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Abstract

We analyze trends in the Southern Annular Mode in CMIP6 simulations. For the period 1957-2014, simulated linear trends

are generally consistent with two observational references but seasonally in disagreement with two other reconstructions of the

SAM. Using a regression analysis applied to model simulations with interactive ozone chemistry, a strengthening of the SAM in

summer is attributed completely to ozone depletion because a further strengthening influence due to long-lived greenhouse gases

is fully counterbalanced by a weakening influence due to stratospheric ozone increases associated with these greenhouse gas

increases. Ignoring such ozone feedbacks would yield comparable contributions from these two influences, an incorrect result.

In winter, trends are smaller but an influence of greenhouse gas-mediated ozone feedbacks is also identified. The regression

analysis furthermore yields significant differences in the attribution of SAM changes to the two influences between models with

and without interactive ozone chemistry, with ozone depletion and GHG increases playing seasonally a stronger and weaker,

respectively, role in the chemistry models versus the no-chemistry ones.
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Key Points:5

• The influences of ozone changes and greenhouses gases on the Southern Annular6

Mode are analyzed in CMIP6 simulations.7

• Ozone depletion exerts a stronger and GHGs a weaker influence on the SAM in8

chemistry versus no-chemistry models.9

• Three sensitivity experiments are explained considering an impact of GHGs onto10

the SAM resulting from ozone changes.11
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Abstract12

We analyze trends in the Southern Annular Mode in CMIP6 simulations. For the pe-13

riod 1957-2014, simulated linear trends are generally consistent with two observational14

references but seasonally in disagreement with two other reconstructions of the SAM.15

Using a regression analysis applied to model simulations with interactive ozone chem-16

istry, a strengthening of the SAM in summer is attributed completely to ozone deple-17

tion because a further strengthening influence due to long-lived greenhouse gases is fully18

counterbalanced by a weakening influence due to stratospheric ozone increases associ-19

ated with these greenhouse gas increases. Ignoring such ozone feedbacks would yield com-20

parable contributions from these two influences, an incorrect result. In winter, trends21

are smaller but an influence of greenhouse gas-mediated ozone feedbacks is also identi-22

fied. The regression analysis furthermore yields significant differences in the attribution23

of SAM changes to the two influences between models with and without interactive ozone24

chemistry, with ozone depletion and GHG increases playing seasonally a stronger and25

weaker, respectively, role in the chemistry models versus the no-chemistry ones.26

1 Introduction27

The Southern Annular Mode (SAM) is the leading mode of variability of the South-28

ern Hemisphere (Gong & Wang, 1999). In essence, it constitutes a see-saw of atmospheric29

mass between Southern high and middle latitudes, with corresponding expressions in sur-30

face pressure, the position and strength of the westerly jet, temperature, and precipi-31

tation. Its development under global climate change is a leading concern to countries in32

the Southern Hemisphere.33

The SAM is subject to a variety of external influences, the leading of which are in-34

creasing anthropogenic greenhouse gases (GHGs) and ozone depletion due to chloroflu-35

orocarbons and other anthopogenic ozone-depleting substances (ODSs, e.g. Arblaster36

& Meehl, 2006; Kang et al., 2011; Thompson et al., 2011). Previous studies have iden-37

tified that ozone depletion is the leading cause of of a strengthening of the SAM during38

austral summer (DJF,e.g. Son et al., 2009, 2010; Eyring et al., 2013; Gillett & Fyfe, 2013;39

Son et al., 2018). In other seasons, however, trends are smaller and other influences play40

a role (Marshall, 2003; Arblaster & Meehl, 2006). Difficulties here include that the SAM41

exhibits considerable internal variability obscuring to some extent external influences.42

Observational references for the period before the onset of the satellite era are based on43

ground-based measurements which are sparse or even nonexistent, leaving large areas44

of the footprint of the mode without any long-term observations extending into the 19th45

century. This is particularly so for the Antarctic continent and the remote Southern Ocean46

There is a considerable range of responses of climate models to ODS and GHG changes.47

Despite the role of ozone depletion in driving trends in the summertime SAM (Thompson48

et al., 2011), some previous studies have found that modelling ozone interactively in global49

climate models does not lead to a significantly different trend in the SAM versus pre-50

scribing ozone from a precomputed climatology (Son et al., 2018), the method pursued51

in most contemporary climate models. However, aspects of variability of the SAM, and52

particularly its extreme states (Dennison et al., 2015), are affected by the type of rep-53

resentation of ozone (Haase & Matthes, 2019; Haase et al., 2020), and also there are in-54

teractions between greenhouse gases, ozone, and the SAM that would not be represented55

in models that use prescribed ozone (Morgenstern et al., 2014). The few models partic-56

ipating in the 5th Coupled Model Intercomparison Project (CMIP5) which had interac-57

tive stratospheric chemistry were characterized by various deficiencies in their simula-58

tions of ozone and hence did not produce obviously higher-quality projections of other59

climate variables versus models that used simpler representations of ozone (Eyring et al.,60

2013).61

–2–



manuscript submitted to JGR: Atmospheres

The 6th Coupled Model Intercomparison Project (CMIP6) brings together the lat-62

est generation of climate models to produce simulations informing the upcoming 6th As-63

sessment Report of IPCC (Eyring et al., 2016). These models have generally undergone64

further development since CMIP5. Also there is a much more diverse range of sensitiv-65

ity experiments available than under CMIP5, targeting a large variety of forcing types66

and processes aimed at better characterizing and improving understanding of how mod-67

els respond to forcings. Using three of these experiments and many “historical” all-forcings68

simulations, here we will conduct a seasonally resolved attribution of trends in the SAM69

to the two leading influences, ODSs and GHGs.70

2 Definition of the SAM71

While not perfectly “annular”, the SAM is characterized by a large zonally sym-72

metric component. Hence for simplicity we here follow Gong and Wang (1999) and de-73

fine the SAM index to be the difference in monthly- and zonal-mean sea-level pressure74

(psl), or for above-surface features geopotential height on pressure levels (zg), between75

40◦S and 65◦S. For every simulation the SAM index is smoothed with a three-months76

boxcar filter (such that the SAM index represents the seasonal mean centred on a given77

month). The first and last months of each dataset are invalidated.78

The results are, for every model, month of the year, and simulation covered by that79

model, a timeline of seasonal SAM indices covering 1850-2014 (1851-2014 for DJF, 1850-80

2013 for NDJ).81

3 Method of data analysis82

Figure 1. (solid) Equivalent CO2 (COeq
2 , in ppmv) and (dotted) equivalent chlorine (Cleq, in

ppbv) in the historical simulations of CMIP6. See text for definitions of both quantities. Nondi-

mensional scaling (far left axis) is used in the regression analysis.

For the purposes of attributing any long-term trends in these data using a multiple-83

linear regression analysis, we form two regressor functions (Morgenstern et al., 2018),84

both using forcing data provided by Meinshausen et al. (2017):85

• Equivalent chlorine (Cleq) is the sum of the abundances of all chlorinated or bromi-86

nated ODS gases weighted with the numbers of chlorine and bromine atoms per87

molecule, and additionally multiplying any bromine source gas by a factor of 6088

to account for the larger per-atom depletion of ozone caused by bromine than by89
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chlorine (Newman et al., 2007). Cleq is shifted by four years to account for the time90

it takes for the ODSs to be delivered into the stratosphere.91

• Equivaent CO2 (COeq
2 ) is the sum of the surface abundances of all long-lived GHGs92

weighted by their specific radiative efficiencies divided by that of CO2, with spe-93

cific radiative efficiency coefficients taken from table 8.A.1 of AR5 (Myhre et al.,94

2013).95

Both regression functions are normalized such that the functions equal 0 at the start of96

the record (1850) and increase to 1 in 2014 (figure 1). Cleq = 0 until about 1950 fol-97

lowed by a ramp-up in the 1970s to 1990s to values exceeding 1 and a slow decay in the98

21st century, reflecting the removal of ODSs from the atmosphere after emissions of ODSs99

have mostly ceased. By contrast, COeq
2 is increasing throughout the “historical” period,100

with substantial increases already between 1850 and 1950 and a speed-up in the latter101

decades. The shapes of these two functions mean that any trend in the SAM index dur-102

ing 1850-1950 will be reflected in a projection onto COeq
2 .103

We thus determine, using least-squares linear regression, coefficients S0, S1, and104

S2 in the function105

S(m, y) = S0(m) + S1(m)COeq
2 (y) + S2(m)Cleq(y) + ε(m, y) (1)

such that the residual ε is minimized in the root-mean-square metric. Here S is an ob-106

served or modelled SAM index, a function of month m and calendar year y. We inter-107

pret the terms as S0 standing for the baseline mean seasonal cycle of the SAM index in108

preindustrial times, S1 the change in the SAM index driven by long-lived greenhouse gases,109

reflecting in particular any trends in the first 100 years when Cleq = 0, S2 the change110

in the SAM index driven by ODSs which have been elevated from the 1960s onwards,111

and S1 + S2 the total strengthening due to both anthropogenic causes in 2014. Both112

S1 and S2 are seasonally resolved for the 12 overlapping seasons of the year.113

We furthermore model the residual ε using an analogous least-squares regression114

approach:115

ε2(m, y) = E0(m) + E1(m)COeq
2 (y) + E2(m)Cleq(y) + µ(m, y) (2)

In this approach, ε2 is assumed to also vary with the two regressor functions. Where the116

regression fit produces negative numbers for any model or season (which would indicate117

the regression fit is poor) we replace equation 2 with E1(m) = E2(m) = 0, E0(m) =118

ε2(m, .) (i.e. the regression becomes a constant in time). For the ensemble-mean SAM119

indices derived from “historical” simulations detailed below, this is the case only for one120

month each in two models (FIO-ESM-2-0 in November, NorCPM1 in March; see below).121

If the regression model (equation 1) was perfect and ε was normally distributed,122

the variance terms would scale with the inverse of the ensemble size n where single-model123

ensemble means are considered: Ei ∼ 1/n.124

The regression model developed above is complemented with a simpler linear trend125

analysis conducted on the period since 1957 when permanent meteorological observa-126

tions started in Antarctica. If Tij is the linear trend in ensemble member j of model i,127

and σij its uncertainty at 68% confidence, then128

pij(T ) = G

(
T − Tij
σij

)
(3)

is the probability that a given trend T is larger than the best-estimate trend, Tij . Here,129

G is the Gaussian integral,130

G(x) =
1√
π

∫ x

−∞
exp

(
−ξ2

)
dξ. (4)
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We thus form the weighted mean of this distribution over all CMIP6 historical sim-131

ulations132

P (T ) =
1

m

m∑
i=1

1

ni

ni∑
j=1

pij(T ) (5)

Here P (T ) is the cumulative probability distribution function that any given trend T ex-133

ceeds the trend derived from a random CMIP6 model simulation, thus accounting for134

model as well as statistical uncertainties in these trends. Here m is the number of mod-135

els in the ensemble and ni is the number of historical simulations provided by model i.136

The trends T for which P (T ) evaluates to 0.5, 0.16, 0.84, 0.025 and 0.975 mark the multi-137

model mean and the 68 and 95% uncertainty ranges of the combined distribution of trends138

in the CMIP6 ensemble. Unlike other forms of averaging, this method does not inher-139

ently reduce the statistical uncertainty as ensemble sizes or model numbers increase, mean-140

ing that the thus obtained uncertainty range of trends remain comparable to those de-141

rived from observations. We also note that in equation 5 every model enters the aver-142

aging with equal weight, irrespective of ni.143

P (T ) is evaluated separately for all 12 overlapping seasons of the year.144

4 Data and models145

Models used in the below analysis are listed in table 1. We use almost all such sim-146

ulations available at the time of download for the “historical”, hist-GHG, hist-stratO3,147

and hist-1950HC experiments (for definitions of the experiments see below). To limit model148

redundancy, some model variants that are nearly identical to one of the models used here149

are not included, for example high-resolution versions of some models. Also models for150

which only one historical simulation is available are generally not used, with the excep-151

tion of GFDL-CM4 which is retained because it is the basis of the chemistry-model GFDL-152

ESM4. In total, we consider 282 historical, 61 hist-GHG, 28 hist-stratO3, and 8 hist-1950HC153

simulations.154

Briefly, the experiments are characterized as follows:155

• “historical”: This all-forcings experiment covering 1850-2014 is conducted by all156

CMIP6 models. Models and simulations used here are listed in table 1.157

• “hist-1950HC”: This experiment is identical to “historical” except it covers only158

1950-2014 and ODSs are kept at their 1950 abundances. The five models partic-159

ipating in this experiment all have interactive stratospheric ozone chemistry, thus160

consistently representing the impact of ODSs.161

• “hist-GHG”: In this experiments all forcings are kept at their 1850 values except162

for greenhouse gases. Ozone is also kept invariant in this experiment. Ten mod-163

els have participated in this experiment.164

• “hist-stratO3”: In this experiment all forcings are kept at their 1850 status ex-165

cept for stratospheric ozone which follows the CMIP6 ozone climatology. This ex-166

periment covers 1850-2020.167

In addition to CMIP6 simulations, we also consider various observational references168

for the SAM (table 2).169

Figure 2 shows that even in the decades since 1957 some disagreements occur be-170

tween the observational references. Apart from some offsets between the datasets, in par-171

ticular HadSLP2 displays stronger increases in all seasons in the 21st century than the172

other datasets. In summer (DJF), NOAA-20CR appears to agree well with CERA-20C,173

but less so in winter (JJA). In the 19th century, some substantial discrepancies appear174

between the two datasets covering this period (HadSLP2 and NOAA-20CR), reflecting175
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Model reference historical hist-GHG hist-stratO3

ACCESS-ESM1-5 Ziehn et al. (2020) 1-10 1-3
AWI-CM-1-1-MR Semmler et al. (2020) 1-5
BCC-CSM2-MR Wu et al. (2019) 1-3 1-3
BCC-ESM1 Wu et al. (2020) 1-3
CAMS-CSM1-0 Chen et al. (2019) 1-2
CanESM5 Swart et al. (2019) 1-25 1-25 1-10
CESM2 Danabasoglu et al. (2020) 1-11 1-3
CIESM Lin et al. (2019) 1-3
CNRM-CM6-1 Voldoire et al. (2019) 1-30 1,3-10
E3SM-1-0 Golaz et al. (2019) 1-5
EC-Earth3 Wyser and et al (2020) 2-4,7,10,12,14,16-25
FIO-ESM-2-0 Bao et al. (2020) 1-3
GFDL-CM4 Held et al. (2019) 1
GISS-E2-1-G Kelley et al. (2020) 1-10, 101-102 1-5 1-5
HadGEM3-GC31-LL Williams et al. (2017) 1-4 1-4
INM-CM5-0 Volodin and Gritsun (2018) 1-10
IPSL-CM6A-LR Boucher et al. (2020) 1-32 1,4,6,7,9,10 1-10
KACE-1-0-G Lee et al. (2020) 1-3
MIROC6 Tatebe et al. (2019) 1-50 1-3 1-3
MIROC-ES2L Hajima et al. (2020) 1-10
MPI-ESM1-2-LR Müller et al. (2018) 1-10
NorCPM1 Bethke et al. (2019) 1-30
NorESM2-LM Seland et al. (2020) 1-3

hist-1950HC

CESM2-WACCM Gettelman et al. (2019) 1-3 1
CNRM-ESM2-1 Séférian et al. (2019) 1-5,7-8 1-2
GFDL-ESM4 Dunne et al. (2020) 1-3 1
GISS-E2-1-Gchem Kelley et al. (2020) 1-6,8-10 1
MRI-ESM2-0 Yukimoto et al. (2019) 1-5 1,3,5
UKESM1-0-LL Sellar et al. (2019) 1-4,8-14,16-19
Table 1. CMIP6 models considered here, key references, and historical, hist-GHG, hist-

stratO3, and hist-1950HC run numbers used in the below analysis. The first 23 models

(ACCESS-ESM1-5 to NorESM2-LM) do not use fully interactive ozone; most use CMIP6 pre-

scribed ozone. The bottom six models (CESM2-WACCM to UKESM1-0-LL) use fully interactive

formulations of ozone involving transporting and calculating the chemistry of stratospheric ozone.

We rename here GISS-E2-1-G to “GISS-E2-1-Gchem” for simulations using interactive ozone

chemistry.

the paucity of data coverage during this period. A substantial strengthening of the SAM176

index is evident from the 1950s onwards.177

5 Results178

5.1 Synoptic analysis of the SAM in CMIP6 simulations179

In a first step we consider the seasonally resolved linear trend in the CMIP6 sim-180

ulations and the observations for the period of 1957-2014. We stipulate that before 1957,181

there were no continuous meteorological observations made in Antarctica and therefore182

SAM reconstructions become more uncertain. Figure 3 shows that the CMIP6 simula-183
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Figure 2. SAM index (hPa) as derived from Marshall (2003), ERA5, NCEP/NCAR, CERA-

20C (ensemble mean), NOAA-20CR, and HadSLP2 observational references, for the four seasons.
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Reference literature Ens. size Coverage

ERA5 Simmons et al. (2020) 1 1979-2014
NCEP/NCAR Kalnay et al. (1996) 1 1948-2014
CERA-20C Laloyaux et al. (2018) 10 1901-2010
NOAA-20CRv2c Compo et al. (2011) 1 1851-2014
Marshall index Marshall (2003) 1 1957-2014
HadSLP2 Allan and Ansell (2006) 1 1850-2014

Table 2. Global gridded SLP reconstructions used here. The first four are reanalysis products.

ERA5 and NCEP/NCAR are reanalyses using a wide variety of observations, whereas CERA-20C

and NOAA-20CRv2c are using surface observations only. HadSLP2 is a gridded interpolation of

SLP observations using station and ship data. The Marshall index is a reconstruction of the SAM

index using observations from twelve stations only.

tions for 1957-2014 exhibit a linear strengthening trend of around 0.08±0.05 hPa a−1184

in summer but only around 0.03 ± 0.04 hPa a−1 in winter. (Uncertainties are for the185

68% confidence level.) In summer, these trends are in general agreement with the ob-186

servational references (although all four references show stronger best-estimate trends187

than the CMIP6 mean), but in winter, only the Marshall index and NOAA-20CR are188

consistent with this ensemble, whereas HadSLP2 and particularly NCEP/NCAR (Marshall,189

2003) have trends that are very unlikely to be consistent with the CMIP6 distribution190

of trends. Given the simplicity of construction of the Marshall (2003) index, and the fact191

that HadSLP2 shows anomalously high values also for the most recent decades charac-192

terized by comparatively excellent data coverage, in the following we will only consider193

the NOAA-20CR reanalysis for the regression analysis outlined above which uses the full194

165-year historical simulations. We note however persistent reservations also about the195

quality of this dataset for the first century (1851-1956) for which few actual southern high-196

latitude observations have entered this reanalysis.197

Moving now to analyzing the SAM index for the whole “historical” period in the198

CMIP6 ensemble for the austral summer and winter seasons (figure 4), it is clear that199

the regression model (equation 1) well approximates the multi-model mean “historical”200

evolution of the SAM index for all subsets of models displayed. In summer, all four model201

subsets in the multi-model mean (MMM) exhibit about the same strengthening in 2014202

(∼4 hPa) which is larger than in winter (figure 4). In summer, the groups are in gen-203

eral agreement with NOAA-20CR which also shows strengthening, albeit of slightly larger204

magnitude than the multi-model mean. The regression analysis as well as the hist-1950HC205

experiment (for the chemistry models) indicate that the strengthening in summer is caused206

by the growth in ODSs from about 1960 onwards. However, the hist-GHG experiment207

indicates substantial strengthening (exceeding ∼2 hPa in the MMM) also when all forc-208

ings other than the GHGs and particularly ozone are held invariant, and the hist-stratO3209

experiment yields a strengthening in summer which is smaller than in the equivalent his-210

torical ensemble. We will discuss all of these findings in more detail in section 6.211

For the chemistry group, the amount of strengthening found here aligns broadly212

with the amount of Southern-Hemisphere ozone depletion, with models simulating strong213

ozone loss (UKESM1, CNRM-ESM2-1) showing a larger strengthening than those with214

comparatively weak ozone loss (MRI-ESM2, CESM2-WACCM; Morgenstern et al., 2020).215

In winter, all model groups indicate much weaker strengthening than in summer216

which however is in disagreement with an ∼6 hPa strengthening in NOAA-20CR (fig-217

ure 4). Given the good agreement between the trends in NOAA-20CR and the CMIP6218

models for the period post-1957 during which much of the anthropogenic forcing was es-219

tablished (figure 3), it is plausible that the disagreement found here is an artefact of the220
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Figure 3. Contours: Weighted mean cumulative probability distribution function P for the

SAM trend (equation 5). The 0.5 contour of P is the best-estimate linear trend in the SAM

index derived from CMIP6 historical simulations. The other contours mark its 68 and 95% confi-

dence intervals. Lines: trends in observational datasets. Solid: Marshall (2003) index. Dash-dot:

NOAA-20CR. Dashed: HadSLP2. Dotted. NCEP/NCAR.

NOAA-20CR data.The regression analysis suggests only a small to no role for ozone de-221

pletion. Both the strong influence of ozone depletion in summer and the weak one in win-222

ter are in agreement with previous studies (Son et al., 2010; Morgenstern et al., 2014,223

2018).224

In the following sections we will address three questions, motivated by this anal-225

ysis:226

1. Are the CMIP6 model simulations, as an ensemble, consistent with NOAA-20CR227

under the regression analysis laid out above?228

2. Are there any statistically robust differences between the chemistry and no-chemistry229

groups of models?230

3. How can we reconcile the apparently contradictory findings regarding what is driv-231

ing the summertime SAM derived from the hist-1950HC, hist-GHG, and hist-stratO3232

experiments?233

5.2 Validation of the CMIP6 historical simulations versus NOAA-20CR234

A fundamental problem here is that there are hundreds of CMIP6 “historical” sim-235

ulations used here, but only one realization produced by nature, approximated by NOAA-236

–9–
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Figure 4. Sea-level pressure based SAM index for (left) austral summer (DJF) and (right)

winter (JJA) for (top) all no-chemistry models, baseline-adjusted so the index averages to 0 over

1851-1950. Thin coloured lines: Single-model ensembles means. Thick solid black: Multi-model

mean. Thick light blue: Regression fit to multi-model mean. Thick green: Regression component

S1 just due GHGs. ’+’: NOAA-20CR. Black dashed: Regression fit to NOAA-20CR. 2nd panel:

Same for the six chemistry models. Thick dark blue: Multi-model mean for the hist-1950HC

experiment. (2nd row) Same, for the chemistry models. Thick blue: hist-1950HC multi-model

mean (MMM). (3rd row) Same, for the nine no-chemistry models that have participated in hist-

GHG. Thick blue: hist-GHG MMM. (bottom): Same, for four no-chemistry models that have

participated in hist-stratO3. Thick blue: hist-stratO3 MMM.

20CR. We thus need to adequately consider natural variability when comparing obser-237

vations to CMIP6 simulations. Figure 5 shows density plots for the three regression co-238

efficients and their sum S1+S2 as derived from individual historical CMIP6 simulations,239

with every simulation weighted with n−1i , with ni being the number of simulations in240

the historical ensemble of model i. An inspection of the results for individual models (not241

shown) indicates that the spread in S0 evident in figure 5 is not the result of natural vari-242

ability (i.e. spread within single-model ensembles) but rather reflects the differences in243

the base states of individual models that are seen in all ensemble members with little244

random variability. However, the models generally well reflect the two maxima in spring245

and autumn (known in New Zealand as the “windy seasons”), in agreement with NOAA-246

20CR.247

–10–
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Figure 5. Density plot (number of models/hPa) of the distribution of regression coefficients

S0, S1, S2, and S1 + S2 derived from the CMIP6 historical ensemble. Solid lines: Boundary of

the CMIP6 range. Dashed: NOAA-20CR. For every month of the year, we count the number of

regression coefficients derived from the CMIP6 ensemble, weighted by the inverse of ensemble

size, n−1, that fall into bins sized 0.8 hPa each.
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For the component S1 of the SAM that goes with COeq
2 , during austral summer248

(DJF) the CMIP6 simulations are roughly evenly divided between positive and negative249

values, but in austral winter, they favour a positive contribution to the SAM (i.e. increas-250

ing GHGs drive a strengthening of the SAM). An inspection of individual model results251

shows that the spread in S1 has contributions both due to natural variability and inter-252

model disagreements. NOAA-20CR is generally within the CMIP6 range for all months253

but in different seasons (JJA, NDJ) tracks close to both ends of the range spanned by254

the CMIP6 models.255

For the component S2 reflecting the influence of ODSs, the CMIP6 historical en-256

semble shows predominantly positive influences during summer (i.e. ODSs driving a sum-257

mertime strengthening of the SAM), in agreement with NOAA-20CR. During winter,258

CMIP6 favours a negative influence (weakening) of ODSs on the SAM, but a substan-259

tial fraction of simulations also show a strengthening. NOAA-20CR is generally in agree-260

ment with this behaviour.S2 exhibits a generally better agreement between NOAA-20CR261

and the CMIP6 models than S1, likely because ODSs only started to increase around262

the time of the onset of measurements in Antarctica, and thus trends driven by ODS in-263

creases are better captured by observations than earlier, possibly spurious trends pro-264

jecting onto GHG increases in NOAA-20CR which occurred before these observations265

started.266

The sum of the regression coefficients S1+S2 shows less variability than the two267

coefficients individually. This is the result of non-zero correlation between the two in-268

dices. S1 + S2 is therefore more robustly diagnosed from both the references and the269

models than both indices individually. The much larger wintertime strengthening in NOAA-270

20CR, which is outside the range spanned by the CMIP6 ensemble, is evident here as271

well.272

We conclude from this analysis that (a) during summer the CMIP6 simulations are273

broadly in agreement with NOAA-20CR regarding the influences of ODSs and GHGs274

and their combination, whereas (b) during winter the total best-estimate strengthening275

of the SAM evident in NOAA-20CR is irreconcilable with the CMIP6 ensemble. Given276

the better agreement between CMIP6 and NOAA-20CR, in all seasons, for the SAM strength-277

ening in 1957-2014 (figure 5), we conjecture that this may well reflect spurious variations278

in the NOAA-20CR reanalysis for the period before 1957.279

Next we perform a formal analysis of differences between the behaviours of chemistry-280

and no-chemistry models, with a particular emphasis on an uncertainty calculation.281

5.3 Chemistry- versus no-chemistry models282

In comparing the two model groups, we consider two sources of statistical uncer-283

tainty: The first is the random-noise uncertainty associated with the regression approach284

itself. To account for this, for every model (chemistry and no-chemistry alike), we pro-285

duce 1000 synthetic variant realizations of each single-model ensemble-mean SAM in-286

dex using a Monte-Carlo simulation approach outlined in more detail in the appendix.287

From these synthetic realizations, for each model 1000 synthetic regression coefficients288

si,j0 (m), si,j1 (m), and si,j2 (m) are derived which now reflect the statistical uncertainties289

in the regression coefficients of the SAM for each model. Here i denotes the model, j the290

Monte-Carlo realization, and m as before the 12 overlapping seasons of the year.291

We then form the six-model mean and statistical uncertainty range of this data from292

the six chemistry models. Here the uncertainty only refers to the statistical component293

reflecting natural variability, which due to the 6-model averaging is smaller than for in-294

dividual models.295
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For the no-chemistry group, we note that there are 100,947 distinct 6-model sub-296

sets that can be formed from the 23 no-chemistry models. We thus form those 100,947297

six-model averages of the s0, s1, and s2 coefficients. Multiplied by the 1000 Monte-Carlo298

realizations each, this yields a total of 100,947,000 regression realizations. The distribu-299

tion functions of s0, s1, and s2 define the uncertainties in 6-model-mean regression co-300

efficients derived from a randomly chosen 6-model subset of the no-chemistry models.301

This analysis is accounting for statistical/random noise as well as model-selection un-302

certainties. The presence of both these types of uncertainties in the no-chemistry group303

means that the no-chemistry 6-model-mean coefficients are subject to larger total un-304

certainties than those of the chemistry group (see below).305

We then, for both ensembles, reduce the 1000 and 100 million realizations, respec-306

tively, to their means and 2.5, 16, 84, and 97.5 percentiles, representing the one- and two-307

standard deviation uncertainty bounds of the 6-model-mean regression parameters (fig-308

ures 6 and 7). For the baseline SAM index S0, there are relatively small differences be-309

tween the two model sets although the large inter-model differences noted before pro-310

duce a substantial spread in the uncertainty range for the no-chemistry ensemble which311

is absent in the chemistry group (as there is only one such ensemble possible, character-312

ized by a very small random uncertainty). Except during austral spring, the SAM in the313

chemistry group tends to be slightly stronger than in the no-chemistry group with a prob-314

ability exceeding 60% in February and September and a tendency for chemistry mod-315

els to have a weaker S0 in May-June than the no-chemistry models (figure 7).316

The GHG influence S1 is generally stronger in the no-chemistry group (with prob-317

abilities of 90% or larger during summer and autumn (DJFMAM)). During summer (DJF)318

there is a disagreement in sign, with no-chemistry models favouring a strengthening in-319

fluence of GHGs but chemistry models favouring a weakening. The ODS influence S2320

is stronger throughout most of the year in the chemistry versus no-chemistry group, with321

particularly large differences occurring in summer and autumn when the probability ex-322

ceeds 90%. In winter, chemistry models show a zero influence but no-chemistry models323

display a weakening influence of ODSs. Both are much weaker than the GHG influence324

and insignificant at the 68% confidence level.325

As for the combination of both influences S1 + S2, no-chemistry models (with a326

probability of 60 to 90%, depending on season) favour a larger strengthening than the327

chemistry models, although the difference is always less than 1 hPa.328

5.4 Deep coupling of the SAM329

In the preceding sections we have only studied the surface expression of the SAM.330

Here we discuss briefly what the trends and the regression analysis yield when applied331

to the SAM index derived from geopotential height (zg) fields. In particular we will con-332

trast the chemistry models with their near-equivalent no-chemistry variants (CESM2,333

CNRM-CM6-1, GFDL-CM4, GISS-E2-1-G, HadGEM3-GC31-LL; table 1).334

The 1957-2014 linear trends in the SAM (figure 8) show in all models (both chem-335

istry and equivalent no-chemistry models) a maximum in the strengthening of the SAM336

in late spring between 100 and 10 hPa. In the chemistry models, the amplitude of this337

maximum depends on the amount of ozone depletion simulated, with UKESM1-1-LL and338

MRI-ESM2-0 simulating the largest and smallest trends in zg for relatively large and small339

amounts of Southern-Hemisphere ozone loss, respectively (Morgenstern et al., 2020). The340

strengthening disappears when halocarbons are suppressed in the hist-1950HC exper-341

iment; they are replaced with insignificant trends of inconsistent sign. In four out of five342

cases where this comparison is possible, spring/summer trends in zg are larger in the chem-343

istry models than in their no-chemistry equivalents. Only the CESM2 / CESM2-WACCM344

pair exhibits about the same strengthening. The hist-GHG experiment (where ozone is345

prescribed and GHGs provide the only forcing) in some cases (CESM2/CESM2-WACCM,346
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Figure 6. Thick black: Mean parameters S0, S1, S2, and S1 +S2 from the no-chemistry model

ensemble. Dark and light blue: Their 68 and 95% confidence intervals. Solid red: Mean parame-

ters S0, S1, S2, and S1 + S2 from the chemistry model ensemble. Dotted red: Their 68 and 95%

confidence intervals.
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Figure 7. Probabilities P that the multi-model mean of (black) S0 (blue) S1 (olive) S2 and

(light green) S1 + S2 is larger for the chemistry group of models than for a randomly chosen

6-model no-chemistry group.

GFDL-CM4/GFDL-ESM4-1, GISS-E2-1-G/GISS-E2-1-Gchem) the trends are larger than347

in hist-1950HC (where ozone is interactive), but this is not the case for all models.348

Extending now the regression analysis (covering 1850-2014) to zg, for five of the349

six chemistry models (except for MRI-ESM2-0) the regression analysis (figure 9) shows350

that ozone depletion is driving a strengthening of the SAM during spring and summer,351

but there is a sizeable offset due to increasing GHGs. In MRI-ESM2-0 a weak strength-352

ening of the SAM associated with the small ozone depletion characterizing this model353

is not partially offset by a weakening influence of GHGs. There is substantial anticor-354

relation between the influences of both forcings also in other seasons. The no-chemistry355

equivalents largely show similar behaviour although in two of the models (GISS-E2-1-356

G, HadGEM3-GC31-LL) the offsetting effect maximizes earlier in the year and is not per-357

fectly aligned with the ozone depletion season, unlike in most chemistry models. How-358

ever, in all cases, deep coupling is evident whereby relatively large zg trends in the strato-359

sphere, with a delay of a few months, drive corresponding zg trends in the troposphere360

in summer which then manifest as the trends in psl discussed above.361

6 Discussion362

Validations of multi-model climate experiments versus observations, and compar-363

isons of different groups of models, require a careful consideration of statistical uncer-364

tainty bounds. This is particularly the case for the SAM which for the period before the365

onset of routine meteorological measurements in Antarctica is subject to substantial un-366

certainties. For this reason evaluations of trends in the SAM are often restricted to re-367

cent decades only, and often only involve calculating linear trends. In the face of large368

random variability and considerable differences in model behaviour, such approaches can369

result in substantial uncertainties in the resultant trends and consequently only weak370

conclusions about any drivers of such trends.371
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Figure 8. 1957-2014 trends in the ensemble-mean geopotential height fields (m a−1) in the

chemistry models and their no-chemistry equivalents (where available). ’+’ symbols denote in-

significant trends (small ’+’: at the 68% confidence levels; large ’+’: 95% significance). (left)

No-chemistry, historical. (2nd colum) No-chemistry, hist-GHG. (3rd column) Chemistry, histori-

cal. (right) Chemistry, hist-1950HC.
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Figure 9. Regression coefficients S1 and S2 derived from the ensemble-mean geopotential

height fields (m) in the chemistry models and their no-chemistry equivalents (where available).

(left column) S1, no-chemistry models. (2nd column) S2, no-chemistry. (3rd column) S1, chem-

istry. (right column) S2, chemistry.
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Table 3. Approximate MMM SAM strengthening (hPa) in the four experiments in 2014, dis-

cerned from figure 4, and factors present in those experiments. Magnitudes of the factors as

derived from the experiments.

Experiment factors DJF JJA

historical ODS + dGHG + iGHG 3.7 1.7
hist-1950HC dGHG + iGHG 0 1.7
hist-GHG dGHG 2.6 2
hist-stratO3 ODS + iGHG 2.5 −0.5

ODS 3.7 to 5.1 0 to 0.2
dGHG 1.2 to 2.6 2 to 2.2
iGHG −2.6 to −1.2 −0.3 to −0.5

To advance in the face of these issues, we here pursue an approach that (a) max-372

imizes the usage of available simulations (i.e., we use almost all available CMIP6 histor-373

ical simulations). (b) Using a regression model, we consider the whole “historical” pe-374

riod (1850-2014). The regression model accounts for the leading anthropogenic influences375

that modulate the SAM on decadal-to-century timescales. (c) In comparing the mean376

behaviour of two different groups of models (with and without interactive ozone) we form377

all possible subsets of the larger group that are of equal size to the smaller group. This378

ensures strict comparability.379

For the period 1957-2014, during which continuous Antarctic meteorological ob-380

servations exist, we find a mean strengthening trend in the CMIP6 ensemble which in381

summer is consistent with four observational datasets. In winter however two of these382

datasets (HadSLP2, NCEP/NCAR) exhibit spuriously large trends and are thus removed383

from further analysis. The remaining two datasets (Marshall (2003) and NOAA-20CR)384

are consistent with each other and with the distribution of trends in the CMIP6 ensem-385

ble. This makes NOAA-20CR our primary observational reference dataset as it extends386

back to 1851.387

Forced multidecadal SAM variations in the four experiments analyzed here can-388

not be reconciled using the traditional approach of only accounting for ODS and GHG389

influences. The hist-1950HC experiment clearly shows that in the absence of ozone de-390

pletion, the models in the mean exhibit no strengthening in DJF. In this two-factor frame-391

work this would be in contradiction with the hist-GHG experiment which does produce392

a significant MMM growth of the SAM index. Following Morgenstern et al. (2014), we393

therefore stipulate that a three-factor approach is needed to explain this, comprising the394

factors ozone depletion (ODS), greenhouse-gas induced warming (the “direct GHG” ef-395

fect, dGHG), and the impact on dynamics of greenhouse-gas induced ozone changes (the396

“indirect GHG” effect, iGHG). These factors are variously taking effect in the four ex-397

periments considered here (table 3).398

Table 3 represents an overdetermined system of four linear equations for the three399

factors ODS, dGHG, and iGHG. There are four three-equation subsets, one of which has400

no solution. The other three yield the ranges as indicated in the lower three lines of ta-401

ble 3.402

The three-factor qualitative model better explains the findings than the traditional403

two-factor approach. In summer ozone depletion dominates the other influences in the404

CMIP6 ensemble. However, the GHG influence is negligible because of a cancellation of405

two non-negligible terms, dGHG and iGHG, which each are about a third to half the size406

of the ODS influence. In winter, the ODS influence is small, and there is some offset of407
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dGHG by iGHG. These findings are corroborated by our upper-level analysis (figure 8)408

which indicates for the hist-1950HC experiment essentially zero trends in the SAM in-409

dex during the ozone-depletion season but persistent positive trends in the index for the410

hist-GHG experiment. The results corroborate Morgenstern et al. (2014) however now411

using a multi-model analysis.412

The analysis presented here fundamentally relies on the presence of a subset of mod-413

els with interactive ozone chemistry having completed the hist-1950HC experiment. In414

the hypothetical absence of this experiment, the “contradiction” mentioned above would415

be reduced to some nonlinearity between the historical, hist-GHG and hist-stratO3 ex-416

periments (i.e. the summertime strengthening in hist-GHG and hist-stratO3 not adding417

up to that in the historical experiment; table 3), which however would not be clear in-418

dication of a missing factor in the attribution analysis.419

We also find some statistically robust differences in behaviour between the 6-model420

chemistry and the 23-model no-chemistry ensembles. Corroborating previous literature421

on the differences between chemistry- and no-chemistry models (Haase & Matthes, 2019;422

Haase et al., 2020), we find stronger influences of ozone depletion offset by weaker in-423

fluences of increasing GHGs in the chemistry group, in most seasons. A comparison of424

the chemistry models with their no-chemistry equivalents suggests that indeed the SAM425

strengthening in the stratosphere is mostly weaker in the no-chemistry counterparts; this426

behaviour has previously been attributed to misalignment of the ozone hole with the dy-427

namical polar vortex in no-chemistry models, causing a systematically weaker polar vor-428

tex and a weaker influence of ozone depletion also on the tropospheric SAM (Haase &429

Matthes, 2019).430

In summary, our study illustrates that using only no-chemistry models for attri-431

bution of trends in the SAM carries the risk of erroneous conclusions. CMIP6 marks the432

first time that a sizeable set of fully coupled climate models, with and without ozone chem-433

istry, has been applied to a range of sensitivity scenarios required to identify and quan-434

tify the factors that drive the SAM. The results of our analysis align well but also ad-435

vance on previous analyses of the SAM.436

Appendix A The Monte-Carlo based comparison of chemistry and no-437

chemistry models438

The method used to compute the data in figure 6 is laid in more detail here.439

• For all models i, we form the single-model ensemble-means of the SAM index.440

• The ensemble-mean SAM indices are decomposed into their regression components441

Si
0 to Si

2, and the variance ε2 is decomposed into its components Ei
0 to Ei

2 follow-442

ing equations 1 and 2.443

• Based on these regression functions, for every model 1000 synthetic random re-444

alizations zij(m, y) are produced. (j stands for one of the 1000 random realiza-445

tions, and m and y are the month and year as before.) This process is illustrated446

in figure A1 for the HadGEM3-GC31-LL model. Note that the spread in figure447

A1 reduced with increasing ensemble size.448

• The random realizations zij(m, y) are again expanded according to equation 1 to449

derive regressions coefficients sij0 (m), sij1 (m), and sij2 .450

• We now group the models into 6 chemistry and 23 no-chemistry models. For the451

chemistry group, we form the 6-model means of s0, s1, and s2, resulting for ev-452

ery calendar month in 1000 random realizations for those 6-model means. From453

these, we derive their mean across the 1000 realizations and their 2.5, 16, 84, and454

97.5 percentiles, marking the 68 and 95% confidence intervals as displayed in fig-455

ure 6.456
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• For the no-chemistry subset of models, we form all 23!/(6! · 17!) = 100, 947 six-457

model subsets. For every one of the subsets we follow the same process as above458

for the chemistry models, resulting in 100,947,000 six-model mean realizations of459

the regression coefficients for the no-chemistry group. We again reduce these to460

their means and 2.5, 16, 84, and 97.5 percentiles as above.461

For the Monte-Carlo analysis of SAM indices to be valid, we require an autocor-462

relation length of less than 1 year for the residual ε. This would ensure that the uncor-463

related random noise produced by the random-number generator is a good reflection of464

what is produced by the models. We have checked that for all individual models this is465

indeed the case. We furthermore require ε to be normally distributed. Following Morgenstern466

et al. (2014), figure A2 indicates that the assumption of a normal distribution of the resid-467

ual ε is good but not perfect. Relative to a perfect Gaussian distribution, large devia-468

tions from the mean in both directions (where G < 0.15 or G > 0.85) are slightly over-469

represented and small deviations (where 0.2 < G < 0.8) are underrepresented, across470

practically all models. Morgenstern et al. (2014) found similar deviations from a nor-471

mal distribution in their analysis.472
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