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Abstract

Mountain snow is a fundamental freshwater supply in the arid regions. Climate warming alters the timing of snowmelt and

shortens the snow cover duration, which profoundly influences the regional climate and water management. However, a reliable

estimation of snow mass in the Tianshan Mountains (TS) is still unclear due to the scarcity of extensive continuous surface

observations and a complex spatial heterogeneity. Therefore, a long-time series of snow simulation was performed in the

WRF/Noah-MP from 1982 until 2018 to quantify the snow mass in the TS, forced by the ERA5 reanalysis data and real-time

updated leaf area index and green vegetation fraction. Meanwhile, March snow mass (close to the annual peak snow mass),

snow cover fraction (SCF), and trends were investigated in the TS. The results indicated a good accuracy of the estimated snow

water equivalent (root mean square error (RMSE): 7.82 mm/day) with a slight overestimation (2.84 mm/day). Compared with

the ERA5 dataset, the RMSE and mean bias (MB) of the daily snow depth from the WRF/Noah-MP were significantly reduced

by 95.74% and 93.02%, respectively. The climatological March snow mass measured 97.85 (±16.60) gigatonnes in the TS and

exhibited a negligible tendency. The total precipitation during the cold season controlled the variations of the March snow mass.

The increased precipitation in the high-altitude regions contributed to an extensive snow mass, which could offset the loss in

the TS lowland. In contrast, rapidly rising air temperature caused a significant reduction of the March SCF, particularly in the

Southern TS.
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Key Point:  18 

1. Compared with the ERA5 dataset, the optimizing WRF/Noah-MP reduced by 95.74% RMSE and 19 

93.02% MB of the snow depth estimation, respectively. 20 

2. The climatological March snow mass measured 97.85 (±16.60) gigatonnes in the Tianshan 21 

Mountains and exhibited a negligible tendency. 22 

3. The total precipitation during the cold season controlled the variation of the March snow mass. 23 
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Abstract: 32 

Mountain snow is a fundamental freshwater supply in the arid regions. Climate warming alters the 33 

timing of snowmelt and shortens the snow cover duration, which profoundly influences the regional 34 

climate and water management. However, a reliable estimation of snow mass in the Tianshan 35 

Mountains (TS) is still unclear due to the scarcity of extensive continuous surface observations and a 36 

complex spatial heterogeneity. Therefore, a long-time series of snow simulation was performed in the 37 

WRF/Noah-MP from 1982 until 2018 to quantify the snow mass in the TS, forced by the ERA5 38 

reanalysis data and real-time updated leaf area index and green vegetation fraction. Meanwhile, March 39 

snow mass (close to the annual peak snow mass), snow cover fraction (SCF), and trends were 40 

investigated in the TS. The results indicated a good accuracy of the estimated snow water equivalent 41 

(root mean square error (RMSE): 7.82 mm/day) with a slight overestimation (2.84 mm/day). Compared 42 

with the ERA5 dataset, the RMSE and mean bias (MB) of the daily snow depth from the 43 

WRF/Noah-MP were significantly reduced by 95.74% and 93.02%, respectively. The climatological 44 

March snow mass measured 97.85 (±16.60) gigatonnes in the TS and exhibited a negligible tendency. 45 

The total precipitation during the cold season controlled the variations of the March snow mass. The 46 

increased precipitation in the high-altitude regions contributed to an extensive snow mass, which could 47 

offset the loss in the TS lowland. In contrast, rapidly rising air temperature caused a significant 48 

reduction of the March SCF, particularly in the Southern TS.     49 

Key Words: WRF/Noah-MP, snow mass, snow depth, snow water equivalent, ERA5, vegetation 50 

parameters 51 

1. Introduction 52 

The seasonal snowpack plays an essential role in the water resources budget of the global 53 

mountainous area and provides freshwater supply for over 1/6 of the world’s population (Barnett et al., 54 

2005; Huning & AghaKouchak, 2020), which has a profound effect on the food production of irrigated 55 

agriculture and snowmelt runoff regimes in the snow-dominated basin (Qin et al., 2020). It also strongly 56 

affects regional climate system, alpine phenology, and biogeochemical processes through regulation of 57 

the land-atmospheric exchanges of water and energy (Arndt et al., 2020; Tomaszewska et al., 2020; 58 

Zhang, 2005). In addition, snow attracts recreational activities and is an important resource of winter 59 



tourism (Deng et al., 2019), but it also causes snow-related disasters, such as snow avalanches and 60 

snowmelt flooding (Ballesteros-Cánovas et al., 2018; Schweizer et al., 2003). Despite the fact that snow 61 

provides crucial freshwater resources for agricultural practices and ecosystem services, present 62 

approaches show a large uncertainty regarding the snow mass estimation in a global mountainous area 63 

due to the presence of orographic barriers, its strong vertical and horizontal variability, diverse vegetation 64 

cover, and representative sites for snow measurement (Dong, 2018; Dozier et al., 2016; Mudryk et al., 65 

2015). The accuracy of the snow mass map based on the in-situ observations interpolation depends on the 66 

number and representative of the ground observations, while a sparse network of snow observations 67 

usually exists in the mountainous environment, especially in the area with dense vegetation and a 68 

complex topography (Dozier et al., 2016; Mortimer et al., 2020). The passive microwave sensors could 69 

provide a nearly real-time global snow mass estimation by means of  the algorithms of microwave 70 

brightness temperatures, but a poor performance was reported in the presence of forest, wet snow, deep 71 

snow, and large snow grains (Che et al., 2016; Takala et al., 2011). Notably, most gridded snow water 72 

equivalent (SWE) products from passive microwave instruments exclude the alpine area or exhibit an 73 

underestimation (Bormann et al., 2018; Pulliainen et al., 2020; Takala et al., 2011). The sensor’s 74 

inconsistencies from different passive microwave platforms might lead to uncertainty in the detected 75 

trends of long-time snow mass products (Smith & Bookhagen, 2016). Moreover, a further improvement 76 

of the snow mass estimation in passive microwave measurements (~25km) and global reanalysis 77 

datasets (>30 km) is restricted in the mountainous regions with a large varying heterogeneity of snow 78 

physical characteristics due to the coarse spatial resolution (Daloz et al., 2020), and tend to be 79 

underestimated (Mudryk et al., 2015; Wrzesien et al., 2019). In contrast, although the active microwave 80 

remote sensing has been used to retrieve the snow mass with a finer spatial resolution (Lievens et al., 81 

2019), the low accuracy is caused by the repeat-pass interval and a complex underlying surface (Dong, 82 

2018). Similarity, the large-scale application of continuous snow mass measurements from the 83 

Unmanned Aerial Vehicles and airborne LiDAR is limited by flight time and sight (Dozier et al., 2016). 84 

Furthermore, the snow physical module within the land surface models (LSMs) has a large potential to 85 

estimate the snow processes on the complex terrain (Holtzman et al., 2020; Wrzesien et al., 2018), but a 86 

lack of both accurate forcing data and multi-parameters calibration constraints its application in the snow 87 

mass estimation of mountainous areas (Pritchard et al., 2020; Ryken et al., 2020).  88 



The land surface-atmosphere coupling in regional climate models (RCMs), such as the Weather 89 

Research and Forecasting (WRF) model (Skamarock et al. 2008), could precisely estimate the snow 90 

mass in mountainous regions by reproducing correctly the orographic precipitation at a high spatial 91 

resolution (S. Chen et al., 2019; Minder et al., 2016; Wrzesien et al., 2017). More specifically, the 92 

advanced model structures and parameterization schemes in the RCM LSMs, such as the sophisticated 93 

microphysics schemes, the multilayer snowpack and separate vegetation canopy model have been 94 

proven to produce a reasonable snowfall estimation and snow-related water-heat exchange processes 95 

(X. Cai et al., 2014; Niu et al., 2011; Tomasi et al., 2017). Indeed, as the typically third-generation LSM, 96 

the Noah LSM with Multiparameterization Options (Noah-MP) model (Niu et al., 2011) within the 97 

WRF has a better ability to describe the snow processes in a mixed forest cover and complex terrain 98 

environment compared with in-situ and remote sensing observations, particularly in the snow ablation 99 

season (Liu et al., 2019; Musselman et al., 2018; Wrzesien et al., 2019). Since most land surface 100 

parameters of snow process in the Noah-MP model are obtained from the look-up table, coarse gridded 101 

datasets and empirical formulas, which could not fully capture the heterogeneity of the snowpack 102 

characteristics in the extensive mountains (Jiang et al., 2020; You, Huang, Yang, et al., 2020). For 103 

example, the vegetation parameters, such as the leaf area index (LAI) and green vegetation fraction 104 

(FVC) are determined by vegetation types or prescribed from climatological datasets with no real-time 105 

update, which trigger large uncertainties in the snow mass estimation (Kumar et al., 2019; Tomasi et al., 106 

2017). More realistic vegetation parameters and schemes exhibited a more accurate snow 107 

characteristics estimation in the LSMs (Kumar et al., 2019; T. Yang et al., 2020), particularly in the dense 108 

vegetation regions through the improvement of interception, sublimation and melting in the snow 109 

accumulation and ablation period (Helbig et al., 2019; Niu & Yang, 2004). Due to the limitation of 110 

computing time, the snow simulation in the RCM LSMs often runs a relatively short period, which 111 

could not reveal the long-time variation of mountainous snow (Oaida et al., 2015; Wrzesien et al., 112 

2019). Additionally, the performance of the snow mass estimation in the RCM LSMs heavily depends on 113 

the accuracy of the reanalysis forcing data (Liu et al., 2019; Terzago et al., 2020; Yan Wang, Xie, et al., 114 

2020). The ERA5 is the fifth-generation global reanalysis product released from the European Centre for 115 

Medium-range Weather Forecasts (ECMWF) and has assimilated more observations with a higher 116 

spatiotemporal resolution compared with the widely used ERA-Interim reanalysis (Copernicus Climate 117 

Change Service (C3S), 2017; Hersbach et al., 2020). Hence, it is expected that a reliable long-time series 118 



of snow datasets could be obtained from the RCM LSMs in poorly gauged mountainous regions forced 119 

by more accurate reanalysis data and updated vegetation parameters. 120 

  Having the function of both the ecological barrier and water tower of Central Asia, the Tianshan 121 

Mountains (TS) are located in the hinterland of the Eurasian arid regions (Farinotti et al., 2015). The 122 

glaciers/snowmelt water provide a large proportion of recharge supply for the main surface runoffs (Sorg 123 

et al., 2012), which is the base freshwater source for the regional mountain-oasis-desert system (Y. Chen 124 

et al., 2018). An accurate snow mass estimation and variations significantly affect the surrounding 125 

irrigated agriculture, ecosystem services and water resources management (Unger-Shayesteh et al., 2013; 126 

T. Yang, Li, Ahmad, et al., 2019). The steep terrain, mixed land cover, and diverse climate systems 127 

produce a significantly heterogeneous snow mass pattern (E. M. Aizen et al., 2001; J. W. Yang et al., 128 

2020). Unfortunately, the majority of the snow studies focused on the variations in snow cover and snow 129 

depth (SD) in a partial or entire TS utilizing point-scale in-situ observations and remote sensing 130 

measurements due to the limitation of sparse observations and a complex terrain (Q. Li et al., 2019; 131 

Tomaszewska & Henebry, 2018). Both the observations from the meteorological stations and the 132 

passive microwave sensors demonstrated that the snow end date significantly advanced in the TS during 133 

the past decades due to climate warming (Q. Li et al., 2019; N. Ma et al., 2020; T. Yang, Li, Ahmad, et al., 134 

2019). Moreover, the field observations suggested that the snow characteristics in the forest regions are 135 

significantly distinguishable from other land cover types (Dai et al., 2012; Lu et al., 2017). Recently, the 136 

short time snow simulations on the SD and SWE have been well performed using the offline Noah-MP 137 

and WRF/Noah-MP on a point scale and regional scale, respectively (T. Yang et al., 2020; You, Huang, 138 

Gu, et al., 2020; You, Huang, Yang, et al., 2020). However, as the most important quantity indicator 139 

representing the regional snow resources, the snow mass and its long-time variations under a warming 140 

trend are still unclear in the entire TS due to the scarcity of accurate observation datasets. 141 

The study aims to quantify the snow mass and its variations in the entire TS from 1982 till 2018 by 142 

means of the WRF/Noah-MP, which was forced by a new generation of reanalysis datasets (ERA5) and 143 

real-time updated vegetation parameters (LAI and FVC). The specific objectives are: (1) to evaluate the 144 

performance of a long-time snow mass estimation in the WRF/Noah-MP; (2) to investigate the 145 

spatiotemporal variability of the snow mass and snow cover fraction (SCF); (3) to identify possible 146 

causes and implications of the model uncertainty and snow variations. This is the first attempt to 147 



quantify the snow storage and its variations in the entire TS. The results will enhance the understanding 148 

of the regional snow resources and will provide a fundamental dataset for the regional studies on the 149 

cryospheric, hydrological, and environmental processes. 150 

2. Data and methods  151 

2.1 Study area  152 

As the largest mountain system in Central Asia, the TS are located at 67°-95°E and 39°-46°N, 153 

stretching over 2500 km from west to east, 250-350 km from south to north, and covering over 800,000 154 

km2 (Figure 1b). The average height of the TS measures about 4,000 m above sea level (a.s.l.). Affected 155 

by the westerlies and the complex topography, the TS exhibit a distinct gradient of continentality with 156 

an increasing temperature and precipitation from southeast to northwest (Figures 1c and 1d). The total 157 

average annual precipitation and mean temperature in the entire TS amount to 329.3 mm and 4.6°C, 158 

respectively (T. Yang, Li, Ahmad, et al., 2019). Approximately 1/3 of the total precipitation (500-700 159 

mm) occurs as the snowfall in the northern slope of the TS (Guo & Li, 2015). Grassland is the 160 

dominating land cover type (T. Yang et al., 2020) and the forest cover prevails between 1,300 and 2, 161 

800 m a.s.l. (Lu et al., 2017). Both the Western TS (WTS) and Northern TS (NTS) have a relatively 162 

moist climate, while the Eastern TS (ETS) and Southern TS (STS) exhibit a typically continental 163 

climate (V. B. Aizen et al., 1997; Sorg et al., 2012). In addition, the precipitation in the ETS and NTS 164 

concentrates during spring and early summer, which is later than the WTS (later winter to early spring) 165 

but earlier in the STS (summer) (Sorg et al., 2012). Abundant precipitation in the mountainous area 166 

shapes the “wet island” landscape and contributes to the rich snow and glaciers resources, which has a 167 

significant impact on the growth of the regional irrigated agriculture and industry (Farinotti et al., 168 

2015). 169 

Figure 1 170 

2.2  Datasets acquisition and processing 171 

2.2.1 Ground surface data 172 

The China Meteorological Administration (CMA) and the Tianshan Station for Snow Cover and 173 

Avalanche Research (TSSAR), Chinese Academy of Sciences provided 56 meteorological stations in the 174 



target area (Figure 1b), which includes the mean daily temperature, SD, precipitation and 5-day SWE 175 

(when SD > 5cm). In addition, All-Russian Research Institute of Hydrometeorological Information- 176 

World Data Centre (RIHMI-WDC) provided 4 stations with daily SD observations. The stations were 177 

collected from the National Snow and Ice Data Centre (NSIDC). After exclusion of the stations with 178 

over 10% missing data, 54 stations have been processed for the monthly precipitation and mean 179 

temperature, respectively. Detailed information was shown in Table1. 180 

Table 1 181 

2.2.2 Remote sensing product 182 

The variation in the Terrestrial Water Storage (TWS) during the cold season is mainly caused by 183 

the snow evolution in the mountainous regions (Wrzesien et al., 2018). The Noah-MP treats the TWS 184 

as the sum of the SWE, soil moisture contents, groundwater storage, and canopy water contents 185 

(Kumar et al., 2019). Due to a lack of in-situ observations in the alpine region, the Gravity Recovery 186 

and Climate Experiment (GRACE) of the monthly TWS anomaly product (version RL06) at a 0.5° 187 

spatial resolution was applied so as to compare it with the modeled TWS. In addition, the Moderate 188 

Resolution Imaging Spectroradiometer Satellite (MODIS) monthly SCF in the Climate Modeling Grid 189 

(MOD10CM) product at a 0.05° spatial resolution was used in order to evaluate the estimated SCF.  190 

The WRF adapted the basis land cover (LC) containing the 2000 global annual LC map at a 300 m 191 

spatial resolution which was produced by the European Space Agency (ESA) Climate Change Initiative 192 

(CCI) project (https://www.esa-landcover-cci.org/). The CCI-LC product includes the annual global 193 

land cover map from 1992 to 2018 with an overall accuracy of 75.4 % (ESA, 2017). According to 194 

Huang et al., 2020, the CCI-LC2000 was converted into the MODIS-20 category as WRF LC. As the 195 

key vegetation parameters, the 8-day LAI and FVC products at a 0.05° spatial resolution from 196 

1982-09-01 till 2018-09-30 have been obtained from the Global Land Surface Satellite (GLASS) 197 

products (http://glass.umd.edu/index.html), manufactured by the Advanced Very High-Resolution 198 

Radiometer (AVHRR) reflectance datasets (Xiao et al., 2016). Compared with the other global vegetation 199 

datasets, the GLASS LAI and FVC data have been successfully applied to the land-atmosphere 200 

interaction simulation, due to the higher quality (Fang et al., 2019; Xiao et al., 2014). The 8-day GLASS 201 

https://www.esa-landcover-cci.org/


LAI and FVC datasets were linearly interpolated to a daily scale at a 9 km resolution so that the real-time 202 

updates the LAI and FVC in the WRF/Noah-MP.  203 

2.3  Model configuration  204 

In this study, the WRF-AWR 4.01 coupled with the Noah-MP (Niu et al., 2011) model was used for 205 

the snowpack simulation in the TS and performed from September 1982 until September 2018. The 206 

model was initialized at 00:00 UTC on September, 1st each year and terminated on September, 30th the 207 

next year. The initial September output was discarded as a model spin-up (Jesse Norris et al., 2018), 208 

hence the 36 full cold seasons (from November to March) retained output. Previous studies demonstrated 209 

that a grid resolution of smaller than 10 km could reveal the realistic orographic precipitation processes 210 

in the complex topography (J. Norris et al., 2015; Wrzesien et al., 2018). Considering the limited storage 211 

space and computing timing, the WRF was configured with the one-way double nested domains along 212 

with 35 vertical levels from the surface top to 50 hPa (Figure 1a). The outer domain (D01, 27 km grid 213 

spacing) had 317 × 145 grids in the west-east and south-north direction, and the inner domain (D02, 9 km 214 

grid spacing) was nested with 304 × 133 grids. As the updated version of the ERA-Interim reanalysis 215 

dataset, the ERA5 reanalysis (Hersbach et al., 2020) from the European Centre for Medium-Range 216 

Weather Forecasts (ECMWF) has proven to perform very well in the hydrological applications and 217 

regional climate downscaling (Nogueira, 2020; Ou et al., 2020). Therefore, the ERA5 (31 × 31km) 218 

reanalysis dataset updated in a 6-hourly interval has been chosen as the initial and lateral boundary 219 

conditions for D01 and D02 (https://cds.climate.copernicus.eu/cdsapp#!/home), as well as the sea 220 

surface temperature. The main parameterization schemes were exposed in Table 2 (T. Yang et al., 2020): 221 

the Single-Moment 6-Class (WSM-6) cloud microphysical scheme (S. Hong & Lim, 2006), Rapid 222 

Radiation Transfer (RRTM) longwave radiation model (Mlawer et al., 1997), Yonsei University 223 

planetary boundary layer (YSU) (S. Y. Hong et al., 2006), Kain-Fritsch Cumulus Scheme (Kain, 224 

2004),Dudhia shortwave radiation model (Dudhia, 1989), MM5 Monin‐Obukhov surface layer (Monin 225 

& Obukhov, 1959) and Noah-MP Land Surface (Niu et al., 2011). 226 

Table 2 227 

As an advanced version of the Noah land surface model, the Noah-MP model provides multiple 228 

parameterization options for the land-atmosphere interaction process simulations (Niu et al., 2011). The 229 

three-layer snow structure could effectively describe the processes of liquid water contents, snow 230 

https://cds.climate.copernicus.eu/cdsapp#!/home


destructive/melt metamorphism, and compaction in the snowpack. The key physical parameterization 231 

schemes in the Noah-MP including (Niu et al., 2011): the CLASS (Canadian Land Surface Scheme) 232 

ground surface albedo, Jordan’s scheme for precipitation partitioning between snow and rain (Jordan, 233 

1991), thermal conductivity function considering the snow density, Monin-Obukhov surface layer drag 234 

coefficient, snow canopy interception and upload with the effect of phase change, temperature and wind 235 

(Niu & Yang, 2004), the Ball-Berry vegetation stomatal resistance, the Noah semi-implicit snow/soil 236 

temperature scheme, and two-streams approximation of the radiative transfer scheme with a 237 

consideration of the canopy gap probability for the vegetation shading and scattering (R. Yang et al., 238 

2001). The look-up table, remote sensing dataset and prediction based on the carbon budgets provide 239 

different options of LAI and FVC for the dynamic vegetation model, which has a significant influence on 240 

the snow interception and energy exchange (Gan et al., 2019). The default vegetation parameters’ 241 

look-up table and LC data showed large uncertainties in the climate simulations (Bonekamp et al., 2018). 242 

Therefore, the CCI-LC 2000 was selected to deliver land cover data input for both D01 and D02 in this 243 

study. In addition, the daily GLASS LAI and FVC data were updated real-time in D02 for the Noah-MP 244 

model. The LAI and FVC have utilized the default geographical dataset for D01. 245 

2.3 Snow mass calculation 246 

The March snow is the closest to the annual peak snow mass in the TS (Figure 2). In addition, as the 247 

transitional season of the snowpack, March plays a significant role in the snow accumulation and 248 

ablation (Pulliainen et al., 2020; Ye, 2019). The snow mass (gigatonnes, Gt) in the whole TS could be 249 

calculated as follows:       250 

3

9
1

81 10

10

N
i

i

SWE
Snow mass =



 
                                       (1) 251 

where N is the total number of the WRF grid cells in the TS and SWEi represents the March SWE 252 

estimated by the WRF/Noah-MP in the ith
 grid cell.  253 

Figure2 254 

2.4  Evaluation method and trend analysis 255 



The trend slope and its significant level of climate variables were calculated by the Sen method 256 

(Sen, 1968) and the Mann-Kendall (M-K) trend test (Mann, 1945; Kendall, 1975), respectively. The T2, 257 

SD, precipitation, and SWE values from the nearest grid point of the WRF output were compared with 258 

the in-situ observations. The performance of the WRF estimation was evaluated by relevant 259 

observations based on metrics: the Correlation coefficient (R), Mean bias (MB), and Root Mean Square 260 

Error (RMSE).  261 
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where N demonstrates the total number of the observed or simulated data, Sim(i) and Obs(i) represent the 265 

simulated and observed values at the timestep i, respectively, and Simmean and Obsmean illustrate the mean 266 

of the simulated and observed values, respectively.  267 

3 Results 268 

3.3  Performance of the long-time snow simulation 269 

3.3.1  SD and SWE  270 

The performance of the snow simulation in the WRF/Noah-MP is shown in Figures 3-5. Generally, 271 

the SD and SWE simulations averaged from all stations in D02, which exhibited the highest accuracy 272 

compared to D01 and ERA5 (Figure 3a). In addition, a slight overestimation of the SD and SWE was 273 

found in D01, D02, and ERA5 compared with the in-situ observations (Figures 4a and 4b). Compared 274 

with the ERA5 (RMSE: 3.64 cm/day and MB: 2.10 cm/day), the daily SD simulation in D01 and D02 275 

could effectively reduce the RMSE (2.78 and 1.86 cm/day, respectively) and MB (1.32 and 0.15 276 

cm/day, respectively). The D01, D02 and ERA5 showed a consistent spatial pattern of RMSE and MB 277 

in the SD simulations (Figures 5a-f). Large RMSE values of SD simulations were observed in the 278 



high-altitude regions (a.s.l. >3000 m) of TS (Figures 2b). The RMSE values in the low-altitude regions 279 

(a.s.l. <1500 m) of STS were significantly smaller than in the NTS and ETS (Figures 4a, 4c, and 4e). 280 

Similarly, large MB values of all SD simulations were displayed in the high-altitude regions of TS with 281 

a significant overestimation (Figure 3c). A widespread slight overestimation of all SD simulations 282 

prevailed in the low-altitude regions of the STS and eastern ETS. It was noted that a consistent 283 

underestimation of the SD simulation was seen in the Ili Valley and at the intersection of the NTS and 284 

ETS (Figures 4c-d and 4f). 285 

Figure 3 286 

Figure 4. 287 

Figure 5 288 

3.3.2  TWS and SCF 289 

Most of the in-situ observations are located in the low-altitude regions are characterized by a sparse 290 

and uneven distribution. Hence, the monthly TWS anomaly and SCF from the WRF/Noah-MP 291 

estimation in the TS were evaluated by the GRACE TWS and MODIS SCF products during the cold 292 

season (Figures 4c-d and 6a-b). The monthly TWS anomaly from WRF/Noah-MP demonstrated a good 293 

shape as compared with GRACE TWS (Figure 4c). Although the TWS simulation showed a general 294 

overestimation in WRF/Noah-MP (Table 3), a significant underestimation was noticed after 2012/2013. 295 

Compared with MODIS, the monthly SCF illustrated high accuracy in the WRF/Noah-MP estimation 296 

of the TS but an overestimation was also seen during the cold season (Figure 4d and Table 3). The 297 

snow-covered area in the WRF/Noah-MP was significantly larger than that in the MODIS observations, 298 

especially the Tarim Basin (Figures 6a-b). The high SCF (exceeding 90 %) area additionally enlarged 299 

in the high-mountain regions.  300 

Figure 6 301 

Table 3 302 

3.4 Spatiotemporal variability of the snow mass and SCF  303 

3.4.1  Spatiotemporal variability of the maximum SD and SWE 304 



The spatial distribution of the maximum SD and SWE in the TS during the cold season is shown in 305 

Figure 7. These increased from east to west, and from south to north (Figures 7a-c). The maximum SD 306 

values exceeded 80 cm in the WTS and high-altitude regions of the Ili Valley, whose maximum SWE 307 

values reached 250 mm, correspondingly. Most TS regions experienced an rise in the maximum SWE 308 

except the low-altitude regions of the STS and WTS (Figure 7d). In particular, a significant 309 

augmentation of the maximum SWE was noticed in the ETS and Pamir regions.  310 

Figure 7 311 

3.4.2  Spatiotemporal variability of the snow mass  312 

 The patterns and trends of the mean March snow mass estimated by the WRF/Noah-MP across the TS 313 

are presented in Figure 8. The estimation indicated that the March snow mass in the TS amounted to 314 

97.85 (±16.60) Gt (mean SWE 112.21 mm) with a negligible trend (Figure 8a). The mean March snow 315 

mass in the WTS (64.29 ±11.40 Gt) was significantly larger than in the NTS (21.45 ±5.09 Gt), ETS 316 

(2.75 ±0.8 Gt) and STS (9.36 ±1.64 Gt) (Figure 7c). In addition, the March snow mass consistently 317 

exhibited insignificant changes in all TS sub-regions during the past 36 years. However, the March 318 

SWE showed an opposite trend between the high-altitude and low-altitude regions (Figures 8b and 8d). 319 

The March SWE almost showed a decrease in the low-altitude regions (below 2,500 m) of the TS 320 

(Figure 8b), and the significantly decreasing values prevailed in the STS (Figure 8d). In contrast, the 321 

March SWE experienced a rising trend in the high-altitude regions (over 3,000 m), especially in the 322 

near Pamir regions. Notably, the highest elevation zone with a decreasing March SWE could reach 323 

3,000-3,500 m in the STS, which was higher than other sub-regions (between 2,500 and 3,000 m).  324 

Figure 8 325 

3.4.3  Spatiotemporal variability of the SCF  326 

 The variation of the SCF in the transition season is sensitive. The spatial changes of the mean SCF 327 

during the cold season, November, and March from 1982 to 2018 were displayed in Figure 9. The SCF 328 

experienced a decreasing trend during the cold season, especially in March, showing a significant 329 

decrease (Figure 9a and Table 4). The decreasing rate of the mean SCF in November was smaller than 330 

in March, but larger than the cold season. The trend of the mean SCF during the cold season and 331 



November showed a similar distribution pattern (Figures 9b-d). The significantly decreasing values of 332 

the SCF during the cold season and November were sporadically found in the eastern STS and the 333 

high-altitude regions of the Ili Valley. Additionally, the low-altitude regions of the WTS also 334 

demonstrated a significant decrease in the mean SCF during the cold season. By contrast, a 335 

significantly large decrease in the March SCF was to be found in the low-altitude regions of the TS. 336 

Particularly for the ETS and STS, the decreasing rate of the March SCF exceeded 6% per decade.  337 

Figure 9 338 

Table 4 339 

4 Discussion 340 

4.1 Influencing factors of the snow simulation performance in WRF/Noah-MP 341 

The snow model performance is highly sensitive to the accuracy of the meteorological forcing data 342 

in a mountainous environment (Terzago et al., 2020). The high-quality of the simulated precipitation 343 

and temperature could reduce the uncertainty of the snow simulation in the RCM LSMs (Liu et al., 344 

2019; Wrzesien et al., 2019), especially in the mountainous zone with dense forest. Reasonable 345 

precipitation could be reproduced by the WRF dynamical downscaling in the complex terrain with a 346 

fine spatial resolution. Thus, compared with the original ERA5 dataset and D01, the RMSE of the daily 347 

SD in D02 was reduced significantly by 95.74% and 49.12%, respectively (Figure 3). The 348 

coarse-resolution global reanalysis products and GlobSnow passive microwave SWE series’ products 349 

failed to reveal the sub-grid snow characteristics of the alpine regions (Bormann et al., 2018; Dozier et 350 

al., 2016). Previous studies reported that the near-surface air temperature in ERA5 reduced the cold 351 

bias compared with the ERA-Interim (Hersbach et al., 2020; C. Wang et al., 2019), but a general cold 352 

bias could still be noticed in the dynamic downscaling results of the TS (Figures 10a and 10c), 353 

particularly in the STS. In addition, an underestimation of the total precipitation during the cold season 354 

prevailed in the intersection between the NTS and ETS, and the low-altitude regions of the WTS and 355 

STS (Figure 9b and 9d), but overestimated values were seen in the high-altitude regions, which were 356 

consistent with the performance from the WRF downscaling in the Qinghai-Tibet Plateau and the 357 

original ERA5 dataset (Ou et al., 2020). Hence, an underestimation of the total precipitation caused a 358 

negative SD bias in the Ili Valley and at the intersection between the NTS and ETS (Figure 5c). 359 



Notably, smaller SD bias values in D02 were found in the Ili Valley and the northern slope of the TS as 360 

compared with the ERA-Interim dynamic downscaling results because more precipitation was 361 

produced throughout the ERA5 dynamical downscaling in these regions (S. Chen et al., 2019; T. Yang 362 

et al., 2020). Moreover, more precipitation contributed to a reduction of the negative snow mass bias in 363 

the global mountainous area (Wrzesien et al., 2019). In contrast, the large SD deviation in the 364 

high-altitude region was mainly caused by the severely wet bias with a cold bias (Figure 5e). A severe 365 

overestimation of the ERA5 and ERA5-land SD was also reported in the Tibetan Plateau (Orsolini et 366 

al., 2019). Previous studies demonstrated that the relatively sophisticated cloud microphysics schemes, 367 

such as the Thompson microphysics scheme, performed well in the snowfall estimation on a complex 368 

terrain (J. Norris et al., 2015). Due to limited computing time resources, the WSM6 microphysics 369 

scheme might bring a large deviation in the snowfall simulation (Fernández-González et al., 2015). 370 

Although some underestimated precipitation values were found in the STS, a large cold bias was 371 

beneficial to reserve the snow and to prolong the snow cover duration (Figures 4 and 6). However, 372 

more ground snow could increase the surface albedo and aggravate the cold bias, especially in the thin 373 

snow area (W. Wang et al., 2020) (Figure 10a). 374 

Figure 10 375 

  The physical schemes and model parameterizations have a significant influence on the snow process, 376 

particularly during the snowmelt season (You, Huang, Gu, et al., 2020). The crucial snowpack physics 377 

in Noah-MP including the snow albedo scheme considering the grain size and fresh snow, liquid water 378 

evolution in the multiple snow layers, snow density function based on the thermal conductive, turbulent 379 

flux and the moisture exchange between the canopy and snow surface, etc. (Niu et al., 2011) could 380 

effectively overcome the limitation of wet snow and forest snow in the passive microwave sensor 381 

(Dong, 2018; Dozier et al., 2016), reducing the snow mass underestimation (Wrzesien et al., 2019). The 382 

near-surface air temperature threshold is often selected as the rain-snow partitioning scheme in the 383 

most LSMs and hydrological models, but it underestimates the snowfall in the arid regions (Yuanheng 384 

Wang et al., 2019). Nevertheless, the fresh snow density is a function of the fresh snow density based 385 

on field investigation in relatively humid regions (Hedstrom & Pomeroy, 1998), but a lower one was 386 

observed in the dry TS (X. Chen et al., 2011). The underestimated vegetation emissivity scheme could 387 



augment the interception loss and reduce the ground snow (X. Ma et al., 2019). The uncertainties 388 

mentioned above might cause a larger SD underestimation in the Ili Valley and at the intersection 389 

between the ETS and NTS (Figure 5f). The fixed fresh snow albedo parameters in most ground surface 390 

albedo schemes are designed for thick snow, but the CLASS scheme (fixed as 0.84) in the thin snow 391 

region, such as the lowland of the STS, overestimated the actual ground surface snow albedo which 392 

caused a severe cold bias and SD overestimation (W. Wang et al., 2020). Previous studies suggested 393 

that light-absorbing impurities on the snow surfaces might increase the absorption of shortwave 394 

radiation and accelerate the snowmelt (Sarangi et al., 2020). The growing aerosol contamination could 395 

change the surface albedo and enhance the snowmelt process (Barnett et al., 2005; Kang et al., 2020). 396 

Furthermore, the blowing snow causes the redistribution of the snowpack and increases the snow 397 

sublimation in dry air condition (Orsolini et al., 2019). In case these processes lack in the Noah-MP, 398 

the latter could intense the overestimation of snow in the high-altitude regions of the TS and around the 399 

Tarim Basin (Figure 5f). The soil texture dataset in WRF/Noah-MP exists in large uncertainty due to 400 

the coarse resolution and lack of sufficient field investigation (J. Li et al., 2018), which could trigger a 401 

large deviation in the land surface energy flux simulation (Jiang et al., 2020). Although the WRF 402 

reproduced well in the topographic precipitation with a 9 km spatial resolution, numerous studies 403 

revealed that a finer resolution could effectively decline the precipitation overestimation and snow 404 

simulation uncertainty on a complex terrain (Bonekamp et al., 2018; Yan Wang, Yang, et al., 2020). 405 

The quality of the observational data might also be a source of the uncertainty in the model 406 

evaluation step (Kumar et al., 2019). Due to the wind flow, the undercatch of the snowfall in the gauge 407 

observations might contribute to excessive model precipitation in the alpine areas (Bonekamp et al., 408 

2018). The constant human disruption such as the sensor upgrade, urban growth, and station relocation 409 

might further cause measurement errors, expanding the deviation in the model evaluation (Fiebrich et 410 

al., 2010). Due to the spatial heterogeneity on a complex terrain, a pointed-scale in-situ observation did 411 

not appear to be a robust method to evaluate the snowpack evolution in a whole grid cell (81 km2), and 412 

the performance was up to its representative (Kumar et al., 2019; Wrzesien et al., 2018). The 413 

groundwater, lakes, glaciers, soil moisture contents are also included in the GRACE TWS (Wrzesien et 414 

al., 2018). Although the GRACE TWS anomalies were used for comparison with the TWS anomalies 415 

of the WRF/Noah-MP (Figure 4c), it could not reveal that all TWS changes were caused by the snow 416 



accumulation and melting. Moreover, the gain factor, spatial resolution and systematic errors of the 417 

GRACE products might result in uncertainty on the assessed result (Landerer & Swenson, 2012). It 418 

was not clear that the performance of the snow simulation occurred in the WTS and high-altitude 419 

regions, because most in-situ snow observations are located in the lowland of the Chinese TS area.  420 

4.2 Impact of the climatic factors on the snow variability  421 

Variations in precipitation, surface air temperature and atmospheric circulation regulate the snow 422 

anomalies (Cohen & Jones, 2011; Zhong et al., 2018). Overall, the March snow mass showed 423 

a negligible trend in the TS (Figure 3a). The passive microwave remote sensing similarly revealed a 424 

low-frequency variation of snow mass in the  High Mountain Asia and Eurasia but this was opposite 425 

with a significant decline in North America (Pulliainen et al., 2020; Smith & Bookhagen, 2018). It was 426 

noted that a change in the cold season precipitation was a dominant factor that leading to a variability 427 

in the March snow mass (Table 5). Snow was more sensitive to the precipitation than the temperature 428 

during the cold season in a dry-cold climate, which was consistent with the high latitude of Eurasia 429 

and Central Asia (Notarnicola, 2020; Smith & Bookhagen, 2018; Zhong et al., 2018). The 430 

precipitation showed a consistent increase during the cold season, particularly in the ETS and 431 

high-altitude regions of the WTS and NTS (Figure 11c). In addition, a significant increase in snowfall 432 

was also reported in the in-situ observations and climate model simulations (Guo & Li, 2015; de Kok 433 

et al., 2020). Anthropogenic aerosols might also enhance the latent heat exchange, forming more cloud 434 

and precipitation (Kang et al., 2020; Zhao et al., 2020). Meanwhile, the increased oasis expansion 435 

could increase the precipitation (P. Cai et al., 2019; Piao et al., 2020).Thus, it was beneficial to 436 

augment the maximum snow mass in these regions (Smith & Bookhagen, 2018) (Figure 7d). In 437 

particular, a significant SWE increasing trend was identified in the regions near Pamir and the ETS 438 

during winter (Smith & Bookhagen, 2018). Moreover, the heavy snowfall events happened frequently 439 

(T. Yang, Li, Liu, et al., 2019), which might cause a sharp rise in SD (Zhong et al., 2018). Previous 440 

studies demonstrated that the maximum SD experienced a significant increase in the Ili Valley and 441 

ETS (Q. Li et al., 2019; T. Yang, Li, Liu, et al., 2019). This is however not reflected in March snow 442 

mass map (Figure 8d) because the maximum snow mass was detected in the ETS during February 443 

(Figure 2). The air temperature experienced an insignificant increase in the TS during the cold season 444 

but exhibited a significantly rapid rise in March (Figure 11) as well as the days with a daily air 445 



temperature > 0 °C (1.5 days per decade, P < 0.05). However, the air temperature measured far below 446 

0 °C in the high-altitude regions, in which the warming trend had no obvious impact on the snowmelt. 447 

In contrast, the largely increasing March temperature could accelerate the snowmelt rate in the 448 

low-altitude regions (Figure 8b), causing more melted snow and reducing the SCF (Figure 11f). The 449 

heavy warming was strongly related to the rapid snow melting in most areas of the Northern 450 

Hemisphere in spring (Notarnicola, 2020). Nevertheless, the significantly increasing March 451 

precipitation values were seen in the TS except for the STS (Figure 11d), which might augment the 452 

snow mass and offset the snowmelt caused by the rising temperature. Furthermore, more precipitation 453 

in the snow-rain transitional season also resulted in the reduction of the snowfall verse precipitation 454 

ratio and the increased probability of rain-on-snow events (Musselman et al., 2018), which could bring 455 

more energy to the snow surface and enhance the snowmelt, advancing the snow end date and 456 

shortening the snow cover duration (Mazurkiewicz et al., 2008). This might be another reason for the 457 

significant reduction of the March SCF in the low-altitude TS regions (Figure 9d). Previous studies 458 

illustrated that the advanced snow end day was found in the lowland of the TS based on the 459 

meteorological and remote sensing observations (Q. Li et al., 2019; Notarnicola, 2020). Some 460 

evidence revealed that the variations of the El Niño–Southern Oscillation (ENSO), westerlies 461 

circulation index and North Atlantic/Arctic Oscillation (NAO, AO) have a substantial influence on the 462 

regional cold season climate as well as snow (Gerlitz et al., 2019). The strengthened mid-latitude 463 

westerlies enhance winter precipitation in the uplifted regions of the TS (Mölg et al., 2014). In 464 

addition, the interactions between the different atmospheric circulations might form heterogeneous 465 

snow trends (Smith & Bookhagen, 2018).  466 

Figure 11 467 

Table 5 468 

4.3 Implications and limitations 469 

The change in snow has an important influence on the regional climate, water resources, and 470 

ecosystems (Huning & AghaKouchak, 2020; Peng et al., 2010). The increased melted snow and the 471 

SCF decline could reduce the ground surface albedo and increase the soil moisture content 472 

(Blankinship et al., 2014), consequently, exacerbating the warming trend. The thick snow could warm 473 



the soil surface, but the decreased snow mass would lessen the warming effect in rich snow regions and 474 

vice versa (Zhang, 2005). The increased peak SWE in the high-altitude regions may contribute to the 475 

increase in glacier mass, but a dramatic warming accelerated the glacier mass loss in the TS (Farinotti 476 

et al., 2015; Luo et al., 2013). In addition, more melted snow during the cold season (Figure 11 c) could 477 

lead to an earlier spring peak runoff and increase the risk of flooding in the snow-dominated river basin 478 

(Stewart, 2010). The shift in runoff regime might also cause a mismatch between the crop water 479 

requirements and the irrigation supply and trigger a crisis of regional water resources shortage (Qin et 480 

al., 2020). The decline in the March SCF suggested that rapid snowmelt took place during a shorter 481 

period, which easily triggered wet snow avalanches (Hao et al., 2018). Indeed, the ongoing climate 482 

warming during early spring is beneficial to snow wetting and enhances the snow avalanche risk in 483 

mountainous areas (Ballesteros-Cánovas et al., 2018). The snow mass also plays a key role in the desert 484 

vegetation growth such as ephemeral plants through a consistent soil moisture regulation until summer 485 

(Peng et al., 2010). The growth of the alpine vegetation is similarly highly sensitive to the change in 486 

snow cover (Tomaszewska et al., 2020). A longer snow cover duration could cause an earlier start of 487 

the growing season and a longer duration of the growing season, and augment the vegetation greening 488 

as a result (X. Wang et al., 2018). 489 

Limited by the forcing data period, the variability of snow mass in this study was described during a 490 

relatively short time period. A point-scale in-situ historical snow depth reconstruction was performed 491 

based on the corrected the reanalysis data (Q. Li et al., 2018). The machine learning provided a 492 

reasonable approach so as to estimate the historical snow depth in a grid cell (J. Yang et al., 2020). In 493 

addition, the bias-correction method could significantly reduce the snow estimation uncertainty 494 

(Pulliainen et al., 2020). However, the scarcity of the surface observations gives rise to a big challenge 495 

in data assimilation and a comprehensive assessment of the snow process, especially in the altitudes 496 

exceeding 3,000 m. Thus, future work should enhance the intensive snow course observations and data 497 

assimilation in the RCM LSMs using a finer spatial resolution. 498 

5 Conclusions 499 

This study evaluated the performance of the snow simulation from 1982-2018 in the 500 

WRF/Noah-MP,  which was forced by the ERA5 reanalysis data, real-time updated leaf area index 501 



and green vegetation fraction, and it investigated the variability of the March snow mass and snow 502 

cover fraction in the Tianshan Mountains. The main findings of this study are described below: 503 

1. The snow mass estimation from WRF/Noah-MP showed a high accuracy with a slight 504 

overestimation (2.84 mm/day). Compared with the ERA5, the root mean square errors and mean 505 

bias of the daily snow depth from Domain 2 were significantly reduced by 95.74% and 93.02%, 506 

respectively. However, a large uncertainty in snow estimation existed in the high-altitude regions of 507 

the Tianshan Mountains.  508 

2. The March snow mass (97.85 ± 16.60 Gt) represented the annual maximum snow storage in the 509 

whole Tianshan Mountains. Although a widespread increase in the peak snow water equivalent was 510 

found during the cold season, the March snow mass exhibited a negligible trend. Additionally, the 511 

March snow cover fraction declined significantly, particularly in the Southern Tianshan Mountains.  512 

3. The total precipitation during the cold season controlled the March snow mass variations as 513 

compared with the surface air temperature. The increased precipitation in the high-altitude regions 514 

contributed to the extensive snow mass, which could offset the snow mass loss in the lowland of the 515 

Tianshan Mountains under climate warming. In contrast, the significant and rapidly rising air 516 

temperature caused the March snow cover fraction reduction. 517 
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884 

Figure 1 Topography (m) of the model domains (a); Location of the TS (b), Mean annual temperature 885 

(c) and precipitation (d) from the WRF model.  886 

 887 

Figure 2 Annual variation of the monthly snow mass from D02 in the TS and its sub-regions. 888 

 889 



890 

Figure 3 Taylor diagram comparing the in-situ SD and SWE with different simulations for the average 891 

from all stations in the TS on daily and monthly time scales (a). Values closer to the reference point 892 

indicate a higher correlation and smaller differences invariance. Boxplot of the root mean square error 893 

(cm/day) (b) and mean bias (cm/day) (c) of different daily SD simulations in the sub-regions. The 894 

bottom and top edges of each box indicate the 25th and 75th percentile and the central line indicates the 895 

median. 896 



 897 

Figure 4 Comparison of the time series observations and simulations of the monthly SD (a) and daily 898 

SWE (b) averages from all stations. (c) Monthly TWS anomaly estimated by D02 in comparison with 899 

GRACE. (d) Mean monthly SFC estimated by D02 in comparison with the MODIS values.  900 



901 

Figure 5 Spatial distribution of the RMSE (left panels, cm/day) and MB (right panels, cm/day) 902 

between the daily estimated SD (ERA5 (a and b), D01(c and d) and D02 (e and f)) and the 903 

observations.  904 

905 

Figure 6 Spatial distribution of the (a) estimated SCF and (b) MODIS SFC during the cold season. 906 

 907 



908 

Figure 7 Climatology of the estimated maximum SD (a), observed SD (b), and estimated maximum 909 

SWE (c) during the cold season. Trend of the maximum SWE (d). The black dots in Figure 7 indicate 910 

significant trends (significance level at 0.05). 911 

912 

Figure 8 Variation of the March snow mass (a) and elevation variation in the decadal trend for the 913 

March SWE (b). Climatology of the March SWE (c) and its trend (d) in the TS. The black dots in 914 

Figures 8 c and 8d indicate significant trends (significance level at 0.05). 915 



916 

Figure 9 Variations of (a) the mean SFC in the TS. Spatial trends of (b) the cold season, (c) November, 917 

and (d) March in the mean SCF. The black dots in Figure 9 indicate significant trends (significance 918 

level at 0.05). 919 

920 

Figure 10 Spatial distribution of the mean bias between the simulations and in-situ observations in (a) 921 

the mean monthly temperature (°C/month) and (b) total cold season precipitation (mm/cold season). 922 

Boxplot of the (c) mean monthly temperature bias and (d) total cold season precipitation bias in the 923 

different sub-regions. The bottom and top edges of each box indicate the 25th and 75th percentile and 924 

the central line indicates the median. 925 



926 

Figure 11 Cold season (left panels) and March trends (right panels) regarding the mean temperature (a 927 

and b), total precipitation (c and d), and melted snow (e and f). The black dots in Figure 9 indicate that 928 

the trends are significant (significance level at 0.05). 929 

 930 

 931 

 932 

 933 

 934 

 935 

 936 

 937 

 938 

 939 



Table 1 Information on the validation dataset.  940 

Dataset name Variables (resolution) Period Data sources 

CMA V3.0 TP, T2, SD, and SWE 1982/10/01-2015/09/30 http://data.cma.cn/  

TSSAR TP,T2, SD and SWE 1982/10/01-2015/09/30 Chinese Academy of Sciences 

Central Asia TP and T2 1982/10-2000/12 https://nsidc.org/data/G02174 

Former USSR SD 1982/10/01-2015/09/30 http://aisori.meteo.ru/ClimateR  

GRACE TWS TWS (0.5°×0.5°) 2002/09-2017/09 https://grace.jpl.nasa.gov/data/  

MOD10CM SCF (0.05°×0.05°) 2000/09-2018/09 https://urs.earthdata.nasa.gov/  

TP, T2, SD, SWE TWS, and SCF represent the total precipitation, air temperature at 2m, snow depth, 941 

snow water equivalent, and Terrestrial Water Storage, respectively. 942 

 943 

Table 2 Main physical parameterizations used in the numerical simulation. 944 

Simulation period 1982-10-01 to 2018-09-30 

Model Version: Version 4.01 

Nest: 2 

Horizontal grid (D02): 9 km 

Number of grids: 304*133 

Vertical Levels: 35 

Microphysics’ scheme: WSM-6 

Longwave radiation scheme: RRTM 

Shortwave radiation scheme: Dudhia 

Surface layer: Revised MM5 Monin‐Obukhov 

Planetary boundary layer: YSU 

Cumulus parameterization: Kain-Fritsch 

Initial/lateral boundary condition: ERA5 

Land cover: CCI-2000 

Land surface model: Noah-MP 

 945 

http://data.cma.cn/
https://nsidc.org/data/G021741
http://aisori.meteo.ru/ClimateR
https://grace.jpl.nasa.gov/data/
https://urs.earthdata.nasa.gov/


Table 3 The correlation coefficient, MB, and RMSE of the monthly TWS anomaly and SCF between 946 

the D02 and satellite observations (GRACE and MODIS) in the TS during the cold season. 947 

 R MB (mm or %/month) RMSE (mm or %/month) 

TWS 0.43** 21.70 mm 51.10 mm  

SCF 0.98** 11.28% 14.42% 

** Significant at the 0.01 level. 948 

 949 

Table 4 The decadal variation of SCF (%) in the TS and its sub-regions. 950 

 WTS NTS ETS STS TS 

cold season -0.94 -0.24 -0.16 -0.86 -0.53 

November -1.37 -0.29 0.48 0.98 -0.12 

March -2.70 -1.84 -2.86 -4.90* 2.91* 

* Significant at the 0.05 level. 951 

 952 

Table 5 Pearson's R values for the correlations between the March snow mass, SCF and the melted 953 

snow and March T2 and total precipitation in the TS during the cold season.  954 

 March snow mass March SCF March melted snow 

March T2 -0.22 -0.91** 0.49** 

Cold precipitation 0.78** -0.05 0.28 

**Significant at the 0.01 level. 955 


