# Comparing three approaches to the inducing source setting for the ground electromagnetic field modeling due to space weather events

Elena Marshalko<sup>1</sup>, Mikhail Kruglyakov<sup>1</sup>, Alexey Kuvshinov<sup>2</sup>, Liisa Juusola<sup>3</sup>, Norah Kaggwa Kwagala<sup>4</sup>, Elena Sokolova<sup>5</sup>, and Vyacheslav A. Pilipenko<sup>6</sup>

<sup>1</sup>Institute of Geophysics, ETH Zurich <sup>2</sup>Institute of Geophysics <sup>3</sup>Finnish Meteorological Institute <sup>4</sup>University of Bergen <sup>5</sup>Schmidt Institute of Physics of the Earth <sup>6</sup>Space Research Institute

November 24, 2022

#### Abstract

Ground-based technological systems, such as power grids, can be affected by geomagnetically induced currents (GIC) during geomagnetic storms and magnetospheric substorms. This motivates the necessity to numerically simulate and, ultimately, forecast GIC. The prerequisite for the GIC modeling in the region of interest is the simulation of the ground geoelectric field (GEF) in the same region. The modeling of the GEF in its turn requires spatio-temporal specification of the source which generates the GEF, as well as an adequate regional model of the Earth's electrical conductivity. In this paper we compare results of the GEF (and ground magnetic field) simulations using three different source models. Two models represent the source as a laterally varying sheet current flowing above the Earth. The first model is constructed using the results of a physics-based 3-D magnetohydrodynamic (MHD) simulation of near-Earth space, the second one uses ground-based magnetometers' data and the Spherical Elementary Current Systems (SECS) method. The third model is based on a "plane wave" approximation which assumes that the source is locally laterally uniform. Fennoscandia is chosen as a study region and the simulations are reproduced more accurately using the source constructed via the SECS method compared to the source obtained on the basis of MHD simulation outputs. We also show that the difference between the GEF modeled using laterally nonuniform source and plane wave approximation is substantial in Fennoscandia.

## Comparing three approaches to the inducing source setting for the ground electromagnetic field modeling due to space weather events

## Elena Marshalko<sup>1,2,3</sup>, Mikhail Kruglyakov<sup>1,4</sup>, Alexey Kuvshinov<sup>1</sup>, Liisa Juusola<sup>5</sup>, Norah Kaggwa Kwagala<sup>6</sup>, Elena Sokolova<sup>2</sup>, Viacheslav Pilipenko<sup>2,3</sup>

|    | Institute of Coophysics FTH Zivich Zivich Switzenland                                                        |
|----|--------------------------------------------------------------------------------------------------------------|
| 6  | institute of Geophysics, ETH Zurich, Zurich, Switzenand                                                      |
| 7  | <sup>2</sup> Institute of Physics of the Earth, Moscow, Russia                                               |
| 8  | <sup>3</sup> Geophysical Center, Moscow, Russia                                                              |
| 9  | <sup>4</sup> Geoelectromagnetic Research Center, Institute of Physics of the Earth, Moscow, Russia           |
| 10 | <sup>5</sup> Finnish Meteorological Institute, Helsinki, Finland                                             |
| 11 | <sup>6</sup> Space Plasma Physics Group, Department of Physics and Technology, University of Bergen, Bergen, |
| 12 | Norway                                                                                                       |

## Key Points:

1

2

3

4

5

13

19

| 14 | • | 3-D electromagnetic field modeling is performed for Fennoscandia exploiting three   |
|----|---|-------------------------------------------------------------------------------------|
| 15 |   | different inducing source models                                                    |
| 16 | • | Magnetic field perturbations are reproduced much more accurately using the SECS     |
| 17 |   | source than using the source based on MHD simulation outputs                        |
| 18 | • | The difference between geoelectric fields modeled using laterally nonuniform source |

and plane wave approach is substantial in Fennoscandia

#### 20 Abstract

Ground-based technological systems, such as power grids, can be affected by geomag-21 netically induced currents (GIC) during geomagnetic storms and magnetospheric sub-22 storms. This motivates the necessity to numerically simulate and, ultimately, forecast 23 GIC. The prerequisite for the GIC modeling in the region of interest is the simulation 24 of the ground geoelectric field (GEF) in the same region. The modeling of the GEF in 25 its turn requires spatio-temporal specification of the source which generates the GEF, 26 as well as an adequate regional model of the Earth's electrical conductivity. In this pa-27 per we compare results of the GEF (and ground magnetic field) simulations using three 28 different source models. Two models represent the source as a laterally varying sheet cur-29 rent flowing above the Earth. The first model is constructed using the results of a physics-30 based 3-D magnetohydrodynamic (MHD) simulation of near-Earth space, the second one 31 uses ground-based magnetometers' data and the Spherical Elementary Current Systems 32 (SECS) method. The third model is based on a "plane wave" approximation which as-33 sumes that the source is locally laterally uniform. Fennoscandia is chosen as a study re-34 gion and the simulations are performed for the 7-8 September 2017 geomagnetic storm. 35 We conclude that ground magnetic field perturbations are reproduced more accurately 36 using the source constructed via the SECS method compared to the source obtained on 37 the basis of MHD simulation outputs. We also show that the difference between the GEF 38 modeled using laterally nonuniform source and plane wave approximation is substantial 39 in Fennoscandia. 40

#### 41 **1** Introduction

Large coronal mass ejections from the Sun release massive amounts of plasma, which 42 flow at high speed into the interplanetary space. The interaction of this solar wind with 43 the Earth's magnetosphere can lead to significant spatio-temporal disturbances of the 44 magnetic field at the surface of the Earth, which are known as geomagnetic storms. These 45 space weather events induce a geoelectric field (GEF) in the Earth's subsurface, which 46 in turn drives geomagnetically induced currents (GIC) in ground-based technological sys-47 tems such as power grids and pipelines posing a significant risk to the reliability and dura-48 bility of such infrastructure. 49

The core component in quantitative estimation of the hazard to technological sys-50 tems from space weather is as realistic as practicable numerical modeling of GIC, and, 51 ultimately, their forecasting. Ideally, to perform GIC modeling one needs the following 52 ingredients: a) a realistic model of the source of geomagnetic disturbances; b) a compre-53 hensive three-dimensional (3-D) electrical conductivity model of the Earth's subsurface 54 in the region of interest; c) a 3-D numerical solver which allows for accurate and detailed 55 modeling of the GEF in a given conductivity model excited by a given source; d) the ge-56 ometry of transmission lines and system design parameters that allow for the conversion 57 of the modeled GEF into GIC. 58

Many previous studies in connection with GIC operated with simplified models either of conducting Earth (one-dimensional (1-D) or thin sheet conductivity models) or
the source (vertically propagating laterally uniform electromagnetic (EM) field; plane
wave), or both (e.g., Viljanen et al. (2012, 2013, 2014); Püthe and Kuvshinov (2013); Püthe
et al. (2014); Beggan et al. (2013); Beggan (2015); Kelly et al. (2017); Honkonen et al.
(2018); Bailey et al. (2017, 2018); Divett et al. (2017, 2020)).

In spite of the fact that the importance of performing simulations using fully 3-D conductivity models is currently widely recognised (Kelbert, 2020), such simulations are still rather rare in the GIC community (e.g., Wang et al. (2016); Pokhrel et al. (2018); Nakamura et al. (2018); Liu et al. (2018); Marshall et al. (2019); Rosenqvist and Hall (2019); Marshalko et al. (2020)), mostly due to the lack of the credible 3-D conductivity models of the regions of interest as well as unavailability of adequate tools to modelthe problem in the full complexity.

As for the source, approximating it by plane waves still prevails in the GIC-related 72 studies (e.g., Kelbert et al. (2017); Kelbert and Lucas (2020); Lucas et al. (2018); Cam-73 panya et al. (2019); Sokolova et al. (2019); Wang et al. (2020)). This approximation seems 74 reasonable in low and middle latitudes, where the main source of anomalous geomag-75 netic disturbances is a large-scale magnetospheric ring current. However, the plane wave 76 assumption may not work in higher latitudes, where the main source of the disturbances 77 78 is the auroral ionospheric current, which is extremely variable both in time and space, especially during periods of enhanced geomagnetic activity (Belakhovsky et al., 2019). 79 Marshalko et al. (2020) provided some evidence for that by comparing ground EM fields 80 modeled in the eastern United States using the plane wave approximation and the ex-81 citation by a laterally variable source which was constructed using outputs from 3-D mag-82 netohydrodynamic (MHD) simulation of near-Earth space. The authors found that the 83 difference increases towards higher latitudes where the lateral variability of the source 84 expectedly enlarges. However their modeling was mostly confined to mid-latitude region, 85 thus it is still unclear how pronounced the difference between the plane wave and "lat-86 erally varying source" results could be in auroral regions. In this paper we investigate 87 this problem using Fennoscandia as a study region. The choice of Fennoscandia is mo-88 tivated by: a) high-latitude location of the region; b) the availability of the 3-D ground 89 electrical conductivity model of the region (Korja et al., 2002) c) the existence of the re-90 gional magnetometer network (International Monitor for Auroral Geomagnetic Effect, 91 IMAGE (Tanskanen, 2009)) allowing us to build data-based model of a laterally vari-92 able source, which is a natural alternative to physics-based (MHD) source model in the 93 areas with a reasonably dense net of observations. 94

Specifically, we perform 3-D modeling of ground electric and magnetic fields in Fennoscan-95 dia using three different source models and taking 7–8 September 2017 geomagnetic storm 96 as a space weather event. Two models approximate the source by laterally varying sheet 97 current flowing above the Earth's surface. One of the models is built using the results 98 of physics-based 3-D MHD simulation of the near-Earth space, another model uses the 99 IMAGE magnetometer data and the Spherical Elementary Current Systems (SECS) method 100 (Vanhamäki & Juusola, 2020; Juusola et al., 2020). The third modeling is based on a 101 "plane wave" approximation which assumes that the source is locally laterally uniform. 102 Note that previous GIC-related studies in Fennoscandia operated with both 1-D (e.g., 103 Pulkkinen et al. (2005); Myllys et al. (2014); Viljanen and Pirjola (2017)) and 3-D (Rosenqvist 104 & Hall, 2019; Dimmock et al., 2019, 2020) Earth's conductivity models, the magnetic 105 field in most of these papers was allowed to be laterally variable, but the GEF was al-106 ways calculated implicitly assuming the plane wave excitation. 107

We compare modeling results and discuss found differences and similarities. We also compare results of magnetic field modeling with observations. The paper is organized as follows. The methodology used is described in Section 2.1 followed by presentation of our results in Section 3. Finally, the discussion of our results and conclusions are given in Section 4.

#### 113 2 Methodology

#### 114

## 2.1 Governing equations and modeling scheme

<sup>115</sup> We compute the electric,  $\mathbf{E}(t, \mathbf{r})$ , and magnetic,  $\mathbf{B}(t, \mathbf{r})$ , fields for a given Earth's <sup>116</sup> conductivity distribution  $\sigma(\mathbf{r})$  and a given inducing source  $\mathbf{j}^{ext}(t, \mathbf{r})$ , where t and  $\mathbf{r} =$ <sup>117</sup> (x, y, z) denote time and position vector, correspondingly. These fields obey Maxwell's <sup>118</sup> equations, that are written in the time domain as

$$\frac{1}{\mu_0} \nabla \times \mathbf{B} = \sigma \mathbf{E} + \mathbf{j}^{ext},\tag{1}$$

$$\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t},\tag{2}$$

where  $\mu_0$  is the magnetic permeability of a free space. Note that this formulation of Maxwell's equations neglects displacement currents, which are insignificant in the range of periods considered in this study. We solve eqs (1)-(2) numerically using the following three-step procedure:

123 124 1. The inducing source  $\mathbf{j}^{ext}(t, \mathbf{r})$  is transformed from the time to the frequency domain with a fast Fourier transform (FFT).

2. Maxwell's equations in the frequency domain

$$\frac{1}{\mu_0} \nabla \times \mathbf{B} = \sigma \mathbf{E} + \mathbf{j}^{ext},\tag{3}$$

$$\nabla \times \mathbf{E} = i\omega \mathbf{B},\tag{4}$$

- are numerically solved for the corresponding angular frequencies  $\omega = 2\pi f$ , using the scalable 3-D EM forward modeling code PGIEM2G (Kruglyakov & Kuvshinov, 2018), based on a method of volume integral equations (IE) with a contracting kernel (Pankratov & Kuvshinov, 2016).
- We would like to note here that in our previous papers (Ivannikova et al., 2018; 129 Marshalko et al., 2020) we used modeling code *extrEMe* (Kruglyakov et al., 2016) 130 which is also based on IE method. The distinction between two codes lies in dif-131 ferent piece-wise bases used. PGIEM2G exploits a piece-wise polynomial basis whereas 132 *extrEMe* uses a piece-wise constant basis. We found that in order to properly ac-133 count for the effects (in electric field) from extremely large conductivity contrasts 134 in the Fennoscandian region, *extrEMe* requires significantly larger computational 135 loads compared to the PGIEM2G. This is the reason why we used the PGIEM2G 136 code rather than *extrEMe* to obtain modeling results presented in this paper. Specif-137 ically, PGIEM2G was run with the use of first-order polynomials in lateral direc-138 tions and third-order polynomials in the vertical direction. 139
- Frequencies f range between  $\frac{1}{L}$  and  $\frac{1}{2\Delta t}$  where L is the length of the (input) times series of the inducing current  $\mathbf{j}^{ext}(t, \mathbf{r})$ , and  $\Delta t$  is the sampling rate of this time series. In this study  $\Delta t$  is 1 min, and L is 8 h.
- 143

144

## 3. $\mathbf{E}(t, \mathbf{r})$ and $\mathbf{B}(t, \mathbf{r})$ are obtained with an inverse FFT of the frequency-domain fields.

#### 2.2 3-D conductivity model

3-D conductivity model of the region was constructed using the SMAP (Korja et 145 al., 2002) – a set of maps of crustal conductances (vertically integrated electrical con-146 ductivities) of the Fennoscandian Shield, surrounding seas, and continental areas. The 147 SMAP consists of six layers of laterally variable conductance. Each layer has the thick-148 ness of 10 km. The first layer comprises contributions from the sea water, sediments, and 149 upper crust. The other five layers describe conductivity distribution in the middle and 150 lower crust. SMAP covers an area  $0^{\circ}E - 50^{\circ}E$  and  $50^{\circ}N - 85^{\circ}N$  and has  $5' \times 5'$  reso-151 lution. We converted the original SMAP database into Cartesian 3-D conductivity model 152 of Fennoscandia with three layers of laterally variable conductivity of 10, 20 and 30 km 153 thicknesses (Figures 1.a-c). This vertical discretization is chosen to be compatible with 154 that previously used by Rosenquist and Hall (2019) and Dimmock et al. (2019, 2020) for 155

GIC studies in the region. To obtain the conductivities in Cartesian coordinates we applied the transverse Mercator map projection (latitude and longitude of the true origin are 50°N and 25°E, correspondingly) to original data and interpolated the results onto a regular lateral grid. The lateral discretization and size of the resulting conductivity model were taken as  $5 \times 5 \text{ km}^2$  and  $2550 \times 2550 \text{ km}^2$ , respectively. Deeper than 60 km we used a 1-D conductivity profile obtained by Grayver et al. (2017) (cf. Figure 1.d).

**Figure 1.** Conductivity distribution [S/m] in the model: a)-c) Plane view on 3 layers of the 3-D part of the model; d) global 1-D conductivity profile derived by Grayver et al. (2017) and used in this study. Locations of geomagnetic observatories Abisko (ABK), Uppsala (UPS), Saint Petersburg (SPG), and P1, P2 and P3 points are marked with circles in plot (a).

#### 162 2.3 EM induction source settings

In this section we discuss the construction of two models for laterally variable source and also explain how EM field is calculated in the framework of plane wave (laterally uniform source) concept. The sources are set up for the geomagnetic storm on 7-8 Septem-

Figure 2. Global snapshots of the external magnetic eld components at the surface of the Earth computed based on the SWMF outputs at 23:16 and 23:52 UT on 7 September 2017.  $B_x$ ,  $B_y$  and  $B_z$  are northward, eastward and downward directed components, respectively.

198

### 2.3.2 Construction of the source using the SECS method

The second model of the source was constructed using the SECS method (Vanhamaki & Juusola, 2020). In this method the elementary current systems form a set of basis functions for representing two-dimensional vector elds on a spherical surface. An important application of the SECS method, which is relevant for this study, is the estimation of the ionospheric current system from ground-based measurements of magnetic eld distur-

Figure 5. The same legend as in Figure 4 but for Uppsala (UPS) geomagnetic observatory.

Finally, two lower plots in Figures 4 - 6 show plane-wave-, SECS- and MHD-based horizontal GEF. Note that long-term continuous observations of GEF are absent in the region, thus only modeling results are shown in the plots.

Similarly to MHD-based magnetic eld, the MHD-based GEF is underestimated
 compared to the SECS-based GEF. The correlation between these modeling results is
 very low and nRMSE are high (see Table 3).

On the contrary, SECS- and plane wave-based electric elds are rather close to each other, especially at locations of UPS and SPG observatories; Table 4 illustrates this quantitatively. Correlation between modeling results at ABK observatory is lower and nRMSE is higher most likely due to the fact that this observatory is situated in the region with high lateral conductivity contrasts (resistive landmass and conductive sea). To put more weight on this inference last three columns of Table 4 and Figure 7 demonstrate SECSand plane-wave-based results for three \sites" also located in the regions with high lat-

| 441                                                                                                                                                    | netically induced currents around New Zealand to explore GIC in the South                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|--------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 442                                                                                                                                                    | Island's electrical transmission network. Space Weather 15(10), 1396{1412.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 443                                                                                                                                                    | doi: 10.1002/2017SW001697                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 444                                                                                                                                                    | Divett, T., Mac Manus, D. H., Richardson, G. S., Beggan, C. D., Rodger, C. J.,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 445                                                                                                                                                    | Ingham, M., Obana, Y. (2020). Geomagnetically induced current                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 446                                                                                                                                                    | model validation from New Zealand's South Island. Space Weather 18(8),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 447                                                                                                                                                    | e2020SW002494. doi: 10.1029/2020SW002494                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 448                                                                                                                                                    | Gravver, A. V., Munch, F. D., Kuvshinov, A. V., Khan, A., Sabaka, T. J., &                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 449                                                                                                                                                    | T ner-Clausen, L. (2017). Joint inversion of satellite-detected tidal and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 450                                                                                                                                                    | magnetospheric signals constrains electrical conductivity and water content of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 451                                                                                                                                                    | the upper mantle and transition zone. Geophys. Res. Lett, 44(12), 6074(6081.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 452                                                                                                                                                    | doi: 10.1002/2017GL073446                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 453                                                                                                                                                    | Honkonen, I., Kuvshinov, A., Rastatter, L., & Pulkkinen, A. (2018). Predicting                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 454                                                                                                                                                    | global ground geoelectric eld with coupled geospace and three-dimensional                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 455                                                                                                                                                    | geomagnetic induction models. Space Weather 16(8), 1028(1041. doi:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 456                                                                                                                                                    | 10.1029/2018SW001859                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 457                                                                                                                                                    | Ivannikova, E., Kruglyakov, M., Kuvshinov, A., Rastatter, L., & Pulkkinen, A.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 458                                                                                                                                                    | (2018). Regional 3-D modeling of ground electromagnetic eld due to re-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 459                                                                                                                                                    | alistic geomagnetic disturbances. Space Weather 16(5), 476(500. doi:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 460                                                                                                                                                    | 10.1002/2017SW001793                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 461                                                                                                                                                    | Juusola, L., Vanhamaki, H., Viljanen, A., & Smirnov, M. (2020). Induced cur-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 462                                                                                                                                                    | rents due to 3D ground conductivity play a major role in the interpre-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 463                                                                                                                                                    | tation of geomagnetic variations. Ann. Geophys, 38(5), 983(998. doi:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 464                                                                                                                                                    | 10.5194/angeo-38-983-2020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 465                                                                                                                                                    | Kelbert, A. (2020). The role of global/regional Earth conductivity models in natu-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 466                                                                                                                                                    | ral geomagnetic hazard mitigation. Surv. Geophys. 41, 115(166. doi: 10.1007/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 467                                                                                                                                                    | s10712-019-09579-z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 468                                                                                                                                                    | Kelbert, A., Balch, C., Pulkkinen, A., Egbert, G., Love, J., Rigler, J., & Fujii, I.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 469                                                                                                                                                    | (2017). Methodology for time-domain estimation of storm time geoelectric                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 470                                                                                                                                                    | elds using the 3-D magnetotelluric response tensors. Space Weather 15(7),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 471                                                                                                                                                    | 874{894. doi: doi:10.1002/2017SW001594                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 472                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                        | Kelbert, A., & Lucas, G. M. (2020). Modi ed GIC estimation using 3-D Earth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 473                                                                                                                                                    | Kelbert, A., & Lucas, G. M. (2020). Modi ed GIC estimation using 3-D Earth conductivity. Space Weather 18(8), e2020SW002467. doi: 10.1029/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 473<br>474                                                                                                                                             | Kelbert, A., & Lucas, G. M. (2020). Modi ed GIC estimation using 3-D Earth conductivity. Space Weather 18(8), e2020SW002467. doi: 10.1029/2020SW002467                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 473<br>474<br>475                                                                                                                                      | <ul> <li>Kelbert, A., &amp; Lucas, G. M. (2020). Modi ed GIC estimation using 3-D Earth conductivity. Space Weather 18(8), e2020SW002467. doi: 10.1029/2020SW002467</li> <li>Kelly, G. S., Viljanen, A., Beggan, C. D., &amp; Thomson, A. W. P. (2017). Un-</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 473<br>474<br>475<br>476                                                                                                                               | <ul> <li>Kelbert, A., &amp; Lucas, G. M. (2020). Modi ed GIC estimation using 3-D Earth conductivity. Space Weather 18(8), e2020SW002467. doi: 10.1029/2020SW002467</li> <li>Kelly, G. S., Viljanen, A., Beggan, C. D., &amp; Thomson, A. W. P. (2017). Understanding GIC in the UK and French high-voltage transmission sys-</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 473<br>474<br>475<br>476<br>477                                                                                                                        | <ul> <li>Kelbert, A., &amp; Lucas, G. M. (2020). Modi ed GIC estimation using 3-D Earth conductivity. Space Weather 18(8), e2020SW002467. doi: 10.1029/2020SW002467</li> <li>Kelly, G. S., Viljanen, A., Beggan, C. D., &amp; Thomson, A. W. P. (2017). Understanding GIC in the UK and French high-voltage transmission systems during severe magnetic storms. Space Weather 15(1), 99{114. doi:</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 473<br>474<br>475<br>476<br>477<br>478                                                                                                                 | <ul> <li>Kelbert, A., &amp; Lucas, G. M. (2020). Modi ed GIC estimation using 3-D Earth conductivity. Space Weather 18(8), e2020SW002467. doi: 10.1029/2020SW002467</li> <li>Kelly, G. S., Viljanen, A., Beggan, C. D., &amp; Thomson, A. W. P. (2017). Understanding GIC in the UK and French high-voltage transmission systems during severe magnetic storms. Space Weather 15(1), 99{114. doi: 10.1002/2016SW001469</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 473<br>474<br>475<br>476<br>477<br>478<br>479                                                                                                          | <ul> <li>Kelbert, A., &amp; Lucas, G. M. (2020). Modi ed GIC estimation using 3-D Earth conductivity. Space Weather 18(8), e2020SW002467. doi: 10.1029/2020SW002467</li> <li>Kelly, G. S., Viljanen, A., Beggan, C. D., &amp; Thomson, A. W. P. (2017). Understanding GIC in the UK and French high-voltage transmission systems during severe magnetic storms. Space Weather 15(1), 99{114. doi: 10.1002/2016SW001469</li> <li>Korja, T., Engels, M., Zhamaletdinov, A. A., Kovtun, A. A., Palshin, N. A.,</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 473<br>474<br>475<br>476<br>477<br>478<br>479<br>480                                                                                                   | <ul> <li>Kelbert, A., &amp; Lucas, G. M. (2020). Modi ed GIC estimation using 3-D Earth conductivity. Space Weather 18(8), e2020SW002467. doi: 10.1029/2020SW002467</li> <li>Kelly, G. S., Viljanen, A., Beggan, C. D., &amp; Thomson, A. W. P. (2017). Understanding GIC in the UK and French high-voltage transmission systems during severe magnetic storms. Space Weather 15(1), 99{114. doi: 10.1002/2016SW001469</li> <li>Korja, T., Engels, M., Zhamaletdinov, A. A., Kovtun, A. A., Palshin, N. A., Smirnov, M. Y., BEAR Working Group (2002). Crustal conductiv-</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 473<br>474<br>475<br>476<br>477<br>478<br>479<br>480<br>481                                                                                            | <ul> <li>Kelbert, A., &amp; Lucas, G. M. (2020). Modi ed GIC estimation using 3-D Earth conductivity. Space Weather 18(8), e2020SW002467. doi: 10.1029/2020SW002467</li> <li>Kelly, G. S., Viljanen, A., Beggan, C. D., &amp; Thomson, A. W. P. (2017). Understanding GIC in the UK and French high-voltage transmission systems during severe magnetic storms. Space Weather 15(1), 99{114. doi: 10.1002/2016SW001469</li> <li>Korja, T., Engels, M., Zhamaletdinov, A. A., Kovtun, A. A., Palshin, N. A., Smirnov, M. Y., BEAR Working Group (2002). Crustal conductivity in Fennoscandia { a compilation of a database on crustal conductance</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 473<br>474<br>475<br>476<br>477<br>478<br>479<br>480<br>481<br>482                                                                                     | <ul> <li>Kelbert, A., &amp; Lucas, G. M. (2020). Modi ed GIC estimation using 3-D Earth conductivity. Space Weather 18(8), e2020SW002467. doi: 10.1029/2020SW002467</li> <li>Kelly, G. S., Viljanen, A., Beggan, C. D., &amp; Thomson, A. W. P. (2017). Understanding GIC in the UK and French high-voltage transmission systems during severe magnetic storms. Space Weather 15(1), 99{114. doi: 10.1002/2016SW001469</li> <li>Korja, T., Engels, M., Zhamaletdinov, A. A., Kovtun, A. A., Palshin, N. A., Smirnov, M. Y., BEAR Working Group (2002). Crustal conductivity in Fennoscandia { a compilation of a database on crustal conductance in the Fennoscandian Shield. Earth Planets Space 54, 535{558. doi:</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 473<br>474<br>475<br>476<br>477<br>478<br>479<br>480<br>481<br>482<br>483                                                                              | <ul> <li>Kelbert, A., &amp; Lucas, G. M. (2020). Modi ed GIC estimation using 3-D Earth conductivity. Space Weather 18(8), e2020SW002467. doi: 10.1029/2020SW002467</li> <li>Kelly, G. S., Viljanen, A., Beggan, C. D., &amp; Thomson, A. W. P. (2017). Understanding GIC in the UK and French high-voltage transmission systems during severe magnetic storms. Space Weather 15(1), 99{114. doi: 10.1002/2016SW001469</li> <li>Korja, T., Engels, M., Zhamaletdinov, A. A., Kovtun, A. A., Palshin, N. A., Smirnov, M. Y., BEAR Working Group (2002). Crustal conductivity in Fennoscandia { a compilation of a database on crustal conductance in the Fennoscandian Shield. Earth Planets Space 54, 535{558. doi: 10.1186/BF03353044</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 473<br>474<br>475<br>476<br>477<br>478<br>479<br>480<br>481<br>482<br>483<br>484                                                                       | <ul> <li>Kelbert, A., &amp; Lucas, G. M. (2020). Modi ed GIC estimation using 3-D Earth conductivity. Space Weather 18(8), e2020SW002467. doi: 10.1029/2020SW002467</li> <li>Kelly, G. S., Viljanen, A., Beggan, C. D., &amp; Thomson, A. W. P. (2017). Understanding GIC in the UK and French high-voltage transmission systems during severe magnetic storms. Space Weather 15(1), 99{114. doi: 10.1002/2016SW001469</li> <li>Korja, T., Engels, M., Zhamaletdinov, A. A., Kovtun, A. A., Palshin, N. A., Smirnov, M. Y., BEAR Working Group (2002). Crustal conductivity in Fennoscandia { a compilation of a database on crustal conductance in the Fennoscandian Shield. Earth Planets Space 54, 535{558. doi: 10.1186/BF03353044</li> <li>Kruglyakov, M., Geraskin, A., &amp; Kuvshinov, A. (2016). Novel accurate and scalable</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 473<br>474<br>475<br>476<br>477<br>478<br>479<br>480<br>481<br>482<br>483<br>484<br>485                                                                | <ul> <li>Kelbert, A., &amp; Lucas, G. M. (2020). Modi ed GIC estimation using 3-D Earth conductivity. Space Weather 18(8), e2020SW002467. doi: 10.1029/2020SW002467</li> <li>Kelly, G. S., Viljanen, A., Beggan, C. D., &amp; Thomson, A. W. P. (2017). Understanding GIC in the UK and French high-voltage transmission systems during severe magnetic storms. Space Weather 15(1), 99{114. doi: 10.1002/2016SW001469</li> <li>Korja, T., Engels, M., Zhamaletdinov, A. A., Kovtun, A. A., Palshin, N. A., Smirnov, M. Y., BEAR Working Group (2002). Crustal conductivity in Fennoscandia { a compilation of a database on crustal conductance in the Fennoscandian Shield. Earth Planets Space 54, 535{558. doi: 10.1186/BF03353044</li> <li>Kruglyakov, M., Geraskin, A., &amp; Kuvshinov, A. (2016). Novel accurate and scalable 3-D MT forward solver based on a contracting integral equation method. Com-</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 473<br>474<br>475<br>476<br>477<br>478<br>479<br>480<br>481<br>482<br>483<br>484<br>483<br>484<br>485<br>486                                           | <ul> <li>Kelbert, A., &amp; Lucas, G. M. (2020). Modi ed GIC estimation using 3-D Earth conductivity. Space Weather 18(8), e2020SW002467. doi: 10.1029/2020SW002467</li> <li>Kelly, G. S., Viljanen, A., Beggan, C. D., &amp; Thomson, A. W. P. (2017). Understanding GIC in the UK and French high-voltage transmission systems during severe magnetic storms. Space Weather 15(1), 99{114. doi: 10.1002/2016SW001469</li> <li>Korja, T., Engels, M., Zhamaletdinov, A. A., Kovtun, A. A., Palshin, N. A., Smirnov, M. Y., BEAR Working Group (2002). Crustal conductivity in Fennoscandia { a compilation of a database on crustal conductance in the Fennoscandian Shield. Earth Planets Space 54, 535{558. doi: 10.1186/BF03353044</li> <li>Kruglyakov, M., Geraskin, A., &amp; Kuvshinov, A. (2016). Novel accurate and scalable 3-D MT forward solver based on a contracting integral equation method. Computers and Geosciences96, 208{217. doi: 10.1016/j.cageo.2016.08.017</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 473<br>474<br>475<br>476<br>477<br>478<br>479<br>480<br>481<br>482<br>483<br>484<br>485<br>486<br>487                                                  | <ul> <li>Kelbert, A., &amp; Lucas, G. M. (2020). Modi ed GIC estimation using 3-D Earth conductivity. Space Weather 18(8), e2020SW002467. doi: 10.1029/2020SW002467</li> <li>Kelly, G. S., Viljanen, A., Beggan, C. D., &amp; Thomson, A. W. P. (2017). Understanding GIC in the UK and French high-voltage transmission systems during severe magnetic storms. Space Weather 15(1), 99{114. doi: 10.1002/2016SW001469</li> <li>Korja, T., Engels, M., Zhamaletdinov, A. A., Kovtun, A. A., Palshin, N. A., Smirnov, M. Y., BEAR Working Group (2002). Crustal conductivity in Fennoscandia { a compilation of a database on crustal conductance in the Fennoscandian Shield. Earth Planets Space 54, 535{558. doi: 10.1186/BF03353044</li> <li>Kruglyakov, M., Geraskin, A., &amp; Kuvshinov, A. (2016). Novel accurate and scalable 3-D MT forward solver based on a contracting integral equation method. Computers and Geosciences96, 208{217. doi: 10.1016/j.cageo.2016.08.017</li> <li>Kruglyakov, M., &amp; Kuvshinov, A. (2018). Using high-order polynomial basis in 3-D</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 473<br>474<br>475<br>476<br>477<br>478<br>479<br>480<br>481<br>482<br>483<br>484<br>485<br>486<br>487<br>488                                           | <ul> <li>Kelbert, A., &amp; Lucas, G. M. (2020). Modi ed GIC estimation using 3-D Earth conductivity. Space Weather 18(8), e2020SW002467. doi: 10.1029/2020SW002467</li> <li>Kelly, G. S., Viljanen, A., Beggan, C. D., &amp; Thomson, A. W. P. (2017). Understanding GIC in the UK and French high-voltage transmission systems during severe magnetic storms. Space Weather 15(1), 99{114. doi: 10.1002/2016SW001469</li> <li>Korja, T., Engels, M., Zhamaletdinov, A. A., Kovtun, A. A., Palshin, N. A., Smirnov, M. Y., BEAR Working Group (2002). Crustal conductivity in Fennoscandia { a compilation of a database on crustal conductance in the Fennoscandian Shield. Earth Planets Space 54, 535{558. doi: 10.1186/BF03353044</li> <li>Kruglyakov, M., Geraskin, A., &amp; Kuvshinov, A. (2016). Novel accurate and scalable 3-D MT forward solver based on a contracting integral equation method. Computers and Geosciences96, 208{217. doi: 10.1016/j.cageo.2016.08.017</li> <li>Kruglyakov, M., &amp; Kuvshinov, A. (2018). Using high-order polynomial basis in 3-D EM forward modeling based on volume integral equation method. Geophys. J.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 473<br>474<br>475<br>476<br>477<br>478<br>479<br>480<br>481<br>482<br>483<br>484<br>485<br>486<br>485<br>486<br>487<br>488<br>489                      | <ul> <li>Kelbert, A., &amp; Lucas, G. M. (2020). Modi ed GIC estimation using 3-D Earth conductivity. Space Weather 18(8), e2020SW002467. doi: 10.1029/2020SW002467</li> <li>Kelly, G. S., Viljanen, A., Beggan, C. D., &amp; Thomson, A. W. P. (2017). Understanding GIC in the UK and French high-voltage transmission systems during severe magnetic storms. Space Weather 15(1), 99{114. doi: 10.1002/2016SW001469</li> <li>Korja, T., Engels, M., Zhamaletdinov, A. A., Kovtun, A. A., Palshin, N. A., Smirnov, M. Y., BEAR Working Group (2002). Crustal conductivity in Fennoscandia { a compilation of a database on crustal conductance in the Fennoscandian Shield. Earth Planets Space 54, 535{558. doi: 10.1186/BF03353044</li> <li>Kruglyakov, M., Geraskin, A., &amp; Kuvshinov, A. (2016). Novel accurate and scalable 3-D MT forward solver based on a contracting integral equation method. Computers and Geosciences96, 208{217. doi: 10.1016/j.cageo.2016.08.017</li> <li>Kruglyakov, M., &amp; Kuvshinov, A. (2018). Using high-order polynomial basis in 3-D EM forward modeling based on volume integral equation method. Geophys. J. Int., 213(2), 1387{1401. doi: 10.1093/gji/ggy059</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 473<br>474<br>475<br>476<br>477<br>478<br>479<br>480<br>481<br>482<br>483<br>484<br>485<br>485<br>486<br>487<br>488<br>489<br>490                      | <ul> <li>Kelbert, A., &amp; Lucas, G. M. (2020). Modi ed GIC estimation using 3-D Earth conductivity. Space Weather 18(8), e2020SW002467. doi: 10.1029/2020SW002467</li> <li>Kelly, G. S., Viljanen, A., Beggan, C. D., &amp; Thomson, A. W. P. (2017). Understanding GIC in the UK and French high-voltage transmission systems during severe magnetic storms. Space Weather 15(1), 99(114. doi: 10.1002/2016SW001469</li> <li>Korja, T., Engels, M., Zhamaletdinov, A. A., Kovtun, A. A., Palshin, N. A., Smirnov, M. Y., BEAR Working Group (2002). Crustal conductivity in Fennoscandia { a compilation of a database on crustal conductance in the Fennoscandia Shield. Earth Planets Space 54, 535(558. doi: 10.1186/BF03353044</li> <li>Kruglyakov, M., Geraskin, A., &amp; Kuvshinov, A. (2016). Novel accurate and scalable 3-D MT forward solver based on a contracting integral equation method. Computers and Geosciences96, 208(217. doi: 10.1016/j.cageo.2016.08.017</li> <li>Kruglyakov, M., &amp; Kuvshinov, A. (2018). Using high-order polynomial basis in 3-D EM forward modeling based on volume integral equation method. Geophys. J. Int., 213(2), 1387(1401. doi: 10.1093/gji/ggy059</li> <li>Kwagala, N. K., Hesse, M., Moretto, T., Tenfjord, P., Norgren, C., Toth, G.,</li> </ul>                                                                                                                                                                                                                                                                                                                                 |
| 473<br>474<br>475<br>476<br>477<br>478<br>479<br>480<br>481<br>482<br>483<br>484<br>485<br>486<br>485<br>486<br>487<br>488<br>489<br>490<br>491        | <ul> <li>Kelbert, A., &amp; Lucas, G. M. (2020). Modi ed GIC estimation using 3-D Earth conductivity. Space Weather 18(8), e2020SW002467. doi: 10.1029/2020SW002467</li> <li>Kelly, G. S., Viljanen, A., Beggan, C. D., &amp; Thomson, A. W. P. (2017). Understanding GIC in the UK and French high-voltage transmission systems during severe magnetic storms. Space Weather 15(1), 99{114. doi: 10.1002/2016SW001469</li> <li>Korja, T., Engels, M., Zhamaletdinov, A. A., Kovtun, A. A., Palshin, N. A., Smirnov, M. Y., BEAR Working Group (2002). Crustal conductivity in Fennoscandia { a compilation of a database on crustal conductance in the Fennoscandia Shield. Earth Planets Space 54, 535{558. doi: 10.1186/BF03353044</li> <li>Kruglyakov, M., Geraskin, A., &amp; Kuvshinov, A. (2016). Novel accurate and scalable 3-D MT forward solver based on a contracting integral equation method. Computers and Geosciences96, 208{217. doi: 10.1016/j.cageo.2016.08.017</li> <li>Kruglyakov, M., &amp; Kuvshinov, A. (2018). Using high-order polynomial basis in 3-D EM forward modeling based on volume integral equation method. Geophys. J. Int., 213(2), 1387{1401. doi: 10.1093/gji/ggy059</li> <li>Kwagala, N. K., Hesse, M., Moretto, T., Tenfjord, P., Norgren, C., Toth, G., Spinnangr, S. F. (2020). Validating the Space Weather Modeling Framework</li> </ul>                                                                                                                                                                                                                                                        |
| 473<br>474<br>475<br>476<br>477<br>478<br>479<br>480<br>481<br>482<br>483<br>484<br>485<br>486<br>485<br>486<br>485<br>486<br>489<br>490<br>491        | <ul> <li>Kelbert, A., &amp; Lucas, G. M. (2020). Modi ed GIC estimation using 3-D Earth conductivity. Space Weather 18(8), e2020SW002467. doi: 10.1029/2020SW002467</li> <li>Kelly, G. S., Viljanen, A., Beggan, C. D., &amp; Thomson, A. W. P. (2017). Understanding GIC in the UK and French high-voltage transmission systems during severe magnetic storms. Space Weather 15(1), 99{114. doi: 10.1002/2016SW001469</li> <li>Korja, T., Engels, M., Zhamaletdinov, A. A., Kovtun, A. A., Palshin, N. A., Smirnov, M. Y., BEAR Working Group (2002). Crustal conductivity in Fennoscandia { a compilation of a database on crustal conductance in the Fennoscandia Shield. Earth Planets Space 54, 535{558. doi: 10.1186/BF03353044</li> <li>Kruglyakov, M., Geraskin, A., &amp; Kuvshinov, A. (2016). Novel accurate and scalable 3-D MT forward solver based on a contracting integral equation method. Computers and Geosciences96, 208{217. doi: 10.1016/j.cageo.2016.08.017</li> <li>Kruglyakov, M., &amp; Kuvshinov, A. (2018). Using high-order polynomial basis in 3-D EM forward modeling based on volume integral equation method. Geophys. J. Int., 213(2), 1387{1401. doi: 10.1093/gji/ggy059</li> <li>Kwagala, N. K., Hesse, M., Moretto, T., Tenfjord, P., Norgren, C., Toth, G., Spinnangr, S. F. (2020). Validating the Space Weather Modeling Framework (SWMF) for applications in northern Europe - Ground magnetic perturbation</li> </ul>                                                                                                                                                                              |
| 473<br>474<br>475<br>476<br>477<br>478<br>479<br>480<br>481<br>482<br>483<br>484<br>485<br>486<br>485<br>486<br>487<br>488<br>489<br>490<br>491<br>492 | <ul> <li>Kelbert, A., &amp; Lucas, G. M. (2020). Modi ed GIC estimation using 3-D Earth conductivity. Space Weather 18(8), e2020SW002467. doi: 10.1029/2020SW002467</li> <li>Kelly, G. S., Viljanen, A., Beggan, C. D., &amp; Thomson, A. W. P. (2017). Understanding GIC in the UK and French high-voltage transmission systems during severe magnetic storms. Space Weather 15(1), 99{114. doi: 10.1002/2016SW001469</li> <li>Korja, T., Engels, M., Zhamaletdinov, A. A., Kovtun, A. A., Palshin, N. A., Smirnov, M. Y., BEAR Working Group (2002). Crustal conductivity in Fennoscandia { a compilation of a database on crustal conductance in the Fennoscandia Shield. Earth Planets Space 54, 535{558. doi: 10.1186/BF03353044</li> <li>Kruglyakov, M., Geraskin, A., &amp; Kuvshinov, A. (2016). Novel accurate and scalable 3-D MT forward solver based on a contracting integral equation method. Computers and Geosciences96, 208{217. doi: 10.1016/j.cageo.2016.08.017</li> <li>Kruglyakov, M., &amp; Kuvshinov, A. (2018). Using high-order polynomial basis in 3-D EM forward modeling based on volume integral equation method. Geophys. J. Int., 213(2), 1387{1401. doi: 10.1093/gji/ggy059</li> <li>Kwagala, N. K., Hesse, M., Moretto, T., Tenfjord, P., Norgren, C., Toth, G., Spinnangr, S. F. (2020). Validating the Space Weather Modeling Framework (SWMF) for applications in northern Europe - Ground magnetic perturbation validation. J. Space Weather Space Clim.10, 33. doi: 10.1051/swsc/2020034</li> </ul>                                                                                                    |
| 473<br>474<br>475<br>476<br>477<br>478<br>479<br>480<br>481<br>482<br>483<br>484<br>485<br>486<br>487<br>488<br>489<br>490<br>491<br>492<br>493        | <ul> <li>Kelbert, A., &amp; Lucas, G. M. (2020). Modi ed GIC estimation using 3-D Earth conductivity. Space Weather 18(8), e2020SW002467. doi: 10.1029/2020SW002467</li> <li>Kelly, G. S., Viljanen, A., Beggan, C. D., &amp; Thomson, A. W. P. (2017). Understanding GIC in the UK and French high-voltage transmission systems during severe magnetic storms. Space Weather 15(1), 99(114. doi: 10.1002/2016SW001469</li> <li>Korja, T., Engels, M., Zhamaletdinov, A. A., Kovtun, A. A., Palshin, N. A., Smirnov, M. Y., BEAR Working Group (2002). Crustal conductivity in Fennoscandia { a compilation of a database on crustal conductance in the Fennoscandia Shield. Earth Planets Space 54, 535(558. doi: 10.1186/BF03353044</li> <li>Kruglyakov, M., Geraskin, A., &amp; Kuvshinov, A. (2016). Novel accurate and scalable 3-D MT forward solver based on a contracting integral equation method. Computers and Geosciences96, 208(217. doi: 10.1016/j.cageo.2016.08.017</li> <li>Kruglyakov, M., &amp; Kuvshinov, A. (2018). Using high-order polynomial basis in 3-D EM forward modeling based on volume integral equation method. Geophys. J. Int., 213(2), 1387(1401. doi: 10.1093/gji/ggy059</li> <li>Kwagala, N. K., Hesse, M., Moretto, T., Tenfjord, P., Norgren, C., Toth, G., Spinnangr, S. F. (2020). Validating the Space Weather Modeling Framework (SWMF) for applications in northern Europe - Ground magnetic perturbation validation. J. Space Weather Space Clim.10, 33. doi: 10.1051/swsc/2020034</li> <li>Linty, N., Minetto, A., Dovis, F., &amp; Spogli, L. (2018). E ects of phase scintillation</li> </ul> |

| 406 | Space Weather 16(9) 1317{1329                                                                          |
|-----|--------------------------------------------------------------------------------------------------------|
| 490 | Liu C. Wang X. Wang H. & Zhao H. (2018). Ouantitative in upper of coast ef-                            |
| 497 | fact on geomegratically induced currents in power gride: a cope study. Space                           |
| 498 | Weather Space Clim 8, A60, doi: 10.1051/cwcc/2018046                                                   |
| 499 | Lucas G. M. Lova, J. J. & Kalbert, A. (2018). Calculation of voltages in electric                      |
| 500 | nower transmission lines during historic geomegnetic storms: An investiga                              |
| 501 | tion using realistic Earth impedances Space Weather 16(2) 191(105 doi:                                 |
| 502 |                                                                                                        |
| 503 | 10.1002/2017 SW001779<br>Marabalka E. Krughakay M. Kuyabiaay A. Muraby B. S. Daotattar J.              |
| 504 | Marshako, E., Klugiyakov, M., Kuvshinov, A., Murphy, B. S., Kasaller, L.,                              |
| 505 | Ngwira, C., & Pulkkinen, A. (2020). Exploring the in dence of lateral                                  |
| 506 | conductivity contrasts on the storm time behavior of the ground electric                               |
| 507 | eiu in the easient Onlieu States. Space weather $10(2)$ , $139(195)$ . uoi.                            |
| 508 | 10.1029/20195W002210<br>Maraball D. A. Mang J., Daakaa, C. A. Olivaraa Dulida, C. Van Dar Walt, T.     |
| 509 | Marshall, R. A., Wang, L., Paskos, G. A., Olivares-Pulloo, G., Van Der Wall, T.,                       |
| 510 | ong, C., foshikawa, A. (2019). Modeling geomagnetically induced cur-                                   |
| 511 | Meether 17(5) 727(756 doi: 10.1002/00176)/001702                                                       |
| 512 | weather, 17(5), 727(756. doi: 10.1002/2017SW001793                                                     |
| 513 | Myliys, M., Viljanen, A., Rui, O. A., & Onnstad, T. M. (2014). Geomagnetically                         |
| 514 | induced currents in Norway: the northernmost high-voltage power grid in the                            |
| 515 | world. J. Space Weather Space Clim.4, A10. doi: 10.1051/swsc/2014007                                   |
| 516 | Nakamura, S., Ebinara, Y., Fujita, S., Goto, T., Yamada, N., Watari, S., &                             |
| 517 | Omura, Y. (2018). Time domain simulation of geomagnetically induced                                    |
| 518 | current (GIC) owing in 500-kv power grid in Japan including a three-                                   |
| 519 | dimensional ground innomogeneity. Space weather 16(12), 1946(1959. doi:                                |
| 520 |                                                                                                        |
| 521 | Pankratov, O., & Kuvshinov, A. (2016). Applied mathematics in EM studies with                          |
| 522 | special emphasis on an uncertainty quanti cation and 3-D integral equation                             |
| 523 | modelling. Surv. Geophys, 37(1), 109(147. doi: 10.1007/s10/12-015-9340-4                               |
| 524 | Pokhrel, S., Nguyen, B., Rodriguez, M., Bernabeu, E., & Simpson, J. J. (2018). A                       |
| 525 | nite di erence time domain investigation of electric eld ennancements along                            |
| 526 | ocean-continent boundaries during space weather events. J. Geophys. Res.                               |
| 527 | Space Privs, 123(0), 5053(5040, doi: 10.1029/2017 JA024040                                             |
| 528 | Pulkkinen, A., Lindani, S., Viljanen, A., & Piljola, R. (2005). Geomagnetic storm                      |
| 529 | of 29(31 October 2003. Geomagnetically induced currents and their relation                             |
| 530 | Weether 2(9) SOSCO2 doi: 10.1020/2004SW000122                                                          |
| 531 | Weather, $S(\delta)$ , Sobous, doi: 10.1029/2004SW000125                                               |
| 532 | refine, C., & Ruyshinov, A. (2013). Towards quantitative assessment of the haz-                        |
| 533 | ard from space weather. Global 3-D modellings of the electric eld induced                              |
| 534 | 10 5047/one 2012 02 002                                                                                |
| 535 | Detha C. Manai C. & Kuwahinay A. (2014) Depreducing electric old ab                                    |
| 536 | Poline, C., Manoj, C., & Kuvshinov, A. (2014). Reproducing electric eld ob-                            |
| 537 | distortion metrix on estimation Earth Planets Space 66, 162, 171                                       |
| 538 |                                                                                                        |
| 539 | 10.1100/540025-014-0102-2                                                                              |
| 540 | As a gight past processing tool to calculate ground level magnetic parturba                            |
| 541 | An e cient post processing tool to calculate ground-level magnetic perturba-                           |
| 542 | tions from groupal magnetosphere simulations. Space weather $12,533(505)$ .                            |
| 543 | UVI. 10.1002/201430000000<br>Deconguist 1 & Holl 1.0 (2010) Decised 2.D modeling and very effect of se |
| 544 | magnetically induced currents in Sweden Space Weether 17(1) 27(26 deite                                |
| 545 |                                                                                                        |
| 546 | $\frac{10.1023}{201030002004}$                                                                         |
| 547 | D V (2010) Space weather driven geomegnetic and telluric old verichility                               |
| 548 | in porthwostorn Puesia in correlation with geoclastrical structure and surrents                        |
| 549 |                                                                                                        |
| 550 | induced in electric-power gride Izy Atmos Ocean Phys 55 1620(1659 doi:                                 |

| 551 | 10.1134/S000143381911015X                                                                                                                                    |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 552 | Tanskanen, E. I. (2009). A comprehensive high-throughput analysis of substorms ob-                                                                           |
| 553 | served by IMAGE magnetometer network: Years 1993{2003 examined J. Geo-                                                                                       |
| 554 | phys. Res, 114, A05204. doi: 10.1029/2008JA013682                                                                                                            |
| 555 | To oletto, F., Sazykin, S., Spiro, R., & Wolf, R. (2003). Inner magnetospheric mod-                                                                          |
| 556 | eling with the Rice Convection Model. In C. A. CL. et al. (Ed.), Advances in                                                                                 |
| 557 | space environment research(pp. 175{196). Springer, Dordrecht. doi: 10.1007/                                                                                  |
| 558 | 978-94-007-1069-@9                                                                                                                                           |
| 559 | Toth, G., Sokolov, I., Gombosi, T. I., Chesney, D. R., Clauer, C. R., De Zeeuw,                                                                              |
| 560 | D. L., Kota, J. (2005). Space Weather Modeling Framework: A new tool                                                                                         |
| 561 | for the space science community. J. Geophys. Res. Space Phys110, A12226.                                                                                     |
| 562 | doi: 10.1029/2005JA011126                                                                                                                                    |
| 563 | Toth, G., van der Holst, B., Sokolov, I. V., De Zeeuw, D. L., Gombosi, T. I., Fang,                                                                          |
| 564 | F., Opher, M. (2012). Adaptive numerical algorithms in space weather                                                                                         |
| 565 | modeling. J. Comput. Phys., 231(3), 870{903. doi: 10.1016/j.jcp.2011.02.006                                                                                  |
| 566 | van de Kamp, M. (2013). Harmonic quiet-day curves as magnetometer baselines for                                                                              |
| 567 | ionospheric current analyses. Geosci. Instrum. Method. Data Syst, 2, 289{304.                                                                                |
| 568 | doi: 10.5194/gi-2-289-2013                                                                                                                                   |
| 569 | Vanhamaki, H., & Juusola, L. (2020). Introduction to Spherical Elementary Current                                                                            |
| 570 | Systems. In M. W. Dunlop & H. Luhr (Eds.), Ionospheric multi-spacecraft                                                                                      |
| 571 | analysis tools: Approaches for deriving ionospheric parameter \$pp. 5{33).                                                                                   |
| 572 | Cham: Springer International Publishing. doi: 10.1007/978-3-030-26732-2                                                                                      |
| 573 | Viljanen, A., & Pirjola, R. (2017). In uence of spatial variations of the geoelec-                                                                           |
| 574 | tric eld on geomagnetically induced currents. J. Space Weather Space Clim.                                                                                   |
| 575 | 7, A22. doi: 10.1051/swsc/2017024                                                                                                                            |
| 576 | Viljanen, A., Pirjola, R., Pracser, E., Katkalov, J., & Wik, M. (2014). Ge-                                                                                  |
| 577 | omagnetically induced currents in Europe { Modelled occurrence in a                                                                                          |
| 578 | continent-wide power grid. J. Space Weather Space Clim.4, A09. doi:                                                                                          |
| 579 | 10.1051/swsc/2014006                                                                                                                                         |
| 580 | Viljanen, A., Pirjola, R., Pracser, E., Ahmadzai, S., & Singh, V. (2013). Geomagnet-                                                                         |
| 581 | ically induced currents in europe: Characteristics based on a local power grid                                                                               |
| 582 | model. Space Weather 11(10), 575{584. doi: 10.1002/swe.20098                                                                                                 |
| 583 | Viljanen, A., Pirjola, R., VVIK, M., Adam, A., Placser, E., Sakharov, Y., & Katkalov,                                                                        |
| 584 | J. (2012). Continental scale modelling of geomagnetically induced currents J.                                                                                |
| 585 | Space weather Space Clim.2, A17. doi: 10.1051/swsc/2012017                                                                                                   |
| 586 | Wang, L., Duan, J., Hitchman, A. P., Lewis, A. M., & Jones, W. V. (2020). Mod-                                                                               |
| 587 | eling geoelectric elds induced by geomagnetic disturbances in 3D subsurface                                                                                  |
| 588 | geology, an example from southeastern Australia. J. Geophys. Res. Solid                                                                                      |
| 589 | Earth, 125(9), e2020JB019843. doi: 10.1029/2020JB019843                                                                                                      |
| 590 | wang, L., Lewis, A. M., Ogawa, Y., Jones, W. V., & Costelloe, M. T. (2016). Mod-                                                                             |
| 591 | eling geomagnetic induction nazards using a 3-D electrical conductivity model                                                                                |
| 592 | OFAUSTRAIIA. Space Weather 14, 1125(1135, 001: 10.1002/20165W001436                                                                                          |
| 593 | Linding, D., Solidinia, K. A., Lyon, J. G., Werkin, V. G., Galletson, J. S., & Will-<br>barger M. (2010). CAMERA: A three dimensional pite volume MHD solver |
| 594 | for non-orthogonal curvilinger geometrice. The Astrophysical Journal Supela                                                                                  |
| 595 | non-onnogonal curvilinear geometries. The Astrophysical Journal Supple-                                                                                      |
| 596 | ment Senes 244(1), 20. 001. 10.3047/1538-4305/dD3840                                                                                                         |



**Figure 7.** SECS- and plane-wave-based GEF modeling results at three "sites" located in the regions with high lateral conductivity contrasts; locations of these sites are shown in Figure 1.

manuscript submitted to Space Weather

Figure 8. Top and middle: magnitudes of respective SECS- and MHD-based GEF. Bottom: absolute di erences between corresponding GEF magnitudes.