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Abstract

An acceleration of the background seismicity and a shortening of the slow slip events on the Boso peninsula (Japan) recurrence

intervals suggest a slow decoupling of the Philippine Sea-North America (PHS-NAM) subduction interface from 1990 to 2011.

Motivated by these observations, we used GPS (Global Positioning System) time series to study the 14-year evolution of interface

coupling offshore Honshu with a specific focus on the Kanto region. We processed the GPS data in double difference and analyze

them with a trajectory model that accounts for seismic and aseismic variations, and that includes an inter-seismic acceleration

term. We inverted the surface acceleration obtained, on both the Pacific-North America (PAC-NAM) and the PHS-NAM

interfaces. The inverted slip rate changes over time compares well with previous studies: we observe slip deceleration between

39$ˆo$-41$ˆo$ N and slip acceleration between 37$ˆo$-39$ˆo$ N, with a maximum amplitude of 3.45 mm/yr$ˆ2$ corresponding

to an equivalent geodetic coupling change of 0.64. Our analysis reveals a novel and robust slip acceleration South of 36.5$ˆo$
N that we interpret as a decoupling of the PAC-NAM interface. It is located noticeably far from the 2011 Tohoku earthquake

rupture and is therefore unlikely connected to it. We link the slip rate changes to the background seismicity changes and

retrieve the slip acceleration from either the seismicity rate or the surface displacement. Our results further demonstrate that

inter-seismic slip rate can significantly evolve over years to decades, and suggest a simple relationship between the background

seismicity and the slip on the subduction interface.

1



manuscript submitted to JGR: Solid Earth

14-year acceleration along the Japan trench and the1

Sagami trough2

Lou Marill1, David Marsan1, Anne Socquet1, Mathilde Radiguet1, Nathalie3

Cotte1, and Baptiste Rousset24

1Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, IRD, Univ. Gustave Eiffel, ISTerre, 380005

Grenoble, France6
2Univ. Calif. Berkeley, Dept. Earth & Planetary Sci., Berkeley, CA 94720 USA7

Key Points:8

• We reveal a novel and robust acceleration of the fault slip for the Pacific plate un-9

derneath the Boso peninsula and offshore Kanto.10

• This slip acceleration is coherent with the observed shortening of reccurrence times11

of the Boso slow slip events.12

• We propose a simple relationship that relates observed changes in background seis-13

micity ratxe and in slip rate along the Japan trench.14
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Abstract15

An acceleration of the background seismicity and a shortening of the slow slip events on16

the Boso peninsula (Japan) recurrence intervals suggest a slow decoupling of the Philip-17

pine Sea-North America (PHS-NAM) subduction interface from 1990 to 2011. Motivated18

by these observations, we used GPS (Global Positioning System) time series to study the19

14-year evolution of interface coupling offshore Honshu with a specific focus on the Kanto20

region. We processed the GPS data in double difference and analyze them with a tra-21

jectory model that accounts for seismic and aseismic variations, and that includes an inter-22

seismic acceleration term. We inverted the surface acceleration obtained, on both the23

Pacific-North America (PAC-NAM) and the PHS-NAM interfaces. The inverted slip rate24

changes over time compares well with previous studies: we observe slip deceleration be-25

tween 39o-41o N and slip acceleration between 37o-39o N, with a maximum amplitude26

of 3.45 mm/yr2 corresponding to an equivalent geodetic coupling change of 0.64. Our27

analysis reveals a novel and robust slip acceleration South of 36.5o N that we interpret28

as a decoupling of the PAC-NAM interface. It is located noticeably far from the 201129

Tohoku earthquake rupture and is therefore unlikely connected to it. We link the slip30

rate changes to the background seismicity changes and retrieve the slip acceleration from31

either the seismicity rate or the surface displacement. Our results further demonstrate32

that inter-seismic slip rate can significantly evolve over years to decades, and suggest a33

simple relationship between the background seismicity and the slip on the subduction34

interface.35

1 Introduction36

A common assumption regarding to the seismic cycle is to consider the inter-seismic37

strain rate as being constant over time (Savage & Thatcher, 1992). Recently, long-term38

changes in slip rate, or interface coupling, have been observed or suggested in the con-39

text of subduction zones. Long-term slow slip events (L-SSEs) with a duration of a few40

years have been documented in Alaska (duration of 2 to 9 years) (Li et al., 2016; Rous-41

set et al., 2019) and in various regions of Japan (Tokai district, Kii peninsula and Bungo42

channel, duration from 1 to 5 years) (Hirose et al., 1999; Kobayashi, 2014; Kobayashi43

& Tsuyuki, 2019; Miyazaki et al., 2003; Ochi & Kato, 2013; Ozawa et al., 2001, 2013;44

Ozawa, Suito, Imakiire, & Murakmi, 2007; Yagi & Kikuchi, 2003; Yoshioka et al., 2015).45

Variations at even longer time scales (decades) have also been observed. In Sumatra, Prawirodirdjo46

et al. (2010) measure an increase of coupling between the 1990s and 2010 in the Batu47

and Enggano islands. Based on coral observations that allow the estimation of relative48

sea level changes, Meltzner et al. (2015) find an increase in coupling starting 20-40 years49

before the 1861 Mw 8.5 earthquake in southern Simeulue (Newcomb & McCann, 1987)50

and, on the opposite, a L-SSE lasting 15 years before the 2005 Mw 8.6 earthquake in the51

Banyak islands. In Japan, Hasegawa and Yoshida (2015), Heki and Mitsui (2013), Loveless52

and Meade (2016), Mavrommatis et al. (2014, 2015) and Yokota and Koketsu (2015) ob-53

serve slip rate variations over 15 years along the Japan Trench before the 2011 Tohoku54

earthquake. At the Mendocino triple junction, Materna et al. (2019) document slip rate55

variations between four M ≥ 6.5 regional earthquakes from 2005 to 2019. In South Amer-56

ica, Melnick et al. (2017) and Ruiz et al. (2017) identified a change in loading rate likely57

triggered by the 2010 Mw 8.8 Maule earthquake. This change is seen up to the 2015 Mw 8.358

Illapel earthquake North of Maule rupture (Melnick et al., 2017) and up to the 2016 Mw 7.659

Chiloé earthquake South (Ruiz et al., 2017).60

While long past changes in slip rate or seismic coupling are particularly challeng-61

ing to infer from in situ observables in subduction zones, continental faults are easier to62

study for that purpose. Slip rates can be inferred for the Pleistocene-Holocene periods63

using for instance geological mapping, cosmogenic nuclide geochronology, displaced al-64

luvial fans measurements, Lidar mapping, and/or differential GPS (Global Positioning65

System) fault scarp surveys. Foy et al. (2012), Ganev et al. (2012), Oskin et al. (2008)66
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and Rust et al. (2018) compare Pleistocene-Holocene and current slip rates for several67

continental faults and observe long-term variations: at the Garlock (California) and the68

Talas-Fergana (Himalayas) faults the slip rate is currently twice lower than the average69

Quaternary rate, while on the contrary the slip rate is currently twice higher in the Mo-70

jave Desert and the Clayton Valley (California).71

The mechanisms responsible for such variations in inter-seismic slip rate at the decadal72

time scale are yet to be understood. Since they overlap the time scale of post-seismic,73

and, more generally, of crustal and upper-mantle visco-elastic relaxation processes, they74

could be related to recent earthquakes and mega-thrust earthquakes, as previously sug-75

gested by Heki and Mitsui (2013) or Melnick et al. (2017). Variations that precede, rather76

than follow, large earthquakes are yet to be interpreted in terms of dynamical processes,77

which could conceivably be similar to those controlling SSEs of much shorter durations.78

In any case, dynamical modelling and physical understanding of these phenomena first79

require well constrained kinematic observations.80

We here present a study of inter-seismic slip rate changes at the Japan trench and81

the Sagami through subduction zones (Figure 1), from January 1997 to February 2011.82

As large scale variations in geodetic movements can be caused by reference frame issues,83

a first goal of this study is to provide a full re-analysis of the Japanese GPS data that84

is completely independent from the F3 solution (Nakada et al., 2005) on which are based85

previous studies of decadal slip rate variations (Mavrommatis et al., 2014; Yokota & Koketsu,86

2015). The other goal is to complement the observations of Mavrommatis et al. (2014)87

and Yokota and Koketsu (2015) by extending the investigation of the surface displace-88

ments to the Kanto region (Figure 1). This region is known to have undergone a strong89

acceleration of the background seismicity rate (Marsan et al., 2017; Reverso et al., 2016),90

as well as a shortening of the Boso slow slip events recurrence times from 1996 to 201491

(Fukuda, 2018; Hirose et al., 2012; Ozawa, 2014). These observations suggest that plate92

decoupling, involving the three tectonic plates that control surface deformation in Kanto,93

has been going on for at least a decade before the 2011 Mw 9.0 Tohoku earthquake. Given94

the distance between the Kanto region and potential mainshock candidates that could95

possibly explain the northern Honshu changes in slip rate (namely, the 2003 Mw 8.3 Tokachi96

earthquake, see Figure 1), any variation in local slip rate in Kanto could not be conceiv-97

ably related to unmodeled post-seismic processes of such mainshocks. The Kanto region98

is therefore a natural candidate for possible decadal slip rate variations.99

In more details, this study complements the analyses of Mavrommatis et al. (2014)100

and Yokota and Koketsu (2015) by (1) performing a re-analysis of the GPS data, (2) in-101

cluding the Kanto region, and (3) testing the sensitivity of the inverted changes in slip102

rate relative to the inclusion of slip on the Philippine Sea plate, of different a priori dis-103

tributions, including a seismicity-based prior, and of GPS vertical components. After sum-104

marizing the tectonic setting of the Honshu island (Section 2), we describe our process-105

ing and analysis of GPS data (Section 3) as well as the inversion of slip rate distribu-106

tion (Section 4). We then analyze the mean surface velocity and the acceleration fields,107

and invert for inter-seismic coupling and the on-fault slip acceleration (Section 5). We108

discuss the robustness of our obtained slip acceleration and its relationship with regional109

seismicity (Section 6), and finally interpret the results in light of both the subsequent110

rupture of the 2011 Mw 9.0 Tohoku earthquake and the clear acceleration in the wider111

Kanto region (Section 7).112

2 Honshu tectonic setting113

The subduction of the Pacific (PAC) plate beneath the North America (NAM) plate114

induced the following great instrumental earthquakes: the 1994 Mw 7.7 Sanriku earth-115

quake (A. Ito, 2004), the 2003 Mw 8.0 Tokachi earthquake (Yamanaka & Kikuchi, 2003)116

and the 2011 Mw 9.0 Tohoku earthquake (Hooper et al., 2013) (Figure 1). While the 1994117
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Figure 1. Tectonic setting of Honshu island. The colored stars represent the historical

and instrumental great earthquakes, Mw ≥ 7.7, as well as major aftershocks; format date

is year/month/day; ruptured areas are also indicated (same color as the corresponding star)

(Hooper et al., 2013; A. Ito, 2004; Komori et al., 2017; Shishikura, 2014; Yamanaka & Kikuchi,

2003). The white stars represent the Mw ≥ 7.1 earthquakes occurring between 1996 and 2011.

The blue circle represents the Boso SSEs rupture area (Fukuda, 2018). The green circle repre-

sents the location of the 2000 Miyakejima volcanic unrest (Cattania et al., 2017). The continuous

gray square is the Figure 2a zoom and the dashed gray square is the Figure 9a zoom. Plate

motions are deduced from Nishimura et al. (2007)’s Euler poles.
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Sanriku and the 2003 Tokachi earthquakes mostly affected the northern part of Honshu118

and Hokkaido, the 2011 Tohoku earthquake ruptured a large part of the Japan trench119

and impacted all the North of Honshu, the rupture itself terminating not far from the120

Kanto region. Two great known historical earthquakes struck the Kanto region, at the121

interface between the Philippine Sea (PHS) plate and the NAM plate: the 1703 Mw 8.2122

Genroku Kanto earthquake (named Genroku in Figure 1) and the 1923 Mw 7.9 Taisho123

Kanto earthquake (named Kanto in Figure 1) (Komori et al., 2017; Shishikura, 2014).124

These two earthquakes outline resisting asperities on the PHS plate which are expected125

to appear as strongly coupled in coupling models. Komori et al. (2017) and Shishikura126

(2014) show that great earthquakes along the Sagami Trough have a recurrence inter-127

val between 250 and 800 years. As both earthquakes ruptured near Tokyo, any forth-128

coming occurrence of one of these earthquakes could have disastrous consequences.129

Recurrent SSEs have been occurring offshore Boso peninsula with a recurrence in-130

terval of ∼6 years between 1983 and 2007 (Ozawa, Suito, & Tobita, 2007). These SSEs131

ruptured roughly the same area (blue circle in Figure 1), had a characteristic size (Mw ∼132

6.6) and lasted from 14 days (in 1996 and 2007) to 43 days (in 2002) (Fukuda, 2018).133

Fukuda (2018), Hirose et al. (2012) and Ozawa (2014) suggest that a shortening of the134

Boso SSE recurrence interval took place between 1996 and 2014, which can be seen as135

the signature of an increasing loading in this area. Finally, an important volcanic un-136

rest, with a major caldera collapse, happened around Miyakejima island in 2000 (there-137

after named the 2000 Miyakejima volcanic unrest, see Figure 1) (Cattania et al., 2017;138

T. Ito & Yoshioka, 2002). It was associated with an intense seismicity swarm: over 100,000139

earthquakes occurred in a 2-month period, including five Mw > 6.0 earthquakes (T. Ito140

& Yoshioka, 2002) for a total seismic moment release estimated to M0 = 3.6 × 1019141

N.m (Cattania et al., 2017). This volcanic collapse was large enough to impact the sur-142

face displacement of the North America plate up to 30o N, and produced a large tran-143

sient deformation with centimetric displacements recorded on the Boso peninsula.144

To determine the velocity of the PAC and PHS plates relative to the NAM plate,145

we use the Euler poles from Nishimura et al. (2007), given in Table 1. Using this Eu-146

ler poles, we can computed the velocity of the PAC and the PHS plates relative to the147

NAM plate at each point. The average velocity is taken as the reference plate velocity,148

and we obtain for PAC, vPAC ≈ 76 mm/yr, and for PHS, vPHS ≈ 26 mm/yr.149

Table 1. Euler Rotation Poles

Plate Reference Plate Latitude Longitude Rotation Rate
(deg) (deg) (deg/Ma)

NAM* EUR 75.85 130.92 -0.351
PAC EUR 63.10 79.20 -0.919
PHS EUR 36.61 138.96 -9.956

Note: From Nishimura et al. (2007).
Abbreviations: NAM: North America plate; PAC: Pacific plate;
PHS: Philippine Sea plate; EUR: Eurasia plate.
*NAM correspond to the Central Japan Block (CJB) in Nishimura et al. (2007).

3 Data processing and analysis150

3.1 Data processing151

The 1421 stations of the GNSS (Global Navigation Satellite System) Earth Obser-152

vation Network System in Japan and 44 IGS (International GNSS Service, http://igscb.nasa.jpl.org)153
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sites worldwide, were processed over the 1997-2011 period following a double difference154

approach using the GAMIT/GLOBK software suite (Herring et al., 2015, 2018a, 2018b).155

As in Herring et al. (2016), we assemble our stations into sub-networks for the daily pro-156

cessing. We reduce 24-hour measurement sessions to daily estimates of station position,157

choosing the ionosphere-free combination and fixing the ambiguities to integer values.158

We use precise orbit positions from the IGS, precise EOP (Earth Orientation Param-159

eters) from the IERS (International Earth Rotation and Reference Systems Service) bul-160

letin B (monthly), phase centers of the antennas from IGS tables, ocean-tidal loading161

corrections from the FES2004 (Finite Element Solution) model, as well as atmospheric162

loading corrections (tidal and non-tidal). Using the Vienna Mapping Function (Boehm163

et al., 2006), we estimate one tropospheric zenith delay parameter every 2h, and one cou-164

ple of horizontal tropospheric gradients per 24h session. We combine the daily sub-network165

solutions in a regional stabilisation approach (Herring et al., 2015). Then, we generate166

coordinate time series and map them into the ITRF2014 (International Terrestrial Ref-167

erence Frame) reference frame (Altamimi et al., 2017) by applying Helmert transforms168

to adjust IGS station coordinates to those defined in the ITRF in a least square itera-169

tive process, using the PYACS (Python Yet Another Combination Software) Python mod-170

ule (Tran, 2009). We then identified and removed the outliers of the generated time se-171

ries: individual values differing by 15 mm or more from the median value within a 20-172

day sliding window. Thereafter, the time series are those without outliers.173

3.2 Earthquakes and slow deformation events affecting the time series174

In order to relate large earthquakes to potential co-seismic jumps and post-seismic175

transients in the GPS time series, we make use of the ISC (International Seismological176

Centre) earthquake catalog limited to Mw ≥ 6.4 earthquakes around Japan (from 28.6o to177

47.4o N, and from 126.5o to 149.2o E). This moment magnitude (Mw) threshold allows178

to keep only earthquakes with a visible influence on the time series, and avoids over-fitting.179

For all earthquakes, we use the Mw estimated by the Japan Meteorological Agency. The180

GPS time series can also be affected by slow deformation transients, defined as either181

(1) the Boso slow slip events (SSEs) (Fukuda, 2018), or (2) the 2000 Miyakejima volcanic182

unrest (Cattania et al., 2017; Nakada et al., 2005; Uhira et al., 2005). The parameters183

considered for the modelling of those slow deformation events are summarized in Table 2.184

Table 2. Characteristics of the slow deformation events

Event type Starting date (ts) Center position Mw Duration (td)
(year/month/day) (latitude ; longitude) (days)

Boso SSE 2002/10/02 35.30 ; 140.70 6.67 43
Boso SSE 2007/08/12 35.35 ; 140.40 6.65 14

Miyakejima 2000/06/26 34.20 ; 139.30 7.00* 64
volcanic unrest

Notes: Boso slow slip events (SSEs) from Fukuda (2018); the 2000 Miyakejima volcanic
unrest from Cattania et al. (2017), Nakada et al. (2005) and Uhira et al. (2005).
*Computed from the total moment release: M0 = 3.6× 1019 N.m (Cattania et al., 2017).

3.3 Time series analysis with a trajectory model185

We select the 299 stations located in Honshu with a longitude greater than 139o186

E. This way, we focus our analysis on the Honshu island, including the Kanto region. Most187

of our selected stations are in common with Loveless and Meade (2010), Mavrommatis188

et al. (2014) and Yokota and Koketsu (2015). To model the surface displacements from189
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GPS time series, we use a modified version of the trajectory model of Bevis and Brown190

(2014) based on Jara et al. (2017):191

x (t) = xR + v (t− tR) +
1

2
a (t− tR)

2
+

2∑
k=1

[sk sin (2kπ (t− tR)) + ck cos (2kπ (t− tR))]192

+

nA∑
a=1

baH (t− ta) +

nJ∑
j=1

cjH (t− tj) +

nS∑
s=1

dsJ (t− ts) (1)193

+

nI∑
i=1

miH (t− ti)× log

(
1 +

t− ti
TR

)
194

where t is time, tR is the reference time (01/01/1997), xR is the reference position, v is195

the initial velocity (or the inter-seismic velocity if a is fixed to 0), and a is the inter-seismic196

acceleration;

2∑
k=1

[sk sin (2kπ (t− tR)) + ck cos (2kπ (t− tR))] corresponds to the annual197

(k = 1) and semi-annual (k = 2) seasonal model;

nA∑
a=1

baH (t− ta) accounts for the an-198

tenna jumps, where nA is the number of antenna changes at the station, ba is the am-199

plitude associated to the Heaviside function H, and ta is the antenna change time;

nJ∑
j=1

cjH (t− tj)200

corresponds to the co-seismic jumps model, where nJ is the number of earthquakes in-201

fluencing the station, cj , the amplitude associated to H, and tj , the earthquake time;

nS∑
s=1

dsJ (t− ts)202

corresponds to the slow deformations model, where nS is the number of slow deforma-203

tion events influencing the station, ds, the amplitude associated to the function J (ex-204

plicited hereafter), and ts, the slow deformation starting time (see Table 2); and

nI∑
i=1

miH (t− ti)×205

log

(
1 +

t− ti
TR

)
corresponds to the post-seismic transients model, where nI is the num-206

ber of earthquakes with post-seismic transients influencing the station (i.e. nI ≤ nJ),207

mi, the amplitude of the transient, TR, a characteristic time (fixed at 100 days, as this208

corresponds to the value that best fits the post-seismic signal in the time series), and ti,209

the earthquake time.210

For the slow deformation events listed in Table 2, we define the function J as:211

J (t− ts) =

 0 ∀t < ts
− 1

2 cos (πtnorm) + 1
2 ∀t ∈ [ts; ts + td]

1 ∀t > ts + td

(2)212

where td is the duration of the slow deformation events (see Table 2) and tnorm = t−ts
td

.213

To define the influence radius of an earthquake, we adapted the Nevada Geodetic214

Laboratory formula (http://geodesy.unr.edu/explanationofplots.php) into:215

r (Mw) = 100.43Mw−0.7 (3)216

where Mw is the moment magnitude of the event, and r, the influence radius (in km)217

of the event. If the distance between the station and the earthquake epicenter is smaller218

than r, then we consider that the earthquake influences the station displacement. Sim-219

ilarly, in the case of SSEs, we use the moment magnitudes as given in Table 2.220

For the purpose of modelling the time series, we assume that only Mw ≥ 7.1 earth-221

quakes (white stars in Figure 1, as well as the 2003 Tokachi earthquake and its Mw 7.1222

aftershock) can produce significant post-seismic transient deformations. We fix a unique223
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Figure 2. Examples of jumps (antenna changes, earthquakes) and slow deformation (SSEs,

volcanic unrest). (a): Zoom of Figure 1 with the location of 0550 (b), 3034 (c) and 3041 (d) sta-

tions (navy triangle); . (b): Model for the 2005 Mw 7.2 Miyagi earthquake (orange rectangle,

white star in (a)) with post-seismic transient and another Mw 6.6 earthquake (brown rectangle,

white circle in (a)). (c): Model for the 2000 Miyakejima volcanic unrest (green rectangle) and

two antenna changes (purple rectangles). (d): Model for the 2007 Boso slow slip event (cyan

rectangle). In (b), (c) and (d), the blue dots represent the position time series and the red line

represents the trajectory model.

characteristic time, TR = 100 days, allowing a good fit of the observed post-seismic tran-224

sients. We tested other TR values and also the use of an exponential instead of a loga-225

rithmic function, and kept the model minimizing the RMSE (Root-Mean-Square Error).226

The trajectory model parameters (xR, v, a, sk, ck, ba, cj , ds and mi) are optimized227

independently for each station and component using a least-square inversion and follow-228

ing a three step strategy. In the first step, we compute ba, cj and ds optimizing the jumps229

(from antenna changes and earthquakes) and slow deformation events locally, i.e., us-230

ing the time series from 200 days before the event to 200 days after the end of the event231

(ta, tj or ts) and computing:232

xjump window (t) = xR + v (t− tR) +

na∑
a=1

baH (t− ta) +

nj∑
j=1

cjH (t− tj) +

ns∑
s=1

dsJ (t− ts)233

+

ni∑
i=1

miH (t− ti)× log

(
1 +

t− ti
TR

)
(4)234

–8–



manuscript submitted to JGR: Solid Earth

We first proceed to a local estimate for the jumps affecting the time series. To do235

so, we go through the time series and take the first jump (antenna change or co-seismic)236

or slow deformation (hereafter considered as a “jump” also); if there is no jump in the237

whole time series, the program proceeds to the next step. We consider first a 400-data238

point window centered on the jump date (ts). If another jump happens between the first239

jump and the end of the window, we extend the window with an extra 200 data points240

after the second jump. We keep extending the window this way until no more jump stays241

in the last 200 data points of the window: to illustrate this process, Figure 2c shows a242

window with three jumps (the 2000 Miyakejima volcanic unrest and two antenna changes).243

Once the window length is fixed, we fit Equation (4) within that window. As given in244

Equation (4), an inter-seismic velocity v and post-seismic transients are also modeled245

for the window, so to get the most accurate estimate of the jumps as possible. In case246

there is a post-seismic transient in the window, we force the transient to have the same247

sign as the associated co-seismic jump (mi × cj > 0 for i and j corresponding to the248

same earthquake), individually for each component (NS, EW or vertical). Then, the we249

go to the next jump not included in the current window and starts again, until it reaches250

the last jump. Figure 2 illustrates how the fitting and modelling perform for some se-251

lected time windows and stations. Once we have the ba, cj and ds optimized for all the252

jumps of the time series, we remove these jumps to obtain xstep1 (t), which is thus the253

time series corrected for co-seismic offsets, antenna jumps and slow transients (Table 2).254

In the second step, we compute mi by optimizing the values of the post-seismic tran-255

sients using the time series from 2 years before the earthquake to 2 years after and fit-256

ting:257

xpost−seismic window = xR + v (t− tR) +

2∑
k=1

[sk sin (2kπ (t− tR)) + ck cos (2kπ (t− tR))]258

+miH (t− ti)× log

(
1 +

t− ti
TR

)
(5)259

We take 2-year data before the earthquake to estimate the seasonal and semi-seasonal260

terms within the window, which results in a better estimation of the post-seismic tran-261

sient. We also take at most 2 years of data after the earthquake: if there is another post-262

seismic transient within the 2 years data then we terminate the window one day before263

the second post-seismic transient. To determine whether a Mw ≥ 7.1 requires a post-264

seismic transient from the data, we use the Akaike Information Criterion (AIC) (Akaike265

et al., 1998). The AIC measures which model fits best the data among models that have266

different numbers of parameters. Here, we use the AIC to compare the models without267

and with a post-seismic transient (hence an extra parameter): for a given station, we re-268

quire that at least one of the three component returns a large AIC value, while the two269

other components have positive AIC values (hence an improvement of the model when270

adding the post-seismic phase for all three components, and at least one with a very sig-271

nificant improvement). If this best model is indeed the one with a post-seismic transient,272

we remove this transient from the time series. Then, we iterate this step to all subse-273

quent Mw ≥ 7.1 earthquakes influencing the station and substract the modelled post-274

seismic transients from xstep1 (t) to obtain xstep2 (t).275

In the third step, we model xstep2 (t) as:276

xstep2 (t) = xR + v (t− tR) +
a

2
(t− tR)

2
+

2∑
k=1

[sk sin (2kπ (t− tR)) + ck cos (2kπ (t− tR))]

(6)277

and compute xR, v, a, sk and ck by optimizing the seasonal and inter-seismic phenom-278

ena using the whole time series. Then we remove these contributions to get the final resid-279

uals of our raw time series.280
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Figure 3. Linear (a) and quadratic (b) trajectory models for station 3041, from 1997 to 2011.

Blue points: raw time series. Red line: trajectory model (Equation (1)). Green points: resid-

ual time series. Green line: the 2000 Miyakejima volcanic unrest. Blue lines: the 2002 and 2007

Boso slow slip events. Purple line: antenna change. Brown line: a Mw ≥ 6.4 earthquake without

post-seismic transient.
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In Equation (1) we added an acceleration term (a) that is usually absent from tra-281

jectory models (Bevis & Brown, 2014). This term is motivated by the observation that282

the residuals of linear trajectory models (a = 0) very often display a decadal curvature283

(Figure 3a). We add a quadratic term, representative of the acceleration, to test if the284

inter-seismic velocity could have undergone significant changes in Honshu over the 1997-285

2011 period. Figure 3b shows how the curvature is accounted for with this extra term.286

To properly estimate the acceleration, a, we require the time series to have at least seven287

years of data between 1997 and 2011.288

3.4 Statistical significance of the acceleration289

We test the significance of adding a quadratic term using synthetic data. To gen-290

erate synthetic time series, we first compute the Fourier Transform of the quadratic model291

residuals (Figure 3b bottom) and randomize the phase. Finally, the inverse Fourier Trans-292

form yields a synthetic time series which colored noise follows the spectral characteris-293

tics of the original residual time series. For each station individually, we generate 100 syn-294

thetic time series, compute the corresponding 100 acceleration terms within this synthetic295

noise, and determine the standard deviations σaN and σaE of the 100 North component296

and 100 East component accelerations respectively. These standard deviations represent297

the uncertainties on the acceleration term that can be expected from the noise in our298

data. They are then compared with the actual accelerations, aN and aE (from Equa-299

tion (1)), by computing the signal-to-noise ratios a
σa

for both components. The stations300

for which, at least one of the two ratios, a
σa
> 3 are considered as showing a significant301

acceleration. Finally, 187 sites present a significant acceleration, corresponding to 62%302

of the initial set.303

4 Inversion model of the loading rate and its acceleration on the sub-304

duction interface305

To determine the average coupling and the slip acceleration on the subduction in-306

terface, we perform separate least-square slip inversions (Tarantola & Valette, 1982) of307

the surface velocity and the acceleration fields, respectively, using a modified version of308

Kositsky and Avouac (2010)’s software package, including the regularization of Radiguet309

et al. (2011). We only use horizontal displacement time series at this stage; the addition310

of the vertical displacements will be discussed later (Section 5.2). The forward model311

is d = Gm, where d is the observed data (surface velocity or acceleration field), G, the312

transfer function matrix computed using Okada (1985), and m, the model on the fault313

(slip rate or its acceleration, depending on the analysis). The best model (m) is deter-314

mined using the misfit function:315

S (m) =
1

2

[
(Gm− d)

t
C−1d (Gm− d) + (m−m0)

t
C−1m (m−m0)

]
(7)316

where m0 is the prior model, Cm is the covariance matrix for the model parameters, Cd317

is the covariance matrix for the data (velocity or acceleration field), and t denotes the318

transpose operation. Minimizing S(m) of Equation (7), we obtain the model function:319

m = m0 + CmG
t
(
GCmG

t + Cd
)−1

(d−Gm0) (8)320

4.1 Plate geometry and imposed rake321

As the Kanto region (Figure 1) is characterized by a double subduction, we run two322

tests for each inversion (velocity and acceleration fields): (1) considering only the Pacific-323

North America (PAC-NAM) subduction, and (2) considering both the Philippine Sea-324

North America (PHS-NAM) and the PAC-NAM subductions. We discretize the faults325

into triangular sub-fault patches of ∼15 km size. For the PAC plate interface, we use the326

Kamchatka-Kuril Island-Japan region of the Slab 2 model (Hayes et al., 2018). We keep327
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only the part from the Sagami Trough (∼34.2o N, see Figure 1) to the North of Hon-328

shu island (∼41o N), and from the trench down to 90 km depth. For the PHS plate in-329

terface, we use Ishida (1992)’s model. We impose a fixed rake angle for each sub-fault.330

To determine this angle, we compute the PAC and PHS plate velocity vectors relative331

to the NAM plate at each sub-fault using the Euler poles given in Table 1. Then, we de-332

termine the rake, which will be different for each sub-fault, by projecting the velocity333

vector direction on the sub-fault surface.334

4.2 Data covariance matrix335

The data covariance matrix (Cd) is a diagonal matrix whose dimension is twice the336

number of stations, since there are two horizontal channels per station. The diagonal val-337

ues are determined by the data uncertainties for the North and East components:338

∀ 0 ≤ i ≤ nsta − 1,

{
Cd (2i+ 1, 2i+ 1) = (errEi)

2

Cd (2i+ 2, 2i+ 2) = (errNi)
2 (9)339

where i is the index of the station, nsta is the number of stations, errNi, the uncertainty340

of the data i according to the North component, and errEi, the uncertainty of the data341

i according to the East component.342

The 5% and 95% quantiles of the velocity uncertainties are found at 0.16 and 0.36 mm/yr,343

respectively, with a mean of 0.23 mm/yr. As acceleration uncertainties, we take the stan-344

dard deviation of the acceleration computed from the synthetic time series (see Section 3.4).345

The 5% and 95% quantiles of the acceleration uncertainties are found at 0.020 and 0.158 mm/yr2,346

respectively, with a mean of 0.080 mm/yr2.347

4.3 Model covariance matrix348

The model covariance matrix (Cm) introduces two meta-parameters: the standard349

deviation of the model parameters (σm) and the correlation length (λ). We define Cm (i, j),350

the elements of the model covariance matrix between the sub-faults i and j, based on351

Radiguet et al. (2011):352

Cm (i, j) = σ2
m ×

(
1

1 + λ
λ0

)2

exp

(
−d (i, j)

λ

)
(10)353

where λ0 is a scaling factor fixed to the characteristic sub-fault size (15 km), and d(i, j)354

is the distance between the centers of sub-faults i and j. The correlation length λ pre-355

scribes the distance over which the slip is correlated, and therefore controls the smooth-356

ing of the model. For the PAC plate, we use λ = 50 km corresponding to three times357

the sub-fault size. For the PHS, we use λ = 180 km to avoid over-fitting and trade-off358

issues, as explained later (Section 4.5).359

The standard deviation σm controls the trade-off between the quality of the fit and360

the departure from the a-priori model (m0). We choose σm using a L-curve, namely: L∞361

norm vs χ2. The L∞ norm of the cumulative slip reflects the model roughness, and is362

defined as:363

L∞ = max(|m−m0|) (11)364

while χ2 measures the quality of the fit, and is defined as:365

χ2 =
1

2nsta
× (Gm− d)

t
C−1d (Gm− d) (12)366

For the velocity field inversion, we take σm = 100.79 to limit the slip rate maxi-367

mum to the plate velocity. The L-curve in Supplementary Figure S1 shows that the low-368

est χ2 for L∞ ≥ 76 mm/yr is obtained for σm = 100.79. We set the σm value for the369
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acceleration inversion based on an argument that relates this value with the σm = 100.79370

value used for the slip rate inversion. We will show later (Figure 7 and Section 6.3) that371

the maximum change in seismic coupling C between 1997 and 2011 amounts to ∆C =372

0.66. Given the convergence rate of 76 mm/yr for PAC and NAM, this is equivalent to373

an acceleration of 3.45 mm/yr2 at maximum, over 14 years. We therefore smooth the374

inverted slip acceleration so that it can reach 3.45 mm/yr2 at maximum, hence L∞ ≥375

3.45 mm/yr2. Given this constraint, the L-curve (Supplementary Figure S2) gives σm =376

100.02 for the acceleration inversion. We finally notice that the χ2 values are large (χ2 =377

273 and χ2 = 21 for the slip rate and the acceleration, respectively), which is due to378

the relatively small uncertainties we obtain. The latter are likely under-estimated since379

they only account for estimation, not model, errors. We however use them anyway as380

they allow to weight (in a relative sense) the inversion; absolute values of χ are there-381

fore of little use here.382

4.4 Slip restitution383

For each inversion, we evaluate the resolution by assessing the ability of each sub-384

fault to resolve a unit slip. We compute the surface displacements caused by a unit slip385

located on one sub-fault, and invert these displacements using the parameterization pre-386

viously explained, to obtain a field of slip values. The associated resolution matrix from387

Tarantola and Valette (1982) is:388

R = CmG
t(GCmG

t + Cd)
−1G (13)389

The resolution matrix diagonal values range from 0 if the slip is not resolved, to 1 if it390

is fully resolved. Rather than the resolution itself, we look at the restitution index of the391

sub-faults corresponding to the sum of R along each row, ranging from 0 to 1.5 (Sup-392

plementary Figure S3 for the slip rate and Supplementary Figure S4 for the slip accel-393

eration). We display with gridded meshes the sub-faults with less than 90% of the slip394

restored.395

4.5 Prior model396

At first, we use a null prior model, i.e., (1) a fully uncoupled model for the coupling,397

hence slip rates equal to the convergence rate, and (2) a zero acceleration model for the398

slip acceleration. We additionally test a fully coupled prior model (Supplementary Fig-399

ure S5): this prior brings only small differences in the well restored area of the PAC plate.400

However, while changing the PHS plate prior model does not affect the inverted PAC401

interface coupling, the PAC plate prior model impacts the inverted PHS interface cou-402

pling (as shown by comparing Figure 4, Supplementary Figure S6 and Supplementary403

Figure S7). Because of this sensitivity to the PAC prior, we must keep in mind that the404

results for PHS plate are to be taken with caution.405

For the slip acceleration, we test a prior model based on the seismic acceleration406

observed by Marsan et al. (2017) in order to test whether slip and background seismic-407

ity are linked. The computation of the slip acceleration prior model and the results are408

shown later in the discussion (Section 6.4).409

5 Analysis and inversion results410

5.1 Velocity field and coupling411

The spatial pattern of the horizontal inter-seismic surface displacements is given412

by the velocity terms v of the linear trajectory model (Equation (1) when imposing a =413

0; see Section 3.3). Using the stable North America reference frame, we compare our ve-414

locity field (Figure 4, black arrows) to the one of Mavrommatis et al. (2014). We observe415

the same West-North-West direction of the velocity along the East coast of Honshu, as416
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Figure 4. Inter-seismic coupling of the Pacific-North America (PAC-NAM) interface (a)

and the Philippine Sea-North America (PHS) interface (b). Black arrows: observed velocity

field, in a stable NAM reference frame. Green arrows: predicted velocity field. Gray grid: sub-

faults for which the slip is poorly restored (see Section 4.4). The amount of coupling is shown

with the color scale (from freely slipping in white to fully coupled in black). The convergence

slip rates used to determine the coupling of each plate are vPAC = 76 mm/yr for the PAC and

vPHS = 26 mm/yr for the PHS. Other elements are described in Figure 1.

well as a rotation towards the East when going North. The velocities have an amplitude417

of ∼17.5 mm/yr along the East coast and ∼9 mm/yr along the West coast of Honshu.418

The velocity field of Mavrommatis et al. (2014) is rotated by ∼5 mm/yr clockwise with419

respect to our field. This systematic difference is likely due to a different definition of420

the North America plate in both studies, although the effect of a different processing of421

the GPS time series cannot be excluded. This quantitative agreement between our inter-422

seismic velocity field and Mavrommatis et al. (2014) gives us confidence in the quality423

of our model for Honshu, hence also for the Kanto region.424

We infer the inter-seismic coupling from the slip rates inverted according to Sec-425

tion 4. Figure 4 shows this coupling obtained when performing this inversion jointly on426

both the PAC-NAM and the PHS-NAM interfaces. On the PAC-NAM interface (Fig-427

ure 4a), we see a strongly coupled area offshore Honshu from 38o to 39o N and from 141.7o to428

142.5o E, as was already evidenced by Loveless and Meade (2010) and Perfettini and Avouac429

(2014). The PHS-NAM interface is also a strongly coupled along the Sagami Trough west430

of 141o E. The wide coupled area and the coupling under Kanto was already observed431

by Loveless and Meade (2010), Nishimura et al. (2007), Noda et al. (2013) and Sagiya432

(2004). We also show in Supplementary Figures S8 and S9 the coupling obtained on PAC433

and PHS for smaller and larger σm values, hence allowing for a smoother or rougher cou-434

pling.435
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5.2 Acceleration field and slip acceleration436

Our acceleration field (Figure 5, black and gray arrows) exhibits a landward ac-437

celeration North of Honshu with the amplitude decreasing when going East, and a trench-438

ward acceleration South of 38.5o N. The first order of our acceleration pattern and am-439

plitude are compatible with the ones observed by Mavrommatis et al. (2014) and Yokota440

and Koketsu (2015). Nevertheless, a notable difference is found in the Kanto region, where441

Yokota and Koketsu (2015) show a very limited acceleration compared to the rest of Hon-442

shu. Instead, we find an eastward acceleration with an amplitude of the same order as443

the north Honshu acceleration. According to our statistical test of the acceleration sig-444

nificance (see Section 3.4) most acceleration values in the Kanto region are significant445

(Figure 5, black arrows). This acceleration suggests that some plate uncoupling took place446

between 1997 and 2011.447

To resolve this, we first invert the slip acceleration field on the PAC-NAM subduc-448

tion interface only. Figure 5 shows both accelerated (red) and decelerated (blue) slips.449

The slip acceleration corresponds to forward slip on the subduction interface, or equiv-450

alently a decrease in coupling. A remarkable result is the acceleration area South of 36.5o451

N, consistent with the observed surface acceleration as mentioned earlier. This acceler-452

ation remains clearly visible even while varying the σm parameter (Supplementary Fig-453

ure S10). Because the presence of the PHS plate cannot be ignored for the stations in454

Kanto, we perform a second inversion using both the PAC and PHS plates, cf. Supple-455

mentary Figure S11. Very limited changes are observed, with a decrease of the slip ac-456

celeration on the PAC plate limited to 0.6 mm/yr2 at maximum, and an acceleration of457

the order of 0.3 mm/yr2 on the PHS plate. Since there exists a trade-off between slip458

accelerations on either plates (see Section 4.5), we cannot resolve with accuracy the pro-459

portion of acceleration hosted by each plate. Our analysis however clearly demonstrates460

that there exists a significant increase in slip rate between 1997 and 2011 South of 36.5o461

N, that is compatible with previous observations of acceleration in seismicity (Reverso462

et al., 2016) and SSE shortening in recurrence intervals (Fukuda, 2018; Hirose et al., 2012;463

Ozawa, 2014).464

The residuals between the observed and modeled surface acceleration (Supplemen-465

tary Figure S12) shows little spatial coherence at the large scale, implying that the model466

does well in capturing the large scale pattern, even though the residuals are almost al-467

ways significantly larger than the uncertainties as discussed in Section 4.3.468

The vertical component of the GPS time series being more noisy than the horizon-469

tal component, we did not use it in the models presented in the main text. We however470

evaluate the impact of adding the vertical displacements to the horizontal ones when in-471

verting for the slip acceleration. We first notice that, indeed, the vertical accelerations472

do not exhibit a spatially coherent pattern, likely because of the noise (that includes all473

non-tectonic phenomena) contaminating the acceleration signal (Supplementary Figure S13b).474

Moreover, the inverted slip acceleration is in effect very little affected by the vertical ac-475

celeration, as shown in Supplementary Figure S13a.476

6 Refined analyses and sensitivity tests477

We here provide further analyses to (1) compare our results with those of Mavrommatis478

et al. (2014) and Yokota and Koketsu (2015), in particular the processing of the GPS479

data (Section 6.1) as well as the inclusion of slow deformation transients (Section 6.2);480

(2) assess how the slip acceleration translates in terms of progressive coupling / uncou-481

pling (Section 6.3); (3) address how our results can be compared to changes in seismic-482

ity rates, by defining a “seismic-based” prior to the slip acceleration model (Section 6.4).483
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Figure 5. Slip acceleration of the Pacific (PAC) plate. The black and grey arrows depict the

observed acceleration field: we distinguish the stations which have a signal-to-noise ratio greater

than 3 (black), and those which fail to meet this criterion (grey, see Section 3.4). The green ar-

rows represent the acceleration field predicted by the model. The amount of slip acceleration

on the PAC slip interface is shown with the blue to red color-scale. The gray grid shows the

sub-faults for which the slip is poorly restored (see Section 4.4).
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6.1 This study with GAMIT/GLOBK processing versus F3 solution484

A significant difference with the data presented in Mavrommatis et al. (2014) and485

Yokota and Koketsu (2015) is the GPS data processing approach, and the choice of a486

reference frame (International Terrestrial Reference Frame, ITRF version). We have here487

made use of the GAMIT/GLOBK software to derive daily positions that we combine and488

map into ITRF2014 (Altamimi et al., 2017) using PYACS (see Section 3.1). Both Mavrommatis489

et al. (2014) and Yokota and Koketsu (2015) instead used the GEONET F3 solution pub-490

lished by the Geospatial Information Authority of Japan. The F3 solution (Nakagawa491

et al., 2009) was processed with Bernese software (Walser et al., 2015) and mapped into492

the ITRF2005 reference frame (Altamimi et al., 2007). Tsuji et al. (2017) explain that493

the analysis for the F3 solution use the mapping function of Niell (1996), an estimated494

delay gradient and an absolute phase center and variations model.495

Figure 6. Slip acceleration of the Pacific (PAC) plate from the F3 solution. (a): Slip accelera-

tion from the F3 solution; same legend than Figure 5. (b) Slip acceleration difference between the

slip acceleration from GAMIT/GLOBK processing (Figure 5) and the slip acceleration from the

F3 solution (a).

In order to compare our solution with the F3 solution we use the Helmert param-496

eters given by the ITRF website (http://itrf.ensg.ign.fr) to rotate the F3 solution into497

the ITRF2014 (more details in Supplementary Text S1 and Supplementary Table S1).498

Then, we apply the analysis described in Section 3 to the converted F3 solution, by again499

fitting the trajectory model of Equation (1), and then inverting the acceleration field on500

the PAC plate (Section 4). The obtained acceleration field, shown in Figure 6, displays501

the same eastward acceleration North of Honshu and westward South of 39o N as in Fig-502

ure 5, in Mavrommatis et al. (2014) and in Yokota and Koketsu (2015). The F3 solu-503

tion implies higher acceleration amplitudes (∼0.5 mm/yr) on the Eastern side of the is-504

land than our solution (∼0.1 mm/yr). Looking more specifically at Kanto, we observe505

significant acceleration with the F3 solution and GAMIT/GLOBK processing (black ar-506
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row, Figures 5 and 6) that were not reported by Mavrommatis et al. (2014) nor by Yokota507

and Koketsu (2015).508

6.2 Influence of Boso slow slip events509

Contrary to Mavrommatis et al. (2017) and Yokota and Koketsu (2015), we here510

consider the Boso SSEs in the time series modelling (see Sections 3.2 and 3.3), i.e., we511

correct for the deformation transients caused by the SSEs. To evaluate the impact of re-512

moving these SSEs, we additionally compute the inter-seismic velocities and the asso-513

ciated coupling without performing this correction (Supplementary Figure S14a). As nat-514

urally expected, for the PAC plate, the Boso SSE area is where the changes between both515

models are (Supplementary Figure S14b). The area that is most affected is however larger516

than the Boso SSEs slip area due to the inversion smoothing. For the PHS plate, the cou-517

pling is on average decreased by about 0.05 to 0.1, since we let the slow slip events con-518

tribute to the release of some of the accumulated slip (Supplementary Figure S15).519

More importantly, we find that the inclusion or not of the Boso SSEs has a lim-520

ited impact on the inverted slip acceleration on the PAC plate in the wider Kanto re-521

gion (Supplementary Figure S16). Our results are therefore not very dependent on the522

actual modelling (or not) of the SSEs.523

6.3 Coupling change compared to slip acceleration524

The accelerated slip on the subduction interface corresponds to a change in cou-525

pling that can be simply evaluated. To do so, we estimate the coupling both in 1997 and526

2011 using the displacement rates modeled at all stations at the dates 01/01/1997 and527

06/02/2011. Namely, we extract the modeled velocity at the first date, which is by def-528

inition the linear term of the quadratic model (Equation (1)), and compute the associ-529

ated coupling (Supplementary Figure S17a). Adding the acceleration term, we then com-530

pute the mean velocity at the second date and the associated coupling (Supplementary531

Figure S17b), and finally obtain the difference in coupling ∆C (Figure 7).532

In Section 4.3, we mentioned that a coupling change of ∆C = 0.64 over 14 years533

is equivalent to a mean slip acceleration aslip = 3.45 mm/yr2, given the PAC-NAM con-534

vergence rate. In fact, Figures 5 and 7 display similar relative variations, up to a sim-535

ple proportionality factor imposed by the convergence rate (vPAC = 76 mm/yr) and536

the duration of observation (∆t = 14.1 yr):537

aslip = ∆C
vPAC

∆t
(14)

We find that the coupling changes can be large, with an average of -0.2 to -0.3 South of538

36.5o N (Figure 7).539

6.4 Seismic acceleration and slip acceleration540

We compare our results and complement them with the acceleration of background541

seismicity obtained by Marsan et al. (2017), who studied how the rate of background earth-542

quakes changed along the Japan Trench from 1990 to 2011. They declustered the earth-543

quake activity taking place within 20 km of the PAC slip interface, modeled the time evo-544

lution of the obtained background rate with a parabolic polynomial µ̂(t), and computed545

a background rate change coefficient φ defined as the modeled rate just before the 09/03/2011546

M 7.3 foreshock of the Tohoku mainshock divided by the modeled rate on the 01/01/1990:547

φ =
µ̂(t = 09/03/2011)

µ̂(t = 01/01/1990)
(15)548

Using the same data and methodology, we compute the seismic acceleration φ but only549

from 01/01/1997 to 06/02/2011 (Figure 8a) to be consistent with the time interval used550
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Figure 7. Coupling difference ∆C of the Pacific (PAC) plate between 1997 and 2011. The

amount of ∆C on the PAC is shown with the green-orange color-scale: orange sub-faults are

more coupled in 2011 (and green in 1997). The gray grid shows the sub-faults where the slip is

poorly restored (see Section 4.4). Other elements are described in Figure 1.

in the GPS analysis. We then convert this seismic acceleration φ into the expected slip551

acceleration over the same period, defining a new prior model as shown in Figure 8c. This552

conversion is based on the assumption that the slip rate (dxslip/dt) and the background553

seismicity rate (µ̂) are proportional (the proportionality coefficient is assumed constant554

in time, but is allowed to vary spatially). In our modeling, the modeled slip rate is dxslip/dt =555

vslip + aslip (t− tR); we thus have for any initial t1 and ending t2 dates:556

φ =
vslip + aslip (t2 − tR)

vslip + aslip (t1 − tR)
(16)557

We here use t1 = 1997 so that t1 = tR (same reference time than for Equation (1)),558

and t2 = 2011.1 . We thus get that the slip acceleration when comparing slip rates at559

those t1 and t2 is:560

aslip = (φ− 1)
vslip
t2 − tR

(17)561

with vslip = (1− C)vPAC where C is the coupling coefficient and vPAC = 76 mm/yr.562

As we only examine changes over time, this approach allows to discard the unknown pro-563

portionality coefficient between the slip and seismicity rates.564

Marsan et al. (2017) made use of two distinct declustering methods, so to only keep565

acceleration patterns that remain robust with regard to the specific assumptions under-566

lying each of these methods. As a result, locations with incoherent acceleration values567

obtained with these two methods were discarded from the analysis (explaining the ap-568

parent lacunarity of Figure 8a). This is notably the case for a ∼150 km-long portion of569

the trench centered on the Tohoku mainshock (between about 36.5o and 38o N) and downdip570

of it where the two methods give opposite results when declustering the 2003 intra-slab571

and 2005 Miyagi earthquake aftershock sequences. In our present slip rate inversion from572
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Figure 8. Seismic acceleration of the Pacific (PAC) plate between 1997 and 2011 as slip ac-

celeration prior. (a): Seismic acceleration of the Pacific (PAC) plate between 1997 and 2011,

based on Marsan et al. (2017); the color-scale gives the acceleration value φ of the seismicity rate:

blue (φ < 1) represents deceleration and red (φ > 1) acceleration. Other elements are described

in Figure 1. (b) Coupling of the Pacific-North America (PAC-NAM) interface; same legend as

Figure 4. (c): Prior slip acceleration model of the PAC plate based on the seismic acceleration

(a) and the coupling (b) with Equation (17); same legend as Figure 5. (d): Slip acceleration of

the PAC plate; same legend as Figure 5.
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GPS observations, we cannot leave sub-faults with no a priori value at all, and there-573

fore, by default, we interpolate the φ value on those sub-faults, by considering the sub-574

faults within a 30 km radius and taking a weighted (according to distance) average of575

the corresponding seismic accelerations. This interpolation yields a mild deceleration φ576

value for most of this zone.577

The slip rate prior obtained using the seismicity is shown in Figure 8c, and show578

good correlation with the already inverted slip rate of Figure 5, albeit (1) with no ac-579

celeration downdip of the 36.5o-38o N portion of the trench, due to the disagreement be-580

tween the two declustering methods there as already commented, and (2) with a stronger581

signal updip along the trench, in areas where the GPS inversion has no resolution. We582

show the inverted slip acceleration field using this prior in Figure 8d. The coupling used583

in Figure 8b is obtained with a fully uncoupled prior model; Supplementary Figure S18584

shows the results using the coupling as given by a fully coupled prior model. Apart from585

the improved resolution along the trench (cf. item (2) above), the most notable differ-586

ence with Figure 5 is South and East of the Boso SSEs area: even if we have a good resti-587

tution there, the slip acceleration is partly controlled by the prior model, so that we do588

not observe acceleration nor deceleration with a null prior model, while with the prior589

model based on seismicity we obtain acceleration (East) and deceleration (South) con-590

sistent with the strong changes in seismicity observed there (Figure 8d and Supplemen-591

tart Figure S18d).592

7 Discussion593

Our analysis completes previous similar studies (Heki & Mitsui, 2013; Loveless &594

Meade, 2010; Mavrommatis et al., 2014; Yokota & Koketsu, 2015) in several ways: (1)595

by testing different methods for computing the daily GPS solution ; (2) by accounting596

for SSEs in Boso as well as the 2000 Miyakejima volcanic unrest : these transients were597

removed from the GPS time series (Section 3.3), even though this is found to have lit-598

tle consequences on the estimated slip acceleration, cf. Section 6.2; (3) by including the599

PHS slip interface underneath Kanto and along the Sagami Trough (as shown in Fig-600

ure 4b). The addition of the PHS plate does not significantly modify the results obtained601

with the PAC plate alone, see Section 5.2 and Supplementary Figure S11; (4) by adding602

prior information based on background seismicity changes (Section 6.4). From this, we603

confirm and strengthen the robustness of previous observations, mainly relating to a sig-604

nificant acceleration of the slip for the PAC subduction, in the range of 1.5 to 2.5 mm/yr2605

centered at 37o to 38o N, and corresponding to the downdip extension of the area that606

slipped by more than 30 m during the 2011 Mw 9.0 Tohoku earthquake. Such a slip ac-607

celeration corresponds to a decrease in coupling of the order of −0.3 to −0.4 over the608

1997-2011 period (Figure 7). This area is well delineated by a marked reversal in sign609

of the acceleration to the north: all tested models (Figures 5 to 8) find a robust slip de-610

celeration of ∼3 mm/yr2 north of 39o N, which origin could be related to the 1994 San-611

riku earthquake and subsequent afterslip (Heki et al., 1997) and/or to the 2003 Tokachi612

earthquake (Heki & Mitsui, 2013). This contrasts with a milder transition more to the613

south (at about 36.5o N), South of which another patch of slip acceleration is found which614

amplitude depends on the model (Figures 5 to 8). It has been argued by Hasegawa and615

Yoshida (2015) that the downdip acceleration (between 37o and 38o N) must have con-616

tributed to further stressing of the main asperity that eventually failed in 2011. Whether617

this acceleration is a common phenomenon in this region or not cannot be answered with618

certainty. Hardebeck (2012) discusses the near complete release of the differential stress619

at the time of the 2011 shock, along with the fact that the released seismic moment only620

amounts to a 0.23-0.77 of the moment that accumulated in the 1142 years since the last621

equivalent megathrust earthquake in this region, the 869 AD Jogan earthquake that trig-622

gered a tsunami with comparable characteristics to those of the 2011 Tohoku event (e.g.623

Minoura et al., 2001, 2013; Sugawara et al., 2012). Indeed, even accounting for large post-624
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seismic relaxation lasting several decades (as seen after the 1960 Chile earthquake) (e.g.625

Melnick et al., 2018; Wang et al., 2007) and incomplete plate coupling, a Mw 9 earth-626

quake would need to occur every 300-700 years to match the average modeled rate of mo-627

ment accumulation (Ozawa et al., 2002). The stressing rate (hence slip rate) is thus likely628

to vary during the extended inter-seismic period. The short-term (i.e., over 14 years) av-629

erage coupling could then be an over-estimation of the longer time-averaged coupling.630

The fact that we observe a 14 year-long decrease of coupling (even after removing co-631

and post-seismic effects of the intermediate size earthquakes that have occurred in the632

region during this time period) therefore is coherent with the fact that there must ex-633

ist significant variations of coupling during the earthquake cycle in this region.634

Figure 9. Acceleration of m ≥ 3 earthquakes within 10 km of the Pacific-North America

(PAC-NAM) interface (b) in the 35o-36.5o N, 140o-141.5o E box (a), for the 1990-March 2011 pe-

riod. (a): White circles: m ≥ 3 earthquakes within 10 km of the PAC-NAM interface; red circle:

2008 Mw 7.0 Ibaraki earthquake; other elements are described in Figure 1. (b): Blue dots: cu-

mulative number of m ≥ 3 earthquakes; red line: quadratic model. The quadratic fit is shown in

red, and gives an acceleration in seismicity rate of +86% for 1990-2011 and +44% for 1997-2011

(the vertical dashed line shows the 01/01/1997 date).

Our analysis finds a broad slip acceleration in the 35o to 36o N area, although weaker635

(by a factor 2) than for the 37o-38o N region. This was not identified by previous stud-636

ies, although this is a robust feature of our inversions (Figures 5 to 8). Even though some637

trade-off exists between accelerated slip along the PAC-NAM and the PHS-NAM inter-638

faces, our analysis suggests the slip acceleration along the former dominates (Figure 5639

and Supplementary Figure S11); we however cannot reject the possibility that some of640

this acceleration took place along the PHS-NAM interface. Compared to the rest of our641

studied area, this zone is characterized by small earthquakes, with the noticeable excep-642

tion of the 2008 Mw 7.0 Ibaraki earthquake. Because of this, the seismicity dynamics643

is relatively smooth, and is not dominated by strong aftershock sequences, as is on the644

contrary observed more to the north (Ozawa et al., 2012). A direct analysis of the seis-645

micity (m ≥ 3) rate can thus be conducted without having to correct for aftershock se-646

quences. Figure 9 confirms the existence of a significant acceleration of the earthquake647

rate in the region from 35o to 36.5o N, 140o to 141.5o E, that cannot be attributed to648

the 2008 Ibaraki mainshock and its aftershock sequence (especially as it occurs relatively649

late in the considered 1997-2011 interval). We further notice that this area hosts SSEs650

(offshore Boso), as well as seismicity swarms that could be the signature of small SSEs651

outside the Boso area that have so far escaped detection through GPS measurements (Gardonio652

et al., 2018; Reverso et al., 2016). The accelerated seismicity would thus be directly re-653

lated to an acceleration of the controlling aseismic forcing rate at these specific locations.654

This is coherent with (1) the strong acceleration in background rate observed by Marsan655

et al. (2017) over the 1990-2011 period, (2) the remarkable acceleration in seismicity rate656
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in the Boso area for the same period (Reverso et al., 2016), as well as (3) the shorten-657

ing of Boso inter-SSE periods of times (Ozawa, 2014). In the last two cases, slip accel-658

eration on the PHS-NAM interface is likely to be the main cause. All these observations659

point to a decoupling of the PAC and PHS interfaces there, estimated to about 0.2 to660

0.3 for PAC as shown in Figure 7. This area did not rupture during the 2011 mega-thrust661

earthquake, perhaps because the coupling at shallow depths along the Japan Trench is662

too low there, so that the rupture could not break new strong asperities that would have663

extended it further south.664

Conclusions665

To obtain new insights into the changes in surface displacement seen in Northern666

Japan (Honshu), we performed a different GPS processing than the F3 solution as used667

by Mavrommatis et al. (2014) and Yokota and Koketsu (2015), and developed our own668

analysis. We processed the data using the GAMIT/GLOBK suite based on double dif-669

ference positioning and modeled the resulting time series with a trajectory model that670

accounts for slow deformation events as well as co- and post-seismic effects of interme-671

diate to large earthquakes. We then inverted the slip rate distribution on the modeled672

PAC plate. As observed by previous analyses, the main feature north of 37o N is a fault673

slip acceleration, corresponding to a decoupling, downdip the Tohoku rupture, that could674

be related to the 2011 megathrust rupture - i.e., that at least could have hastened it.675

Our main finding is that a distinct zone of slip acceleration is located South of 36.5o676

N (Figure 5). Fukuda (2018), Hirose et al. (2012) and Ozawa (2014) have suggested that677

a shortening of the recurrence interval of the SSE offshore Boso Peninsula has taken place678

starting in the decade before the 2011 mainshock. Here we show that, more generally,679

a large extent of the PAC subduction slip interface (i.e., larger than the typical size of680

the Boso SSE on the PHS) has been accelerating steadily since 1997. This acceleration681

is robust, and remains present in all the various sensitivity tests carried out (namely: com-682

paring the inter-seismic and inter-SSE solutions, using the F3 solution, changing the post-683

seismic relaxation time, using the seismic acceleration as prior model). We moreover checked684

how this result could be influenced by the inclusion of the PHS plate in the inversion,685

in addition to PAC. Adding PHS does not negate the wide acceleration on PAC south686

of 36.5o N, and could even contribute (up to ∼0.3 mm/year2) to it, in coherence with687

the reduced waiting times between Boso SSEs. This observation of an accelerated slip688

rate noticeably far from the 2011 rupture remains to be explained. It adds up to pre-689

vious observations in other plate convergence contexts (Materna et al., 2019; Meltzner690

et al., 2015; Prawirodirdjo et al., 2010) that the slip rate, and thus the plate coupling,691

could evolve significantly over years to decades outside the widely observed post-seismic692

slip following any mainshock.693
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Text S1

To describe the transformation of the GPS time series from ITRF2005 to ITRF2014,

we detail here the equations controling this transformation. Equation (1) represent the

transformation of one point at the Epoch given time (2010.0), all the parameter values

are given in Table S1 :XITRF2005

YITRF2005

ZITRF2005

 =

XITRF2014

YITRF2014

ZITRF2014

 +

TxTy
Tz

 +

 D −Rz Ry

Rz D −Rx

−Ry Rx D


XITRF2014

YITRF2014

ZITRF2014

 (1)

Equation (2) shows the value of any parameter P at any time t where Ṗ is the rate of the

parameter :

P (t) = P (Epoch) + Ṗ × (t− Epoch) (2)
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X - 2 :

Table S1. Transformation parameters from ITRF2014 to ITRF2005

Solution Tx Ty Tz D Rx Ry Rz Epoch
(mm) (mm) (mm) (ppb) (.001”) (.001”) (.001”)

Rates Tx Ty Tz D Rx Ry Rz

(mm/yr) (mm/yr) (mm/yr) (ppb/yr) (.001”/yr) (.001”/yr) (.001”/yr)
ITRF2005 2.6 1.0 -2.3 0.92 0.00 0.00 0.00 2010.0

Rates 0.3 0.0 -0.1 0.03 0.00 0.00 0.00
From the International Terrestrial Reference Frame website (http://itrf.ensg.ign.fr)
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Figure S1. L-curve for σm determination for the velocity field inversion. The color correspond

to the value of log10(σm). Our preferred σm value is 100.79 (log10(σm) = 0.79). All the inversion

except Figures S8 and S9 are made for σm = 100.79. Alternative inversions are proposed for

σm = 100.50 (Supplementary Figure S8) and σm = 101.10 (Supplementary Figure S9).
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Figure S2. L-curve for σm determination for the acceleration field inversion. The color

correspond to the value of log10(σm). Our preferred σm value is 100.02 (log10(σm) = 0.02). All

the inversion except Supplementary Figure S10 are made for σm = 100.02. Alternative inversions

are proposed for σm = 10−0.30 (Supplementary Figure S10a) and σm = 100.30 (Supplementary

Figure S10b).
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Figure S3. Restitution for the coupling of the Pacific-North America (PAC-NAM) interface

(a) and the Philippine Sea-North America (PHS-NAM) interface (b). The color represent the

amount of restitution of each sub-fault: 0, the slip is not restored and ∼1, the slip is fully restored.

Other elements are described in Figure 1.
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Figure S4. Restitution for the acceleration field inversion of the Pacific (PAC) plate. Same

legend than Supplementary Figure S3.
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Figure S5. Coupling of the Pacific-North America (PAC-NAM) subduction interface with a

fully coupled prior model (a) and the coupling difference between Figure 4a with an uncoupled

prior model and (a). (a): Same legend as Figure 4. (b): Orange: sub-fault more coupled for the

uncoupled prior model (Figure 4); green: sub-fault less coupled for the uncoupled prior model

(Figure 4); other elements are described in Figure 1.
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Figure S6. Coupling of the Pacific-North America (PAC-NAM) subduction interface with

a fully coupled prior model (a) and coupling of the Philippine Sea-North America (PHS-NAM)

subduction interface with a fully uncoupled prior model (b). Same legend as Figure 4.
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Figure S7. Coupling of the Pacific-North America (PAC-NAM) subduction interface with a

fully uncoupled prior model (a) and coupling of the Philippine Sea-North America (PHS-NAM)

subduction interface with a fully coupled prior model (b). Same legend as Figure 4.
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Figure S8. Coupling of the Pacific-North America (PAC-NAM) subduction interface (a) and

the Philippine Sea-North America (PHS-NAM) subduction interface (b) for σm = 100.50. Same

legend as Figure 4.
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Figure S9. Coupling of the Pacific-North America (PAC-NAM) subduction interface (a) and

the Philippine Sea-North America (PHS-NAM) subduction interface (b) for σm = 101.10. Same

legend as in Figure 4.
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Figure S10. Slip acceleration of the Pacific (PAC) plate for σm = 10−0.30 (a) and σm = 100.30

(b). Same legend as Figure 5. Warning: different colorbar scales!
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Figure S11. Slip acceleration of the Pacific (PAC) plate (a) and the Philippine Sea (PHS)

plate (b) for the 2-plate inversion. Same legend as Figure 5.
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Figure S12. Residuals of the acceleration field inversion of the Pacific (PAC) plate. The error

ellipse of the horizontal acceleration are shown for each station , as well as the residuals between

the acceleration field (black, gray arrows in Figure 5) and the predicted surface acceleration

(green arrows in Figure 5). The light arrows correspond to residuals higher than the acceleration

error, and dark, to residuals small or equal to the acceleration error.
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Figure S13. Slip acceleration of PAC accounting for vertical displacement. (a): Horizontal

acceleration and slip acceleration; same legend as Figure 5. (b): Vertical acceleration; the outer

circle represent the observed vertical acceleration while the inner circle represent the predictions.

We distinguish the stations which have a signal-to-noise ratio greater than 3 (black contour),

and those which fail to meet this criterion (grey contour, see Section 3.4); other elements are

described in Figure 1.

October 20, 2020, 8:06pm



: X - 15

Figure S14. Impact of the Boso SSEs correction on the Pacific-North America (PAC-NAM)

subduction interface coupling. (a): Inter-seismic coupling (for time series analysis without SSE

modeling); same legend as Figure 4. (b): Coupling difference between inter-SSE coupling (Fig-

ure 4a) and inter-seismic coupling (a); orange: sub-fault more coupled with the Boso SSEs cor-

rection; green: sub-fault less coupled with the Boso SSEs correction; other elements are described

in Figure 1.
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Figure S15. Impact of the Boso SSEs modelling on the Philippine Sea-North America (PHS-

NAM) subduction interface coupling. (a): Inter-seismic coupling (for time series analysis without

SSE modeling). (b): Coupling difference between inter-SSE coupling (Figure 4b) and inter-

seismic coupling (a). Same legend as Figure S14.
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Figure S16. Impact of the Boso SSEs modelling on the Pacific (PAC) plate slip acceleration.

(a): Inter-seismic slip acceleration (for time series analysis not modeling SSE); same legend as

Figure 5. (b): Difference between the inter-SSE slip acceleration (Figure 5) and the inter-seismic

slip acceleration (a).
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Figure S17. Coupling of the Pacific-North America (PAC-NAM) subduction interface in 1997

(a) and 2011 (b). Same legend as Figure 4.
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Figure S18. Seismic acceleration on the Pacific (PAC) plate between 1997 and 2011 as

slip rate acceleration prior. (a): Seismic acceleration of the Pacific (PAC) plate between 1997

and 2011. (b) Coupling of the Pacific-North America (PAC-NAM) interface. (c): Prior slip

acceleration model of the PAC plate based on the seismic acceleration (a) and the coupling (b)

with Equation (18). (d): Slip acceleration of the PAC plate. Same legend as Figure 8.
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