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Abstract

A submesoscale-permitting global ocean model is used to study the upper ocean turbulence. Submesoscale processes peak in

winter and, consequently, geostrophic kinetic energy (KE) spectra tend to be relatively shallow in winter ( k-2) with steeper

spectra in summer ( k-3). This seasonal transition from steep to shallow power-law in the KE spectra indicates a transition

from quasi-geostrophic (QG) turbulence in summer to pronounced surface-QG-like turbulence in winter. It is shown that this

transition in KE spectral scaling has two phases. In the first phase (late autumn), KE spectra show a presence of two spectral

regimes: k-3 scaling in mesoscales (100-300 km) and k-2 scaling in submesoscales (<50 km), indicating the coexistence of

QG, surface-QG, and frontal dynamics. In the second phase (late winter), mixed-layer instabilities convert available potential

energy into KE, which cascades upscale leading to flattening of the KE spectra at larger scales, and k-2 power-law develops in

mesoscales too.
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Abstract19

A submesoscale-permitting global ocean model is used to study the upper ocean turbu-20

lence. Submesoscale processes peak in winter and, consequently, geostrophic kinetic en-21

ergy (KE) spectra tend to be relatively shallow in winter (∼ k−2) with steeper spectra22

in summer (∼ k−3). This seasonal transition from steep to shallow power-law in the KE23

spectra indicates a transition from quasi-geostrophic (QG) turbulence in summer to pro-24

nounced surface-QG-like turbulence in winter. It is shown that this transition in KE spec-25

tral scaling has two phases. In the first phase (late autumn), KE spectra show a pres-26

ence of two spectral regimes: ∼ k−3 scaling in mesoscales (100 − 300 km) and ∼ k−2
27

scaling in submesoscales (< 50 km), indicating the coexistence of QG, surface-QG, and28

frontal dynamics. In the second phase (late winter), mixed-layer instabilities convert avail-29

able potential energy into KE, which cascades upscale leading to flattening of the KE30

spectra at larger scales, and k−2 power-law develops in mesoscales too.31

Plain Language Summary32

Mesoscale (100− 300 km) and submesoscale (1− 50 km) motions are important33

for heat and material transport in the oceans. In the upper ocean, submesoscale turbu-34

lence shows seasonal variability and is pronounced in winter, whereas mesoscale turbu-35

lence has less seasonal variations. The same distinction is reflected in horizontal wavenum-36

ber spectra of KE and spectral energy fluxes. In this study, geostrophic KE spectra are37

analyzed in a submesoscale-permitting global ocean model to study the seasonal vari-38

ability in the upper ocean turbulence. We interpret the results in terms of different phys-39

ical mechanisms and their effects on the evolution of KE spectra over an annual cycle.40

We find that both mesoscale and submesoscale processes contribute to their character-41

ization.42

1 Introduction43

In the mid-latitudes, ocean flows at length scales of order 100 km or larger are pre-44

dominantly geostrophic so that the flow is quasi-two-dimensional and the Rossby num-45

ber is small (Ro < 1). Consequently, mesoscale (wavelengths roughly 100 − 300 km)46

turbulence is generally in accord with theories of two-dimensional turbulence (Kraichnan,47

1967) and quasi-geostrophic (QG) turbulence (Charney, 1971). A key feature of such the-48

ories is the prediction of an inverse cascade of kinetic energy (KE) at scales greater than49

the baroclinic Rossby deformation scale (Gkioulekas & Tung, 2007b). In accord with QG50

turbulence, numerous studies have observed an upscale (or inverse) transfer of KE at length51

scales larger than about 200 km in the upper ocean (Aluie et al., 2017; Arbic et al., 2014;52

Schlösser & Eden, 2007; Scott & Wang, 2005; Tulloch et al., 2011) and a forward (or down-53

scale) transfer of enstrophy at smaller scales accompanied by ∼ k−3 power-law in KE54

spectra (Khatri et al., 2018).55

In the upper ocean, submesoscale (wavelengths roughly 1− 50 km, Ro ∼ 1) tur-56

bulence plays an equally important role in the inter-scale energy transfer with correspond-57

ing effects on KE spectra (Capet, McWilliams, et al., 2008a, 2008b). Submesoscale pro-58

cesses such as frontogenesis (Haine & Marshall, 1998; McWilliams et al., 2015) and mixed-59

layer baroclinic instabilities (Boccaletti et al., 2007; Fox-Kemper et al., 2008) show a sig-60

nificant seasonal variability with the strongest activity in winter (Mensa et al., 2013; Rocha,61

Gille, et al., 2016; Sasaki et al., 2017). This seasonal variability is reflected in subme-62

soscale KE spectra, which tend to follow k−2 power-law in winter and k−3 in summer63

(Callies et al., 2015; Uchida et al., 2017). In fact, spectral scaling in mesoscale KE spec-64

tra is also seen to vary between k−2 to k−3 depending on the region of interest (Wortham65

& Wunsch, 2014; Xu & Fu, 2012).66
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It has been hypothesized that wintertime submesoscale dynamics near the ocean67

surface agree with surface-QG turbulence. In a surface-QG regime, buoyancy variance68

cascades downscale, which in turn leads to k−5/3 power-law in potential energy (PE) and69

KE spectra (Blumen, 1978; Held et al., 1995; Lapeyre, 2017; Pierrehumbert et al., 1994;70

Sukhatme & Pierrehumbert, 2002), while KE is expected to cascade upscale (Capet, Klein,71

et al., 2008). However, surface-QG theory does not account for secondary ageostrophic72

motions, which are important in frontogenesis processes (Hoskins & Bretherton, 1972).73

Surface-QG dynamics support the formation of strong buoyancy gradients, and, if the74

horizontal advection due to the ageostrophic flow component is considered, asymmetries75

develop in the divergence field and in the structure of vertical velocity associated with76

filaments (Badin, 2013; Ragone & Badin, 2016). These asymmetries tend to form dis-77

continuities in velocity and buoyancy fields resulting in the formation of sharp frontal78

structures. Consequently, k−2 spectral scaling (characteristic of a Heaviside step func-79

tion) develops in geostrophic KE spectra (Boyd, 1992; Callies & Ferrari, 2013; Klein et80

al., 2008). Nevertheless, a downscale cascade of buoyancy variance is expected (Sukhatme81

& Smith, 2009). Hence, as we argue in this paper, the k−2 scaling in upper ocean sub-82

mesoscale KE spectra in winter is consistent with surface-QG-like turbulence. To avoid83

ambiguity, we refer to surface-QG turbulence in the presence of fronts and secondary ageostrophic84

motions as “frontal-surface-QG turbulence” in the rest of the paper.85

On the contrary, an upscale KE transfer due to mixed-layer instabilities can flat-86

ten the KE spectrum, as QG theory predicts k−5/3 scaling in the inverse KE cascade in-87

ertial range (Charney, 1971), and result in ∼ k−2 scaling at submesoscales in the win-88

ter KE spectrum (Boccaletti et al., 2007; Klein et al., 2008). In fact, there is evidence89

of inverse KE cascade even in the submesoscale range (Capet, McWilliams, et al., 2008b;90

Dong et al., 2020; Sasaki et al., 2017; Schubert et al., 2020). Note that these interpre-91

tations of KE spectra hold for the geostrophically balanced part of the flow field, which92

is the focus of our study. If the ageostrophic component is considered in the KE spec-93

trum, the presence of gravity waves can result in a k−2 spectral scaling at submesoscales94

(Garrett & Munk, 1975; Rocha, Gille, et al., 2016; Torres et al., 2018). A more detailed95

discussion of various ocean turbulence theories can be found in Callies and Ferrari (2013).96

Submesoscale processes are crucial for ocean heat uptake and material transport97

(Su et al., 2018; Uchida et al., 2019), and understanding the physics of seasonality in sub-98

mesoscales is a key to understanding the impacts of submesoscale processes on mesoscale99

dynamics and the large-scale circulation. Moreover, studying upper-ocean submesoscale100

dynamics has applications for the upcoming Surface Water and Ocean Topography satel-101

lite mission, which aims to provide measurements at submesoscales (Fu & Ubelmann,102

2014).103

In this study, we characterize how geostrophic turbulence in mesoscales and sub-104

mesoscales in the ocean surface mixed-layer transitions seasonally from being QG-like105

in summer to frontal-surface-QG-like in winter. We frame our interpretations accord-106

ing to the following theoretical predictions: for QG turbulence, KE spectra follow k−3
107

scaling associated with the forward enstrophy cascade (Callies & Ferrari, 2013; Char-108

ney, 1971); for frontal-surface-QG turbulence, KE spectra follow k−2 scaling associated109

with the forward cascade of buoyancy variance (Blumen, 1978; Boyd, 1992). We use the110

output from a submesoscale-permitting global ocean model to study the behavior of up-111

per ocean geostrophic turbulence in different parts of the world. Specifically, we analyze112

the temporal evolution of geostrophic KE spectral slopes, i.e., transition from k−3 in sum-113

mer to k−2 to winter. For the first time, we show a simultaneous presence of two power-114

laws (k−3 and k−2) in geostrophic KE spectra, indicating the coexistence of QG and frontal-115

surface-QG turbulence. Further, we propose a wavenumber estimate to predict the tran-116

sition point from k−3 to k−2 scaling. The role of mixed-layer instabilities is also discussed.117
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The paper is organized as the following. The model details and methods are pro-118

vided in section 2, with results then presented in sections 3 and 4. We conclude the pa-119

per in section 5.120

2 Methods121

We analyze output from the 14-month (Sept 2011 to Nov 2012) LLC4320 global122

ocean simulation (1/48◦ horizontal grid spacing with 90 vertical levels) performed us-123

ing the Massachusetts Institute of Technology general circulation model (Marshall et al.,124

1997; Rocha, Gille, et al., 2016). LLC4320 output is appropriate for studying submesoscale125

processes since the model resolves dynamical processes with length scales as small as 10 km126

(Rocha, Gille, et al., 2016). LLC4320 output has been employed in several works to study127

geostrophic dynamics at mesoscales and submesoscales as well as to understand inter-128

actions between balanced motions and inertia-gravity waves (Chereskin et al., 2019; Dong129

et al., 2020; Qiu et al., 2018; Rocha, Chereskin, et al., 2016; Rocha, Gille, et al., 2016;130

Torres et al., 2018). We use LLC4320 output to study the interplay between mesoscale131

and submesoscale turbulence in the upper ocean. For this purpose, we analyzed ten 10◦×132

10◦ mid-latitude regions away from continental boundaries. Also, the ocean depth is at133

least 1 km in these regions so that we expect topographic effects to be minimal. Most134

energetic ocean mesoscale eddies are generally 100−300 km, so that the 10◦×10◦ do-135

mains are large enough to contain mesoscale turbulence. Five of the regions are in rel-136

atively high KE locations, e.g., near the Gulf Stream, Kuroshio Current, and in the South-137

ern Ocean. The other five regions are in relatively low KE locations (see Figure 1). Re-138

cently, Sasaki et al. (2017) observed significant differences in the nature of submesoscale139

turbulence between high and low KE regions in the North Pacific. With our choice of140

domains, we investigate the nature of mesoscale and submesoscale turbulence in a range141

of dynamically different locations in the mid-latitudes.142

In LLC4320 output, the essential fields are available as hourly snapshots for the143

entire duration of the simulation. We compute horizontal wavenumber spectra of KE (u2/2,144

where u is the horizontal velocity) and PE (b2/2N2, b is buoyancy and N is buoyancy145

frequency) using velocity and density fields at different depths. In particular, we perform146

a Helmholtz decomposition of the two-dimensional velocity spectra to compute the KE147

spectra of the rotational and divergent components (Callies & Ferrari, 2013; Bühler et148

al., 2014; Uchida et al., 2017). For the spectral computations, we use snapshots rather149

than daily-averaged fields. Although time-averaging is useful in removing high-frequency150

inertia-gravity waves from the flow field, it can also suppress balanced submesoscale mo-151

tions, which have typical timescales of O(1) day (McWilliams, 2016; Uchida et al., 2019).152

Thus, time-averaging may suppress seasonal variability at submesoscales. Also, spectra153

obtained from time-averaged fields tend to be relatively steeper than spectra computed154

using snapshots (see Figure 3 in Sinha et al., 2019). This artifact would compromise our155

ability to compare spectral slopes against theoretical predictions. We used velocity and156

density snapshots at 12-hour intervals and at seven vertical levels down to 650 m depth,157

with seasonally and monthly-averaged spectra examined. Prior to computations, hor-158

izontal spatial linear trends were removed from each data snapshot (Uchida et al., 2017)159

and the Planck-taper windowing function was used to make the fields doubly-periodic160

(McKechan et al., 2010). We provide further details on the spectra calculations in sup-161

porting information.162

3 Seasonality in submesoscale KE spectra163

Figures 2a-2h show the mean rotational KE spectra [Kψ(k)] and the ratio of di-164

vergent to rotational KE spectra [Kφ(k)/Kψ(k)] for summer and winter seasons in dif-165

ferent geographic regions. In agreement with previous studies (Rocha, Gille, et al., 2016;166

Uchida et al., 2017), the spectral slopes in rotational KE spectra in the upper-ocean show167
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Figure 1. Ten 10◦ × 10◦ regions chosen for the spectral analysis. High KE regions (acronyms

start with ‘H’) are shown with red rectangles while blue rectangles represent relatively low KE

regions (acronyms start with ‘L’). Ocean surface geostrophic speed (m/s) on 15th March 2012

from satellite altimetry dataset is shown in color.

seasonal variability (Figures 2a-2d). The rotational KE spectra (at 21 m depth) in win-168

ter are shallower than in summer, whereby they follow a power-law scaling close to k−2
169

at 10-100 km length scales in winter and k−3 in summer. This seasonal variability is due170

to the seasonal strengthening of submesoscale activity in the upper ocean, with subme-171

soscale KE and vorticity magnitudes peaking in the winter season (Dong et al., 2020; Rocha,172

Gille, et al., 2016; Sasaki et al., 2017).173

As seen in Figures 2e-2h, the ageostrophic (divergent) contributions in the upper-174

ocean can be as large as the geostrophic (rotational) ones within the submesoscale range,175

especially in the summer season and in low KE regions. Nevertheless, in the winter sea-176

son, upper ocean submesoscale flows are predominantly rotational, which indicates that177

they are in near geostrophic balance. Note that rotational and geostrophic spectra are178

not necessarily equivalent due to the presence of weak vertical velocities associated with179

the balanced flow (Wang & Bühler, 2020). However, we expect the correction to be in-180

significant in the upper ocean because Kφ(k)/Kψ(k) is mostly smaller than 1, especially181

in winter (Figures 2e-2h). Thus, this technical distinction is not important for the anal-182

ysis presented in this paper. In the following, we consider just the rotational KE spec-183

tra as we are interested in geostrophic turbulence.184

3.1 Wintertime KE spectra and associated spectral scaling185

In the summer, k−3 power-law in KE spectra at mesoscales and submesoscales agrees186

with QG turbulence (Charney, 1971). On the other hand, k−2 scaling in winter KE spec-187

tra can be understood, in part, in terms of surface-QG dynamics (Blumen, 1978; Klein188

et al., 2008; Lapeyre, 2009), in which surface buoyancy drives the dynamics. Importantly,189
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Figure 2. Seasonally-averaged (JJA and DJF) (a-d) rotational KE spectra, (e-f) the ratio of

divergent to rotational KE spectra, and (i-l): PE spectra. Each is shown versus isotropic hori-

zontal wavenumber k =
√

k2
x + k2

y (cycles/km) in selected high and low KE regions at depths

of 21 m and 410 m. Gray patches indicate the wavenumbers over which boundary effects (low

wavenumbers) and viscous dissipation (high wavenumbers) alter the spectra significantly and so

are outside our scope. (m) The differences between the summer and winter spectral slopes (linear

fits were computed in the wavenumber range [0.02, 0.06] cpkm) for rotational KE spectra.

the k−2 power-law in the winter KE spectra is steeper than the surface-QG prediction190

of k−5/3 in the buoyancy-variance cascading inertial range (Blumen, 1978). With the in-191

clusion of sharp fronts and filaments in surface-QG dynamics (referred to as frontal-surface-192

QG dynamics here), KE spectra are expected to fall as k−2 (Boyd, 1992; Callies & Fer-193

rari, 2013). Thus, the enhanced wintertime submesoscale turbulence and associated k−2
194

scaling in KE spectra agree with frontal-surface-QG dynamics.195

Alternatively, the relatively shallow k−2 scaling in the mesoscale KE spectra in win-196

ter can also arise from an upscale KE transfer due to mixed-layer instabilities, in which197

perturbations grow by extracting PE from lateral buoyancy gradients (Boccaletti et al.,198

2007; Callies et al., 2016; Capet, McWilliams, et al., 2008b). In this case, the spectral199

slope in the KE spectrum at scales larger than the mixed-layer deformation scale is ex-200

pected to be controlled by two processes: an upscale KE transfer due to mixed-layer in-201

stabilities (Boccaletti et al., 2007) and a forward enstrophy transfer due to interior baro-202

clinic instability (Charney, 1971). The QG theory predicts a k−5/3 power-law for the KE203
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spectrum in the inverse KE cascade and k−3 power-law in the forward enstrophy cas-204

cade inertial ranges, respectively (Charney, 1971). Thus, the simulated KE spectral slope205

of roughly k−2 could also be the result of an overlap of these two cascades in wintertime206

submesoscale KE spectra.207

In winter, we expect KE production at two distinct length scales: baroclinic Rossby208

deformation scale and mixed-layer deformation scale. Lilly (1989) first proposed to study209

geostrophic turbulence in the presence of two forcing length scales, and this approach210

may be useful in understanding the nature of upper ocean turbulence. Further, at scales211

smaller than the mixed-layer deformation scale, a downscale buoyancy variance flux can212

affect the spectral slope significantly as in surface-QG dynamics. In a recent work, Dong213

et al. (2020) argued that both the inverse KE transfer and forward buoyancy variance214

transfer contribute to shaping the k−2 scaling in submesoscale KE spectra. However, there215

is no clarity on the relative importance of the two processes nor on the evolution of KE216

spectra from summer to winter. We provide insight into these issues in section 4.217

3.2 Spectra in the ocean interior218

Thus far we have focused on the upper ocean spectra at 21 m depth. For compar-219

ison, in Figures 2a-2d we also show the mean rotational KE spectra at 410 m depth. Lit-220

tle seasonal variability is seen at this interior depth. In Figure 2m, we show the differ-221

ences between the summer and winter spectral slopes (computed in the submesoscale wavenum-222

ber range [0.02, 0.06] cpkm) in rotational KE spectra as a function of depth. The sea-223

sonal variability is pronounced in the upper 50 m, where the slope differences are close224

to 1, and can be associated with the seasonality in the mixed layer depth, which varies225

between 10-20 m in summer and 100-150 m in winter (de Boyer Montégut et al., 2004).226

For completeness, we also assess seasonally-averaged PE spectra (P (k) in Figure 2i-2l,227

see supporting information for computational details), which do not indicate any sea-228

sonal variability in spectral slopes. However, spectral slope magnitudes can differ between229

the ocean surface and ocean interior (Callies & Ferrari, 2013; Callies et al., 2016).230

4 Interplay among QG turbulence, frontal-surface-QG turbulence, and231

mixed-layer instabilities232

Here, we examine how the upper ocean KE spectra evolve from summer to win-233

ter. In Figure 3a, monthly-averaged rotational KE spectra for July, November, and March234

are shown in the Kuroshio Current region (H–KCR). As discussed in Section 3, the KE235

spectra follow close to k−3 scaling in July whereas the scaling is close to k−2 in March236

due to enhanced submesoscale activity. In the transition month of November, the KE237

spectrum shows both spectral scalings, with k−3 at length scales larger than about 40 km238

and k−2 at smaller length scales.239

4.1 Interpreting the dual power-laws240

The presence of dual power-laws in the November KE spectrum indicates the co-241

existence of QG and frontal-surface-QG turbulence. Tulloch and Smith (2006, 2009) in-242

corporated both interior and boundary dynamics in a QG model and showed that the243

surface KE spectrum follows a k−3 power-law at large scales, in agreement with QG the-244

ory, and the spectrum transitions to a k−5/3 power-law at relatively small scales, in ac-245

cord with the traditional surface-QG theory. With the consideration of sharp fronts in246

surface-QG dynamics (Boyd, 1992; Callies & Ferrari, 2013), we expect a change in spec-247

tral scaling from k−3 at large scales to k−2 at relatively small scales in the upper ocean248

geostrophic KE spectra, and this change in power-law is clearly seen in the November249

KE spectrum (Figure 3a). Hence, k−3 scaling is associated with the downscale enstro-250

–7–
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phy flux, and k−2 spectral scaling is associated with the downscale buoyancy variance251

flux and ocean fronts (Tulloch & Smith, 2006; Callies & Ferrari, 2013).252

Frontal activity is expected to strengthen in late autumn (Kazmin & Rienecker,253

1996; Roden, 1980) and the length scale corresponding to the change in spectral scal-254

ing (k−3 to k−2) may be associated with the frontogenesis scale at which lateral buoy-255

ancy gradients are strong. The time series of available PE (APE) in Figure 3b confirms256

that buoyancy anomalies strengthen in late autumn due to frontogenesis at submesoscales257

(McWilliams et al., 2015). APE peaks in late autumn and this APE slowly decays by258

March-April due to mixed-layer instabilities, leading to an increase in the mean enstro-259

phy in late winter (Figure 3c). It is expected that this conversion of APE to KE at sub-260

mesoscales results in an inverse KE cascade. Consequently, relatively shallow k−2 spec-261

tral scaling develops in the March KE spectrum, even at length scales as large as 100 km262

(see discussions in Dong et al., 2020; Sasaki et al., 2017).263

As discussed in section 3, the spectral slope in the geostrophic KE spectrum through-264

out the mesoscales and submesoscales is expected to be controlled by an inverse KE flux265

(due to mixed-layer instabilities), forward enstrophy flux (due to interior baroclinic in-266

stability), and forward buoyancy variance flux (due to frontogenesis). The temporal evo-267

lution of KE spectral slope, APE, and enstrophy in Figures 3a-3c confirms the roles of268

these spectral fluxes in different months. In late winter, instabilities occur at a range of269

length scales and all three spectral fluxes contribute to shaping the KE spectral slope270

(also see Dong et al., 2020). Hence, we do not expect an inertial range at 10-100 km scales271

in late winter, and a theoretical power-law scaling for the KE spectrum is not possible.272

The appearance of k−2 power-law in late winter KE spectra could be a mere coincidence.273

Nevertheless, the flattening of the KE spectrum in winter is expected due to the inverse274

KE transfer from mixed-layer instabilities and is robust across the oceanic regions we275

analyzed.276

The presence of dual power-laws in late autumn is also seen in other oceanic re-277

gions (Figures 3d-3m), especially in high KE regions. In contrast, there is no clear sig-278

nature of dual spectral regimes in low KE regions. It has been suggested that seasonal279

variability in low KE regions is due to seasonality in the KE production rate associated280

with interior baroclinic instability (Sasaki et al., 2017), which could be a reason for the281

absence of two spectral regimes in low KE regions.282

4.2 Estimating the transition wavenumber283

It is natural to ask what sets the transition wavenumber between k−3 and k−2 scal-284

ing in the rotational KE spectrum in late autumn. Here, we derive an expression for pre-285

dicting the transition wavenumber. In inertial ranges corresponding to downscale enstro-286

phy and buoyancy variance cascades, QG and surface-QG turbulence theories predict287

the following KE spectra,288

Eqg(k) = C1Z2/3k−3 and Esqg(k) = C2B2/3k−5/3. (1)289

Here, C1, C2 are constants, Z is the enstrophy flux, B is the buoyancy variance flux di-290

vided by the squared buoyancy frequency, N2 = −(g/ρo) dρ(z)/dz, where ρ(z) is the291

mean vertical potential density profile (referenced to the sea surface) evaluated using the292

equation of state from Jackett and Mcdougall (1995). We hypothesize that both QG and293

surface-QG dynamics determine the geostrophic KE spectral slope (see discussions in294

Tulloch & Smith, 2009; Tung & Orlando, 2003) and that we can furthermore write Kψ(k)295

as a linear superposition of Eqg(k) and Esqg(k) (Gkioulekas & Tung, 2007a)296

Kψ(k) = C1Z2/3k−3 + C2B2/3k−5/3. (2)297
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Figure 3. Panels (a-c) results at 21 m depth in the Kuroshio Current region (H-KCR) (a)

monthly-averaged rotational KE spectra, (b) domain-averaged APE time series, (c) domain-

averaged enstrophy time series. Panels (d-m) monthly-averaged rotational KE spectra in different

regions at 21 m depth. Each is shown versus isotropic horizontal wavenumber k =
√

k2
x + k2

y

(cycles/km) and kT is the transition wavenumber computed using equation (4). November data

was used in (d, e, i, j) and May data was used in (f-h, k-m) for computing kT (shading represents

the standard deviation in kT ).

By equating the two terms on the right hand side we obtain the following expression for298

the transition wavenumber299

kT =

[
C1

C2

]3/4√Z
B
. (3)300

It is evident that Kψ(k) follows k−3 scaling at k < kT and k−5/3 scaling at k >301

kT . Further, we assume that the spectral flux magnitudes scale with the domain-averaged302

enstrophy and buoyancy variance. With this assumption, kT (marked by vertical ma-303

genta lines in Figure 3) can be written as304

kT ≈

√
N2〈ζ2〉
〈b2〉

, (4)305

where b = −g(ρ− ρo)/ρo is the buoyancy (g = 9.8 m/s2), ζ is the vertical component306

of the relative vorticity, 〈.〉 is the spatial mean at a given depth, and we set C1 = C2.307

As seen in Figure 3, the transition wavenumber estimates lie in the range 30-50 km308

(computed using the data in November and May in regions located in the Northern and309

Southern hemisphere, respectively) and are close to the wavenumbers at which a change310

in spectral scaling is found. The H–SO region is an exception and the discrepancy could311
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be due to the formation of deep submesoscale fronts in the Southern Ocean (Siegelman,312

2020). KE spectra shown in Figure 3 were computed using the velocity field at 21 m depth313

but the presence of two spectral regimes is also seen at other depths (see supporting in-314

formation). Note that in our kT computations, spatial linear trends were removed from315

buoyancy and vorticity fields to avoid complications arising from domain-scale north-316

south temperature gradients. We emphasize that the kT estimate in equation (4) suf-317

fers from the many limitations of scaling arguments. In particular, C1 = C2 need not318

hold and spectral flux magnitudes, which we assumed to be constant, generally vary as319

a function of wavenumber (Khatri et al., 2018). Moreover, we do not account for the pres-320

ence of fronts.321

In Figure 3, we note a time lag of about two months between APE and enstrophy322

peaks (a time lag is also present in other regions, see supporting information). Dong et323

al. (2020) observed a similar time lag between the mixed-layer depth maximum and sub-324

mesoscale KE maximum. So although strong lateral buoyancy gradients are created in325

late autumn and result in a significant increase in APE, mixed-layer instabilities peak326

around late winter. This time lag is the key reason why we find two spectral regimes in327

Figure 3. Equation (4) inherently assumes that domain-averaged enstrophy and buoy-328

ancy variance are independent and do not affect each other, which is not expected to hold329

at all times. As seen in Figure 3, mixed-layer baroclinic instabilities convert APE into330

KE, which reduces buoyancy variance and increases enstrophy. Nevertheless, the kT es-331

timate works well in late autumn as mixed-layer instabilities are not as active.332

Our analysis suggests that the temporal evolution of upper ocean submesoscale tur-333

bulence can be divided into two phases. In the first phase (late autumn), frontogenesis334

processes create strong lateral buoyancy gradients resulting in two spectral regimes (k−3
335

and k−2) in the geostrophic KE spectrum. In the second phase (late winter), mixed-layer336

baroclinic instabilities convert APE into KE at submesoscales, and KE cascades upscale337

leading to a relatively shallow k−2 scaling in the KE spectrum at scales as large as 100 km.338

We provide a schematic in Figure 4 explaining the two phases. Also, kT estimates in Fig-339

ure 3 are quite close to the most unstable mixed-layer instability length scales (Figure340

1 in Sasaki et al., 2017). This similarity in length scales is expected since submesoscale341

front length scales and mixed-layer instability scales generally overlap (Hosegood et al.,342

2006).343

5 Discussion and Conclusions344

In this study, we used output from a 1/48◦ global ocean simulation to examine the345

behavior of upper ocean geostrophic turbulence in different parts of the World Ocean.346

In agreement with previous studies, we found a strong seasonality in submesoscale tur-347

bulence and the associated geostrophic kinetic energy (KE) spectra (Callies et al., 2015;348

Rocha, Gille, et al., 2016; Sasaki et al., 2017). Specifically, rotational KE spectra tend349

to follow ∼ k−3 power-law in summer in accord with QG turbulence (Charney, 1971),350

and ∼ k−2 power-law in winter. It is shown that mesoscale and submesoscale turbulence351

in the upper ocean geostrophic flows can be understood as a combination of quasi-geostrophic352

(QG), surface-QG, and frontal dynamics.353

We described two distinct physical phases in the seasonal transition of upper ocean354

rotational KE spectra from k−3 scaling in summer to k−2 scaling in winter. The first phase355

occurs in late autumn, during which strong lateral buoyancy gradients are created due356

to frontogenesis at submesoscales (McWilliams et al., 2015). As a result, KE spectra de-357

velop two spectral regimes consistent with the coexistence of QG and surface-QG-like358

turbulence (Tulloch & Smith, 2006, 2009). Specifically, KE spectra decay as k−3 at length359

scales > 50 km associated with the forward enstrophy cascade in QG turbulence (Charney,360

1971), whereas KE spectra follow k−2 spectral scaling at length scales < 50 km in agree-361

ment with the forward buoyancy variance cascade in surface-QG turbulence and the pres-362
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Figure 4. Schematic for the annual cycle of the geostrophic KE spectrum in the upper ocean.

(a) From QG turbulence, the summer KE spectrum follows k−3 scaling associated with a down-

scale enstrophy cascade in scales smaller than baroclinic instability length scale (BI) and an

inverse KE cascade is present at larger scales. (b) In late autumn, strong lateral buoyancy gradi-

ents are created due to frontogenesis (FL indicates the length scale where transition in spectral

slope occurs due to the presence of fronts) and buoyancy variance cascades downscale leading

to flattening of the KE spectrum to k−2 in submesoscales in accord with surface-QG turbulence

plus frontal activity. (c) Mixed-layer baroclinic instabilities (MLI indicates the corresponding

length scale) extract energy from lateral buoyancy gradients resulting in an upscale cascade of

KE. Consequently, both upscale KE flux and downscale enstrophy flux affect the spectral slope,

and a shallower ∼ k−2 scaling develops in the mesoscale KE spectrum. Black arrows denote the

directions of the spectral fluxes of KE, enstrophy, and buoyancy variance (note that dimensions

of these fluxes are different from each other).

ence of frontal structures (Blumen, 1978; Callies & Ferrari, 2013). Using the mean en-363

strophy and buoyancy variance magnitudes, we derived a scaling estimate for the wavenum-364

ber where the spectral scaling transitions from k−3 to k−2. The estimated wavenumbers365

are able to predict the change in spectral scaling in KE spectra reasonably well. Also,366

available potential energy (APE) peaks during this time as strong lateral buoyancy gra-367

dients are present.368

In the second phase, which peaks in late winter, mixed-layer baroclinic instabili-369

ties convert APE into KE at submesoscales, thus leading to an inverse KE cascade (see370

also Dong et al., 2020; Sasaki et al., 2017). Consequently, k−2 spectral scaling develops371

in KE spectra at scales of 10-100 km. We present a schematic in Figure 4 that summa-372

rizes the physical mechanisms involved with these seasonal transitions, thus depicting373

our finding that geostrophic turbulence in the upper ocean can be understood in terms374
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of QG, surface-QG, and frontal dynamics, with the relative importance of these processes375

varying seasonally.376

Another key finding of this work is that a time lag of about 2-3 months occurs be-377

tween the maxima in APE due to frontogenesis and its conversion to submesoscale KE378

through mixed-layer baroclinic instabilities (also see Dong et al., 2020). Although fron-379

togenesis processes start in late autumn, mixed-layer baroclinic instabilities peak in late380

winter. Current submesoscale mixed-layer parameterization schemes do not account for381

this time lag, and APE is converted into KE instantly in the mixed-layer (Fox-Kemper382

et al., 2008). In practice, however, some ocean models use temporal smoothing to ob-383

tain more realistic circulation. For example, the GFDL-OM4 ocean climate model uses384

30 days as the time-scale for temporal smoothing (Adcroft et al., 2019). Currently, these385

time scale magnitudes are tuned to match model output to ocean measurements. How-386

ever, physical reasoning is missing for this temporal smoothing. We are pursuing research387

to determine a scaling-argument-based relation for the time scale for use in submesoscale388

parameterization schemes.389
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5. Figure S2 shows the time series of the mean potential energy and enstrophy.
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Introduction

The document contains additional text, table and figures to support the results pre-

sented in the manuscript.

S1. Horizontal wavenumber spectra computations

We follow the methods from Uchida, Abernathey, and Smith (2017) for computing hor-

izontal wavenumber spectra. We compute spectra of kinetic energy (KE) and potential

energy (PE) for each model snapshot and used time-averaged spectra for the analysis. In

particular, two-dimensional (2D) discrete Fourier transform along both horizontal direc-

tions of the velocity and buoyancy fields can be computed first to obtain 2D spectra of

KE, E(kx, ky), and PE, P (kx, ky),

E(kx, ky) =
1

2∆kx∆ky
|ũ(kx, ky)|2, (1)

P (kx, ky) =
1

2∆kx∆ky

|b̃(kx, ky)|2

N2
, (2)

where k = (kx, ky) is the horizontal wavenumber vector, and ∆kx = 1/(2∆x), ∆ky =

1/(2∆y) (∆x and ∆y are the zonal and meridional grid spacings) are the inverse of

the smallest wavelengths admitted by the model grid. ũ(kx, ky) and b̃(kx, ky) are the

2D Fourier transform of the velocity and buoyancy (b = −g(ρ − ρo)/ρo, where g = 9.8

m/s2, ρ is the potential density referenced to the ocean surface, ρo = 1000 kg/m3 is

the reference density). N is the buoyancy frequency (N2 = −(g/ρo) dρ(z)/dz, where

October 31, 2020, 2:07am



: X - 3

ρ(z) represents the spatial and time mean vertical potential density profile). Potential

density was evaluated using the equation of state from Jackett and Mcdougall (1995).

Prior to Fourier transform computations, spatial linear trends were removed from each

data snapshot and a 2D Planck-taper windowing function (exp[− 0.01
1−x2 −

0.01
1−y2 + 0.02],

where (x, y) ε [−1, 1]) was used to make the fields doubly-periodic. Planck-taper window

is quite effective in reducing signal leakage (McKechan et al., 2010). Alternatively, a

Hanning window (or other windowing operations) can be used for this purpose (see e.g.

Rocha, Gille, Chereskin, and Menemenlis (2016)).

A Helmholtz decomposition can be used to obtain the KE spectra corresponding to the

rotational and divergent components of the horizontal flow (Bühler et al., 2014; Uchida et

al., 2017). Decomposing the horizontal velocity, u, in terms of a streamfunction, ψ, and

velocity potential, φ, yields

u = uψ + uφ = ẑ×∇ψ +∇φ, (3)

ζ = ẑ · (∇× u) = ∇2ψ, (4)

D = ∇ · u = ∇2φ, (5)

where ζ and D are the vertical components of the relative vorticity and horizontal diver-

gence, respectively. In Fourier space, the above relations take the form

ζ̃ = −(k2
x + k2

y)ψ̃ and D = −(k2
x + k2

y)φ̃. (6)

We can then use these equations to compute rotational (Kψ) and divergent (Kφ) com-

ponents of the KE spectra (E = Kψ +Kφ) as

Kψ =
1

2
|ũψ|2 =

|ζ̃|2

2(k2
x + k2

y)
, (7)
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Kφ =
1

2
|ũφ|2 =

|D̃|2

2(k2
x + k2

y)
. (8)

In this paper, we azimuthally integrate the 2D spectra to obtain spectra as a function

of the isotropic wavenumber, k = (k2
x + k2

y)
1/2.

S2. Comparing the transition wavenumber estimate against other studies

Tulloch and Smith (2006) studied the coexistence of quasi-geostrophic (QG) and surface-

QG turbulence by incorporating both interior and boundary dynamics in an idealized

model. They observed the change in spectral scaling from k−3 to k−5/3 in the surface KE

spectrum and defined the corresponding transition wavenumber as kT = f/NH, where f

is the Coriolis parameter, N is buoyancy frequency and H is equivalent to thermocline

depth.

Our kT definition in equation (4) in the manuscript agrees with the transition wavenum-

ber estimated by Tulloch and Smith (2006). We see the equivalence by using scaling

arguments with b = f ∂ψ/∂z (b is buoyancy and ψ is streamfunction) from geostrophy

and ζ = k2
Tψ (ζ is the relative vorticity), thus yielding

kT =
f

NH
=

f

N

√√√√〈ψ2〉
H2

1

〈ψ2〉
, (9)

kT ≈
f

N

√
〈|∂ψ
∂z
|2〉 1

〈ψ2〉
≈ 1

N

√√√√ 〈b2〉
〈ζ2〉

k4
T , (10)

kT ≈

√√√√N2〈ζ2〉
〈b2〉

. (11)
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Table S1. Latitude and longitude bands of different regions. Acronyms for high and relatively

low KE regions start with ‘H’ and ‘L’, respectively.

Acronyms Latitudinal Extent Longitudinal Extent Location
H–GSR 30◦N – 40◦N 55◦W – 45◦W Gulf Stream Region
H–KCR 30◦N – 40◦N 150◦E – 160◦E Kuroshio Current Region
H–ACR 48◦S – 38◦S 20◦E – 30◦E Agulhus Current Region
H–SO 55◦S – 45◦S 120◦E – 130◦E Southern Ocean
H–DP 50◦S – 40◦S 50◦W – 40◦W Drake Passage Region
L–NEP 30◦N – 40◦N 150◦W – 140◦W North East Pacific
L–NEA 19◦N – 29◦N 38◦W – 28◦W North East Atlantic
L–SWP 45◦S – 35◦S 150◦W – 140◦W South West Pacific
L–SEP 42◦S – 32◦S 100◦W – 90◦W South East Pacific
L–SEA 30◦S – 30◦S 10◦W – 0◦W South East Atlantic
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Figure S1. Monthly-averaged rotational KE spectra versus isotropic horizontal wavenumber

k =
√
k2
x + k2

y at 2.79 m depth in different regions. kT is the transition wavenumber computed

using the relation in equation 1 (computed using Dec month data in (a, b, f, g) and June

month data in (c-e, h-j)) and shading represents the standard deviation. k−2 and k−3 curves are

shown with dashed and dotted black lines, respectively. Gray regions indicate the wavenumbers

over which boundary effects (low wavenumbers) and viscous dissipation (high wavenumbers)

significantly alter the spectra, so are outside our scope. Unlike in the manuscript, we show spectra

computed for the months of Dec (a, b, f, g) and June (c-e, h-j) because we only computed spectra

for DJF and JJA seasons at 2.79 m depth level to limit the computational expense. Nevertheless,

dual spectral inertial ranges are evident, which indicates the coexistence of QG turbulence and

frontal-surface-QG turbulence.
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Figure S2. Time series of domain-averaged available potential energy (blue) and domain-

averaged enstrophy (red) at 21 m depth in different regions. There is a lag of about 2-4 months

in the peaks of available potential energy and enstrophy in all regions.
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Figure S3. Monthly-averaged rotational kinetic energy (Kψ(k)) and potential energy (P (k))

spectra in late autumn at 21 m depth in different regions. Spectra shown are for the month of

Nov in (a, b, f, g) and for the month of May in (c-e, h-j). k−2 and k−3 curves are shown with

dashed and dotted black lines, respectively. Gray regions indicate the wavenumbers over which

boundary effects (low wavenumbers) and viscous dissipation (high wavenumbers) significantly

alter the spectra, so are outside our scope. At length scales larger than about 50 km, Kψ(k)

follows close to k−3 scaling. At length scales smaller than about 50 km, the spectral slope inKψ(k)

is relatively shallow, ∼ k−2, due to pronounced frontal-surface-QG behavior (see the description

of figure 3 in the manuscript). In high KE regions, at these scales (< 50 km), Kψ(k) and P (k) are

of similar magnitudes with similar power-law scaling, and this energy equipartition is expected in

surface-QG dynamics (Gkioulekas & Tung, 2007). However, the energy equipartition condition is

not satisfied in the H–SO region (kT estimate also does not match the wavenumber corresponding

to the spectral scaling change in this region, see manuscript).
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