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Abstract

The twin Sentinel-1 (S1) satellites have been extensively acquiring synthetic aperture radar (SAR) data in the Arctic, providing

the unique opportunity to obtain ocean dynamic parameters with both high spatial resolution and wide swath coverage in

the marginal ice zone (MIZ). In this paper, we proposed a method for retrieving the ocean significant wave height (SWH)

from S1 SAR data in horizontal-horizontal (HH) polarization based on a backpropagation neural network (BPNN). A total of

4,273 scenes from S1 extra wide swath mode data acquired in the Arctic were collocated with data from four radar altimeters

(RA), yielding 126,128 collocated data pairs. These data were separated into training and testing datasets to develop a BPNN

model for retrieving SWH. Comparing the S1 retrieved SWH using the testing dataset with the RA SWH yielded a bias of 0.17

m, a root-mean-square error of 0.71 m and a scatter index of 23.05% for SWH less than 10 m. The S1 retrieved SWH were

further compared with CFOSAT/SWIM data acquired in the Arctic between August 2019 and May 2020 to validate the SWIM

performance on wave measurements at different beams.

1



Journal of Geophysical Research: Oceans 

 

 

Retrieval of Ocean Wave Heights from Spaceborne SAR over the Arctic 1 

Marginal Ice Zone with a Neural Network 2 

Ke Wu
1,2

, Xiao-Ming Li
2
 and Bingqing Huang

1,2
 3 

1
University of Chinese Academy of Sciences, Beijing, 100049, China. 4 

2
Key Laboratory of Digital Earth Science, Aerospace Information Research Institute, Chinese 5 

Academy of Sciences, Beijing, 100094, China. 6 

Corresponding author: Xiao-Ming Li (lixm@radi.ac.cn) 7 

Key Points: 8 

 An algorithm is developed to retrieve SWH in the Arctic marginal ice zone from 9 

spaceborne SAR using a back propagation neural network 10 

 Comparisons of the SAR-retrieved SWH with radar altimeter data suggest good 11 

agreement independent of the sea state 12 

 SWIM data at nadir and the 10° beam in the Arctic MIZ are validated in detail by the 13 

SAR-retrieved SWH 14 
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Abstract  16 

The twin Sentinel-1 (S1) satellites have been extensively acquiring synthetic aperture radar 17 

(SAR) data in the Arctic, providing the unique opportunity to obtain ocean dynamic 18 

parameters with both high spatial resolution and wide swath coverage in the marginal ice 19 

zone (MIZ). In this paper, we proposed a method for retrieving the ocean significant wave 20 

height (SWH) from S1 SAR data in horizontal-horizontal (HH) polarization based on a 21 

backpropagation neural network (BPNN). A total of 4,273 scenes from S1 extra wide swath 22 

mode data acquired in the Arctic were collocated with data from four radar altimeters (RA), 23 

yielding 126,128 collocated data pairs. These data were separated into training and testing 24 

datasets to develop a BPNN model for retrieving SWH. Comparing the S1 retrieved SWH 25 

using the testing dataset with the RA SWH yielded a bias of 0.17 m, a root-mean-square error 26 

of 0.71 m and a scatter index of 23.05% for SWH less than 10 m. The S1 retrieved SWH 27 

were further compared with CFOSAT/SWIM data acquired in the Arctic between August 28 

2019 and May 2020 to validate the SWIM performance on wave measurements at different 29 

beams. 30 

Plain language summary 31 

The rapid decline of sea ice in the Arctic creates wider marginal ice zone (a transit from open 32 

water to sea ice, MIZ) than ever. Some studies have suggested that interaction between ocean 33 

dynamics (e.g., sea surface wind and wave) and sea ice is one possible feedback to retreat of 34 

sea ice in the Arctic. Therefore, ocean wave data in the MIZ is highly desirable. Synthetic 35 

aperture radar, as an active remote sensing technique, can operate independent on sunlight 36 

and weather conditions and image the earth with high spatial resolution. However, due to the 37 

complicated imaging process of ocean waves by spaceborne SAR, retrieval of sea state 38 

parameters by SAR data has been investigated for decades. Here, we developed an algorithm 39 

based on a back propagation neural network to retrieve significant wave height from 40 

spaceborne SAR data. This provides a chance of obtaining wave height information in both 41 

large coverages and high spatial resolution from satellite observation, and therefore, can 42 

contribute to scientific study, offshore operation and shipping in the Arctic. 43 

1 Introduction 44 

Prior to the launch of the Chinese French Oceanic Satellite (CFOSAT) with its onboard 45 

Surface Waves Investigation and Monitoring (SWIM) sensor, the only sensor capable of 46 

imaging ocean waves in two dimensions from space was the spaceborne synthetic aperture 47 

radar (SAR), which provides images with high spatial resolution. The SAR imaging 48 

mechanism of ocean waves is complex which is generally explained by three modulations: 49 

tilt modulation, hydrodynamic modulation and velocity bunching (Valenzuela, 1978; Alpers 50 

et al., 1981). While tilt and hydrodynamic modulations are also shared by real-aperture radar 51 

as the dominant imaging mechanisms of ocean waves, velocity bunching is unique for SAR 52 

to image ocean waves. The moving scatterer of water particles with a velocity either towards 53 

or away from a moving SAR sensor, causes an azimuthal shift in SAR images. In addition, 54 

velocity bunching in the SAR resolution cell leads to an azimuth cut-off, that is, the minimum 55 



Journal of Geophysical Research: Oceans 

 

 

SAR-detectable wavelength of ocean waves traveling in the azimuth direction. Therefore, the 56 

nonlinearity of SAR ocean wave imaging complicates their retrieval. In the following, we 57 

briefly summarize the existing methods used to retrieve ocean wave information in terms of 58 

both two-dimensional spectrum and integral wave parameters. 59 

The Max Planck Institute (MPI) scheme developed by (Hasselmann & Hasselmann, 60 

1991; Hasselmann et al., 1996) is the widely used method to retrieve two-dimensional ocean 61 

wave spectra from spaceborne SAR data. The MPI method iteratively searches for the 62 

minimum of cost function to retrieve wave spectra from SAR by using a numerical ocean 63 

wave model (e.g., the WAM model) for the first-guess wave spectra. These first-guess wave 64 

spectra provide the wave propagation direction and compensate for the loss of wave 65 

information in high-frequency during the SAR imaging process. By this way, nonlinear 66 

retrievals can get the complete two-dimensional spectra of ocean waves. Therefore, these 67 

methods strongly depend on the first-guess wave spectra as prior information. Alternatively, 68 

wind vectors measured by a scatterometer can be utilized to estimate generally missed 69 

windsea information by SAR imaging ocean waves, e.g., the semi parametric retrieval 70 

algorithm scheme (SPRA) developed by Mastenbroek & De Valk (2000), which also applies 71 

full nonlinear mapping relations between ocean waves and SAR imaging. The SPRA 72 

combines the observed SAR spectrum with collocated scatterometer wind vectors to estimate 73 

the windsea spectrum, while the residual signal in the SAR spectrum is considered as the 74 

swell. The SAR image spectra employed by the abovementioned methods are derived from 75 

intensity image. Alternatively, the partition rescaling and shift algorithm (PARSA) developed 76 

by Schulz-Stellenfleth et al. (2005) inputs the cross spectra derived from single-look-complex 77 

SAR data to a nonlinear inversion. This type of nonlinear retrieval methods can generally 78 

yield two-dimensional ocean wave spectra, enabling the derivation of integral ocean wave 79 

parameters, e.g., the significant wave height (SWH) and mean wave period. Nevertheless, 80 

due to their dependency on prior information, these methods inconvenient for wide 81 

applications as ocean wave model spectra are generally not publicly available. Moreover, 82 

nonlinear retrievals can be degraded to quasi-linear retrievals. By inputting the cross 83 

spectrum which resolves the ambiguity of ocean wave propagation in the quasi-linear 84 

retrieval (Engen & Johnsen, 1995), one can generally obtain ocean swell spectrum. The 85 

advantage of this approach is that prior information is no longer needed. Even though 86 

quasi-linear retrievals cannot yield full two-dimensional ocean wave spectra, the obtained 87 

swell spectra are particularly important for studying swell propagation and decay (Li, 2016; 88 

Ardhuin et al., 2019). 89 

With the advantage of no prior information needed as input for retrievals, empirical 90 

algorithms for deriving integral ocean wave parameters by spaceborne SAR data are more 91 

practical than conventional nonlinear retrieval methods. Starting with CWAVE_ERS 92 

(Schulz-Stellenfleth et al., 2007), a few similar algorithms applied to C-band SAR data have 93 

been proposed, such as CWAVE_ENV (Li et al., 2011) and CWAVE_S1 (Stopa & Mouche, 94 

2017). The general idea of these CWAVE-type algorithms is to establish empirical relations 95 

(e.g., polynomial fitting) between SAR image parameters and integral ocean wave parameters. 96 
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Compared with theoretical-based methods, these empirical type methods can yield full sea 97 

state (both wind wave and swell wave) parameters without conducting complicated nonlinear 98 

retrievals. Therefore, first-guess spectral information is no longer needed. Furthermore, 99 

although they are called empirical algorithms, the input parameters are not chosen randomly. 100 

For instance, the SAR normalized radar cross section (NRCS) and the corresponding image 101 

spectra, which are often used in empirical algorithms, form the basis of traditional nonlinear 102 

SAR ocean wave retrievals. Moreover, CWAVE-type algorithms attempt to incorporate the 103 

nonlinear relations among SAR images and ocean wave parameters using 2nd-order 104 

polynomials by cross-multiplying the input parameters. However, the nonlinear relationships 105 

between SAR image and ocean wave parameters are often too complex to be sufficiently 106 

represented by a 2nd-order polynomial. Therefore, the backpropagation neural network 107 

(BPNN), which has the ability to fit nonlinear relationships, has been employed to retrieve 108 

the SWH from SAR images and to improve the retrieval accuracy. 109 

BPNN, a traditional machine learning method proposed in the 1980s (Rumelhart et al., 110 

1986), has been shown to be effective at fitting nonlinear problems between input and output 111 

parameters. BPNN considers an iteration as the combination between the forward 112 

transmission of information and the backward transmission of error. The network is trained 113 

iteratively until the global error satisfies the preset accuracy or until the number of training 114 

iterations exceeds the specified maximum number of learning iterations. BPNN consists of an 115 

input layer, one or multiple hidden layers and an output layer. The input and output layers 116 

comprise the input and output data of the model, respectively. The hidden layer, which is not 117 

visible to users, is the key to fitting the relationship between the input and the output data. 118 

Stopa and Mouche (2017) used the BPNN model to retrieve SWH from Sentinel-1 (S1) wave 119 

mode (WV) data. In addition to BPNN, other machine learning methods have been used to 120 

retrieve wave parameters from SAR data; examples include the support vector machine 121 

(SVM) with the same parameters as CWAVE-type models (Gao et al., 2018), the extreme 122 

learning machine (ELM) with the wind speed as an input parameter (Kumar et al., 2018), the 123 

decision tree and the random forest algorithms (Shao et al., 2019) with the NRCS, incidence 124 

angle, azimuth angle and whole image spectrum as input parameters, and the convolutional 125 

neural network (CNN) (Xue et al., 2018) with the SAR sub-images as input of SAR 126 

sub-images. 127 

The retrieval of wave parameters has great significance for studying the interaction 128 

between sea ice and sea waves in the marginal ice zone (MIZ), where the sea ice 129 

concentration is between 15% and 80%. The rate of decline in the seasonal Arctic sea ice 130 

extent accelerates continuously in recent years (Cavalieri & Parkinson, 2012; Comiso et al., 131 

2017), leading to an expansion of the MIZ in summer (Strong & Rigor, 2013). This expansion 132 

of the MIZ provides space for ocean waves to grow and propagate. Research has shown an 133 

increase in ocean wave heights in the Arctic MIZ (Thomson & Rogers, 2014). Moreover, sea 134 

ice can fracture, overlap and accumulate under the dynamic effects of ocean waves (Asplin et 135 

al., 2012). Therefore, the interaction between ocean waves and sea ice has attracted 136 

considerable attention (Stopa et al., 2018; Nose et al., 2020). To date, most available ocean 137 
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wave remote sensing products in the Arctic have been obtained by radar altimeter (RA). 138 

Besides, the CFOSAT, which was launched in 2018, can provide ocean wave spectra by the 139 

onboard SWIM sensor, which provides SWH data with pixel size of 18 km × 18 km at nadir 140 

beam and 70 km × 90 km at the 10° beam. 141 

However, with the shortcoming of small coverage on account of nadir measurements of 142 

RAs and the coarse resolution of CFOSAT/SWIM, limited ocean wave products are available 143 

in the Arctic MIZ with both high spatial resolution and large coverage for studying the 144 

interaction between ocean waves and sea ice. The Copernicus Sentinel-1A (S1A) and 145 

Sentinel-1B (S1B) satellites have been in orbit since April 2014 and April 2016, respectively. 146 

This constellation significantly reduces the revisit period, thereby yielding a high temporal 147 

resolution, particularly in the polar regions. Approximately 3,000 S1 images are acquired 148 

every month in the Arctic, and most of the Arctic can be covered within two days. The twins 149 

have extensively acquired data in extra-wide (EW) swath mode and interferometric wide (IW) 150 

swath mode in the Arctic. Fig. 1 presents an example of the spatial coverages of the EW data 151 

acquired by S1A and S1B within six days in 2019. Additionally, the EW and IW data 152 

acquired in the Arctic are generally in polarization combination of co-polarization and 153 

cross-polarization, dedicated for sea ice monitoring (e.g., Hong & Yang, 2018; Soldal et al., 154 

2019; Li et al., 2020). With a spatial resolution of 40 m, S1 EW images can generally yield 155 

good observations of ocean waves, as illustrated in Fig. 2. In the context of these advantages, 156 

the motivation of this study is to develop an algorithm dedicated for retrieving SWH in the 157 

Arctic using S1 data in HH polarization. These data certainly are useful for studying the 158 

interaction between sea ice and ocean dynamics, as both sea ice and marine-meteo parameters 159 

can be derived from SAR simultaneously. 160 

 161 

Figure 1. The coverage of S1 EW GRD data in HH polarization from 1 April to 6 April 2019. 162 

 163 
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(a) (b) 

Figure 2. (a) EW image in HH polarization acquired by S1B at 10:17 UTC on 28 January 164 

2017 in the Davis Strait. The top of the image shows sea ice cover. (b) Sub-image (with a size 165 

of 900 × 750 pixels, approximately 36 × 30 km, corresponding to the area marked by the 166 

white square in (a)) showing ocean wave (swell) patterns. The image ID is 167 

S1B_EW_GRDM_1SDH_20170128T101704_20170128T101804_004047_006FF5_9AA4. 168 

 169 

Following the introduction, the datasets used in this study are introduced in Section 2. 170 

Section 3 presents the methodology, including the data collocation and the development of 171 

the BPNN model to retrieve SWH by S1 EW data in HH polarization. Verification of the 172 

BPNN model for retrievals are shown in Section 4. In Section 5, a detailed comparison 173 

between the S1 retrieved SWH and the collocated CFOSAT/SWIM data is presented. A 174 

summary and the conclusions are given in the last section. 175 

2 Datasets 176 

2.1 S1A and S1B EW data 177 

Most S1A and S1B EW data acquired in the Arctic are in dual-polarization (HH and 178 

HV). In this study, S1 Level-1 ground range detected (GRD) data in HH polarization are used 179 

to retrieve SWH. S1 EW images have a swath width of 400 km with a spatial resolution of 40 180 

m. The radar incidence angle of the EW data ranges from 18.9° in the near range to 47.0° in 181 

the far range. Radiometric calibration and thermal noise removal of the EW data are 182 

conducted according to the S1 user manual (ESA, 2016). The NRCS 𝜎0 is obtained by: 183 

𝜎0 =
𝐷𝑁2 − 𝑛

𝑘𝑠
2

#(1)  

where 𝐷𝑁 is the digital number read from the tiff data file, 𝑛 is the noise vector, and 𝑘𝑠 is 184 

the calibration factor. The noise vector and calibration factor are given in the product noise 185 

and calibration metadata. 186 

The EW GRD data used herein span the period between January 2017 and October 2019, 187 
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comprising approximately 113,500 images. 188 

As most of the S1 EW and IW data acquired over in situ buoys are in VV polarization, 189 

we found only 305 pairs of S1 data and National Data Buoy Center (NDBC) buoy data in the 190 

period from October 2014 to October 2019 (Li et al., 2020). Therefore, in this study, we used 191 

RA measurements of SWH in the Arctic as ground truth to develop the BPNN model. 192 

2.2 RA SWH data 193 

The RA SWH data are from four missions: CryoSat-2, Jason-2, Jason-3 and SARAL. 194 

These RA-measured SWH are screened, and only good quality data are retained. The 195 

CryoSat-2 data are provided by the European Space Agency (ESA, 196 

http://science-pds.cryosat.esa.int/) and can reach latitudes of 88°N. We used pole-to-pole 197 

Level-2 CryoSat-2 data with a 1 Hz sampling frequency and extracted the data with values 198 

for ‘surf_type’ of 0 (ocean) and ‘flag_instr_op_mode’ of 1 (good quality). Jason-2, Jason-3 199 

and SARAL are all provided by the European Organization for the Exploitation of 200 

Meteorological Satellites (EUMETSAT, https://archive.eumetsat.int/usc/). While the Jason-2 201 

and Jason-3 missions can reach latitudes of only 66.15°, SARAL can cover more of the Arctic, 202 

up to 81.49°N. We extracted the data of these three RA missions with values for 203 

‘surface_type’ of 0 (ocean) and ‘qual_swh’ of 0 (good quality). 204 

Prior to using the RA data from the four missions above to construct the BPNN model, 205 

we conducted cross-comparisons among the four RA missions. The RA missions in each pair 206 

were matched with temporal interval less than 1 hour and spatial distance less than 10 km for 207 

cross-comparisons in the region above 60°N. The corresponding statistical parameters of 208 

these comparisons are listed in Table 1. The twin satellites, Jason-2 and Jason-3, achieve the 209 

best agreement with a bias of 0.04 m and a root-mean-square error (RMSE) of 0.00 m. The 210 

comparisons between CryoSat-2 and Jason-2/3 also show good compatibility with biases of 211 

-0.01/-0.02 m and RMSEs of 0.02/0.01 m. The differences between CryoSat-2 and SARAL 212 

and between Jason-3 and SARAL are slightly higher with biases of -0.06 m and 0.06 m, 213 

respectively, but the RMSEs of these two comparisons are only 0.01 m and 0.02 m, 214 

respectively. Therefore, the discrepancies among the SWH data from these four RA missions 215 

are minor, and we did not calibrate the data based on data from a single RA mission. 216 

 217 

Table 1. Cross-comparisons among the SWH data from the four RA missions between 218 

January 2017 and October 2019 across the pan-Arctic. 219 

 Jason-2 Jason-3 SARAL 

 Bias/m RMSE/m Bias/m RMSE/m Bias/m RMSE/m 

CryoSat-2 -0.01 0.02 -0.02 0.01 -0.06 0.01 

Jason-2 / / 0.04 0.00 0.00 0.02 

Jason-3 / / / / 0.06 0.02 

 220 

2.3 CFOSAT 221 
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CFOSAT was launched on 29 October 2018 carrying a real-aperture scanning radar, 222 

SWIM. In addition to the wave sensor, CFOSAT also carries a scatterometer to measure sea 223 

surface winds (Liu et al., 2020). The SWIM sensor scans the sea surface by 6 rotating beams 224 

at small incidence angles of 0°, 2°, 4°, 6°, 8° and 10°. For its nadir measurements, SWIM can 225 

be regarded as an RA providing SWH, while the off-nadir beams at 6°, 8° and 10° provide 226 

directional wave spectra and the corresponding integral ocean wave parameters. 227 

A preliminary analysis of the SWIM data quality in comparison with Jason-3 and 228 

SARAL showed that the SWIM nadir SWH were slightly lower than the RA SWH by 0.01 m 229 

and 0.06 m, respectively (Hauser et al., 2020). With respect to the quality of wave data 230 

acquired at different beams (except at nadir) by SWIM, Hauser et al. (2020) suggested that 231 

the data acquired at 10° have the best quality compared with the data acquired at other beams. 232 

Therefore, we used the SWIM sea state data obtained at nadir and 10° beam to compare with 233 

the S1 retrieved SWH. The SWIM products were operationally provided for use on 28 July 234 

2019; accordingly, the SWIM Level-2 data employed in this study range from August 2019 to 235 

May 2020. The nadir beam of SWIM Level-2 data provides NRCS profiles, SWH and wind 236 

speed values using a new retracking algorithm (Hauser et al., 2020). The 10° beam provides 237 

two-dimensional wave spectra, which include 12 directions from 0° to 180° (with a 180° 238 

directional ambiguity) and 65 wave number bins from 0.0046 rad/m to 0.2770 rad/m 239 

(corresponding to wavelengths from approximately 70 m to 500 m). Each spectrum 240 

represents the average sea state in a large area covering 70 × 90 km. Integral wave 241 

parameters in terms of the SWH, dominant wave direction and dominant wavelength are also 242 

provided in SWIM Level-2 data. 243 

3 Methodology 244 

3.1 Collocation of the S1 EW and RA data 245 

The S1 EW scenes were collocated with the RA data with a temporal window of less 246 

than 90 minutes. A total of 4,273 S1 EW scenes were collocated with the data from the four 247 

RA missions, among which 1,834 and 2,439 scenes were acquired by S1A and S1B, 248 

respectively. The spatial distributions of the collocated S1A and S1B EW images are 249 

presented in Fig. 3. Then, the S1 EW sub-images with dimensions of 256 × 256 pixels (i.e., 250 

10,240 m×10,240 m) collocated with the RA footprints were collected as matchups. Finally, a 251 

total of 153,485 collocation data pairs of S1 and RA data between January 2017 and October 252 

2019 were obtained. 253 
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(a) (b) 

Figure 3. Spatial distributions of (a) S1A and (b) S1B images collocated with the RA data in 254 

the period between January 2017 and October 2019. 255 

 256 

As a large amount of S1 EW data were acquired in the Arctic MIZ, they often present a 257 

mixture of sea ice and open water. Therefore, we used the reanalysis daily sea ice cover 258 

product (with a grid size of 1 km) of the ice mapping system (IMS) to filter out ice-covered 259 

sub-images. 260 

In addition, the quality of the S1 sub-images has a significant impact on the SWH 261 

retrievals. We used the homogeneity parameter (Schulz-Stellenfleth & Lehner, 2004) to filter 262 

out S1 sub-images on presenting some oceanic and atmospheric features not related to ocean 263 

surface waves. On the other hand, the IMS data are daily products and have discrepancies 264 

with the S1 observations, which are snapshots. Therefore, a homogeneity test can also discard 265 

sub-images presenting sea ice features (particularly pancake and icebergs (Lehner & 266 

Ocampo-Torres, 2003)) not identified by the IMS data. The homogeneity parameter 𝜉𝐻 is 267 

defined in (2): 268 

𝜉𝐻 = (∑ 𝑚𝑒𝑎𝑛̅̅ ̅̅ ̅̅ ̅̅ (Φ̂𝑘)

𝑘

)

−1

∑
𝑣𝑎𝑟̅̅ ̅̅ ̅(Φ̂𝑘)

𝑚𝑒𝑎𝑛̅̅ ̅̅ ̅̅ ̅̅ (Φ̂𝑘)
𝑘

#(2)  

where Φ̂𝑘 is the power spectral density of each sub-image. Generally, the sea surface is 269 

considered homogeneous for 𝜉𝐻<1.05. The statistics of the homogeneity values are shown in 270 

Fig. 4. 271 
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 272 

Figure 4. Histogram of homogeneity values for the 153,485 S1 sub-images collocated with 273 

data from four RA missions. The homogeneity values in the range from 0.5 to 3 are shown. 274 

 275 

Furthermore, RA-measured SWH less than 0.5 m were excluded from the collocations 276 

considering the limitation on the RA measurement accuracy and the increased noise of SAR 277 

signals in low sea states (Ulaby et al., 2015). Finally, a total of 126,128 collocated data were 278 

obtained for use in this study. The numbers of collocation data pairs of S1 with different RA 279 

missions are listed in Table 2. 280 

 281 

Table 2. Number of collocations between the S1 SWH and the data from the four RA 282 

missions between January 2017 and October 2019. 283 

Radar Altimeters Number of Collocations 

CryoSat-2 37,674 

Jason-2 34,657 

Jason-3 45,791 

SARAL 8,006 

Total 126,128 

3.2 Extraction of S1 image parameters 284 

CWAVE-type empirical models have been developed for ERS/SAR, ENVISAT/ASAR 285 

and S1/SAR WV data. Recently, we have finished processing the ten-year WV dataset of 286 

ENVISAT/ASAR to obtain the sea state parameters based on the CWAVE_ENV model, and 287 

the results suggest good agreements with in situ buoy data and RA data (Li & Huang, 2020). 288 

Therefore, we also chose parameters similar to those used in CWAVE-type algorithms to 289 

retrieve SWH by the S1 data: the mean NRCS (denoted 𝜎̅0), normalized image variance 290 

(cvar), and 20 spectral parameters computed from the variance spectrum of a sub-image. The 291 

𝜎̅0 and cvar are computed as follows: 292 

𝜎̅0 = 〈𝜎0〉#(3)  
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𝑐𝑣𝑎𝑟 = 𝑣𝑎𝑟 (
𝐼 − 〈𝐼〉

〈𝐼〉
) #(4)  

where 〈𝐼〉 is the mean intensity of an S1 sub-image. 293 

The 20 spectral parameters are extracted from the SAR image spectrum using a set of 294 

orthonormal functions. The SAR image spectrum is estimated by computing the image 295 

periodogram with a two-dimensional fast Fourier transform (FFT) algorithm. These 296 

orthonormal functions can extract the features of the image spectrum from 20 different 297 

directions. The method for extracting the 20 SAR image spectral parameters is described in 298 

detail in the Appendix. 299 

The previously developed CWAVE-type algorithms for SAR WV data do not include the 300 

parameter of incidence angle, as WV data have fixed incidence angles of approximately 23° 301 

for ERS/SAR and ENVISAT/ASAR WM data or angles of 23° and 33° for S1 WV data. 302 

However, S1 EW mode data have incidence angles ranging from 19° to 47°, while the NRCS 303 

significantly varies with the incidence angle. Therefore, the incidence angle 𝜃 should be 304 

included as a key input parameter to the neural network. Previous studies on developing 305 

empirical methods for SWH retrieval by SAR data used different forms of incidence angles, 306 

such as tan 𝜃(Bruck & Lehner, 2013), cos 𝜃2(Ding et al., 2019) and 𝜃(Pramudya et al., 307 

2019; Shao et al., 2019). We had tried the sin 𝜃, cos 𝜃, tan 𝜃 and 𝜃(in units of radians) to 308 

input into the neural network. It is found that inputting cos 𝜃 into the neural network 309 

achieved the best retrieval results while had slightly difference from inputting the other 310 

expressions of 𝜃. Thus, 23 parameters, i.e., the mean NRCS, cvar, cos 𝜃 and 20 spectral 311 

parameters, are collected in an input vector in the proposed BPNN model, which is denoted 312 

as 𝑋: 313 

𝑋 = (𝜎̅0, 𝑐𝑣𝑎𝑟, cos 𝜃 , 𝑆1, … , 𝑆20)𝑇#(5)  

 314 

3.3 Technical specifications of the proposed BPNN model 315 

The designed BPNN model consists of an input layer, four hidden layers and an output 316 

layer; the structure is depicted in Fig. 5. The input vector 𝑋 including 23 parameters as 317 

described in subsection 3.2 is used as the input layer, and the collocated RA SWH is the 318 

output layer. The numbers of nodes in the four hidden layers are 30, 20, 10 and 5, 319 

respectively. 320 
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 321 

Figure 5. Structure of the proposed BPNN model for retrieving SWH from S1 data. 322 

The function of each node in the network is to calculate the scalar product of the input 323 

vector 𝑋 and weight vector 𝑊 using a nonlinear transfer function. This nonlinear transfer 324 

function, called the activation function, is the key to improving the approximation ability of a 325 

neural network and is expressed as follows: 326 

𝑛𝑒𝑡𝑗 = 𝑊𝑗
𝑇𝑋 + 𝑏𝑗#(6)  

𝑦𝑗 = 𝑓(𝑊𝑗
𝑇𝑋 + 𝑏𝑗) = 𝑓(𝑛𝑒𝑡𝑗)#(7)  

where the activation value of node j is 𝑛𝑒𝑡𝑗, 𝑊𝑗 is the connection weight vector from the 327 

nodes of the upper layer to node j of this layer, 𝑏𝑗 represents the bias of node j, 𝑦𝑖 is the 328 

output of node j, and 𝑓(∙) is the activation function of a node. The activation function of the 329 

second hidden layer is a sigmoid function (we used logsig), and the activation function of the 330 

other hidden layers is the hyperbolic tangent function (tansig); these two functions are given 331 

in (8) and (9), respectively. The activation function of the output layer is “purelin”, a linear 332 

transfer function. Fig. 6 illustrates these activation functions, in which the x-axis and y-axis 333 

are the input and output of the nodes, respectively, and the solid line represents their 334 

relationship. 335 

𝑙𝑜𝑔𝑠𝑖𝑔 =
1

1 + 𝑒−𝑥
#(8)  

𝑡𝑎𝑛𝑠𝑖𝑔 =
𝑒𝑥 − 𝑒−𝑥

𝑒𝑥 + 𝑒−𝑥
#(9)  
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Figure 6. Plots of the (a) logsig, (b) tansig, and (c) purelin activation functions used in the 336 

BPNN model. The x-axis and y-axis represent the input and the output values of the nodes, 337 

respectively. 338 

After forward-propagating the data in the input layer to the hidden layers, the network 339 

computes the result 𝑂 in the output layer. A global error 𝐸 is computed based on the 340 

performance function of the mean square error (MSE), which is given as follows: 341 

𝐸 =
1

𝑛
∑(𝑂1 − 𝑅𝑡)2

𝑛

#(10)  

𝑂 = 𝑓𝑜 (∑ 𝑤𝑜𝑗𝑦𝑗 + 𝑏𝑜

𝑗

) #(11)  

where 𝑤𝑜𝑗 is the connection weight from the hidden node j to the output node 𝑜, 𝑏𝑜 342 

is the bias of the output node 𝑜, 𝑓𝑜(∙) is the activation function of the output layer node, and 343 

𝑅𝑡 is the true value of the training data. The global error 𝐸 is one of the parameters used to 344 

determine whether the iteration terminates; 𝐸 is also used to update the weight of each layer 345 

according to the training function and the learning rate. In this model, we use “trainbfgs” 346 

(BFGS quasi-Newton method) as the training function because this function can avoid 347 

computing the second derivative and the inverse of the Hesse matrix to increase the 348 

computational efficiency. The learning rate is set to 0.5. The network is trained iteratively 349 

until the global error meets the preset accuracy or the number of training iterations exceeds 350 

the specified maximum number of learning iterations. 351 

To find an appropriate combination of the number of hidden layers and the number of 352 

nodes in each hidden layer, we conducted many experiments until the retrieval results showed 353 

the best agreement with the collocated RA SWH data based on three statistical parameters: 354 

the bias, RMSE and scatter index (SI). The tested number of hidden layers ranged from 2 to 5, 355 

and the number of nodes changed according to the number of hidden layers. In our study, the 356 

number of input parameters greatly exceeds that in other applications using BPNN, resulting 357 

in more hidden layers and nodes. 358 

 359 

4 Training and verification of the BPNN model to retrieve SWH from S1 EW data 360 

Seventy percent of the collocated S1 and RA data pairs are used as the training data 361 

(94,596 collocations) to train the BPNN model, and the remaining pairs (31,532 collocations) 362 

compose the testing data. The 23 input parameters and the output parameter (SWH) are 363 

normalized using equation (12), which can significantly improve the convergence rate of the 364 

BPNN: 365 

𝑋𝑖 =
𝑥𝑖 − 𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛
#(12)  
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where 𝑥𝑖 represents either the input or the output parameters, 𝑥𝑚𝑖𝑛 and 𝑥𝑚𝑎𝑥 are the 366 

minimum and maximum values of each parameter, respectively, and 𝑋𝑖 represents the 367 

normalized input and output data. After normalization, the input and output parameters are 368 

between 0 and 1. To use the proposed BPNN model to retrieve SWH from S1 EW data, the 369 

output data should be anti-normalized to practical values. 370 

Three parameters are assigned as termination conditions. The maximum number of 371 

iterations is set to 5,000, and the minimum of MSE is set to 0.001. The maximum failure time 372 

is set to 6, where failure is defined when the global error in the current iteration is larger than 373 

that in the previous iteration. 374 

After training the BPNN model, three statistical parameters, namely, the bias, RMSE 375 

and SI, are used to evaluate the comparisons between the S1 retrieved SWH using BPNN and 376 

the RA SWH. The three parameters are computed as follows: 377 

𝐵𝑖𝑎𝑠 = 𝑌̅ − 𝑋̅#(13)  

𝑅𝑀𝑆𝐸 = √
1

𝑁
 ∑(𝑌𝑖 − 𝑋𝑖)2 #(14)  

𝑆𝐼 =
1

𝑋𝑖

√
1

𝑁
 ∑[(𝑌𝑖 − 𝑌) − (𝑋𝑖 − 𝑋)]

2
#(15)  

where 𝑌 is the S1 retrieved SWH and 𝑋 is the RA SWH. 378 

Fig. 7 (a) and (b) show comparisons between the S1 retrieved SWH and RA SWH using 379 

the training and testing datasets, respectively. With respect to the comparison using the 380 

training dataset, the bias of 0.02 m, the RMSE of 0.62 m and the SI of 20.67% show that the 381 

S1 retrieved SWH is close to the RA SWH. The comparison using the testing dataset achieves 382 

almost identical statistical parameters with a bias of 0.02 m, an RMSE of 0.63 m and an SI of 383 

21.07%. This finding indicates that the trained BPNN model has stable performance on the 384 

SWH retrieval from S1 EW data. However, these comparisons suggest that the retrieved 385 

SWH is lower than the RA SWH when the SWH exceeds 4 m, as indicated by the error bars 386 

in Fig. 7. Moreover, the underestimation increases with SWH increasing. 387 
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(a) (b) 

Figure 7. Comparisons between the S1 retrieved SWH and RA SWH using (a) the training 388 

dataset and the (b) testing dataset. 389 

 390 

A method of duplicating training data in high sea state is used to solve the 391 

underestimation afflicting the S1 retrieved SWH. Fig. 8 (a) shows a histogram of the RA 392 

SWH in the training dataset suggesting that the amount of data in high sea state is far less 393 

than the amount of data in low to moderate sea state, e.g., between 2 and 4 m. This is likely a 394 

major cause of the underestimation of S1 retrieved SWH in high sea state. To solve this 395 

problem, we arbitrarily changed the distribution of the training dataset to normal distribution 396 

(as shown in Fig. 8 (b)) by discarding some training samples with SWH lower than 3.3 m and 397 

duplicating samples with SWH higher than 3.3 m, resulting in another training dataset with 398 

153,691 data pairs. We retained the original testing data to verify the training of the network, 399 

which histogram is shown in Fig. 8 (c). 400 

 401 

   

(a) (b) (c) 

Figure 8. Histograms for the collocated RA SWH of (a) the original training dataset, (b) the 402 

adjusted training dataset by duplicating samples in high sea states, and (c) the testing dataset. 403 

The BPNN was re-trained by using the adjusted training dataset and the retrievals using 404 

the new network were compared with the RA data, as shown in Fig. 9. Fig. 9 (a) shows the 405 

comparison using the full training dataset (including the duplicated cases in high sea state), 406 

and Fig. 9 (b) presents the comparison without including the duplicated cases. Both (a) and (b) 407 
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suggest that the underestimation of SAR retrievals is effectively resolved using the adjusted 408 

training dataset. By comparing Fig. 9 (a) with Fig. 9 (b), one can refer to the effect of those 409 

duplicated cases in high sea state in the BPNN training. By excluding the duplicated data 410 

from the comparison, all three parameters increase accordingly. The comparison based on the 411 

training dataset without duplicating (Fig. 9 (b)) reveals statistical parameters that are almost 412 

identical to those of the comparison using the testing dataset with a bias of 0.17 m, an RMSE 413 

of 0.71 m and an SI of 23.05%, as shown in Fig. 9 (c). However, these statistics parameters 414 

are higher than those achieved using the original training dataset (Fig. 7 (b)). Therefore, we 415 

resolved the underestimation of SAR retrievals from moderate to high sea states but at the 416 

cost of increasing the overall statistical parameters. 417 

 418 

   

(a) (b) (c) 

Figure 9. Comparisons between the S1 retrieved SWH and RA SWH using (a) the training 419 

dataset after duplicating, (b) the original training dataset and (c) the testing dataset. 420 

 421 

In the following, we present two cases to demonstrate the advantages of sea state 422 

observations by S1 in the Arctic MIZ based on the proposed method. The first case is in the 423 

east of Greenland; the S1A EW data were acquired at 19:15 UTC on 6 December 2018. The 424 

retrieved SWH using the developed BPNN model is shown in Fig. 10 (a). Fig. 10 (c) presents 425 

the corresponding ERA-5 reanalysis wind field at 19:00 UTC on 6 December 2018, showing 426 

a cyclone weather situation with wind speeds above 20 m/s in the northwest of the S1 SWH 427 

map leading the SWH to exceed 6 m therein. The overlaid track in Fig. 10 (a) is the 428 

collocated CryoSat-2 SWH measurements from 18:45 to 18:46 UTC. The collocated S1 429 

retrievals (triangles) with the Cryosat-2 SWH (circles) along the track are shown in Fig. 10 430 

(e). From this scatter diagram, the S1 SWH is close to the CryoSat-2 SWH, especially 431 

between the latitude of 61°N to 62.5°N, where the difference between the S1 SWH and 432 

CryoSat-2 SWH is only 0.10 m. The S1 retrievals are slightly lower than the CryoSat-2 SWH 433 

south of 61°N (lower by 0.93 m on average) but are higher than the CryoSat-2 SWH north of 434 

62.5°N (where the sea state is generally above 7 m) with significant spatial variation. 435 

The second case is also in the east of Greenland but the data were acquired by S1B at 436 

08:13 UTC on 28 November 2018. The S1 retrieved SWH is shown in Fig. 10 (b), in which 437 

the gray area represents the coverage of sea ice (extracted from the IMS data). Fig. 10 (d) 438 

presents the ERA-5 reanalysis sea surface wind field at 08:00 UTC on 28 November 2018. 439 



Journal of Geophysical Research: Oceans 

 

 

The case shows a strong wind above 15 m/s blowing from the northeast to the southwest, and 440 

as a result, the SWH increases from northeast to southwest. The overlaid track represents the 441 

measurements of Jason-3 from 09:12 to 09:13 UTC on 28 November 2018, which is 442 

approximately 1 hour later than the S1B sensing time. The collocated S1 retrievals (triangles) 443 

with the Jason-3 SWH (circles) along the track are shown in Fig. 10 (f). In according with the 444 

Jason-3 SWH, the S1 SWH decreases with the increasing of latitude, as shown both in the 445 

scatter diagram (Fig. 10 (f)) and in the SWH map (Fig. 10 (d)). The S1 retrievals are slightly 446 

higher than the Jason-3 SWH south of 65.35°N and between 65.55°N and 65.6°N, where the 447 

mean absolute deviation is 1.41 m and 0.96 m, respectively. 448 

The both cases were selected under the condition of significant spatial variation of sea 449 

state in the Arctic MIZ. While the RAs yield accurate measurements of SWH along satellite 450 

tracks, the advantage of spaceborne SAR is that it can map sea state variations over a large 451 

coverage and in a high spatial resolution. 452 

 453 

  

(a) (b) 

  

(c) (d) 
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(e) (f) 

Figure 10. (a) The S1 retrieved SWH of the case on 6 December 2018. The overlaid circles 454 

on the map represent the collocated CryoSat-2 SWH. The image ID of this case is 455 

S1A_EW_GRDM_1SDH_20181206T191419_20181206T191519_024909_02BE66_30DA. 456 

(c) ERA-5 reanalysis wind field at the synoptic time for case (a). (e) Scatter diagram of the 457 

comparison between the S1 SWH and CryoSat-2 SWH of (a). (b) The other case on 458 

November 2018 by S1B. The overlaid circles on the map represent the collocated Jason-3 459 

SWH. The image ID of this case is 460 

S1B_EW_GRDM_1SDH_20181128T081302_20181128T081402_013802_019949_2ABC. 461 

(d) and (f) are the same as (c) and (e) but for the case presented in (b). 462 

 463 

5 Comparison between the S1 retrieved SWH and CFOSAT/SWIM data 464 

In this section, we compared the S1 retrieved SWH with the collocated CFOSAT/SWIM 465 

data acquired between August 2019 and May 2020. The SWIM measurements at nadir beam 466 

and 10° beam were used for a comparison with the S1 retrieved SWH. The S1 retrieved SWH 467 

and SWIM SWH were matched up in a temporal interval of 90 minutes. We first extracted the 468 

collocated S1 sub-images with dimensions of 70 km × 90 km, which is the same area as the 469 

wave cell of the 10° SWIM beam, and then we retrieved the SWH of these sub-images at a 470 

2.56 km spatial resolution, finally, we computed the mean values of the retrieved SWH. 471 

Finally, we obtained 32,403 collocations between the data from S1 and the SWIM nadir beam 472 

and 1,283 collocations between the data from S1 and the SWIM 10° beam. 473 

Fig. 11(a) shows the comparison between the S1 retrieved SWH and the collocated 474 

SWIM SWH at nadir. The bias is 0.15 m, the RMSE is 0.60 m and the SI is 18.98%, which 475 

are similar to the comparison with the RA SWH, as presented in Fig. 9 (c). Fig. 11 (a) also 476 

reveals that the S1 retrieved SWH is close to the SWIM nadir SWH when SWH is lower than 477 

approximately 5 m, but when SWH is above 6 m, the former is lower than the latter by 478 
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approximately 0.84 m. The comparisons presented by Hauser et al. (2020) also suggested that 479 

the SWIM nadir SWH is at least 0.5 m higher than the ECMWF model SWH when the SWH 480 

is above 6 m. Fig.11 (b) and (c) show the comparisons between the S1 retrieved SWH and 481 

SWIM SWH at the 10° beam of the left and right tracks, respectively. These two comparisons 482 

suggest similar results in terms of the three statistical parameters, indicating that the SWIM 483 

SWH should have an identical performance on the left and right tracks of the 10° beam. For 484 

the comparisons above 6 m, one can find that the two data have large discrepancies. However, 485 

as there are only 56 collocations between the S1 and SWIM 10° beam SWH data above 6 m, 486 

the comparison for high sea state has limited significance. By excluding the data with SWH 487 

above 6 m from the comparisons, the three statistical parameters are all reduced with biases 488 

of -0.37 m and -0.36 m, of 0.74 m and 0.78 m, and SI of 20.41% and 20.44% for the left and 489 

right tracks, respectively. Hauser et al. (2020) also found that the SWIM SWH at the 10° 490 

beam is overestimated at SWH lower than 2 to 3 m and underestimated at larger wave heights 491 

with an RMSE of 0.26 m compared with the SWH provided by the MFWAM operational 492 

model. 493 

 494 

   

(a) (b) (c) 

Figure 11. Comparisons between the S1 retrieved SWH and SWIM SWH at (a) nadir beam 495 

and at the 10° beam on the (b) left track and (c) right track. 496 

Due to the nonlinear imaging mechanisms of ocean waves by spaceborne SAR, the 497 

retrievals of two-dimensional wave spectra and sea state parameters may suffer problems for 498 

short waves or azimuthal-traveling waves. The two-dimensional ocean wave information 499 

available from the SWIM sensor provides a unique opportunity to verify whether the SAR 500 

retrievals of sea state parameters depend on the wavelength and wave direction. Fig. 12 (a) 501 

and (b) show the differences between the S1 retrievals and SWIM SWH at the 10° beam 502 

(with a total of 1,283 data pairs by combining the collocations with the left and right SWIM 503 

tracks) varying with the dominant wavelength and azimuth wave direction (i.e., the dominant 504 

wave direction relative to the S1 azimuth direction) of SWIM. The step sizes of the 505 

histograms are 40 m for the dominant wavelength and 10° for the azimuth wave direction, 506 

respectively. The overlaid error bars represent the mean absolute bias and its standard 507 

deviation. 508 

Fig. 12 (a) indicates that the S1 collocations with the 10° SWIM beam data are 509 
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concentrated on the sea states with dominant wavelength less than 300 m. In this range, the 510 

mean absolute SWH bias is less than 0.70 m with limited fluctuations, and moreover, it is not 511 

found that the bias increases for the retrievals of waves with a relatively short wavelength, 512 

e.g., less than 100 m. With an increasing dominant wavelength, both the bias and the standard 513 

deviation increase, which is slightly different from our expectation, as SAR is generally 514 

considered suitable for the retrievals of ocean waves with long wavelength. However, the 515 

large bias (>0.5 m) obtained for data with a long wavelength (>300 m) may also attribute to 516 

quite less amount of collocated data pairs, accounting for only 5.79% of the total number of 517 

collocated data pairs. 518 

Interestingly, the collocations between the S1 and 10° SWIM beam data are 519 

concentrated mainly on the sea states with azimuthal wave direction between 0° and 45° and 520 

between 135° and 180°, namely, close to the SAR flight direction. The biases for the 521 

collocated data in these two wave directions ranges are generally between 0.50 m and 0.75 m, 522 

and moreover, they are quite stable with no dependence on wave traveling directions. For the 523 

collocation data pairs with azimuthal wave traveling direction between approximately 60° 524 

and 120°, the biases are relatively large, generally larger than 0.75 m, and the fluctuations are 525 

quite distinct. These large biases may also be attributed to the smaller amount of collocated 526 

data with azimuthal wave directions in this range, accounting for only 4.89% of the total 527 

number of collocated data pairs. 528 

These two comparisons suggest that the S1 retrieved SWH based on the proposed BPNN 529 

model tends to be independent on the wavelength and azimuth wave direction, while more 530 

collocations need to be collected in the future to draw a more reliable conclusion. 531 

 532 

  
(a) (b) 

Figure 12 Variation in ∆SWH with the (a) dominant wavelength and (b) azimuth wave 533 

direction provided by the 10° SWIM beam. 534 

 535 

We further presented a case to compare the S1 retrieved SWH with the SWIM data in 536 

the Arctic MIZ. Three consecutive S1 EW images were acquired over the east of Greenland 537 

from 18:01 to 18:03 UTC on 26 February 2020. Fig. 13 (a) shows the S1 retrieved SWH of 538 

this case, in which the gray area represents sea-ice covered area based on the IMS data. The 539 

overlaid circles represent the SWIM nadir SWH observations, while the squares to the left 540 

and right of the track of circles are the SWH by SWIM at the 10° beam. The black arrows on 541 



Journal of Geophysical Research: Oceans 

 

 

the squares reflect the dominant wave direction derived from the SWIM data. The SWIM 542 

data were acquired at 18:38 UTC, 37 minutes later than the S1 acquisitions. From the 543 

northwest to the southeast, the SWH shows a trend of increasing and then decreasing, 544 

reaching a peak value of approximately 6 m at 66°N. Fig. 13 (b) is the sea surface wind field 545 

provided by the scatterometer onboard CFOSAT obtained at the same acquisition time as the 546 

SWIM data presented in Fig. 13 (a). The wind speed rises from 10 m/s to nearly 20 m/s and 547 

blows to the southwest, then decreases to 7-8 m/s with wind direction turning from southwest 548 

to southeast. 549 

 550 

  

(a) (b) 

Figure 13 (a) S1 retrieved SWH map (background) with collocated SWIM SWH at nadir 551 

(circles) and at the left and right 10° beam tracks (squares). The arrows on the squares 552 

indicate the dominant wave directions. (b) Corresponding sea surface wind field by the 553 

scatterometer onboard CFOSAT. The ID of the three SAR images are 554 

S1A_EW_GRDM_1SDH_20200226T180128_20200226T180232_031427_039E37_EE97, 555 

S1A_EW_GRDM_1SDH_20200226T180232_20200226T180332_031427_039E37_559A, 556 

and 557 

S1A_EW_GRDM_1SDH_20200226T180332_20200226T180432_031427_039E37_19C3. 558 
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(a) (b) 

Figure 14. (a) Statistical graph of the S1 SWH on three tracks and the collocated SWIM 559 

SWH. (b) Line chart of the dominant wavelength provided by the 10° SWIM beam on two 560 

tracks. 561 

 562 

Fig. 14 (a) shows comparisons among the S1 retrieved SWH and the collocated SWIM 563 

SWH at nadir and the 10° beam (right and left tracks). The dashed line shows the SWIM 564 

SWH at nadir, and the solid line represents the collocated S1 retrieved SWH at the SWIM 565 

nadir track. The red and blue circle symbols represent the SWIM SWH on the right and left 566 

tracks of the 10° beam, respectively. The diamonds with the same color are the collocated S1 567 

retrieved SWH. In the region between approximately 64°N and 70°N, the SWH varies from 3 568 

m to 6 m, and the SWIM SWH at nadir shows a similar spatial variation as the S1 retrievals. 569 

However, the SWIM SWH is systematically higher than the collocated S1 SWH by 570 

approximately 0.57 m. 571 

The SWIM SWH of the left and right tracks at the 10° beam are also higher than the 572 

collocated S1 retrieved SWH by 0.80 m and 0.55 m on average, respectively. Fig. 14 (b) 573 

shows the dominant wavelength provided by SWIM at the 10° beam. The symbols of 574 

diamond and circle represent the results for the left and right tracks, respectively. From 72°N 575 

to 66°N, the dominant wavelength increases gradually from 107 m to 184 m. This increasing 576 

trend of wavelength is also consistent with the increasing trend of SWH, indicating the 577 

development of an ocean wave field. After a small decrease at 66°N, the dominant 578 

wavelength sharply increases to nearly 300 m, indicating a swell-dominated sea state. 579 

To further investigate this case, we chose three two-dimensional wave spectra provided 580 

by SWIM at the 10° beam for demonstration, as shown in Fig. 15. Their integral wave 581 
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parameters and the collocated S1 retrieved SWH are listed in Table 3. Fig. 15 (a) shows the 582 

sea state involving both wind sea (with a peak wavelength of approximately 152 m) and swell 583 

(455 m); consequently, the dominant wavelength in region 1 is 145 m. The SWH for this 584 

region by S1 and SWIM are similar with values of 3.11 m and 3.56 m, respectively. In region 585 

2 (Fig. 15 (b)), the sea state developed further, with longer dominant wavelength of 184 m 586 

compared with the sea state at region 1. With sea state increasing, the difference between the 587 

S1 retrieval and SWIM SWH increases to approximately 1.0 m (4.69 m vs. 5.63 m). The 588 

two-dimensional wave spectrum presented in Fig. 15 (c) suggests that the sea state in region 3 589 

is swell-dominated with a wavelength of 283 m. This swell system should have developed 590 

from windsea at previous times, as its wave direction (60.68°, going to) is approximately 45° 591 

from the local wind direction (15°). In addition to this dominant swell peak, there is another 592 

weak peak with a wavelength of approximately 200 m and a wave direction of approximately 593 

15°, consistent with the sea surface wind direction, which may indicate a young swell just 594 

leaving the generation area. For region 3, although its wave height is lower than that of region 595 

2, the SWIM SWH is still higher than the S1 retrieved SWH by 0.6 m. 596 

This case reveals complicated sea state conditions with a mixture of windsea and swell 597 

systems. Swells developed in previous times propagated further, and they coexisted with 598 

locally generated windsea or young swells, as the high wind field also continuously moved. 599 

The SWIM nadir SWH shows better agreement with the S1 retrievals than the data at the 10° 600 

beam in this case. Although the SWIM SWH at both the nadir beam and the 10° beam are 601 

higher than the S1 retrievals, the differences between the SWIM nadir and S1 retrieved SWH 602 

seem to be systematic, while the differences between the 10° beam and S1 retrieved SWH are 603 

significantly variable. 604 

 605 

Table 3. Parameters and collocated S1 SWH of the three wave spectra in Fig. 15. 606 

Wave spectrum 1 2 3 

Longitude 11.60°W 10.26°W 8.54°W 

Latitude 69.52°N 66.09°N 64.16°N 

S1 retrieved SWH 3.11 m 4.69 m 3.91 m 

SWIM SWH 3.56 m 5.63 m 4.50 m 

SWIM wavelength 145.04 m 184.36 m 283.53 m 

SWIM wave direction 53.93° 20.64° 60.68° 

Sea surface wind speed 

(CFOSAT/scatterometer) 
13.80 m/s 16.58 m/s 8.21 m/s 

 607 
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(a) (b) (c) 

Figure 15. Two-dimensional wave spectrum provided by the 10° SWIM beam in three 608 

regions: 69.52°N/11.60°W, 66.09°N/10.26°W and 64.16°N/8.54°W. The corresponding 609 

integral wave parameters are listed in Table 3. All the wave spectra are oriented with respect 610 

to true north (up represents north). 611 

 612 

6. Summary and conclusions 613 

The interaction between ocean dynamics and sea ice in the Arctic starts to draw more 614 

attention due to the rapid decrease in the sea ice extent. As the basis of ocean dynamics, 615 

accurate measurements of ocean wave parameters by remote sensing data in the MIZ are 616 

highly desirable. S1A and S1B have extensively acquired spaceborne SAR data at both high 617 

spatial resolution and large spatial coverage in the Arctic, providing unique advantages in the 618 

acquisition of sea state information in the Arctic MIZ. Therefore, in this study, we focus on 619 

developing a practical method to derive sea state parameter of the SWH from S1 SAR data, 620 

which can be used further to study the interaction between ocean waves and sea ice. 621 

Previous studies have demonstrated that empirical algorithms are practical to derive 622 

integral wave parameters, e.g., the SWH and mean wave period, from SAR data than 623 

traditional nonlinear inversions, as these algorithms do not need a priori information. In this 624 

study, we adopted the idea of previous SAR-ocean wave empirical algorithms, but 625 

incorporated these ideas into a BPNN model. BPNN is good at fitting nonlinear relationships 626 

between inputs and outputs. There are 23 parameters derived from SAR data used as inputs 627 

into the BPNN model, and the sole output parameter is the collocated RA SWH. Based on 628 

126,128 collocated data pairs of S1 EW and four RA missions in the Arctic, we developed a 629 

BPNN model for SWH retrievals. The determined BPNN based on numbers of experiments 630 

has four hidden layers and the nodes of the hidden layers is 30, 20, 10 and 5, respectively. 631 

By comparing the S1 retrieved SWH with the RA SWH based on the testing dataset, we 632 

achieved a good result with a bias of 0.02 m, an RMSE of 0.63 m and an SI of 21.07%. 633 

However, we also found that the retrievals underestimate the sea state for SWH higher than 634 

approximately 4 m. This problem cannot be solved by changing the structure of the BPNN 635 

model, e.g., adding more hidden layers and nodes, or adding more training data (in fact more 636 

than 1 million training samples were employed herein). Our solution was to arbitrarily 637 

increase the proportion of training samples in high sea state by duplicating the original 638 

collocated data pairs. This approach increases the weights of training samples of high sea 639 
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state during the BPNN training process. Although the bias of the retrievals based on the 640 

adjusted training dataset is higher than that of the results based on the original training dataset 641 

(0.17 m vs. 0.02 m), the underestimation of the S1 retrievals in high sea state (above 5 m) is 642 

significantly reduced. In particular, an increasing underestimation trend with sea state is not 643 

observed. We recently used the same way to solve the underestimation of sea surface wind 644 

speed retrievals by the same S1 EW data in HH polarization (Li et al., 2020). 645 

We further compared the S1 retrieved SWH with the SWIM SWH at nadir and the 10° 646 

beam. The comparison at nadir yields a bias of 0.15 m, an RMSE of 0.60 m and an SI of 647 

18.98%, which is similar to the comparison with the RA SWH. This result is also consistent 648 

with the comparisons achieved by Hauser et al. (2020), the CFOSAT/SWIM development 649 

team, which indicates that the S1 retrievals should be of relatively good quality. However, a 650 

comparison of the same dataset of S1 retrievals with the SWIM SWH at the 10° beam (on 651 

either the left track or the right track) shows that the SWIM SWH is much higher than S1 652 

retrievals with a bias of approximately 0.4 m and an RMSE of 0.90 m. Moreover, both the 653 

statistical analysis and the case study indicate that the differences between the 10° SWIM 654 

beam SWH and the S1 retrievals vary considerably. Although the difference between the S1 655 

retrieved SWH and the SWIM SWH at the 10° beam is rather large, the S1 retrieved SWH is 656 

independent of the dominant wavelength and azimuthal wave direction, indicating that the 657 

proposed BPNN model can yield stable retrievals of SWH by S1 data. 658 

These comparisons suggest that the quality of SWIM wave data should be improved in 659 

the future. In October 2020, the SWIM development team announced that the current 660 

modulation transfer function (MTF) has been adjusted and the reprocessing of all SWIM data 661 

since the beginning of the mission will be triggered. We expect better SWIM data for further 662 

research. 663 

On the other hand, the S1 retrievals based on the proposed BPNN also have room for 664 

improvement. One issue that remains unresolved is that it is difficult to retrieve correctly 665 

SWH less than 1.5 m due to the insensitivity of SAR signals to low sea states. SAR 666 

cross-polarization data are less saturated with high wind compared with co-polarization data 667 

(Monaldo, et al., 2017). We recently developed a robust method for denoising S1 668 

HV-polarized data (Sun & Li, 2020), therefore, we expect to obtain better results for high sea 669 

states by combining data in both HH and HV polarization. Furthermore, to date, only integral 670 

wave parameter of SWH has been retrieved based on a neural network; hence, it might be 671 

possible to retrieve two-dimensional wave spectra based on deep learning methods without 672 

through the complicated nonlinear inversions. 673 

The MATLAB code to retrieve SWH by the S1 data in HH polarization using the 674 

proposed method was published in Zenodo for public sharing (Wu, 2020).  675 
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Appendix: Estimation of the SAR Image Spectrum 685 

The SAR image spectrum is estimated by computing the image periodogram with a 2-D 686 

FFT algorithm. The idea is to divide an image with 256 × 256 samples into 2 × 2 687 

sub-images with 128 × 128 samples and then to compute the FFT of each sub-image and 688 

obtain the power spectral density. Finally, the SAR image spectrum is acquired by computing 689 

the average of 4 power spectral densities. 690 

The 2-D FFT is applied to every normalized sub-image G: 691 

𝐹𝐺 = 𝑓𝑓𝑡128(𝐺)#(𝐴1)  

where 128 represents the size of every sub-image. The power density spectrum is 692 

denoted by 𝑃𝑆: 693 

𝑃𝑆 = (𝐹𝐺)2#(𝐴2)  

Then, summing the four power density spectra and averaging them, the entire SAR 694 

image spectrum P is given by: 695 

𝑃 =
1

2 × 2
∑ 𝑃𝑆 #(𝐴3)  

The power density spectrum needs to be normalized to ensure that the integral of the 696 

image in the frequency domain is equal to that in the spatial domain. The normalized image 697 

spectrum is denoted as 𝑃̅: 698 

𝑃̅ = 𝑃 ∗ (∑ 𝑃 ∗ 𝑑𝑘𝑥 ∗ 𝑑𝑘𝑦)
−1

#(𝐴4)  

where 𝑑𝑘𝑥 and 𝑑𝑘𝑦 is the wavenumber spacing in the SAR image range and azimuth 699 

direction, respectively, given by: 700 

𝑑𝑘𝑥 = 2𝜋 (128 ∗ 𝑑𝑥)⁄ #(𝐴5)  

𝑑𝑘𝑦 = 2𝜋 (128 ∗ 𝑑𝑦)⁄ #(𝐴6)  

where 𝑑𝑥 and 𝑑𝑦 is the pixel spacing (in meters) of the SAR image, and in this study, both 701 

𝑑𝑥 and 𝑑𝑦 are equal to 40 m. 702 

The SAR spectral parameters are the scalar product of SAR image spectrum 𝑃̅ and 703 

orthonormal functions: 704 
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𝑆 = ∑ 𝑃̅(𝑘𝑥, 𝑘𝑦)ℎ𝑖̅(𝑘𝑥, 𝑘𝑦)𝑑𝑘𝑥𝑑𝑘𝑦 #(𝐴7)  

where 1 ≤ 𝑖 ≤ 𝑛𝜑𝑛𝑘 and ℎ𝑖̅ are the orthonormal functions, which are described in (A8). 705 

The orthonormal functions ℎ𝑖𝑗
̅̅ ̅̅  are used to extract the image spectral parameters in 706 

wavenumber k and angular 𝜑 dimensions and are composed of Gegenbauer polynomials 707 

𝑔𝑖(𝛼𝑘) and harmonic functions 𝑓𝑗(𝛼𝜑): 708 

ℎ𝑖𝑗
̅̅ ̅̅ (𝛼𝑘, 𝛼𝜑) = 𝜂(𝑘𝑥, 𝑘𝑦)𝑔𝑖(𝛼𝑘)𝑓𝑗(𝛼𝜑), 1 ≤ 𝑖 ≤ 𝑛𝑘, 1 ≤ 𝑗 ≤ 𝑛𝜑#(𝐴8)  

where 𝜂(𝑘𝑥, 𝑘𝑦) is the elliptical area. The four Gegenbauer polynomials are: 709 

𝑔1(𝛼𝑘) =
1

2
√3√1 − 𝛼𝑘

2#(𝐴9)  

𝑔2(𝛼𝑘) =
1

2
√15𝛼𝑘√1 − 𝛼𝑘

2#(𝐴10)  

𝑔3(𝛼𝑘) =
1

4
√

7

6
(15𝛼𝑘

2 − 3)√1 − 𝛼𝑘
2#(𝐴11)  

𝑔4(𝛼𝑘) =
1

4
√

9

10
(35𝛼𝑘

3 − 15𝛼𝑘
2)√1 − 𝛼𝑘

2#(𝐴12)  

The five harmonic functions are: 710 

𝑓1(𝛼𝜑) = √1 𝜋⁄ #(𝐴13)  

𝑓2(𝛼𝜑) = √2 𝜋⁄ sin(2𝛼𝜑) #(𝐴14)  

𝑓3(𝛼𝜑) = √2 𝜋⁄ cos(2𝛼𝜑) #(𝐴15)  

𝑓4(𝛼𝜑) = √2 𝜋⁄ sin(4𝛼𝜑) #(𝐴16)  

𝑓5(𝛼𝜑) = √2 𝜋⁄ cos(4𝛼𝜑) #(𝐴17)  

𝛼𝑘 and 𝛼𝜑 define the integration area A in the wavenumber domain of the SAR image 711 

spectra and are defined as: 712 

𝛼𝑘(𝑘𝑥, 𝑘𝑦) = 2
log √𝑎1𝑘𝑥

4 + 𝑎2𝑘𝑥
2 + 𝑘𝑦

2 − log 𝑘𝑚𝑖𝑛

log 𝑘𝑚𝑎𝑥 − log 𝑘𝑚𝑖𝑛
− 1#(𝐴18)  
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𝛼𝜑(𝑘𝑥, 𝑘𝑦) = arctan(𝑘𝑦, 𝑘𝑥) #(𝐴19)  

The two parameters 𝑎1 and 𝑎2 in (A18) are: 713 

𝑎1 =
𝛾2 − 𝛾4

𝛾2𝑘𝑚𝑖𝑛
2 − 𝑘𝑚𝑎𝑥

2
#(𝐴20)  

𝑎2 =
𝑘𝑚𝑎𝑥

2 − 𝛾4𝑘𝑚𝑖𝑛
2

𝑘𝑚𝑎𝑥
2 − 𝛾2𝑘𝑚𝑖𝑛

2 #(𝐴21)  

where 𝛾 = 2, which describes the velocity bunching effect in the SAR imaging process. 714 

𝑘𝑚𝑎𝑥 and 𝑘𝑚𝑖𝑛 are the maximum and minimum wavenumber in the integration area, 715 

respectively: 716 

𝑘𝑚𝑎𝑥 =
2𝜋

60𝑚
#(𝐴22)  

𝑘𝑚𝑖𝑛 =
2𝜋

624𝑚
#(𝐴23)  

The weight function 𝜂(𝑘𝑥, 𝑘𝑦) in (A8) is defined as: 717 

 𝜂(𝑘𝑥, 𝑘𝑦) = (
2(𝑎1𝑘𝑥

4 + 𝑎2𝑘𝑥
2 + 𝑘𝑦

2)

(𝑘𝑥
2 + 𝑘𝑦

2)(𝑎1𝑘𝑥
4 + 𝑎2𝑘𝑥

2 + 𝑘𝑦
2)(log 𝑘𝑚𝑎𝑥 − log 𝑘𝑚𝑖𝑛)

)

1
2

#(𝐴24)  

The 20 orthonormal functions are visualized in Fig. A1, in which the gray values have a 718 

linear scaling between -25 (black) and 25 (white). 719 

 720 

Figure A1. Orthonormal functions used to extract ocean wave information from the SAR 721 
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image spectrum for 𝑛𝜑 = 4 and 𝑛𝑘 = 5. The gray values have a linear scaling between -25 722 

(black) and 25 (white). Values below -25 or above 25 m appear as black or white, 723 

respectively. 724 
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