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Abstract

Climate models exhibit a broad range in the simulated properties of the global climate. In the early historical period, the

absolute global mean surface air temperature of models contributing to the fifth phase of the Coupled Model Intercomparison

Project (CMIP5) spans a range of ˜12-15 °C. Other climate parameters are linked to the global mean temperature, such as

sea ice area, atmospheric circulation patterns, and by extension cloudiness, precipitation and albedo. Accurate representation

of the baseline climate state is crucial for meaningful future climate projections, since the baseline conditions may dictate the

capacity for change. For example, a model with initially smaller sea ice area has less potential to lose sea ice as the planet

warms. Amongst the CMIP5 models, it is found that in the baseline climate state there are coherences between Southern Ocean

temperature, outgoing shortwave radiation, cloudiness, the position of the mid-latitude eddy-driven jet, and Antarctic sea ice

area. The baseline temperature relationship extends to projected future changes in the same set of variables. The tendency for

models with initially cooler Southern Ocean surface temperature to exhibit more global warming, and vice versa for initially

warmer models, can therefore be linked to baseline Southern Ocean climate system biases. A first look at emerging data from

CMIP6 reveals a shift of the tendency towards the Antarctic region, potentially linked to a reduction in biases over the Southern

Ocean, which prompts an examination of biases in the Antarctic region as more CMIP6 model data becomes available.
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Key points: 19 

 20 

 There are robust intermodel correlations across elements of the Southern Ocean climate 21 

system in historical CMIP5 simulations. 22 

 The baseline Southern Ocean temperature relationship extends to projected changes in 23 

radiation, cloudiness, the jet latitude and sea ice. 24 

 Models with initially cooler Southern Ocean tend to warm more globally, due to an apparent 25 

greater capacity for change. 26 

  27 
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Abstract 28 

 29 

Climate models exhibit a broad range in the simulated properties of the global climate. In the early 30 

historical period, the absolute global mean surface air temperature of models contributing to the 31 

fifth phase of the Coupled Model Intercomparison Project (CMIP5) spans a range of ~12-15 °C. 32 

Other climate parameters are linked to the global mean temperature, such as sea ice area, 33 

atmospheric circulation patterns, and by extension cloudiness, precipitation and albedo. Accurate 34 

representation of the baseline climate state is crucial for meaningful future climate projections, 35 

since the baseline conditions may dictate the capacity for change. For example, a model with 36 

initially smaller sea ice area has less potential to lose sea ice as the planet warms. Amongst the 37 

CMIP5 models, it is found that in the baseline climate state there are coherences between Southern 38 

Ocean temperature, outgoing shortwave radiation, cloudiness, the position of the mid-latitude eddy-39 

driven jet, and Antarctic sea ice area. The baseline temperature relationship extends to projected 40 

future changes in the same set of variables. The tendency for models with initially cooler Southern 41 

Ocean surface temperature to exhibit more global warming, and vice versa for initially warmer 42 

models, can therefore be linked to baseline Southern Ocean climate system biases. A first look at 43 

emerging data from CMIP6 reveals a shift of the tendency towards the Antarctic region, potentially 44 

linked to a reduction in biases over the Southern Ocean, which prompts an examination of biases in 45 

the Antarctic region as more CMIP6 model data becomes available.  46 

 47 

Plain Language Summary 48 

 49 

Modern simulations of the Earth’s climate system differ in some of their large-scale features. For 50 

example, in models reported on by the Intergovernmental Panel on Climate Change (IPCC) in the 51 

Fifth Assessment Report (AR5), the globally averaged baseline surface temperature ranges between 52 

12 and 15 °C. Global mean temperature is known to be linked to other features, such as wind, 53 

clouds, and rainfall. Correctly simulating the present-day climate is important, so that we can have 54 

more confidence in the possible futures they simulate under different levels of anthropogenic 55 

greenhouse gas emissions. In this study, strong relationships are found between modelled Southern 56 

Ocean temperature and the amount of sea ice and clouds they simulate. In addition, it is found that 57 

the initial Southern Ocean temperature is also related to changes in sea ice and cloud simulated in 58 

the future. A model that is cooler initially, for example, tends to have more sea ice and cloud, but 59 

also loses more sea ice and cloud in the future, and simulates more global warming.  60 

  61 



 

manuscript submitted to Earth’s Future 

3 

1 Introduction 62 

 63 

The sensitivity of the Earth’s climate to greenhouse gas forcing is arguably the key quantity that 64 

drives efforts to mitigate the risks of human-induced climate change. But the level of climate 65 

sensitivity remains highly uncertain. The most typical measure, equilibrium climate sensitivity 66 

(ECS), is defined as the global temperature change in response to a doubling to atmospheric CO2. 67 

The Intergovernmental Panel on Climate Change (IPCC) estimated a likely range in ECS of 1.5-68 

4.5°C in the Fifth Assessment Report (AR5; Stocker et al., 2013). A more recent review, using 69 

multiple lines of evidence, narrows the range to 2.6-3.9°C (Sherwood et al., 2020). Climate models 70 

of all levels of sophistication have been used to estimate climate sensitivity, but modern efforts 71 

focus on the use of general circulation models (GCMs) and Earth system models (ESMs) which 72 

include biogeochemical processes. No two climate models are identical, with some exhibiting low 73 

sensitivity and others high (e.g. Flato et al., 2013; Forster et al., 2013; Zhai et al., 2015). 74 

Furthermore, no model is perfect, and all exhibit some level of bias when compared with 75 

observational data. One approach to reducing the level of uncertainty in climate sensitivity is that of 76 

‘emergent constraints’ (Hall et al., 2019). Emergent constraints aim to find links between the bias of 77 

particular variables in the baseline climate, and their evolution under radiative forcing. If a robust 78 

relationship emerges, across a wide range of different climate models, then it might be reasonable to 79 

expect more ‘realistic’ models in the baseline would provide more realistic projections. The 80 

emergent constraints approach crucially depends upon drawing from a large number of unique 81 

climate models. Increasing availability of such model data, as most notably facilitated by the 82 

Coupled Model Intercomparison Project (CMIP), allows for deeper studies into the impact of model 83 

biases on future projections. 84 

 85 

Baseline global mean surface temperature (GMST) has been explored as just one of many possible 86 

constraints on climate sensitivity. CMIP, phase 5, (CMIP5) models exhibit a wide range in long-87 

term averaged absolute GMST over the historical period (~12-15 °C; Flato et al., 2013). However, 88 

no statistically significant relationship has been found between baseline temperature and ECS in 89 

CMIP5 (Flato et al., 2013), nor with future temperature change in the RCP4.5 scenario (Hawkins & 90 

Sutton, 2016), though it has been noted that there is an absence of models with overly warm 91 

baseline temperature and strong global warming (Hawkins & Sutton, 2016). Simulated absolute 92 

temperature is generally considered unimportant, since it is more crucial to initialise a model with 93 

near-zero net TOA energy balance (Hawkins & Sutton, 2016). In addition, projected changes are 94 

usually measured with respect to the baseline, or unforced, climate, and therefore represented as 95 

anomalies. In this study, the potential influence of baseline absolute temperature on climate 96 

projections is revisited. The particular focus is on Southern Ocean processes, which play an 97 

important role in regulating the global climate. 98 

 99 

Past studies have noted possible relationships between elements of the Southern Hemisphere 100 

climate system and climate sensitivity, in both CMIP3 and CMIP5. CMIP3 models exhibited a 101 

strong relationship between Southern Hemisphere net top-of-atmosphere (TOA) radiation and 102 

climate sensitivity (Trenberth & Fasullo, 2010). Whilst showing that the intermodel correlation is 103 

strong, Trenberth & Fasullo (2010) also acknowledge that the relationship is likely due to large 104 

model biases in the Southern Hemisphere climate system. Larger errors related to the negative bias 105 

in cloud amount in CMIP3, they argued, may lead to smaller sensitivity. Grise et al. (2015) find a 106 

weaker intermodel correlation between climate sensitivity and Southern Hemisphere net TOA 107 

radiation amongst CMIP5 models. They show that the relationship only exists amongst a subset of 108 

CMIP5 models with unrealistically bright clouds in the Southern Hemisphere sub-tropics – a 109 

characteristic that is typical amongst CMIP3 models. Thus, the apparent link between net TOA 110 

radiation and climate sensitivity is not supported by a real physical mechanism, and manifests 111 

merely as a result of model biases. Southern Ocean cloudiness and net radiation were therefore 112 

deemed inappropriate for constraining equilibrium climate sensitivity (Grise et al., 2015). 113 

 114 
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In this study we focus on relationships between baseline parameters in the Southern Ocean climate 115 

system, and their projected changes. The analysis is primarily of intermodel correlations: motivated 116 

by the emergent constraints approach, and armed with a complete suite of CMIP5 simulations, the 117 

relationships between a range of variables is explored. We start by revisiting the intermodel 118 

correlation between the absolute baseline Southern Ocean surface temperature and GMST change in 119 

CMIP5 models, for which a compelling relationship is found. Our aim is to illuminate the role of 120 

baseline biases in the Southern Ocean system in CMIP5, and their impact on projected changes, 121 

locally and globally. We take a first look at CMIP6, but because the emerging story appears to be 122 

one of Antarctic biases, further exploration is left for a future study. After outlining data and 123 

methods (Section 2), the relationships between baseline absolute temperature and a range of other 124 

climate parameters for both baseline and future changes are examined (Section 3). Finally, the 125 

conclusions of this study are summarised in Section 4. 126 

 127 

2 Data and Methods 128 

 129 

This study focusses on CMIP5 models, but some preliminary analysis is conducted on available 130 

CMIP6 output. Equilibrium climate sensitivity (ECS) in CMIP models is generally estimated from 131 

the 150 year abrupt4xCO2 experiment, in which atmospheric CO2 is instantaneously quadrupled 132 

initially (Andrews et al., 2012; Gregory et al., 2004). This method for computing ECS avoids 133 

having to slowly evolve CO2 forcing, and then reach equilibrium, which can take several hundreds, 134 

if not thousands, of simulated years (Grose et al., 2018). Another measure for climate sensitivity is 135 

the transient climate response (TCR), which is a measure of the global temperature change after 70 136 

years of simulating an annual 1% increase in CO2. A dedicated CMIP experiment, namely the 137 

1pctCO2 scenario, is run by some modelling groups to compute the TCR. Although TCR might be 138 

considered more useful for climate projections over the next few decades (Knutti et al., 2017), ECS 139 

unexpectedly correlates more strongly with projected changes under the representative 140 

concentration pathway (RCP) scenarios (Grose et al., 2018). On the other hand, although the range 141 

in ECS across CMIP6 models is substantially larger than in CMIP5, and is in fact the largest range 142 

of any generation dating back to the 1990s, TCR is only slightly larger in CMIP6 as compared to 143 

CMIP3 and CMIP5 (Meehl et al., 2020). Since fewer models have data available from the 144 

abrupt4xCO2 or 1pctCO2 experiments, in this study global mean surface temperature (GMST) 145 

change from the baseline in the historical experiments through to the end of the 21
st
 century under 146 

the RCP8.5 emissions scenario experiments (rcp85), is taken as a proxy for climate sensitivity. The 147 

rcp85 scenario was chosen since it has the strongest forcing, and therefore the largest projected 148 

changes, which helps to draw out possible correlations. 149 

 150 

Baseline temperature is the equilibrium temperature that models achieve after a ‘spin-up’ period. 151 

However, the baseline may not be perfectly equilibrated due to model ‘drift’– spurious long-term 152 

changes unrelated to external forcing nor internal variability, which may be a result of insufficient 153 

spin-up integration (Sen Gupta et al., 2013). Here the baseline temperature is evaluated in the early 154 

part of the historical simulations, corresponding with the late 19
th

 Century. Greenhouse gas forcing 155 

may cause some temperature change in this early period, but the historical simulations are analysed 156 

in preference over the pre-industrial control (piControl) simulations, since piControl experiment 157 

data are available from fewer models than from historical. In addition, the aforementioned issue of 158 

model drift afflicts both sets of experiments (Sen Gupta et al., 2013). The baseline period is taken as 159 

1861-1900, early in the historical simulations and soon after the pre-industrial state. For projected 160 

changes, a difference is taken over the future period 2061-2100 and the baseline. Long reference 161 

periods of 40 years were chosen to reduce the influence of internal decadal variability as much as 162 

possible. 163 

 164 

The primary climate variables analysed in this study are surface temperature (CMIP variable name: 165 

tas), top-of-atmosphere (TOA) outgoing shortwave radiation (rsut), total cloud fraction (clt), 166 

surface zonal wind stress (tauu), and sea ice concentration (sic). All available CMIP5 monthly data 167 
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for each of the five variables were gathered from both historical and rcp85 experiment sets. Annual 168 

averages were computed, and then the data were regridded to a common 11° global grid. For 169 

models with multiple ensemble members, a single model ensemble average was taken. Utilising 170 

only models for which all five variables were available over the period 1861-2100 (after appending  171 

rcp85 to historical), resulted in a set of 40 CMIP5 models (Table 1). Net TOA radiation is also 172 

analysed for the same 40 models, but only in the historical experiments. It is computed as TOA 173 

incident shortwave radiation (rsdt) minus TOA outgoing shortwave (rsut) minus TOA outgoing 174 

longwave (rlut). Some relationships with ECS are computed, which is only available for 30 CMIP5 175 

models (Table 1). Surface air temperature is analysed later in a group of CMIP6 models, using 176 

historical data together with ssp585 (Table 2). 177 

 178 

TOA outgoing shortwave radiation is analysed here in preference over net radiation, since it gives a 179 

better sense of albedo effects, which is of greater interest. The surface zonal wind stress is used to 180 

estimate the mean latitude of the eddy-driven jet. After regridding zonal wind stress to the common 181 

11° global grid, annual and zonal means are taken. The jet latitude is then computed by fitting a 182 

quadratic polynomial to the latitude and two neighbouring grid points where zonal wind stress is 183 

maximal in the Southern Hemisphere. This method is similar to that of Kidston & Gerber (2010), 184 

but they use 10m zonal wind, for which the computed eddy-driven jet latitude is similar. 185 

 186 

Regression coefficients are calculated using ordinary least squares, and quoted correlation values 187 

are Pearson’s correlation coefficients. ‘Intermodel’ correlations or regressions refer to the 188 

relationship between two variables across the models (i.e. 40 CMIP5 models in most instances). 189 

The symbol r denotes intermodel correlation. The 95% and 99% statistical significance levels of 190 

correlations are quoted in various cases, and tested using a Student’s t-distribution. For a sample 191 

size of 40, correlations with magnitude greater than ~0.31 are significant at the 95% level (p = 192 

0.05), and ~0.40 at the 99% level (p = 0.01). 193 

 194 

In comparisons with reanalysis, the NOAA-CIRES-DOE Twentieth Century Reanalysis, version 3 195 

(20CRv3) product is utilised (Compo et al., 2011), in which the five primary variables are available. 196 

 197 

3 Results 198 

 199 

3.1 Baseline temperature and climate sensitivity 200 

 201 

Across CMIP5 models, the global mean surface temperature (GMST) in the baseline period spans a 202 

range of 2.8 °C (12.1-14.9 °C; Fig. 1a). Following the evolution of global temperature through the 203 

historical simulations, and extending with the RCP8.5 emissions scenario, the projected range in 204 

absolute temperature is 3.9 °C (15.5-19.4 °C in the future period 2061-2100; Fig. 1a). By 205 

considering GMST anomalies with respect to the baseline period in each model, the projected range 206 

across all models is 2.5 °C (2.9-5.3 °C). The range of simulated absolute baseline temperatures 207 

therefore represents a considerable source of uncertainty in future projections. 208 

 209 

There is no significant relationship between baseline GMST and GMST change across models 210 

under the RCP8.5 scenario (Fig. 1b). Consistently, no significant relationship was found between 211 

baseline GMST and climate sensitivity (Flato et al., 2013), nor with GMST change in the RCP4.5 212 

scenario (Hawkins & Sutton, 2016). Though it has been noted that there is an absence of models 213 

with warm baseline temperature simulating strong global warming (Hawkins & Sutton, 2016). 214 

However, there is a striking feature in the spatial pattern of intermodel correlation between grid-215 

point baseline surface temperature and GMST change (Fig. 1c). Most of the Southern Ocean 216 

baseline temperature is correlated with GMST change (with a grid-point maximum of r = -0.64). 217 

The intermodel correlation of the baseline temperature averaged over 35-55 °S and GMST change 218 

is -0.53 (Fig. 1d). Hence, models with initially cooler Southern Ocean surface temperature tend to 219 

warm more globally, vice versa for models with initially warmer Southern Ocean. Another apparent 220 
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feature in the spatial pattern is the north-south hemisphere contrast (Fig. 1c), which appears 221 

somewhat analogous with the projection of a faster warming of the Northern Hemisphere than the 222 

Southern Hemisphere (e.g. Xie et al., 2010). This could indicate the role of the Southern Ocean on 223 

the interhemispheric warming pattern.  There is a statistically significant intermodel correlation 224 

between north-south hemisphere contrast in the baseline and GMST change (r= 0.55). As the 225 

significant inter-model correlations occur most prominently in the Southern Ocean, we focus on the 226 

Southern Ocean baseline temperature for further analysis. 227 

 228 

The Southern Ocean region of statistically significant intermodel correlation is globally the most 229 

spatially vast and coherent. Due to its unique geographical configuration, marked by a circumpolar 230 

circulation under the influence of the prevalent westerly winds, the Southern Ocean is known to 231 

play an important role in the global thermohaline circulation and the uptake of heat and carbon 232 

(Manabe et al., 1991; Marshall & Speer, 2012; Mikaloff Fletcher et al., 2006; Toggweiler & 233 

Samuels, 1995). Heat and carbon uptake by the Southern Ocean is also simulated as being strong in 234 

CMIP5 models (Frölicher et al., 2015). We explore whether a physical mechanism explains the 235 

statistically significant negative intermodel correlation between Southern Ocean surface 236 

temperature and future GMST change. Another question of interest is around what processes set the 237 

absolute temperature of the baseline Southern Ocean in climate models. 238 

 239 

In contrast to Grise et al. (2015), here the intermodel relationship between baseline surface air 240 

temperature (as opposed to net TOA radiation) and global mean temperature change (as opposed to 241 

ECS; see their Fig. 2a) is shown. By analysing surface air temperature change, rather than ECS, the 242 

model set is greatly expanded (output from 40 models here, c.f. 20 models in Grise et al., 2015). 243 

Even though global mean temperature change is strongly related to ECS (Fig. 2a) and baseline 244 

surface air temperature is strongly related to net TOA radiation (Fig. 2b), the patterns shown in Fig. 245 

1c and by Grise et al. (2015; their Fig. 2a for CMIP5) are substantially different. Some exploration 246 

reveals that selected baseline years (1861-1900 as opposed to 1990-1999, when anthropogenic 247 

forcings are stronger), the length of the baseline period (40 years as opposed to 10 years, which can 248 

be influenced by decadal variability), and the set of sampled models, all modify the pattern to some 249 

extent. However, exchanging only net TOA radiation with surface air temperature considerably 250 

strengthens the intermodel correlations over the Southern Ocean (c.f. Fig. 2c and 2d). Our focus is 251 

on the Southern Ocean baseline surface temperature, which directly contributes to the global mean 252 

temperature, and its interaction with key processes in the region, such as sea ice, cloud cover, and 253 

westerly jet. 254 

 255 

3.2 Links between surface temperature and baseline climate 256 

 257 

There are statistically significant intermodel regressions and correlations between the Southern 258 

Ocean baseline temperature and a range of other baseline climate variables in the domain such as 259 

shortwave radiation, cloud cover, the meridional position of the westerly eddy-driven jet, and sea 260 

ice area (Fig. 3). Here the spatial patterns are shown as intermodel regressions (Fig. 3a,c,e,g), rather 261 

than as intermodel correlations (Fig. 1,2). The baseline surface temperature area-averaged over 35-262 

55°S is strongly negatively correlated with TOA outgoing shortwave radiation in that region (Fig. 263 

3a,b). TOA outgoing shortwave is due mainly to albedo effects, and unsurprisingly the Southern 264 

Ocean baseline temperature is also negatively correlated with cloud fraction (Fig. 3c,d). Taken 265 

together, these results (Fig. 3a-d) show that models with warmer Southern Ocean surface 266 

temperatures tend to have less cloud cover and therefore less outgoing shortwave radiation, and vice 267 

versa for models with cooler Southern Ocean surface temperature. The direct relationship between 268 

baseline Southern Ocean cloud cover and TOA outgoing shortwave radiation is particularly strong 269 

(r = 0.75; Fig. 4).  270 

 271 

The intermodel relationship showing that models with warmer Southern Ocean surface temperature 272 

have less cloud may seem counterintuitive, but the tendency for higher temperatures leading to 273 
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increased cloudiness is more typical in the tropics. Higher temperatures throughout the tropical 274 

atmospheric column typically leads to greater cloud water content, due to an increased moist 275 

adiabatic lapse rate (Betts & Harshvardhan, 1987; Frey et al., 2018). On the other hand, cooler 276 

surface temperatures in the midlatitudes promote subsidence and the formation of reflective low-277 

level clouds (Grise & Medeiros, 2016; Klein & Hartmann, 1993), and low clouds over the Southern 278 

Ocean exhibit the strongest sensitivity to surface temperature (Wall et al., 2017). The striking 279 

negative intermodel regression over the Southern Ocean band (Fig. 3c) is likely due to cooler 280 

Southern Ocean surface promoting more subsidence, producing more cloud, increasing albedo, and 281 

in a feedback loop, driving lower surface temperature. 282 

 283 

The latitude of the Southern Hemisphere eddy-driven jet also appears to be related to Southern 284 

Ocean surface temperature across models (Fig. 3e,f). It has previously been shown that the jet 285 

latitude is biased equatorward in all CMIP3 models (Kidston & Gerber, 2010), and there is little 286 

improvement in CMIP5 (Barnes & Polvani, 2013). In models with cooler Southern Ocean surface 287 

temperature, the jet is more equatorward, and vice versa for models with warmer Southern Ocean (r 288 

= -0.55; Fig. 3f). Kidston et al. (2011) found a seasonal link between jet latitude and sea ice area, 289 

but only during the cold season. Here, the direct relationship between baseline sea ice area and jet 290 

latitude is found to be weak (r = -0.18; Fig. 4). Since the storm tracks are embedded in the eddy-291 

driven jet, it is not surprisingly to find a relationship with cloudiness (r = 0.38; Fig. 4) and therefore 292 

also with TOA outgoing shortwave radiation, due to albedo effects (r = 0.67; Fig. 4).  293 

 294 

There is a statistically significant relationship between baseline Southern Ocean temperature and 295 

Antarctic sea ice area (r = -0.36; Fig. 3h), with stronger regression relationships around the edge of 296 

the sea ice region (Fig. 3g), and correlation coefficients as high as -0.93. This is due to the strong 297 

link between local surface temperature and the presence of sea ice: surface temperature is 298 

substantially lower when sea ice is present, as opposed to when it is warmed by the open ocean 299 

below. But in a positive feedback, cooler temperature also permits sea ice expansion. Conversely, 300 

higher temperature inhibits sea ice formation, and less sea ice exposes more water to solar radiation. 301 

Furthermore, the relatively cooler Antarctic waters are transported northward via Ekman advection. 302 

The feedback is illustrated to some extent in composite patterns of the 10 models with warmest and 303 

coolest baseline Southern Ocean surface temperature (Fig. 5). There are strong temperature 304 

anomalies with respect to the model mean over the Antarctic sea ice region, in both baseline (Fig. 305 

5a,b) and projected temperature changes (Fig. 5c,d). Thus, the intermodel relationship is physically 306 

consistent in that warmer models have less sea ice and vice versa. Sea ice area correlates poorly 307 

with other variables across CMIP5, although there is a weak but statistically significant relationship 308 

with Southern Ocean cloud cover (r = -0.35; Fig. 4), which may be a result of sea ice suppressing 309 

evaporation (Bromwich et al., 2012). 310 

 311 

3.3 Baseline temperature and future projections 312 

 313 

Thus far it has been shown that there are a range of physically consistent intermodel relationships 314 

between the baseline Southern Ocean surface temperature and a range of other climate variables. 315 

But how is all of this relevant to the climate sensitivity? The relationships between baseline 316 

temperature and future changes in variables will now be examined. Changes in variables are 317 

computed under the RCP8.5 scenario, over the same baseline (1861-1900) and future (2061-2100) 318 

periods indicated in Fig. 1a. A strong Southern Ocean signature also emerges in all of the spatial 319 

patterns of intermodel regressions (Fig. 6), but here the intermodel correlations are positive.  320 

 321 

The change in TOA outgoing shortwave radiation over the Southern Ocean is not consistent across 322 

models. In most models, outgoing radiation is reduced, but in a small number it is enhanced (Fig. 323 

6b). Nevertheless, there is a statistically significant relationship between Southern Ocean 324 

temperature and the change in TOA outgoing shortwave radiation, such that there is a greater 325 

reduction in radiation (i.e., increased heat flux into the ocean) for initially cooler models (r = 0.49; 326 
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Fig. 6b). Similarly, initially cooler models tend to lose more cloud cover under global warming (r = 327 

0.50; Fig. 6d). The similarities of the patterns in Fig. 6a and Fig. 6c again reflect the strong link 328 

between outgoing shortwave radiation and cloud cover. The relationships with baseline temperature 329 

(Fig. 6b,d) emerge despite the fact that there is no statistically significant relationship between the 330 

baseline and change in radiation (r = -0.29; Fig. 4), nor between the baseline and change in cloud 331 

cover (r = -0.25; Fig. 4). In other words, the baseline Southern Ocean temperature is a stronger 332 

predictor of changes in outgoing radiation and cloud cover than the baseline in each of these 333 

variables. 334 

 335 

The eddy-driven jet is projected to shift poleward under all scenarios of climate change (Arblaster 336 

& Meehl, 2006; Miller et al., 2006; Simpson & Polvani, 2016). Furthermore, the future change in 337 

jet latitude appears to be closely connected to its baseline latitude, as was seen in CMIP3 models 338 

(Kidston & Gerber, 2010), and previously reported for CMIP5 (Simpson & Polvani, 2016). The 339 

more equatorward the jet is situated initially, the more poleward it shifts under global warming (r = 340 

-0.62; Fig. 4). Since this correlation is between a variable and its change, the change contains a 341 

component of the baseline (i.e. A vs. B-A), and it is therefore necessary to verify if the intermodel 342 

correlation is significant between the baseline latitude and the future latitude (i.e. A vs. B). In this 343 

case, the relationship is robust (r = 0.92; figure not shown).  344 

 345 

The Southern Ocean baseline temperature is also a robust predictor of future jet migration, with 346 

initially cooler models exhibiting a larger shift in jet latitude (r = 0.57; Fig. 6f). Unlike the Southern 347 

Ocean baseline temperature (Fig. 1d), the baseline jet latitude position is not found to be a predictor 348 

for global mean surface temperature change (r = 0.28; Fig. 4). Bracegirdle et al., (2018) found that 349 

sea ice is more closely related to changes in jet strength, where CMIP5 models with greater 350 

historical sea ice area exhibit less jet strengthening in the future. They likewise find that links 351 

between sea ice and jet shift are weak, albeit with some apparent seasonal relationships. 352 

 353 

The spatial pattern of the intermodel regression between Southern Ocean baseline temperature and 354 

sea ice area change (Fig. 6g) is similar to the pattern with baseline sea ice area (Fig. 3g), also 355 

showing that local surface temperature nearer to the sea ice region is more important. But it is clear 356 

that models with initially more sea ice, which correspond with models having cooler baseline 357 

Southern Ocean, also lose more sea ice under global warming (r = -0.82; Fig. 4). As with the test 358 

for jet latitude, the intermodel correlation between baseline and future sea ice is likewise robust (r = 359 

0.87; figure not shown).  360 

 361 

The relationships between baseline Southern Ocean temperature and other baseline variables might 362 

be viewed as negative feedbacks (Fig. 3), whereas the relationships between baseline temperature 363 

and projected changes in other variables as positive feedbacks (Fig. 6). When viewed as feedbacks, 364 

the baseline and future relationships may appear to be counterintuitive. Apart from a small number 365 

of exceptions, the future changes in all variables across most models are negative (Fig. 6b,d,f,h); the 366 

biggest exception being TOA outgoing shortwave radiation, for which five models exhibit increases 367 

under global warming. Therefore, the relationships between baseline temperature and future 368 

changes in other variables can be summarised as less change in initially warmer models, and greater 369 

change in initially cooler models. And since it has been found that models with initially cooler 370 

Southern Ocean warm more globally, the relationships between Southern Ocean temperature 371 

change and future changes in other variables reinforce these relationships (Fig. 7). Hence, models 372 

with greater Southern Ocean temperature change exhibit greater change in other variables (i.e. a 373 

negative feedback). 374 

 375 

Some of the relationships in future changes may emerge simply due to a larger capacity for change. 376 

For example, a model with more sea ice initially has more capacity to lose sea ice as the planet 377 

warms. Similarly, models with more equatorward eddy-driven jet initially, have more capacity to 378 

shift poleward. Poleward shift of the jet under global warming is one of the most robust projections 379 



 

manuscript submitted to Earth’s Future 

9 

across models. Thus, this perspective on capacity for change may provide a useful clue as to how 380 

the GMST change is related to baseline Southern Ocean temperature amongst CMIP5 models. 381 

 382 

3.4 Baseline Southern Ocean temperature: an integrating factor 383 

 384 

The preceding analysis reveals that baseline surface temperature of the Southern Ocean in CMIP5 is 385 

a crucial variable in setting not only the baseline state of the Southern Ocean climate system, but 386 

also its future evolution and that of the global mean surface temperature (Fig. 1). It is not 387 

necessarily possible to conclude that it is the single key variable, since many variables are linked 388 

with one another to some extent. However, it is nevertheless illuminating that the baseline 389 

temperature is the only variable that exhibits statistically significant correlations at the 95% level 390 

with all other baseline variables and their future changes (Fig. 4).  391 

 392 

Model developers have tended to approach the problem of Southern Ocean biases by using the 393 

clouds as the controlling variable. Models generally do not simulate enough cloud cover over the 394 

Southern Ocean (Fig. 8d), leading to too much incoming shortwave radiation at the surface, warm 395 

sea surface temperature biases, reduced sea ice, and the shift in the eddy-driven jet (Hyder et al., 396 

2018; Williams et al., 2017). Since cloud schemes involve the fastest dynamical processes in the 397 

chain of causality, they are generally the aspect that model developers have found easiest to 398 

manipulate and modify. An apparent consequence of modified cloud schemes has been an increase 399 

in climate sensitivities in many state-of-the-art models (Bodas-Salcedo et al., 2019; Zhu & Poulsen, 400 

2020). The findings of this study suggest that an investigation of the processes that set the baseline 401 

temperature in models may be more fruitful. 402 

 403 

In an attempt to test the influence of baseline biases on GMST projections, the 40 CMIP5 models 404 

were subsampled according to whether they are biased above or below the reanalysis, for each of 405 

the baseline variables (i.e. models to the left and right of reanalysis in Fig. 8). In the first test, 406 

models were split into two groups according to whether their GMST is less than or greater than in 407 

the NOAA 20
th

 century reanalysis, with both models and reanalysis averaged over 1961-2000. The 408 

period 1961-2000 was chosen (as in Fig. 8), since observations, and therefore the reanalysis, are 409 

more uncertain in the earlier baseline period. The projected GMST change in the future period 410 

(2061-2100) minus the baseline period (1861-1900) was then examined in the two sets. The mean 411 

GMST change in the warmer model set is less than the cooler model set, but there are only 7 models 412 

in the warmer set (Fig. 8a). A two sample Student’s t-test for different means, but assuming unequal 413 

variance, reveals that the model-means of future warming in the two sets are not significantly 414 

different (p = 0.33). However, unsurprisingly, if the models are separated based on Southern Ocean 415 

surface temperature, then the two sets are different at the 95% significance level. This is consistent 416 

with the intermodel correlation between baseline Southern Ocean surface temperature and GMST 417 

change (Fig. 1d). The test on GMST changes was then repeated after subsampling models based on 418 

1961-2000 mean values of each of the other variables shown in Fig. 8c-f. None of the differences in 419 

sets were statistically significant, indicating that only the baseline Southern Ocean temperature bias 420 

is a robust determinant of GMST change. 421 

 422 

Another question that arises from the findings of this study is whether the GMST projections can be 423 

constrained by observations, in essence by following the emergent constraints approach. To this 424 

end, we took the subset of models that are closest to the reanalysis, in a given variable, and tested 425 

whether the GMST projections in that subsample are different to the remaining, more-biased, 426 

models. The process of subsampling was conducted for each of the baseline variables examined in 427 

this study. The purpose of this exercise, in other words, is to test whether reducing the bias in any 428 

baseline variable may significantly alter warming projections or climate sensitivity. As a first test, 429 

the 13 models (approximately one third) with GMST closest to that in the NOAA 20
th

 century 430 

reanalysis over 1961-2000 were subsampled. The global temperature change in the future period 431 

(2061-2100) minus the baseline period (1861-1900) in the model subset was then compared to that 432 
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in the remaining 27 models. The 13 least biased models warm slightly less than the remaining 27 433 

models. However, a two sample Student’s t-test for different means, but assuming unequal variance, 434 

reveals that the model-means of future warming in the two sets are not significantly different (p = 435 

0.21). Similarly, a two sample Kolomogorov-Smirnov test for the sets coming from different 436 

continuous distributions, or a two sample F-test for different variances, do not suggest that there are 437 

statistically significant differences in future projections between the two sets. This test was repeated 438 

after subsampling models based on 1961-2000 mean values of the other variables shown in Fig, 8b-439 

f. For Southern Ocean TOA outgoing shortwave radiation, cloud cover, and Antarctic sea ice area, 440 

the 13 least biased models exhibit greater GMST change than in the remaining models. But for 441 

eddy-driven jet latitude and baseline Southern Ocean temperature, the 13 least biased models warm 442 

less. Subsampling based on eddy-driven jet latitude exhibits the largest differences between pairs of 443 

subsets. However, none of the pairs of subsets, for any variable, are significantly different under 444 

any of the aforementioned statistical tests. Altering the number of models in the subsample set made 445 

little difference. Based on these tests, efforts to constrain GMST projections or climate sensitivity 446 

by subsampling less biased models does not seem plausible for CMIP5 models. 447 

 448 

3.5 A first look at CMIP6 449 

 450 

The following is only a preliminary investigation of the surface temperature relationship in CMIP6. 451 

Although the correlations are mostly negative, the statistically significant intermodel correlation 452 

over the Southern Ocean seen in CMIP5 (Fig. 1) is not present across the 33 models analysed thus 453 

far in CMIP6 (Fig. 9). However, the region of statistically significant intermodel correlation is 454 

shifted to the south: the baseline surface temperature over most of the Antarctic sea ice region is 455 

negatively correlated with global mean surface temperature change. Note that CMIP6 uses updated 456 

historical forcings, and the Shared Socioeconomic Pathway 5-8.5 (SSP5-8.5) is not identical to 457 

RCP8.5 in CMIP5 (O’Neill et al., 2016), but the differences are not expected to have appreciable 458 

impact on the analysis here. 459 

 460 

The changing nature of intermodel relationships across model generations should not be too 461 

surprising. As key biases are tackled, and reduced or altered, different intermodel features may 462 

arise. For instance, as noted earlier, the strong CMIP3 intermodel relationship between Southern 463 

Hemisphere net TOA radiation and climate sensitivity (Trenberth & Fasullo, 2010) was 464 

substantially weaker across CMIP5 models (Grise et al., 2015). Similarly, the CMIP5 Southern 465 

Ocean temperature relationship with GMST change is weaker in CMIP6, though the cause of this 466 

has not yet been revealed, and will be explored in a future study. 467 

 468 

The analysis of CMIP6 is not taken further in this study for two reasons. Firstly, at the time of 469 

writing, the variables analysed in CMIP5 in this study were only sparsely available in CMIP6 470 

across both historical and scenario runs. Over 130 models have registered their source identifiers for 471 

CMIP6 with the World Climate Research Programme (WCRP)
1
, so many more simulations are 472 

expected to be available over the coming months and years. Secondly, the altered pattern in CMIP6 473 

(c.f. Fig. 1c and Fig. 9) preliminarily indicates that different processes or biases are at play. It is 474 

likely that CMIP6 analyses will reveal a different story altogether: about the Antarctic region, rather 475 

than Southern Ocean dynamics. A new future study will focus on unravelling the processes 476 

underpinning this higher latitude link between baseline Southern Ocean surface temperature biases 477 

and future warming. 478 

 479 

Despite the current relatively small sample of CMIP6 models from the eventual number expected, 480 

some findings relevant to this study have emerged in the literature. It has been found, for example, 481 

that 10 out of 27 CMIP6 models analysed simulate higher equilibrium climate sensitivity than any 482 

of those in CMIP5 (Zelinka et al., 2020). Although the shift in ECS range is statistically 483 

                                                 
1 https://wcrp-cmip.github.io/CMIP6_CVs/ 

https://wcrp-cmip.github.io/CMIP6_CVs/
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insignificant, the higher sensitivity is due to a stronger reduction of lower level cloud cover under 484 

global warming, particularly in the Southern Hemisphere extratropics (Zelinka et al., 2020). Efforts 485 

to understand the plausibility of models with higher sensitivity is underway, with the recognition 486 

that substantially more CMIP6 simulations are expected. In terms of the global energy budget, 487 

CMIP6 is in better agreement with reference estimates than earlier model generations, and 488 

particularly for shortwave clear-sky budgets (Wild, 2020). 489 

 490 

CMIP6 appears to show a stronger intermodel relationship between the global temperature trends of 491 

the recent past (i.e. 1981-2014) with both equilibrium climate sensitivity and transient climate 492 

response, as compared with CMIP5 (Tokarska et al., 2020). This opens the potential for future 493 

warming estimates to be constrained by observations, as more CMIP6 models become available. 494 

 495 

With regards to the other variables examined in this study, CMIP6 exhibits mixed results to date. 496 

Despite a larger under-representation in boreal summer Antarctic sea ice area in CMIP6 (Roach et 497 

al., 2020), there are nevertheless some positive signs of improvement. For example, there is a 498 

reduction in the intermodel spread of seasonal sea ice variations, and the regional distribution is 499 

improved, compared to CMIP5 (Roach et al., 2020). The Southern Hemisphere jet stream and storm 500 

tracks are also less biased in CMIP6, exhibiting higher mean jet latitude (Bracegirdle et al., 2020; 501 

Curtis et al., 2020; Goyal et al., 2020; Priestley et al., 2020), and therefore reduced jet shift under 502 

future warming (Curtis et al., 2020). The reduced biases in the simulation of the jet stream is likely 503 

due to increased horizontal atmospheric resolution (Curtis et al., 2020). Along with improvements 504 

to the representation of surface wind stress forcing, the simulated strength of the Antarctic 505 

Circumpolar Current and associated density gradients have improved in CMIP6 (Beadling et al., 506 

2020). The simulated mean sea level has also improved in the Southern Ocean (Lyu et al., 2020). 507 

 508 

4 Conclusions 509 

 510 

A summary of the relationships revealed in this study is shown in Fig. 10. The schematic highlights 511 

the series of CMIP5 model tendencies for those with warmer or cooler Southern Ocean baseline 512 

temperature. The schematic is an attempt to illustrate only overall model tendencies: not every 513 

model with an initial cool Southern Ocean, for instance, will have all of the features shown in Fig. 514 

10a. The relationships illustrated for the baseline state are physically consistent, i.e. with warmer 515 

Southern Ocean there is a tendency for less cloud, and therefore less TOA outgoing shortwave 516 

radiation, less sea ice and a more poleward eddy-driven jet (Fig. 10a). Under global warming, in 517 

models with initially warmer Southern Ocean, there are lower reductions in sea ice, clouds, and 518 

TOA outgoing shortwave radiation, and smaller latitudinal shifts in the eddy-driven jet. Conversely, 519 

in models with initially cooler Southern Ocean, there is a tendency for initially larger cloud and sea 520 

ice area, higher TOA outgoing shortwave and an eddy-driven jet that is positioned more 521 

equatorward (Fig. 10b). Under global warming, initially cooler models tend to simulate a greater 522 

poleward jet shift, and a greater reduction in outgoing shortwave, clouds, and sea ice cover. The 523 

apparent influence of these relationships in the Southern Ocean climate system is that models with 524 

initially warmer Southern Ocean exhibit less global warming, and initially cooler models exhibit 525 

more global warming. As noted earlier, this relationship with the amount of global warming may be 526 

a result of potential capacity for change, e.g. models with more sea ice initially have greater 527 

potential to lose sea ice. 528 

 529 

The baseline temperature appears to be a crucial variable in the Southern Ocean in CMIP5, since 530 

each of the other variables inspected exhibits a strong intermodel correlation with it, but not 531 

necessarily amongst themselves. But we do not necessarily suggest that models be tuned for 532 

baseline temperature, even if that is plausible. All variables are linked to one another: tuning a 533 

model for one particular baseline parameter, would invariably alter the baseline states of other 534 

parameters, but not necessarily favourably. For instance, the intermodel correlations imply that an 535 

attempt to cool the Southern Ocean surface in a model which is too warm might shift its jet latitude 536 
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equatorward (Fig. 3f), but it was shown that most models already have an equatorward bias in the 537 

jet latitude (Fig. 8e). There are similar inconsistencies when comparing with observations in other 538 

variables: the model mean of Southern Ocean temperature is close to reanalysis (Fig. 8b), and while 539 

cloud cover (Fig. 8d) and sea ice (Fig. 8f) is under-represented, there is a tendency for too much 540 

TOA outgoing shortwave radiation (Fig. 8c). In a set of simple tests, we also found that it is not 541 

necessarily possible to constrain the spread in CMIP5 GMST projections by subsampling models 542 

that align more closely with reanalysis.  543 

 544 

The primary finding of this study is that there are strong intermodel relationships in the baseline 545 

Southern Ocean climate system in CMIP5, but notably, the relationships are physically consistent. 546 

The relationships likely emerge due to biases, i.e. broad ranges in values of the simulated baseline 547 

variables. Furthermore, the baseline Southern Ocean biases consistently influence simulated 548 

changes under global warming. For example, initially cooler models tend to warm more into the 549 

future, partly because they have more sea ice initially, and therefore more capacity to lose sea ice.  550 

 551 

It was shown that in the first available CMIP6 models, the baseline temperature relationship with 552 

global mean temperature change is less pronounced over the Southern Ocean, which may be a result 553 

of model improvements. The position of the Southern Hemisphere mid-latitude jet, for instance, 554 

appears to be less biased (more poleward) across CMIP6 models. Instead, stronger intermodel 555 

correlations emerge in the Antarctic sea ice region, suggesting that biases in polar region dynamics 556 

in CMIP6, rather than Southern Ocean dynamics in CMIP5, have a greater influence on global 557 

changes. As more CMIP6 model output becomes available, an examination of biases in the 558 

Antarctic region and their impact will be conducted. 559 
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 Model name Ensemble members used Exceptions ECS (°C) 

1 ACCESS1-0 r1i1p1  3.83 

2 ACCESS1-3 r1i1p1  3.54 

3 bcc-csm1-1 r1i1p1  2.83 

4 bcc-csm1-1-m r1i1p1  2.91 

5 BNU-ESM r1i1p1  4.04 

6 CanESM2 r1i1p1, r2i1p1, r3i1p1, r4i1p1, 

r5i1p1 

 3.71 

7 CCSM4 r1i1p1, r2i1p1, r3i1p1, r4i1p1, 

r5i1p1, r6i1p1 

Missing for clt: r6i1p1  2.95 

8 CESM1-BGC r1i1p1  2.89a 

9 CESM1-CAM5 r1i1p1, r2i1p1, r3i1p1 Missing for clt: r1i1p1, 

r2i1p1  

4.10b 

10 CMCC-CESM r1i1p1   

11 CMCC-CM   r1i1p1   

12 CMCC-CMS  r1i1p1   

13 CNRM-CM5  r1i1p1, r2i1p1, r4i1p1, r6i1p1, 

r10i1p1 

 3.25 

14 CSIRO-Mk3-6-0 r1i1p1, r2i1p1, r3i1p1, r4i1p1, 

r5i1p1, r6i1p1, r7i1p1, r8i1p1, 

r9i1p1, r10i1p1 

 4.06 

15 FGOALS-g2 r1i1p1  3.35 

16 FGOALS-s2 r1i1p1, r2i1p1, r3i1p1 Missing for rsut and 

clt: r1i1p1 

4.19 

17 FIO-ESM r1i1p1, r2i1p1, r3i1p1   

18 GFDL-CM3  r1i1p1  4.00 

19 GFDL-ESM2G r1i1p1  2.43 

20 GFDL-ESM2M r1i1p1  2.45 

21 GISS-E2-H r1i1p1, r1i1p2, r1i1p3, r2i1p1, 

r2i1p3 

Missing for tauu: 

r2i1p1, r2i1p3 

2.30 

22 GISS-E2-H-CC r1i1p1   

23 GISS-E2-R r1i1p1, r1i1p2, r1i1p3, r2i1p1, 

r2i1p3 

Missing for tas: r1i1p3 

Missing for tauu: 

r2i1p1, r2i1p3 

2.11 

24 GISS-E2-R-CC r1i1p1   

25 HadGEM2-AO r1i1p1, r2i1p1, r3i1p1 Missing for clt: r2i1p1, 

r3i1p1 

 

26 HadGEM2-CC r1i1p1   

27 HadGEM2-ES r1i1p1, r2i1p1, r3i1p1, r4i1p1  4.58 

28 inmcm4 r1i1p1  2.08 

29 IPSL-CM5A-LR r1i1p1, r2i1p1, r3i1p1, r4i1p1  4.13 

30 IPSL-CM5A-MR r1i1p1  4.14 

31 IPSL-CM5B-LR r1i1p1  2.60 

32 MIROC-ESM-CHEM r1i1p1   

33 MIROC-ESM r1i1p1  4.66 

34 MIROC5 r1i1p1, r2i1p1, r3i1p1  2.71 

35 MPI-ESM-LR r1i1p1, r2i1p1, r3i1p1  3.63 

36 MPI-ESM-MR r1i1p1  3.45 

37 MRI-CGCM3 r1i1p1  2.61 

38 MRI-ESM1  r1i1p1   

39 NorESM1-M r1i1p1  2.82 

40 NorESM1-ME r1i1p1  2.99c 

Table 1. List of CMIP5 models and ensemble members analysed in this study. Ensemble members from the 1 
historical experiments were matched with ensemble members with the same identifiers from the rcp85 2 
experiments. The five primary variables analysed in this study (tas, rsut, clt, tauu, and sic) were available from 3 
all models and ensemble members, unless noted under ‘Exceptions’. The equilibrium climate sensitivity (ECS) 4 
is recorded for models where available, and taken from Caldwell et al., (2016; their Table 1 and Equation 2), 5 
with three exceptions: aNohara et al., (2015), bMeehl et al., (2013), cSeland et al., (2020). 6 
  7 



 Model name Ensemble member used 

1 ACCESS-CM2 r1i1p1f1 

2 ACCESS-ESM1-5 r1i1p1f1 

3 AWI-CM-1-1-MR r1i1p1f1 

4 BCC-CSM2-MR r1i1p1f1 

5 CAMS-CSM1-0 r1i1p1f1 

6 CanESM5-CanOE r1i1p2f1 

7 CanESM5 r1i1p1f1 

8 CESM2 r1i1p1f1 

9 CESM2-WACCM r1i1p1f1 

10 CNRM-CM6-1 r1i1p1f2 

11 CNRM-CM6-1-HR r1i1p1f2 

12 CNRM-ESM2-1 r1i1p1f2 

13 EC-Earth3 r1i1p1f1 

14 EC-Earth3-Veg r1i1p1f1 

15 FGOALS-f3-L r1i1p1f1 

16 FGOALS-g3 r1i1p1f1 

17 FIO-ESM-2-0 r1i1p1f1 

18 GFDL-CM4 r1i1p1f1 

19 GFDL-ESM4 r1i1p1f1 

20 HadGEM3-GC31-LL r1i1p1f3 

21 INM-CM4-8 r1i1p1f1 

22 INM-CM5-0 r1i1p1f1 

23 IPSL-CM6A-LR r1i1p1f1 

24 KACE-1-0-G r1i1p1f1 

25 MCM-UA-1-0 r1i1p1f2 

26 MIROC6 r1i1p1f1 

27 MIROC-ES2L r1i1p1f2 

28 MPI-ESM1-2-HR r1i1p1f1 

29 MPI-ESM1-2-LR r1i1p1f1 

30 MRI-ESM2-0 r1i1p1f1 

31 NESM3 r1i1p1f1 

32 NorESM2-LM r1i1p1f1 

33 UKESM1-0-LL r1i1p1f2 

Table 2. List of CMIP6 models and ensemble members analysed in this study. Ensemble members from the 8 
historical experiments were matched with ensemble members with the same identifiers from the ssp585 9 
experiments. Only the tas variable was analysed in CMIP6. 10 
 11 
 12 



 13 
 14 
Figure 1. Surface air temperature relationships across CMIP5 models. a. Absolute annual global mean surface 15 
temperature (GMST) in CMIP5 historical simulations with rcp85 extension. The baseline (1861-1900) and 16 
future (2061-2100) periods are indicated. The timeseries’ are qualitatively shaded by baseline GMST: initially 17 
cooler models in blue and warmer models in red. b. GMST averaged over the baseline period, versus the GMST 18 
change (i.e. average over future period minus average over baseline). The intermodel correlation (r = -0.21) is 19 
quoted, but p > 0.05. c. Intermodel correlation between grid-point (local) baseline surface air temperature and 20 
GMST change. Stippling indicates where correlations are statistically significant at the 99% level. The Southern 21 
Ocean region (55-35 °S) used throughout this study is indicated. d. Baseline surface air temperature averaged 22 
over the Southern Ocean, versus the GMST change. The intermodel correlation (r = -0.53) is statistically 23 
significant at p < 0.01. 24 
 25 
  26 



 27 
 28 
Figure 2. Relationships between equilibrium climate sensitivity (ECS) and other parameters. a. Global mean 29 
surface air temperature (GMST) change versus ECS, for the 30 models for which the ECS value is available 30 
(Table 1). The intermodel correlation (r = 0.85) is statistically significant at p < 0.01. b. Intermodel correlation 31 
between grid-point (local) baseline surface air temperature and grid-point baseline net top-of-atmosphere (TOA) 32 
radiation, across all 40 models. c. Intermodel correlation between grid-point (local) net TOA radiation and ECS 33 
(30 models). d. Intermodel correlation between grid-point (local) baseline surface air temperature and ECS (30 34 
models). Stippling denotes statistically significant correlations at p < 0.01. 35 
 36 
 37 
 38 
 39 
 40 



 41 
Figure 3. CMIP5 intermodel relationships between baseline temperature and other baseline variables. ‘Local’ 42 
denotes the variable inspected at each grid-point across the globe. The left panels show intermodel regressions, 43 
expressed as relationships per unit Kelvin, between a. TOA outgoing shortwave radiation and Southern Ocean 44 
average temperature; c. cloud fraction and Southern Ocean average temperature; e. temperature and eddy-driven 45 
jet latitude; and g. temperature and total Antarctic sea ice area. Stippling denotes statistically significant 46 
regressions at p < 0.01. The right panels show Southern Ocean average baseline surface temperature (abscissa) 47 
versus baseline b. Southern Ocean average TOA outgoing shortwave radiation; d. Southern Ocean average 48 
cloud fraction; f. eddy-driven jet latitude; and h. total Antarctic sea ice area. Intermodel correlations are quoted 49 
in the top right. Solid lines of best-fit denote p < 0.01, and dashed lines denote 0.01 < p < 0.05. 50 
 51 



 52 
Figure 4. Intermodel correlations between baseline values and future change values of all variables analysed in 53 
this study. Red or blue shaded circles denotes positive or negative correlations, respectively, where darker 54 
shades are larger circles denote stronger correlations. Correlations that are statistically significant the 99% level 55 
are quoted in white text, and shaded circles are shown only where the correlations are statistically significant at 56 
the 95% level. The correlations shown in Figs. 1, 3, 6, and 7 are indicated. 57 
 58 



 59 
Figure 5. Composites of surface temperature in CMIP5 models by those with coolest and warmest baseline 60 
Southern Ocean surface temperature. a. Mean baseline surface temperature of 10 models with coolest Southern 61 
Ocean baseline temperature, shown as anomalies with respect to the model mean. b. As in (a), but for the 10 62 
warmest models. c. Mean temperature change of 10 models with coolest Southern Ocean baseline temperature, 63 
shown as anomalies with respect to the model mean. d. As in (c), but for the 10 warmest models. 64 
 65 
 66 
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 69 
Figure 6. CMIP5 intermodel relationships between baseline temperature and future changes in other variables. 70 
‘Local’ denotes the variable inspected at each grid-point across the globe. The left panels show intermodel 71 
regressions, expressed as relationships per unit Kelvin, between a. TOA outgoing shortwave radiation and 72 
Southern Ocean average temperature; c. cloud fraction and Southern Ocean average temperature; e. temperature 73 
and eddy-driven jet latitude; and g. temperature and total Antarctic sea ice area. Stippling denotes statistically 74 
significant regressions at p < 0.01. The right panels show Southern Ocean average baseline surface temperature 75 
(abscissa) versus future changes in b. Southern Ocean average TOA outgoing shortwave radiation; d. Southern 76 
Ocean average cloud fraction; f. eddy-driven jet latitude; and h. total Antarctic sea ice area. Intermodel 77 
correlations are quoted in the top right. Solid lines of best-fit denote p < 0.01, and dashed lines denote 0.01 < p 78 
< 0.05. 79 
 80 
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 82 
Figure 7. CMIP5 intermodel relationships between future changes in temperature and future changes in other 83 
variables. ‘Local’ denotes the variable inspected at each grid-point across the globe. The left panels show 84 
intermodel regressions, expressed as relationships per unit Kelvin change, between a. TOA outgoing shortwave 85 
radiation and Southern Ocean average temperature; c. cloud fraction and Southern Ocean average temperature; 86 
e. temperature and eddy-driven jet latitude; and g. temperature and total Antarctic sea ice area. Stippling denotes 87 
statistically significant regressions at p < 0.01. The right panels show Southern Ocean average baseline surface 88 
temperature (abscissa) versus future changes in b. Southern Ocean average TOA outgoing shortwave radiation; 89 
d. Southern Ocean average cloud fraction; f. eddy-driven jet latitude; and h. total Antarctic sea ice area. 90 
Intermodel correlations are quoted in the top right. Solid lines of best-fit denote p < 0.01. 91 
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 93 
Figure 8. Histograms of parameters in CMIP5 models, averaged over the period 1961-2000. The vertical blue 94 
line denotes the model mean, and the black line denotes the NOAA-CIRES-DOE Twentieth Century 95 
Reanalysis. a. Global mean surface air temperature. b. Surface air temperature averaged over the Southern 96 
Ocean. c. Top-of-atmosphere outgoing shortwave radiation averaged over the Southern Ocean. d. Cloud cover 97 
averaged over the Southern Ocean. e. Eddy-driven jet latitude. f. Antarctic sea ice area. 98 
 99 
 100 
 101 
 102 
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 105 
Figure 9. Intermodel correlation in 33 CMIP6 models (Table 2) between grid-point (local) baseline surface air 106 
temperature and global mean surface air temperature change. Stippling indicates where correlations are 107 
statistically significant at the 99% level. CMIP6 surface air temperature is analysed in the historical simulations 108 
with ssp585 extension. 109 
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 111 
Figure 10. Schematic summary of model tendencies in CMIP5. Red text in parentheses indicate changes under 112 
global warming. a. Models with warmer baseline Southern Ocean surface air temperature. b. Models with 113 
cooler baseline Southern Ocean surface air temperature. 114 
 115 
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