j r j r ,   (10) 235 

of which the component form is 236 

( )( ) ( )
4n

1

c c 0 a a

1
(t , ) R t ,

4n
k ka

a=1

j = x x j 

 

−  −r r .   (10’)  237 

Generally, the electron and ion measurements have different time resolutions. So 238 

that the electron and ion current densities and their linear gradients at the barycenter 239 

can be first calculated separately with Equations (9) and (10), and finally added to 240 

obtain the total current density and its linear gradient at the barycenter.  241 

 242 

(ii) The second order time derivative of the magnetic field and the first order 243 

time derivative of the magnetic gradient 244 

With the time series of magnetic field c c(t , )B r and its first order time derivative 245 

t c c(t , ) B r  at the barycenter obtained in (i), it is easy to get the second order time 246 

derivative of magnetic field t t c c(t , )  B r  at the barycenter, where t / t    . 247 

The gradient of the time derivative of the magnetic field is equivalent to the time 248 

derivative of the magnetic gradient, i.e., 249 

 ( ) ( )j t i t j iB t, B t,   =   r r .  (11) 250 

Therefore, at the central point c c(t , )r ,  251 



 

j t i c c t j i c c j i c c

c

B (t , ) B (t , ) B (t , )
t


   =   =  

r r r .                   (12)  252 

 253 

(iii) The transformations between the temporal and spatial gradients of the 254 

magnetic field in different reference frames 255 

This approach will make use of the proper reference frame of the magnetic 256 

structure so as to determine the second order gradient in the direction of the apparent 257 

motion of the magnetic structure, i.e., the longitudinal quadratic gradient of the 258 

magnetic field. To do this, we need to find the apparent velocity V  of the magnetic 259 

structure relative to the spacecraft constellation. For space plasmas, this relative 260 

velocity is much less than the speed of the light in vacuum, i.e., V c . Shi et al. 261 

(2006) have first obtained the velocity of the magnetic structure relative to the 262 

spacecraft with the temporal and spatial variation rates of the magnetic field under 263 

the assumption of stationarity. Hamrin et al. (2008) have obtained the apparent 264 

velocity of the magnetic structure using a proper reference frame. Here we give a 265 

concise discussion on the transformations between the temporal and spatial gradients 266 

of the magnetic field in different reference frames.   267 

The time and space coordinates ( t , r ) in the S/C constellation reference frame 268 

and the corresponding time and space coordinates ( t , r ) in the proper reference 269 

frame of the magnetic structure obey the Galilean transformations， i.e., t =t , 270 

= - tr r V (see also Figure 1). (The Eulerian description is applied in each reference 271 

frame.) The magnetic fields observed in the S/C constellation frame and the proper 272 

frame of the magnetic structure are ( )t,B r  and ( )t ,  B r , respectively. As V c , 273 



 

( ) ( )t, = t ,  B r B r . It is obvious that the magnetic gradient in these two reference 274 

frames are also identical, i.e., 275 

( ) ( )t, = t ,    B r B r .            (13) 276 

The relationship between the time derivative of the magnetic field in the S/C 277 

constellation, 
( )t,

t





B r
, and time derivative of the magnetic field in the proper 278 

reference frame of the magnetic structure, 
( )t ,

t

  



B r
, is  279 

( ) ( )t, t ,
=

t t

   

 

B r B r ( )
( )

t ,t
= + t ,

t t t

    
   

  

B r r
B r ,     280 

or 281 

( ) ( )
( )

t, t ,
= - t,

t t

   


 

B r B r
V B r .             (14)  282 

Which is the same formula as given by Song and Russell (1999) and Shi et al. 283 

(2006).  284 

In the proper reference frame of the magnetic structure, 
( )t ,

=0
t

  



B r
, thus 285 

 
( )

( ) ( )
t,

= t, t,
t


− 



B r
V r B r .   (15) 286 

At the barycenter of the S/C constellation, 287 

 
( )

( ) ( )c

c c

t,
= t, t,

t


− 



B r
V r B r  .  (16)  288 

The component form of the above formula is 289 

( )
( ) ( )j c

i c i j c

B t,
= V t, B t,

t


− 



r
r r  .  (16’) 290 



 

The above equation has a unique solution of the apparent velocity and a proper 291 

reference frame can be found only if ( )t, 0 B r . Thus the apparent velocity of the 292 

magnetic structure relative to the S/C constellation is (Shi et al., 2006; Hamrin et al., 293 

2008) 294 

 ( ) ( ) ( ) ( ) ( )
1

i c i c t j c cji
V t, V t, B t, t,

−= − = −  r r r B r .   (17)  295 

It is noted that the apparent velocity of the magnetic structure can vary with time. 296 

The formula (17) is applicable for magnetic structures with V c , whether steady 297 

or unsteady. / VV  is a characteristic, directional vector, so that we can define 298 

- / VV  as the directional vector of the 3x  axis in the S/C constellation reference 299 

frame, i.e., 
3

ˆ - / V=x V .  300 

We can further investigate the transformation between the time derivatives of the 301 

magnetic gradients in the two different reference frames. Similarly to the linear 302 

magnetic gradients in the formula (13), the quadratic magnetic gradients in the S/C 303 

constellation frame and the proper frame of the magnetic structure are identical, i.e.,  304 

( ) ( )t, = t ,     B r B r .   (18)  305 

The relationship between the time derivative of the magnetic gradient in the S/C 306 

constellation frame, ( )t t, B r , and the time derivative of the magnetic gradient in 307 

the proper frame of the magnetic structure, ( )t t ,
    B r , satisfies 308 

( ) ( )t, = t ,
t t

 
    

 
B r B r  309 

( ) ( )
t

= t , + t ,
t t t

   
          

  

r
B r B r  310 

( ) ( )= t , t ,
t


         −  


B r V B r .  (19)  311 

Considering 
( )t ,

=0
t

  



B r
 in the proper reference frame and the equation (18), this 312 

reduces to 313 



 

( ) ( )t, = t,
t


 − 


B r V B r ,                               (20)  314 

which is the formula relating the time derivative of the linear magnetic gradient to the 315 

quadratic magnetic gradient in the S/C constellation reference frame. With this 316 

general formula the gradient of the linear magnetic gradient in the direction of 317 

apparent velocity is readily obtained as shown below in (iv). 318 

 319 

(iv) The longitudinal gradient of ( )ct,B r  320 

Based on Equation (20), the gradient of the linear magnetic gradient along the 321 

3x  direction at the barycenter cr  satisfies 322 

 ( ) ( )c t c3
V t, t,

x


 =  


B r B r ,   (21)  323 

or 324 

 ( ) ( )3 k m c t k m c

1
B t, B t,

V
  =  r r .   (22) 325 

The right hand side of the above equation can be obtained from Equation (12), so that 326 

9 components of the quadratic magnetic gradient can be obtained. Formula (22) is 327 

applicable for both steady and unsteady magnetic structures. 328 

 Furthermore, due to the symmetry of the quadratic gradient, 329 

p 3 l 3 p lB = B    ,           (23) 330 

of which the right hand side is given by Equation (20), so that 6 more components of 331 

the quadratic magnetic gradient can be obtained. Now only 332 

p q lB (p,q 1,2, l 1,2,3)  = =  are to be found, which involve 4 3 12 =  components. 333 

Considering the symmetry of the quadratic magnetic gradient, p q l q p lB = B    , only 334 

3 3 9 =  of these components  are independent. 335 



 

The gradient of the current density will be needed for the estimation of the remaining 336 

components of the quadratic magnetic gradient.  337 

 338 

 339 

(v) Three components and two constraints for the quadratic magnetic gradient 340 

using the gradient of current density 341 

From Ampere’s law, we get the constraints that 342 

( )=  B j , 343 

with which we can obtain some components of the quadratic magnetic gradient if j  344 

is known (for simplicity, we replace 0 j  by j .). If the electromagnetic fields are 345 

strongly varying,  2c / t−=  −  j B E , with the electric displacement current 346 

included. However, in this investigation we only consider the slow-varying 347 

electromagnetic fields with the limitation 2c / t−   B E , which is commonly 348 

satisfied in large scale space plasmas. The component equation ( )3 3=  B j  is not 349 

an independent constraint due to Eq. (22). It is a surplus condition, which we have not 350 

used because Eq. (22) can yield the longitudinal gradient directly already. 351 

Furthermore, ( ) 0 =  =j B , so that the gradient of the current density only 352 

provides 9-3-1=5 independent constraints. 353 

The transverse quadratic gradient of the longitudinal magnetic field, i.e., the 354 

quadratic gradient of the magnetic component 3B  in the plane orthogonal to the 355 

direction of motion (or 3x direction) satisfies 356 

( ) ( )p q 3 p [q 3] 3 q p lq3 l 3 qB B B j B  =   +  =  +  ,   (24) 357 
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Where again Ampere’s law  =B j  has been used. Thus, Equation (24) leads to  358 

 ( ) ( ) ( )p q 3 c lq3 p l c 3 p q cB t, j t, B t,  =  + r r r ,   (25)  359 

where 
p qj  is used. The above formula yields the transverse quadratic magnetic 360 

gradient of the longitudinal magnetic field and contains 3 independent components of 361 

the quadratic magnetic gradient at the barycenter.  362 

There are still 6 components of the quadratic magnetic gradient remaining to be 363 

determined, i.e., ( )p q s cB t,  r , which are the transverse quadratic gradients of the 364 

transverse magnetic field. 365 

Two additional constraints can be obtained from 366 

( )p 3 p 1 2 2 1j = B B , (p,q 1,2)   − = , i.e., 367 

1 1 2 1 2 1 1 3

2 1 2 2 2 1 2 3

B B j                                             (26)

B B j                                            (27)

  −  = 

  −  = 

 368 

which is at the barycenter.  369 

Based on Ampere’s law, therefore, 3 more components of the quadratic magnetic 370 

gradient and 2 constraints on it can be obtained with the gradient of current density as 371 

shown in the formulas (25), (26) and (27).  372 

Now 4 constraints are to be found for the complete determination of the 373 

quadratic magnetic gradient.  374 

 375 

(xi) The last four constraints 376 

The magnetic field is divergence-free, i.e., 0 =B . Therefore 377 

 j k kB 0  = .   (28) 378 
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It is noted that the sum over k is made in the above formula. Because 379 

3 k kB =0   is a dependent constraint in  Equation (22), there are only 380 

two independent constraints, i.e., 
p k kB 0, (p,q 1,2)  = = . So that 381 

1 1 1 1 2 2 1 3 3B + B = B    −  ,                        (29) 382 

2 1 1 2 2 2 2 3 3B + B = B    −  ,                       (30) 383 

where 
p 3 3 3 p 3 p t 3

1
B B B

V
  =   =    according to Eq. (22). 384 

There are therefore only two constraints left to be found.  385 

Using magnetic rotation analysis (MRA) [Shen et al., 2007, see also Appendix B], 386 

the remaining two constraints can be obtained from the properties of the magnetic 387 

field. As shown in Appendix B, based on MRA, the magnetic rotation tensor has three 388 

characteristic directions (
1X̂ , 

2X̂ , 
3X̂ ), as illustrated here in Figure 2. The 389 

coordinate line 3X is along 
3X̂ . In the third characteristic direction 

3X̂ , the magnetic 390 

unit vector ˆ=
B

Bb  has no rotation, and the square of the magnetic rotation rate is 391 

                    
3 3

ˆ ˆ
0

X X

 
 =

 

b b
 .  (31) 392 

So that 393 

 
3

ˆ
0

X


=



b
 .  (32) 394 

Since 
3

ˆ
0

X


=



b
 at each point of the coordinate line 3X  (as indicated in Figure 2), 395 

we have  396 

3 3

ˆ
0

X X

 
=

 

b
.              (33) 397 



 

 398 

Figure 2. Illustration of the characteristic direction at which the magnetic rotation 399 

minimizes. 400 

 401 

Since the magnetic unit vector b̂  obeys ˆ ˆ =1b b , the above constraint contains only 402 

two independent component equations, which can be chosen as 403 

 
p

3 3

B
0,  p=1, 2

X X B

 
=

 
.   (34) 404 

 405 

The three characteristic directions (
1X̂ , 

2X̂ , 
3X̂ ) have a relationship with the base 406 

vectors（ 1x̂ , 2x̂ , 3x̂ ） of the S/C coordinates ( 1 2 3, ,x x x ), as follows: 407 

   i ij j
ˆ ˆa=X x ,                  (35) 408 

where the coefficients ( )ij i j i j
ˆ ˆˆ ˆcos ,a  =  = 

 
X x X x . If we assume a vector 409 

i i j j
ˆˆ= Xx =X x X , then i j j i ji j

ˆ ˆX Xx a=  =X x .  410 

The first order partial derivative obeys: 411 

k
3k

3 k 3 kX X

  
=  =

   

x
a

x x
 ,  412 



 

and he second order partial derivative obeys: 413 

3k 3 j 3k 3 j

3 3 k j k j

=
X X

a a a a
x x x x

      
=        

.  414 

Generally, 
3X̂  is varying slowly in space and 

3 j

k

a
x




 is a small quantity, thus 415 

3 j

k

a
x




 is omitted in the above equations. Therefore, Equation (34) reduces to 416 

 
p

3k 3 j k j

B
0,  p=1, 2

B

  
= 

   
a a

x x
.   (36) 417 

Finally, we show below that we can find  ( )p q s cB t,  r  by combining the 418 

equations (26), (27), (29), (30) and (36). 419 

We also can investigate the formula (36) in more detail. For simplicity, we can 420 

adjust the coordinates ( )1 2 3， ，x x x . We keep the 3x  axis unchanged with its basis 421 

3
ˆ - / V=x V , and rotate 1x  and 2x  axes around the 3x  axis such that the coordinate 422 

base vector 1x̂  is orthogonal to both 3x̂  and 3X̂ , i.e.,  423 

3 3
1

3 3

ˆ ˆ
ˆ

ˆ ˆ


=



X x
x

X x
,                                (37) 424 

(and as illustrated in Figure 2). Thus  425 

31 3 1
ˆ ˆ 0a =  =X x .  426 

Then the formula (36) becomes 427 

 
2 2

p p p2 2

32 33 33 322 2

2 3 3 2

B B B
2

B B B
a a a a

x x x x

        
= − −     

        
.  (38) 428 

All the terms in the right hand side of the above equation are known. With the formula 429 

(59) developed in the next section, we can express the second order gradients of the 430 



 

components of the magnetic unit vector on the two sides of Eq. (38) in terms of the 431 

magnetic gradients. With the formula (59), we get 432 

p 1 3 2 3 3

2 2 p p i 2 2 i 2 p 2 p 2 2 p 2 i 2 i

2 2

B
B B B B B B -2B B B+3B B B B B B B B

Bx x

− − − − −  
=   −       −   

   
433 

,                                                            (39) 434 

or 435 

( )

( )

p 1 3

2 2 2 2 p p s 2 2 s

3 2 3 3

p 3 2 2 3 2 p 2 p 2 2 p 2 i 2 i

B
B B B B B B

B

B B B B -2B B B+3B B B B B B B B

− −

− − − −

 
  =   −   

 

+ −       −  

.          (39’) 436 

The second expression on the right hand side is known already. Substituting (39’) 437 

into (38), we get 438 

2 22
p p1 3 33 33

2 2 p p s 2 2 s 3 22 2
s 1 32 3 32

3 2 3 3

p 3 2 2 3 2 p 2 p 2 2 p 2 i 2 i

B B2
B B B B B B

B B

               B B B B -2B B B+3B B B B B B B B

a a

a x a

− −

=

− − − −

 
  −   = − −   

  

 − −       −   


 439 

(40) 440 

where p=1, 2. All the terms in the right hand side of the above equation can be 441 

determined with (59), (8), (22), (23) and (24).  442 

Therefore, combining equations (26), (27), (29), (30) and (40), we can determine 443 

( )p q s cB t,  r . 444 

Actually, with the two equations in the formula (40), we can completely find the 445 

solution ( )2 2 s cB t,  r ,（s=1, 2）.  446 

Furthermore, with the formulas (30) and (27), we can get ( )1 2 s cB t,  r ,（s=1, 2）, 447 

i.e., 448 

1 2 1 2 1 1 2 2 2 2 3 3B = B = B B      −  −  ,                  (41) 449 

and  450 



 

1 2 2 2 1 2 2 2 1 2 3B B B + j  =   =    .                      (42) 451 

The above two equations are valid at the barycenter.  452 

In addition, from the equation (29) and (26), we can obtain  ( )1 1 s cB t,  r ，（s=1, 453 

2）, i.e., 454 

1 1 1 1 2 2 1 3 3B = B B  −  −  ,                  (43) 455 

and 456 

1 1 2 1 2 1 1 3B B j  =   +  .                     (44) 457 

The above two equations are also valid at the barycenter.  458 

So far, we have obtained all the components of the quadratic gradient ( )
c

B  459 

at the barycenter. The accuracy of the quadratic gradient is to first order, just as 460 

that for the magnetic gradient. 461 

 462 

(vii) Recalculating the magnetic gradients by iteration  463 

In order to enhance the accuracy of the magnetic quantities, we can correct the 464 

estimate of the field and its linear gradient at the barycenter with the quadratic 465 

magnetic gradient obtained above (based on the formulae (A8) and (A13) in Appendix 466 

A). Subsequently, we can further go through the above steps（ii）-（vi）to get the 467 

corrected quadratic magnetic gradient with better accuracy.  468 

The procedure is as follows:  469 

The magnetic field measured by the four spacecraft is 470 

1
( , ) ( , )+ ( , ) ( , )

2
i a a i c c a i c c a a i c cB t B t x B t x x B t  

  =   +    r r r r .         (45) 471 



 

Based on the formula (A8) in Appendix A, we obtain the magnetic field at the 472 

barycenter, corrected by the quadratic magnetic gradient, as: 473 

( )
4n

i c c i a a i c c

a=1

1 1
B (t , ) B t , - R B (t , )

4n 2



 =  r r r ,              (46) 474 

where, the general volume tensor R  is as defined in (A9). 475 

From the formula (A13) in Appendix A, we get the first order magnetic gradient 476 

at the barycenter corrected from the quadratic magnetic gradient as 477 

( ) ( )( ) ( ) ( )
N

1 1

c c c a a i c c

1 1
(t , ) t , R B (t , )

N 2

- -

i ia
a

B = x x B  

   
  − −  r R r R r .  478 

(47) 479 

Furthermore, we can perform the above steps（ii）-（vi）to obtain the corrected 480 

quadratic magnetic gradient using these updated estimates. The quadratic magnetic 481 

gradient obtained in this iterative sense has a higher accuracy, while errors in the 482 

magnetic field, its linear gradient and the apparent velocity of the magnetic structure 483 

at the barycenter, are of second order in L/D, where L is the size of the S/C 484 

constellation and D is the characteristic scale of the magnetic structure. 485 

 486 

To summarise this algorithm, we proceed as follows 487 

(a) Estimate the magnetic field cB ; the first order magnetic gradient ( )
c

B , and the 488 

time variation rate 
ct

 
 
 

B
of the magnetic field, at the barycenter and under the linear 489 

approximation; as in Eqs. (7) and (8). 490 

Estimate the gradient of the current density at the barycenter ( )ct,j r , as in Eq. (10). 491 



 

(b) Determine the apparent velocity V  using the time variation rate 
ct

 
 
 

B
 of the 492 

magnetic field and the first order magnetic gradient ( )
c

B  and define the 3x  493 

coordinate with 33
ˆ / V= −x V ; determine the three characteristic directions  494 

(
1 2 3

ˆ ˆ ˆ,  ,  X X X )  using MRA, and define the coordinate base vector 3 3
1

3 3

ˆ ˆ
ˆ

ˆ ˆ


=



X x
x

X x
, 495 

such as to fix the Cartesian coordinates ( )1 2 3, ,x x x  in the spacecraft constellation 496 

reference frame.  497 

(c) Calculate the time variation rate ( )
ct





B  of the linear magnetic gradient at the 498 

barycenter, so as to obtain the components of the quadratic magnetic gradient  499 

( )3 c
 B  and ( )3 c

 B , as in Eqs. (22) and (23).  500 

(d) Combine Ampere’s law and the first order gradient of the current density 501 

( )ct,j r  to calculate the transverse quadratic magnetic gradient of 3B , i.e. 502 

( )p q 3B p,q 1,2  = , as in Eq. (25).  503 

(e) Solve the equations 
3 3

ˆ =0
X X

 

 
b , derived by MRA, so as to obtain the 504 

components: 2 2 pB (p 1,2)  = . 505 

(f) Determine the remaining four components of the quadratic magnetic gradient, 506 

( ) ( )1 2 p 2 1 pc c
B B  =    and ( )1 1 p c

B  , ( )p 1,2= , using the equation ( )=0 B  507 

derived from the divergence free condition of the magnetic field and the equation 508 

( )=  B j  from Ampere’s law, as in Eqs. (41) - (44).   509 

(g) Revise the magnetic field cB  and the first order magnetic gradient ( )
c

B  with 510 

the quadratic magnetic gradient 
( ) ( )2

c
G = B  obtained initially, as in the formulas 511 

(46) and (47), and perform the above steps (b) - (f) once again, so as to get the 512 



 

corrected quadratic magnetic gradient ( )
c

B , as well as the corrected apparent 513 

velocity V of the magnetic structure.  514 

It should be noted that, the magnetic field, the linear magnetic gradient and the 515 

quadratic magnetic gradient are all identical in different reference frames. We will test 516 

all these estimators in detail in Section 4. 517 

Given the magnetic field cB
 , the first order magnetic gradient 

( )
c

B
 and the 518 

quadratic magnetic gradient 
( )

c
B

, the complete geometry of the magnetic field 519 

lines of the magnetic structure can be determined. We will find the estimators for the 520 

geometrical parameters of the MFLs in the next section. 521 

 522 

3. Determining the complete geometry of magnetic field lines based on multiple 523 

S/C measurements 524 

 525 

The geometry of the MFLs plays a critical role in the evolution of the space 526 

plasmas. In this section, we will extract the estimators for the complete geometry of 527 

the MFLs, from the linear and quadratic gradients of the magnetic field estimated in 528 

Section 2.  529 

 530 

3.1 The natural coordinates and curvature of the MFLs 531 

 532 



 

 533 

Figure 3. Demonstration on the geometry of the magnetic field lines. ˆ / B=b B  is the 534 

magnetic unit vector; κ  is the curvature vector of the magnetic field line, K̂  and 535 

N̂  are the principal normal and binormal, respectively. The magnetic field line is also 536 

twisting with torsion.  537 

 538 

The directional magnetic unit vector is ˆ / B=b B , which is also the tangential 539 

vector of the MFLs. The MFLs are usually turning, and the bending of MFLs is 540 

characterized by the curvature vector, i.e., 541 

 ( )
ˆd ˆ ˆ=

ds
= 

b
κ b b ,  (48) 542 

where ‘s’ is the arc length along the MFLs. 543 

Shen et al., (2003，2011) first presented the estimator of the curvature of MFLs, 544 

which has found many applications in multi-point data analysis. Here a brief 545 

description of it is given and we will then investigate further the complete geometry 546 

of the MFLs as well as the explicit estimators. 547 



 

The gradient of the magnetic field  ( )
c

B  at the barycenter from 548 

multi-spacecraft measurements has already been expressed in Section 2. 549 

The gradient of the magnetic strength B=|B| is 550 

 2

i i j i j

1 1
B B B B

2B B
 =  =  ,   (49) 551 

while at the barycenter of the S/C constellation, 552 

 ( ) ( )1

i c cj i jc c
B B B B− =  .   (50) 553 

Similarly, the gradient of the unit magnetic vector b̂ is 554 

 
j -1 -2

i j i i j j i

B
b B B B B B

B
 =  =  −  .  (51) 555 

With Eq (49), the above formula (51) becomes 556 

 -1 -1

i j i j j m i mb =B B B b b B  −  .  (52) 557 

Hence, the gradient of the unit magnetic vector b̂  at the barycenter is 558 

 ( ) ( ) ( )-1 -1

i j i j j m i m cc c
b B B B b b B =  −  .  (53) 559 

All the coefficients on the right hand side of the above formula involve values at the 560 

barycenter (Shen, et al., 2003): ( )
N

i ic
1

1
B B

N


=

=  , ( )i ci cc
b B= B .The formula (53) 561 

obeys the condition that: ( )j i j c
b b 0 = , which is required by the constraint 562 

ˆ ˆ 1 =b b . 563 

The curvature of the MFLs at the barycenter is therefore 564 

 ( ) ( ) ( )1 1

cj i i j i i j i j m i m cc c
b b B b B B b b b B − −=  =  −  .  (54) 565 

All the coefficients on the right hand side of the above formula involve values at the 566 

barycenter.  The formula (54) is the estimator of the curvature of the MFLs based on 567 

the multi-S/C magnetic measurements. It is noted that there can be no field line 568 



 

crossing through the point where B=0; thus, there is no need to calculate the curvature 569 

from formula (54). It is noted that formula (54) satisfies 
c c cj cj

ˆ b 0 = =b κ , indicating 570 

that the obtained curvature vector is orthogonal to the magnetic field. 571 

The radius of the curvature of the MFLs is 572 

 c cR 1 = .  (55) 573 

The principal normal vector of the MFLs is 574 

 c c
ˆ =K κ κ .   (56) 575 

The binormal vector of the MFLs is 576 

 c

c

ˆ
ˆ ˆ ˆ= =






b κ
N b K ,   (57) 577 

The above expressions collectively describe the estimators of the magnetic 578 

curvature analysis approach [Shen et al., 2003; 2011], where  ˆ ˆ ˆb K N， ，  constitute 579 

the natural coordinates, or the Frenet frame (trihedron). The unit magnetic vector b̂ , 580 

principal normal K̂  and binormal N̂  are orthogonal to each other.  581 

Usually, the MFLs not only bend, but also twist, such as the helical MFLs 582 

manifested in a flux rope. The twist of the MFLs can be described quantitatively by 583 

the torsion. In order to get the complete geometry of the MFLs, therefore, the torsion 584 

should be known. The torsion of the MFLs is defined as 585 

 
2

2

ˆ ˆ1 d 1 d 1 dˆ ˆ
ds ds ds


  

  =  = − 
b κ N

N N κ .   (58) 586 

Therefore, the quadratic gradient of the magnetic field B  is essential for the 587 

calculation of the torsion of the MFLs. 588 



 

We now investigate the relationship between the torsion of the MFLs and the 589 

quadratic gradient of the unit magnetic vector ˆb ; as well as with the quadratic 590 

magnetic gradient B . 591 

To do this, we need to first deduce the expression of the quadratic gradient of the 592 

unit magnetic vector in terms of the linear and quadratic magnetic gradients. 593 

The quadratic gradient of the unit magnetic vector b̂  is 594 

( )1 1

k i j k i j j l i lb B B B b b B− −  =  −    595 

( )1 1 1 1

k i j k i j k j l i l j l k i l = B B B B B b b B B b b B− − − −  +   −  −    596 

2 1 2

k i j k i j k j l i l

1 1 1

l k j i l j k l i l j l k i l

= B B B +B B +B B b b B

  B b b B B b b B B b b B

− − −

− − −

−       

−   −   −  
  597 

2 1 2

k i j k i j j l k i l

2 2 1

l k j i l j k l i l j l k i l

= B B B +B B +3B b b B B

  B b B B B b B B B b b B

− − −

− − −

−      

−   −   −  
.       (59) 598 

Thus the estimator of the quadratic gradient of b̂  at the barycenter is expressed as  599 

 
( ) ( ) ( ) ( ) ( ) ( ) ( )2 2 2

k i j k i j j m k i m m k j i mc c c cc c c
b B B B 3B b b B B B b B B

                    

− − −  = −   +   −  
 600 

( ) ( ) ( ) ( )2 1 1

j k m i m k i j j m k i mc c cc
B b B B B B B b b B

                    

− − −−    +   −  
.  (60) 601 

Based on this definition, the torsion of the MFLs is 602 

( )j j k k i i

1 d 1ˆ= b b b N
ds


 

 =  
κ

N  603 

( )j j k k i j k j k i i

1
b b b b b b N


=   +    .       (61) 604 

So that the torsion of the MFLs at the barycenter of the S/C constellation is 605 

 ( ) ( ) ( )1

c i j j k k i j k j k icc c
N b b b b b b  −  =     +  

 
 .   (62) 606 

The above formula is one of the estimators of the torsion of the MFLs that is 607 

dependent on the linear and quadratic gradients of the unit magnetic vector b̂ . 608 



 

 609 

By substituting Eqs (52) and (59) into Eq (61), the torsion of the MFLs is obtained as 610 

1 3 1 3

j i i k k j j k i k i j= B N B B B B N B B B  − − − −  +   ,             (63) 611 

where the condition 
j jb N 0=  has been used. Appendix C presents another 612 

verification of the expression (63) for clarity. It seems that the formula (63) is 613 

invalid as B=0  or 0 = . However, there is no field line as B=0, while for 614 

0 = , the field line is a straight line and its torsion has no fixed value, and thus 615 

is meaningless. 616 

Therefore, the torsion of the MFLs at the barycenter can be written as 617 

( ) ( ) ( )1 3 1 3

c j i i k k j j k i k i jc c c
= B N B B B B N B B B  − − − −  +   .      (64) 618 

All the coefficients on the right hand side of the above formula involve values at 619 

the barycenter. Formula (64) is another estimator of the torsion of the MFLs, 620 

expressed in terms of the linear and quadratic gradients of the magnetic field. 621 

The two different estimators of the torsion of the MFLs (62) and (64) are 622 

obviously equivalent.  623 

 624 

4．Tests 625 

 626 

In this section, the estimators put forward in Sections 2 and 3 will be tested for 627 

model current sheets and flux ropes, which can occur in the magnetosphere, in order 628 

to verify the validity and accuracy of this approach. A one-dimensional Harris current 629 

sheet model (Harris, 1962) and a Lundquist-Lepping cylindrical force-free flux rope 630 



 

model (Lundquist, 1950) are used for these two typical structures, respectively. 631 

Appendices D and E present, analytically, the geometrical features of these two kinds 632 

of magnetic structures. The tests below have shown that the estimators of the 633 

quadratic magnetic gradients and the complete geometry of the MFLs are obtained 634 

with good accuracy compared to the models, so we expect they can find wide 635 

applications in investigating the magnetic structures and configurations in space 636 

plasmas with multi-S/C measurements. 637 

 638 

4.1 The steps needed for this comparison 639 

The operative calculating steps can be summarized as follows: 640 

(a) Deriving the first-order gradients of B and J.  641 

With four-point measurements, the temporal and spatial gradients of the magnetic 642 

field ( ,
t






B
B )and the current density (

t






J
J， ) are readily deduced by the 643 

least-squares gradient calculation as outlined in Appendix A. The temporal variation 644 

t





B
 can also be inferred by differential calculations.  645 

(b) Determining the velocity of the magnetic structures relative to the SCs.   646 

Once the time series of ,
t






B
B  are obtained, the velocity of the magnetic 647 

structures relative to the S/C constellation can be derived by Equation (15), 648 

+ 0
t


 =



B
V B . Therefore, the velocity of the spacecraft is  = −V V .   649 

(c) Constructing the local coordinates 1 2 3
ˆ ˆ ˆ{ , , }e e e .  650 

According to above statements, 3ê  is defined as the direction of the relative velocity 651 

of the spacecraft to the magnetic structure, i.e.,  3
ˆ

| |
= Ve

V
. We can then apply MRA 652 



 

analysis to derive the minimum rotation direction of the magnetic field (
3X̂ ) and the 653 

1ê  can be set as 
1 3 3

ˆˆ ˆ= e X e . Finally, 2ê  completes the right-handed system. 654 

(d) Deriving B  and ˆb  and calculating the torsion of MFLs. 655 

 After expressing these parameters (B, B , J , 
t





B
 and V ) in the local 656 

coordinates, we then can derive the quadratic gradient of magnetic field and the 657 

magnetic unit vector, B  and ˆb  by following the steps stated in Section 2. 658 

Furthermore, the torsion of magnetic field line can be obtained by Equation (62) or 659 

(64).  660 

(e) Performing iterative operations to obtain more accurate results.  661 

The estimates of the magnetic field and the first-order gradient of magnetic field at the 662 

barycenter of the four S/C can be modified by Equation (45) and (47), in order to 663 

repeat the same procedure as in steps (a)-(d) above.  664 

 665 

4.2 One-dimensional Harris Current Sheet 666 

For the one-dimensional Harris current sheet, the magnetic field can be 667 

formulated as Equation (D1) in Appendix D. In this test, the parameters of the current 668 

sheet are 0 =50nT, =10nT, =20nT, h=Ry z EB B B . As shown in Figure 4a, we set an 669 

arbitrary S/C constellation trajectory from (2, 2, 2) RE to (-2, -2, -2) RE during 100 670 

seconds. The S/C constellation is assumed to be a regular tetrahedron with a 671 

separation of L=100 km. The analytic values of the magnetic field and the current 672 

density at the barycenter of the four S/Cs are shown in panels (b) and (c) in Figure 4，673 

respectively. 674 



 

In this test, we have set n=10, and make N=4n=40 points to calculate the spatial 675 

and temporal gradient of the magnetic field at the barycenter of the S/C constellation 676 

with the method in Appendix A. Therefore, we can get the spatial gradient of the 677 

vector field within the interval 5-95s. Furthermore, the temporal and spatial scale 678 

corresponds to the time resolution of the field sampling (i.e. T=1s) and the 679 

characteristic size of tetrahedron (L=100 km). The magnetic field and the non-zero 680 

component xB

z




 of the linear magnetic gradient at the barycenter are derived with 681 

the formulas (5) and (6) and shown in Figure 4b and 4d, respectively, which are in 682 

good agreement with their analytic values as given by Appendix A (the circles 683 

represent the results derived by the method, while the black solid line denotes the 684 

analytic results derived by theoretical formula). The current density at the barycenter 685 

can also be derived with xB

z




 by Ampere’s law ( =j B ) and is shown in Figure 686 

4c. Those values are again consistent with the analytic values. The apparent velocity 687 

of the current sheet relative to the S/C constellation can be derived by formula (15). 688 

As shown in Figure 4e, the velocity Vz of S/C relative to the current sheet is within 689 

the range 252~260 km/s (0.0408~0.0398 Re/s), while the actual velocity is 257 km/s 690 

(0.0404 Re/s). Thus, the maximum relative error of the deduced velocity is  691 

0.0006
1.5%

0.0404
 , which is approximately the order of L/h(~0.016).   692 

With the derived linear magnetic gradient and current density gradient, the 693 

quadratic magnetic gradient of this current sheet model can be readily obtained. It 694 

should be noted that, among the components of the quadratic magnetic gradient, only 695 

2

2

xB

z




 is non-zero, while 

22 2

2 2 2
, ,

yx z
bb b

z z z

 

  
 are non-zero among the components of 696 



 

the quadratic gradient of magnetic unit vectors. The test is therefore focused on these 697 

components. Evidently, from Figure 4(g-j), there is extremely good agreement 698 

between the results obtained by the technique and the analytic values. As illustrated in 699 

Figure 4 , 
2

2

xB

z




(Figure 4f) and 

2

2

xb

z




 (Figure 4g) have bipolar signatures around the 700 

center of current sheet and are equal to zero at the center, while 

2

2

yb

z




(Figure 4h) and 701 

2

2

zb

z




 (Figure 4i) show left-right symmetry around the current sheet center and reach 702 

a minimum at the center. These results are reasonable and in good agreement with the 703 

analytic results. 704 

We have further obtained the geometry of the current sheet deduced by the 705 

method. The deduced curvature and torsion of the MFLs in the Harris current sheet 706 

are shown in Figure 4j and 4k.  The magnetic curvature reaches a maximum at the 707 

center of current sheet, which indicates that the MFLs of the Harris current sheet bend 708 

most at the center. The torsion of the magnetic field line stays almost at zero, 709 

implying the MFLs in the Harris current sheet is planar (this agrees with the 710 

theoretical calculations in Appendix D). The order of the absolute error in the torsion 711 

is very small and less than 10-11 
1

ER − . This check is a very good validation of the new 712 

method. 713 

After completing the above steps, iterative operation and error analysis are 714 

necessary and we will discuss these later. 715 



 

 716 

Figure 4: The comparison between the properties of 1-D Harris current sheet deduced 717 

form the estimators and those from the analytic calculations based on Appendix D. 718 

Panel (a) shows the current sheet configuration and the S/C trajectory in the current 719 

sheet reference frame; Panel (b), (c) show the variation of magnetic field and current 720 

density, respectively; Panel (d) is the time series of the gradient of magnetic field; 721 

Panel (e) denotes the relative velocity of S/Cs to the current sheet; Panel (f) represents 722 

the quadratic gradient of magnetic field; Panel (g), (h), (i) denote the time series of the 723 

quadratic gradient of unit magnetic vector bx, by, bz, respectively. The magnetic field 724 



 

line curvature and torsion are displayed in Panel (j), (k), respectively. The vertical 725 

black dashed line in each panel represents the center of current sheet. The black solid 726 

lines in each panel are the accurate or theoretical results. The circles are the results 727 

obtained by the new method. 728 

   729 

4.3 Two-dimensional Force-free Flux Ropes 730 

In this section, we attempt to investigate the complete geometry of magnetic 731 

field lines for a classic force-free flux rope model. In this model, the three 732 

components of the magnetic vector in cylindrical coordinates can be expressed 733 

(Lundquist, 1950) as:  734 

0 1 z 0 00, ( ), ( )rB B B J r B B J r  = = = ,                  (65) 735 

where r  is the distance from the central axis,   is the characteristic scale of the 736 

flux rope, and J  is the Bessel function. In this test, we adopt 0 60nTB = , 737 

1/ R E = , The trajectory of the SC is set to be from (-2, 0, 0) RE to (2, 0, 0) RE 738 

during 100 seconds and is shown in Figure 5a. The average magnetic field measured 739 

by four S/C is illustrated in Figure 5b, the bipolar signature of By and the 740 

enhancement of Bz around the flux rope’s center is apparent.   741 

By repeating the same procedures as in Section 4.2, the quadratic magnetic 742 

gradient can be readily acquired (Figure 5c, 5d, 5e, 5f, 5g). One can find that the 743 

results derived by the method are in good agreement with the analytic results obtained 744 

in Appendix E. The variations of curvature and torsion of the MFLs confirm that the 745 

magnetic topological structure is different from those of the current sheet (Figure 5h, 746 



 

5i). It can also be seen from Figure 5h and 5i that the curvature of the MFLs contains 747 

a minimum, and the torsion of the MFLs contains a maximum, at the center. This 748 

indicates that the straighter and more twisted the MFLs, the nearer to the center of 749 

flux rope, implying the non-planar and helical structure of the flux rope. This test 750 

shows that the results obtained by the approach are in good agreement with the 751 

analytical results, indicating that the estimators obtained in Sections 2 and 3 are 752 

reliable and applicable.   753 

 754 



 

 755 

 756 

Figure 5: The properties of MFLs of 2-D flux rope. The relative path of S/Cs to the 757 

magnetic structure is sketched in Panel (a). Panel (b) shows the variation of the 758 

magnetic field; Panel (c), (d), (e), (f), (g) denote the time series of the quadratic 759 

gradient of magnetic field. The magnetic field line curvature and torsion are displayed 760 

in Panel (h) and (i). The vertical black dashed line in each panel represents the center 761 



 

of flux rope. The circles and black solid lines represent the results inferred by our 762 

method and the accurate results, respectively. 763 

 764 

4.4 Error Analysis 765 

The errors of the estimators put forward in this study may arise from two types 766 

of sources: the underlying measurement errors and the truncation errors. The key 767 

measurement errors include the error in the measured magnetic field B  and that of 768 

the current density j  derived from the plasma moment data (which will be seen in 769 

the application in Section 5). The truncation errors arise from terms beyond the 770 

differential order considered here and represent neglected behaviour of the magnetic 771 

structure and plasmas. 772 

The spatial truncation errors can be approximately measured by L/D, where D is 773 

the typical spatial size of magnetic structure and L is the size of tetrahedron of four 774 

SC. When L/D is very small, the truncation errors are generally small. However, as 775 

L/D grows large, the truncation errors may become significant. The iterative operation 776 

allows us to attempt to get more accurate and reliable results.  777 

Figure 6 compares the results of the calculations made with no iteration; with the 778 

first and second iterations, and theoretical calculation with L/D=0.3. It can be seen 779 

that the iterations yield more accurate results. However, the second iteration in these 780 

examples did not produce better results than the first iteration.  781 



 

 782 

 783 

Figure 6: The comparison of those results with no iteration, first iteration and second 784 

iteration. The format of this figure is just the same as that of Figure 5. The red circles 785 

in each panel denote the result of no iteration, while the green and blue circles mark 786 

the result from the first iteration and second iteration, respectively. The black solid 787 

lines represent analytic results.  788 

 789 

Figure 7 displays the variations of the relative errors of the results with L/D. The 790 

relative error is defined as method real

real

X - X
| |

X
  , where methodX  represents the results 791 

obtained with our method and realX  denotes the analytical results from the model. It 792 

is seen from Figure 7(a), (b), (c), (d), (e) that the relative errors of the linear magnetic 793 

gradient, apparent velocity and curvature of the MFLs are of first order in L/D for no 794 



 

iteration calculations, but they are of second order in L/D after the first and second 795 

iterations. Nevertheless, the relative errors of the components of the quadratic 796 

magnetic gradient and the torsion of MFLs are all of first order in L/D (Figure 7f, g, h, 797 

I, j), although after the first or second iterations they are improved. 798 

Through the above analysis, one can conclude that the most accurate results are 799 

those derived by at least one iteration, especially when L/D is larger than 0.5. Thus, it 800 

is necessary to perform the first iteration when L/D is larger than 0.5. 801 

 802 

 803 

Figure 7: The relative errors (y) of the various calculated parameters of the flux rope 804 

for different L/D (x). The red solid lines in each panel are the calculation results with 805 

no iteration, while the green, blue lines represent the calculation results with the first 806 



 

and second iterations, respectively. The format of this figure is the same as that of 807 

Figure 5.  808 

 809 

5. Application: Magnetic Flux Rope 810 

 811 

In this section, we have applied the approach developed in Sections 2 and 3 to 812 

investigate the magnetic structure and geometry of a magnetic flux rope at 813 

magnetopause, observed by MMS during 2015-10-16 13:04:33-13:04:35, which is the 814 

second of two sequential flux ropes reported by Eastwood et al., (2016), and has been 815 

analyzed by many researchers (e.g., Zhang et al., 2020). Here, we have used the 816 

high-resolution magnetic field data measured by the fluxgate magnetometer, operating 817 

at 128 vectors per second in burst-mode (Russell et al. 2014; Burch et al. 2015), and 818 

the plasma data provided by FPI (Fast Plasma Investigation, measuring electrons at 819 

cadence of 30ms and ions at cadence of 150 ms) (Torbert, et al. 2015; Pollock et al. 820 

2016). To calculate the quadratic magnetic gradient, the plasma moments are 821 

interpolated to obtain a 1/128 s time resolution to match that of the magnetic field 822 

data and to derive the current density. Note that the MMS constellation is often nearly 823 

a regular tetrahedron with its separation scale of  L20 km during this time interval. 824 

Typically, there are many waves affecting the magnetic field at various 825 

frequencies in space plasmas. If we calculated the time variation rates of the magnetic 826 

field and the linear and quadratic magnetic gradients directly, the errors caused by 827 

these waves would be so large that we would miss the underlying global features of 828 



 

the magnetic structure. To get rid of the influence of the waves, the magnetic field 829 

(Figure 8a) and current density (Figure 8b-8d) data have been filtered by a low-pass 830 

filter to eliminate disturbances with frequencies higher than 1Hz from the data. In 831 

order to apply the method in Appendix A to calculate the temporal and spatial 832 

gradients of the magnetic field and current density, we have adopted n=10 time points 833 

on each spacecraft to form a set of data. Thus, there are in total N=4n=40 points in a 834 

group of data. With this approach, the calculated temporal and spatial gradients of the 835 

magnetic field and current density have rather high accuracy. 836 

We have derived the magnetic rotation features of the flux rope by using the 837 

MRA method illustrated in Appendix B (Shen et al., 2007). Figure 8e shows the time 838 

series of the magnetic minimum rotation direction 
3X̂ , which is approximately stable 839 

and nearly parallel to GSE +Y direction. Assuming the flux rope is cylindrically 840 

symmetric, 
3X̂  could be approximately regarded as the orientation n̂  of the flux 841 

rope axis, i.e., 
3

ˆˆ =n X . The helical angle of the MFLs can be defined as 842 

ˆ ˆ( )asin = b n . As shown in Figure 8f, the helical angle   reaches its maximum 843 

value (~89°) at the time ~34.1s, implying that the MFLs lie basically along the axis 844 

orientation in the central part of the flux rope. The apparent velocity of the flux rope 845 

can be calculated by formula (17), and is illustrated in Figure 8g. One can find that, 846 

the apparent velocity at the leading edge of flux rope is larger than that at the trailing 847 

edge, suggesting that the flux rope is decelerating and not stable during this interval. 848 

Assuming that the flux rope is steady and has a force-free magnetic field, Eastwood et 849 

al., (2016) have derived the parameters of this flux rope, and estimate that the velocity 850 



 

is [-206.976, -19.8, -162.88] km/s in GSE, as derived by timing analysis, the axis 851 

orientation is [-0.012, 0.989, -0.149] in GSE and the radius is ~550km. From our 852 

analysis, it is shown that the mean velocity is ~ [-141.408, -47.58, -96] km/s and the 853 

axis orientation is [-0.0889, 0.9367, -0.3386] in GSE during the interval 854 

(13:04:33.5-13:04:35), when the flux rope is nearly steady. Considering the 855 

complicated motion and structure of flux rope and the different data processing 856 

approaches applied, the small discrepancy among the results is not surprising. 857 

 858 

 859 

Figure 8: The parameters of the flux rope observed by MMS3 on 16 Oct. 2015. Panel 860 

(a) shows the magnetic field at the barycenter of tetrahedron; Panel (b), (c) and (d) 861 

display the components of the current density at the four S/C derived by plasma data; 862 



 

Panel (e) denotes the minimum rotation direction of the MFLs, which is 863 

approximately the axis direction of the flux rope; Panel (f) represents the variation of 864 

the helical angle; Panel (g) shows the apparent velocity of the flux rope relative to the 865 

MMS constellation. 866 

 867 

By using the estimators in Sections 2 and 3, the magnetic gradients and geometry 868 

of the flux rope can be obtained and these are demonstrated in Figure 9. The total 27 869 

components of the quadratic gradient of magnetic field have been obtained with the 870 

estimators in Section 2, which are illustrated in panels (a)-(i) of Figure 9. It can be 871 

found that the order of the quadratic gradient of the magnetic field is generally less 872 

than 10-2 nT/km2, while that of the first-order magnetic gradient is ~10-1 nT/km. The 873 

complete geometry of the MFLs in the flux rope can be derived by the estimators in 874 

Section 3, which is illustrated in Figure 9j-l. It can be seen that the curvature of MFLs 875 

reaches its minimum value of ~0.80*10-3/km (Figure 9j) and the torsion reaches its 876 

maximum value of ~0.012/km2 (Figure 9l) at ~34.1sec, when the helical angle is the 877 

largest (Figure 8f). These features indicate that this flux rope is a typical one and is 878 

consistent with the 2-D flux rope model in Appendix E. The maximum curvature of 879 

the MFLs is about ~3.0*10-3/km, while accordingly the minimum radius of the 880 

curvature of the MFLs is~330km. We can choose this as the characteristic scale of the 881 

flux rope, i.e., D=330km. Furthermore, assuming the flux rope has a cylindrical 882 

helical structure, the torsion of MFLs can also be obtained directly from the curvature 883 

and helical angle from formula E9 in Appendix E. From Figure 9l, it can be seen that 884 



 

the results obtained by both techniques show good agreement with each other. 885 

Obviously, the magnetic field lines in this flux rope are right-hand spirals generally. 886 

These results verify the effectiveness and applicability of the estimators given in 887 

Sections 2 and 3. Since L/D20/3300.06, we do not need to perform the iteration in 888 

this case because the accuracy of the linear results with no iteration is already very 889 

high. 890 

 891 

 892 

Figure 9: The magnetic structure of the flux rope on 16 Oct. 2015. Panel (a)-(i) show 893 

all the 27 components of the quadratic gradient of magnetic field, where the red, green 894 

and blue lines represent the partial derivative , ,x y z   , respectively; Panel (j) gives 895 



 

the time series of the curvature of the MFLs; Panel (k) represents the binormal 896 

direction of the MFLs; Panel (l) shows the torsion of the MFLs, with its value 897 

calculated by the magnetic gradients represented by the red line, and that drawn from 898 

the cylindrical symmetry approximation denoted by the black line. 899 

 900 

6. Summary and Discussions 901 

 902 

    The quadratic magnetic gradient is a key parameter of the magnetic field, with 903 

which the fine structure of a magnetic structure can be revealed; as well as the 904 

twisting property of the magnetic field. However, up to now, the quadratic magnetic 905 

gradient from multi-S/C constellation measurements has not been explicitly 906 

calculated. Chanteur (1998) showed that in order to get the quadratic magnetic 907 

gradient from multi-point magnetic observations, in general, the number of S/C in 908 

the constellation has to be equal to or larger than 10, which is difficult to realize in 909 

present space exploration. Fortunately, the MMS constellation can not only provide 910 

rather accurate 4-point magnetic field, but can also produce very good 4-point 911 

current density estimates from particle measurements, such as to allow the quadratic 912 

magnetic gradient problem to be solved in the manner discussed here. 913 

This paper provides a method to obtain the linear and quadratic magnetic 914 

gradients as well as the apparent velocity of the magnetic structure based on the 4 915 

point magnetic field and current density observations and give their explicit 916 

estimators. Furthermore, the complete geometry of the magnetic field lines is 917 



 

revealed on the bases of these linear and quadratic magnetic gradients, and the 918 

estimator for the torsion of the MFLs is given. Simple, but relevant, tests on this 919 

novel algorithm have been made for a Harris current sheet and a force-free flux rope 920 

model, and the effectiveness and accuracy of these estimators have been verified.   921 

 922 

In this approach, the physical quantities to be determined are as follows: the 923 

magnetic field cB  (3 parameters); the linear magnetic gradient ( )
c

B (9 parameters); 924 

quadratic magnetic gradient ( )
c

B  (63=18 parameters), and the apparent 925 

velocity of the magnetic structure V (3 parameters); resulting in a total of 926 

3+9+18+3=33 undetermined parameters. 927 

On the other hand, the input conditions for this algorithm are: the time series of 928 

magnetic field ( )tB   at 4 points (34=12 parameters); the transformation 929 

relationships 
t


= − 



B
V B  (3 independent constraint equations) and 930 

t


 − 


B = V B  (33=9 independent constraint equations); the formula 931 

( )=  B j , derived from Ampere’s law (23-1=5 independent constraints); the 932 

equation ( )=0 B , from the solenoidal condition of the magnetic field (3-1=2 933 

independent constraints), and finally the constraint equations p

3 3

b =0
X X

 

 
, as 934 

deduced from MRA (2 independent constraints); resulting in a total of 935 

12+3+9+5+2+2=33 independent parameters or constraints.  936 

We note that the contribution of the current density measurements in this 937 

approach is the first order gradient of the current density, which is related to the 938 

quadratic magnetic gradient by Ampere’s law. Considering the conservation of the 939 



 

current density 0 j =  and 3 B  already obtained from the constraint equation 940 

t


 − 


B = V B , the constraint equation ( )=  B j  yields only  23-1=5 941 

independent constraints（ ( )3 3=  B j  is not independent）. Similarly, ( )=0 B  942 

provides only 3-1=2 independent constraints.  943 

Therefore, the linear and quadratic magnetic gradients, and the apparent velocity of 944 

the magnetic structure, can be completely determined based on the 4-point magnetic 945 

field and current density measured by the MMS constellation.  946 

 947 

The calculations have been expressed as being carried out in the S/C 948 

constellation frame. The algorithm proceeds as follows. Firstly, under the linear 949 

approximation, the temporal and spatial gradients of the magnetic field ( ,
t






B
B ) and 950 

of the current density (
t






J
J， ) at the barycenter of the S/C constellation can be 951 

obtained by the least-squares gradient calculations as demonstrated in Appendix A. 952 

The time rate of change of the linear magnetic gradient, ( )
ct





B , and the second 953 

order time derivative of the magnetic field can also be obtained. The apparent velocity 954 

of the magnetic structure relative to the S/C frame system can then be readily obtained 955 

with the formula 
t


= − 



B
V B , and also the gradient of the linear magnetic gradient 956 

along the direction of motion, ( )3 c
 B . With the constraint equation ( )=  B j , 957 

the transverse quadratic magnetic gradient of the longitudinal magnetic field 3B , 958 

( )p q 3B p,q 1,2  = , can be found. Finally, the transverse quadratic magnetic 959 

gradients of the transverse magnetic field, ( )p q s cB t,  r , can be obtained by using 960 

the constraint equations ( )=0 B , ( )=  B j , and magnetic rotation feature   961 

http://www.baidu.com/link?url=tPuLbL4_DD6ysmjZEggOUnwVkN13kjLJ7TUzqvXJp_is7dvvxFYGbmAkcITudlND4uFQ5JVc05k4JFAgStDveG_4446MUoXnNz9ssIP2qS1F8I_eZTvXJcSjJQ1kpvFO


 

p

3 3

b =0
X X

 

 
.  Therefore, all the 18 independent components of the quadratic 962 

magnetic gradient can be calculated.  963 

The quadratic magnetic gradient, obtained with no iteration, has a truncation 964 

error of the first order in L/D because the linear approximation has been made. To 965 

find a more accurate quadratic magnetic gradient, an iterative procedure can be 966 

performed. In this procedure, the magnetic field, the linear magnetic gradient, and the 967 

time derivative of the linear magnetic gradient are corrected by using the quadratic 968 

magnetic gradient calculated initially and the above steps are then repeated so as to 969 

achieve the components of the corrected quadratic magnetic gradient. After this first 970 

iteration, the magnetic field, linear magnetic gradient, the apparent velocity of the 971 

magnetic structure at the barycenter of the S/C tetrahedron all have their accuracies 972 

improved significantly and have truncation errors in the second order of L/D, while 973 

the accuracy of the quadratic magnetic gradient obtained is also enhanced.  974 

This algorithm is valid for both steady and unsteady structures, whether the 975 

magnetic structures are moving at a constant velocities or accelerating /decelerating. It 976 

is noted that the magnetic field, linear and quadratic magnetic gradients are identical 977 

for different inertial frames of reference. 978 

With the magnetic field, linear and quadratic magnetic gradients found, the 979 

complete geometry of the MFLs can be determined, including the natural coordinates 980 

or Frenet coordinates (tangential unit vector, principal normal and binormal), 981 

curvature and torsion. The corresponding estimators for the geometrical features have 982 

been given. 983 



 

The algorithm for estimating the quadratic magnetic gradient and the geometry 984 

of the MFLs have been tested with the Harris current sheet and cylindrical flux rope, 985 

and its correctness has been verified. It is found that, the errors of the linear quadratic 986 

magnetic gradients, apparent velocity of the magnetic structure, and the geometrical 987 

parameters are of first order in L/D when no iteration is made. If one iteration is 988 

performed, the accuracies of the linear magnetic gradient, apparent velocity of the 989 

magnetic structure, curvature of the MFLs are improved significantly and their errors 990 

appear at the second order in L/D, while the accuracies of the quadratic magnetic 991 

gradient and the torsion of the MFLs are also enhanced. To determine the first order 992 

magnetic gradient and apparent relative velocity of the magnetic structure, this 993 

algorithm is more accurate than the previous approaches based on the linearity 994 

approximation (Harvey, 1998; Chanteur, 1998; Shi et al., 2006).   995 

We have also applied the algorithm developed in this research to investigate the 996 

magnetic structure of one flux rope measured by MMS (Eastwood et al., 2016), 997 

showing good results. The applicability of this approach is therefore verified. 998 

 999 

If the magnetic gradients with orders higher than two are neglected the 1000 

magnetic field can be expressed as 1001 

( ) ( ) ( ) ( )c c c c c c

1
t, t, + - t, + - - t,

2
=  B r B r r r B r r r r r B r( ) ( )( ) .      (65) 1002 

With the MMS magnetic field and current density measurements, the linear and 1003 

quadratic magnetic gradients at the barycenter are obtained, such that the local 1004 

spatial distribution of the magnetic field, as well as the MFLs, can be obtained.  1005 
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 1029 

Appendix A: The explicit estimators for the linear gradients of field in space and 1030 

time 1031 

 1032 

De Keyser, et al.（2007）has put forward an algorithm for calculating the 1033 

gradients in space and time of a field, which they called Least-Squares Gradient 1034 

Calculation (LSGC). Here we will find the explicit estimator of the 4 dimensional 1035 

linear gradients of a scalar field or one component of the vector field. 1036 

Considering the 4 S/C of the constellation obtained time series of measurements 1037 

on a certain physical quantity investigated, as illustrated in Figure 1 in Section 2. Here 1038 

the S/C constellation reference frame is used. Assuming each S/C makes observations 1039 

at n times, in total N=4n measurements are made by the constellation, which form a 1040 

set of data. (It is supposed that, in this area of space time, the physical quantity 1041 

concerned is approximately varying linearly, and the linear gradients of field in space 1042 

and time are about homogeneous [De Keyser, et al., 2007].) In the S/C constellation 1043 

coordinate system, the position of the observation point is 1044 

( ) ( )( ), , ; 1, 2,3,4a a a aa
x x y z t = = . It is convenient to use the dimensionless length and 1045 

time in the investigation. If the characteristic size of the S/C constellation is L and the 1046 

time resolution of the observations is T, we can make the transformation: 1047 

/a ax L x→ ， /a at T t→ . Obviously, in the S/C constellation reference frame, the four 1048 



 

S/C are nearly motionless and their space coordinates ( ) ( ), ,i

a a aa
x x y z=  do not 1049 

change with time during typical structure crossing events. 1050 

 1051 

In the S/C constellation reference frame, at the space time 1052 

( ) ( )( ), , ; 1, 2,3,4a a a aa
x x y z t = = , the physical quantity measured is ( ) ( )a af x f = ，its 1053 

gradients are , , ,
f f f f f

f
x x y z t



     
=   

     
. The spacetime coordinates at the 1054 

central point satisfy 1055 

 
( ) ( )( )

N N

ca a
a 1 a 1

0x x x  

= =

 = − =  . (A1) 1056 

Thus the spacetime coordinates at the central point are 1057 

 
( )

N

c a
a 1

1

N
x x 

=

=  .   (A2)                      1058 

Here i

cx  are the space coordinates of the barycenter of the S/C constellation, which 1059 

have fixed values and can be chosen as i

c 0x = . 4

c ctx =  is the average time of the 4n 1060 

observations. 1061 

 1062 

The physical quantity ( )af  measured at the point ( )a
x  can be expanded around 1063 

the central point 
cx  as (Taylor expansion)  1064 

 
( )

1
+

2
a c a c a a cf f x f x x f  

  =   +       (A3) 1065 

Or  1066 

 
( ) c

1
+ G G

2
a a a af f x x x  

 =  +     (A3’) 1067 

Here, the first order gradient G ( )cf =  , and the quadratic gradient 1068 

G ( )cf  =   . there are 5 parameters（ c , G ( )cf f =  ）to be determined. 1069 



 

Construct the action 1070 

 ( ) ( ) ( ) ( )

2

c

1 1
G G

N 2
a a a a

a

S f x x x f  

 

 
= +  +   − 

 
   (A4) 1071 

To minimize it, let 1072 

 0 =S   (A5) 1073 

Such as to obtain cf  and G cf =   at the central point. The above equation leads to 1074 

 0, 0, 0
c

S S S

f G G 

  
= = =

  
.  (A6) 1075 

Since 1076 

 
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

N

=1c

N N N

=1 =1 1

1 1
2 G G

N 2

1 1 1
      =2 2 G G 0

N N N

c a a a i
a

c a a a a
a a a

S
f x x x f

f

f f x x x

  

 

  

 
=

  
= +  +   −   

  − +   +   =
 



  

 . (A7) 1077 

Considering Equation (A1), it reduces to 1078 

            
( ) ( ) ( )

N

c

1 1
x x

N
a a a

a a

f f G
2N

 

= −    . (A8) 1079 

or  1080 

            
( )

1 1
R

N
c a

a

f f G
2



= − .                               (A8’) 1081 

Where the general volume tensor R
 is defined as 1082 

 
( ) ( ) ( )( ) ( )( )

N N

c c

1 1

1 1
R

N N
a a a a

a a

x x = x x x x      

= =

   − −  .  (A9) 1083 

Furthermore, 1084 

 

( ) ( ) ( ) ( )

( ) ( )

N

c ( )

1

N

1

S 1 1
0 2 G G

G N 2

1
2 2R G R G

N

a a a a a
a

a a
a

= f f x x x x

             = f x

   

 



  

 



 =

=

 
= − +  +    

 

−   + +





 , (A10) 1085 

where the 3 order tensor R
 is defined as  1086 



 

 
( ) ( ) ( )

N

1

1
R

N
a a a

a

x x x   

=

    .  (A11) 1087 

From Equation (A10) we get 1088 

 
( )( )

N1 1
R R

N 2
c aa

a

G x x f G   

 = − − .  (A12) 1089 

Thus the linear gradients at the central point are 1090 

 ( ) ( )( ) ( )
N

1 1

c

1 1
G ( ) R R R G

N 2

- -

c aa
a

f = x x f  

   
=   − − . (A13) 1091 

Here 1R -  satisfies ( ) ( )1 1R R R R- -  

 
= = . These are the first order gradients 1092 

of the physical quantity in space and time at the central point.  1093 

Under the linear approximation, the quadratic gradient is neglected, i.e., G 0 = . 1094 

From the formula (A8’), the physical quantity at the central point is 1095 

               
( )0

1

N
a

a

f f=  .                                     (A14) 1096 

From the formula (A13), the first order gradients of the physical quantity in space and 1097 

time are 1098 

( ) ( )( )
N

1 1
G ( ) R

N

-

c c aa
a

f = x x f 

  
=   − .    (A15) 1099 

 1100 

Appendix B: Natures of the magnetic rotation tensor 1101 

 1102 

In previous investigations [Shen et al., 2007; Shen et al., 2008a, b], the MRA 1103 

(magnetic rotation analysis) method has been put forward to study the 3 dimensional 1104 

rotational properties of the magnetic field. We may construct the magnetic rotational 1105 

tensor S  based on the gradient of the magnetic unit vector b̂ , which is defined as 1106 



 

ij i l j lS b b  . Because the tensor S  is symmetrical (
ij jiS S= , 3,2,1, =ji ), it has 1107 

three eigenvectors, 
1X̂ , 

2X̂  and 
3X̂ , and three corresponding eigenvalues, 1 , 2  1108 

and 3  with 0321   . Actually, the third eigenvalue 3  is zero. Fadanelli, 1109 

et al. (2019) has presented one verification on this property of the magnetic rotational 1110 

tensor. To facilitate the understanding, here we can show another verification as the 1111 

following. 1112 

The length of b̂  is 1, and 1ˆˆ =bb , so that 1113 

0)()ˆˆ( == jjii bbbb .                                   (B1) 1114 

To ensure the existence of b̂ , it is necessary that 1115 

0)( = jibDet .                                        (B2) 1116 

Based on its definition, the determinant of the magnetic rotation tensor is 1117 

 ( ) ( ) ( ) 0ij i l j lDet S Det b Det b=    = .                       (B3) 1118 

On the other hand, 1119 

         1 2 3( )ijDet S   = , 0321   .                       (B4) 1120 

Thus equations (A3) and (A4) reduce to 1121 

03 = .                                          (B5) 1122 

So that the third eigenvalue 3  of the magnetic rotation tensor ij i l j lS b b=   is null 1123 

definitely.                                 1124 

 1125 

 1126 

Appendix C:  Another verification on the formula of torsion of MFLs in terms 1127 

of magnetic gradients  1128 



 

 1129 

Based on the definition, the torsion of the MFLs 1130 

1 d ˆ=
ds

1 d d ˆ  =
ds ds B

1 d 1 d d 1 ˆ  =
ds B ds ds B










 
 

 

 
+  

 

κ
N

B
N

B
B N

  1131 

2 2

2 2

1 1 d d 1 d d 1 ˆ= 2
B ds ds B ds ds B

 
+  +  

 

B B
B N .                       (C1) 1132 

Due to ˆ ˆ ˆB 0 =  =B N b N ，
ˆd d dB dBˆ ˆ ˆ ˆ ˆB B 0

ds ds ds ds

   
 = +  = +  =   

  

B b
N b N κ b N ，the 1133 

second and third terms at the left hand of the above formula disappear. Therefore 1134 

2

2

1 d ˆ=
B ds





B

N .                            (C2) 1135 

This gives the relationship between the torsion of the MFLs and the second order 1136 

derivative of the magnetic field along the MFLs.  1137 

Furthermore, the torsion of the MFLs becomes 1138 

i i

1 d 1ˆ= B
B ds B




 
  

 
N B  1139 

i i i i i i

1 d 1 1 d 1 dˆ= B B B
B ds B B ds B ds

    
  +  +     
    

N B B B .        (C3) 1140 

The first term at the left hand of the above formula disappear because 1141 

( ) ( )i i

ˆd dˆ ˆ ˆB =B B B 0
ds ds

   = −   = − −  =
N

N B N B B K B . So that the torsion is 1142 

i i i i

1 1 d 1 dˆ B B
B B ds B ds




  
=   +   

  
N B B   1143 

m n n i i m m i n n i m3 3

1 1
= N B B B N B B B

B B 
  +   .             (C4) 1144 



 

 1145 

 1146 

Appendix D: Geometry of the MFLs in 1 dimensional current sheets 1147 

 1148 

It is assumed that the magnetic field in the 1 dimensional currents is 1149 

ˆ ˆ ˆ= B B Bx x y y z z+ +B e e e . Let the z axis to be along the normal to the 1 dimensional 1150 

current sheets. The components of the magnetic field in the x and y directions are 1151 

invariants, i.e., x 0,  y 0 =  = . Therefore the components of the magnetic field in the 1152 

Cartesian coordinates are 1153 

( )0

z

B B

B Const.

B Const.

x

y

z=


=
 =

 .                            (D1) 1154 

We may choose that zB 0 , 0B 0 , ( )z 0B B 0x z =  .  As for the Harris 1155 

current sheets [Harris, 1962], ( ) ( )z tanh z / h = , where h is the half width of the 1156 

current sheets. The total magnetic strength is ( )
1 2

2 2 2B = B B Bx y z+ + . 1157 

The curvature of the MFLs is 1158 

( ) ( )

( )

( )

2 4 2

2 4 2

2 4

4 2

4 2 2

ˆ ˆ=

1
    =B B B

2

1
    =B B B B B

2

ˆ    =B B B B B B B

ˆ    =B B B B B

ˆ ˆ ˆ    =B B B B B B B B B

z z z z x

z z x x z x z x

z z x x x

z z x y z x x y y x z z

− −

− −

− −

−

−



 −  

 −  

 −  

  −

  + − −
 

κ b b

B B B B

B B

e B

e B

e e e

  1159 

                                                              (D2) 1160 

The value of the curvature is 1161 



 

( ) ( )
1 2 1 2

4 2 2 3 2 2B B B B B B =B B B B Bz z x y z z y z z x − −=   + +   .                (D3) 1162 

The radius of the curvature is cR 1/= . 1163 

The principal normal vector is 1164 

  ( ) ( )
1 2

1 2 2 2 2ˆ ˆ ˆ ˆB B B B B B B B By z y z x x y y x z z −  = = + + − −
 

K κ e e e  .            (D4) 1165 

The binormal vector is 1166 

( ) ( ) ( )

( ) ( )

( ) ( )

1

1 2
2 2 2 2 2

1 2
2 2 2 2 2

1 2
2 2

ˆ ˆ ˆ

ˆ    =B

ˆ ˆ ˆ ˆ ˆ ˆ    =B B B B B B B B B B B B

ˆ ˆ    =B B B B B B B

ˆ ˆ    = B B B B

y z x x y y z z y z x x y y x z z

y z y z z y

y z z y y z

−

−

−

= 



 + + +  + − −
 

+ −

+ −

N b K

B K

e e e e e e

e e

e e

  1167 

.                                                                (D5) 1168 

Therefore, the binormal of the MFLs is constant. Then, based on the definition (58), 1169 

the torsion of MFLs is 1170 

ˆ1 d
0

ds



= −  =

N
κ .                                      (D6) 1171 

So that, the MFLs in the current sheets as formulated by (D1) are plane curves. 1172 

For the asymmetric current sheet, ( ) ( )tanh z / h ,  1> 0.z  = +   As for the shock 1173 

fronts, yB 0= ,and ( ) ( )tanh z / h ,  1.z  = +  For these cases, the MFLs are 1174 

plane curves with zero torsion.  1175 

 1176 

However, as shown in actual observations, the component yB  is not constant, 1177 

which maximises at the center of neutral sheets and is decreasing away from the 1178 

center of the current sheets [Rong, et al., 2012]. The MFLs in the magnetotail current 1179 

sheets often have a shape of helix in the neutral sheets (Shen, et al., 2008a). 1180 



 

 1181 

Appendix E: Geometry of Cylindrical helical MFLs in magnetic flux ropes with 1182 

axial symmetry 1183 

 1184 

Cylindrical spiral MFLs are common in space plasmas, as seen in FTEs [Russell 1185 

and Elphic, 1979; Lee et al., 1985; Liu and Hu, 1988; Lockwood and Hapgood, 1998; 1186 

Wang et al., 2007; Liu et al., 2018] or flux ropes caused by local magnetic 1187 

reconnection processes [Sibeck, et al., 1984; Slavin et al., 1989; Kivelson et al., 1995; 1188 

Slavin et al., 2003; Zong et al., 2004; Pu et al., 2005; Zhang et al., 2007], fast tailward 1189 

escaping plamoids [Slavin et al., 1989; Slavin et al., 1995], etc. 1190 

 1191 

 1192 

 1193 



 

Figure E1 Demonstration on the cylindrical spiral MFLs. 1194 

 1195 

As shown in Figure E1, polar coordinates are used. The central axis is along the z axis, 1196 

the arc length is s, the distance from the central axis is r, and the azimuthal angle is 1197 

 .The radial unit vector is rê ，and the azimuthal unit vector is ˆ
e . The tangent 1198 

vector of the MFLs is  1199 

 z
ˆ ˆ ˆ/ B cos +sin = =b B e e , (E1) 1200 

where   is the helix angle of the MFLs. The helical pitch is p 2 r tan = . Define 1201 

the rotation frequency d / ds  . Then / s 2 / (p / sin ) cos / r    = = = .Thus, 1202 

 
ds 1 r

d cos  
= = . (E2) 1203 

The curvature of the MFLs is 1204 

 r

ˆ ˆ ˆdd d d
ˆcos cos

ds ds d d


   

 
= = = = −

eb b
κ e . (E3) 1205 

Where, r

d
ˆ ˆ

d



= −e e  is used. So that the curvature is 1206 

 r
ˆcos = −κ e . (E3 ) 1207 

The value of the curvature is 1208 

2 1 2cos r r cos    −= = = .      (E4) 1209 

The radius of curvature is 1210 

 2

cR = r cos −( ) . (E5) 1211 

The principal vector of the helical MFLs is 
r

ˆ ˆ/= = −K κ e ，that is along the radial 1212 

direction. The binormal N̂  is 1213 

 ( ) ( )z r z
ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ= cos +sin cos sin    =   − =  − N b K e e e e e . (E6) 1214 



 

The variation rate of the binormal N̂  along the MFLs is 1215 

 ( ) r

ˆ ˆ ˆdd d d
ˆsin sin

ds ds d d


   

 
=  = − = 

eN N
e . (E7) 1216 

So that the torsion of the helical MFLs is 1217 

1 1 2

r r

ˆdˆ ˆ ˆ= sin = sin r sin cos =2 p sin
ds

        − −−  =  =
N

K e e

.

 (E8) 1218 

On the contrary, if the curvature   and torsion   of the cylindrical spiral 1219 

MFLs have been measured, the helix angle, the distance from the central axis，the 1220 

spiral pitch and the rotation frequency can be expressed as  1221 

ctan R


 


= = ,                 (E9) 1222 

1 2

2 2
r cos

+


 

 

−= = ,            (E10) 1223 

2 2

2
p 2 r tan

+


 

 
= = ,              (E11) 1224 

2 2cos
+

r


  = = .               (E12) 1225 

   Any arbitrary magnetic field line can locally be fitted by a cylindrical spiral arc 1226 

with the same curvature and torsion. The curvatures of the magnetic field lines are 1227 

always non-negative. However, the torsion of one MFL can be either positive or 1228 

negative. When 0  , the helix angle 0  , the magnetic field line is locally a 1229 

right-hand cylindrical spiral; while 0  , 0  , it is a left-hand one.      1230 

 1231 

 1232 

 1233 

 1234 

 1235 

http://www.baidu.com/link?url=pNH_hPAn6M8O6hnS-biltAde1svrNuNipbxCSw4d-OEbvNGz1m904cKqu7fNoUVLQo9v2pJrIUt6sS09ZZtFOXn9JlGhoR3xvkBje1si8qtCpmOMmGJizomW9xwq3GQE
http://www.baidu.com/link?url=pNH_hPAn6M8O6hnS-biltAde1svrNuNipbxCSw4d-OEbvNGz1m904cKqu7fNoUVLQo9v2pJrIUt6sS09ZZtFOXn9JlGhoR3xvkBje1si8qtCpmOMmGJizomW9xwq3GQE
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