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Abstract

This first paper of the two-part series focuses on demonstrating the predictability of a hyper-resolution, offline terrestrial

modeling system used for the High Mountain Asia (HMA) region. To this end, this study systematically evaluates four sets

of model simulations at point scale, basin scale, and domain scale obtained from different spatial resolutions including 0.01

degree ( 1-km) and 0.25 degree ( 25-km). The assessment is conducted via comparisons against ground-based observations

and satellite-derived reference products. The key variables of interest include surface net shortwave radiation, surface net

longwave radiation, skin temperature, near-surface soil temperature, snow depth, snow water equivalent, and total runoff. In

the evaluation against ground-based measurements, the superiority of the 0.01 degree estimates are mostly demonstrated across

relatively complex terrain. Specifically, hyper-resolution modeling improves the skill in meteorological forcing estimates (except

precipitation) by 9% relative to coarse-resolution estimates. The model forced by downscaled forcings in its entirety yields the

highest predictability skill in model output states as well as precipitation, which improves the skill obtained by coarse-resolution

estimates by 7%. These findings, on one hand, corroborate the importance of employing the hyper-resolution versus coarse-

resolution modeling in areas characterized by complex terrain. On the other hand, by evaluating four sets of model simulations

forced with different precipitation products, this study emphasizes the importance of accurate hyper-resolution precipitation

products to drive model simulations.
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Abstract21

This first paper of the two-part series focuses on demonstrating the predictability of a22

hyper-resolution, offline terrestrial modeling system used for the High Mountain Asia (HMA)23

region. To this end, this study systematically evaluates four sets of model simulations24

at point scale, basin scale, and domain scale obtained from different spatial resolutions25

including 0.01◦ (∼ 1-km) and 0.25◦ (∼ 25-km). The assessment is conducted via com-26

parisons against ground-based observations and satellite-derived reference products. The27

key variables of interest include surface net shortwave radiation, surface net longwave28

radiation, skin temperature, near-surface soil temperature, snow depth, snow water equiv-29

alent, and total runoff. In the evaluation against ground-based measurements, the su-30

periority of the 0.01◦ estimates are mostly demonstrated across relatively complex ter-31

rain. Specifically, hyper-resolution modeling improves the skill in meteorological forc-32

ing estimates (except precipitation) by 9% relative to coarse-resolution estimates. The33

model forced by downscaled forcings in its entirety yields the highest predictability skill34

in model output states as well as precipitation, which improves the skill obtained by coarse-35

resolution estimates by 7%. These findings, on one hand, corroborate the importance36

of employing the hyper-resolution versus coarse-resolution modeling in areas character-37

ized by complex terrain. On the other hand, by evaluating four sets of model simulations38

forced with different precipitation products, this study emphasizes the importance of ac-39

curate hyper-resolution precipitation products to drive model simulations.40

1 Introduction41

High Mountain Asia (HMA) forms the headwaters of river systems, e.g., Yangtze,42

Yellow, Mekong, Brahmaputra, Indus, and Ganges Rivers, that provide fresh water sup-43

ply for more than a billion people in the region for the purposes of downstream irriga-44

tion, hydropower generation, and general consumption (Armstrong et al., 2019). Mete-45

orological and hydrological conditions in such mountainous environment are poorly mon-46

itored due to terrain inaccessibility and financial insufficiency (Ghatak et al., 2018). To47

overcome the limitations imposed by inadequate ground-based stations, previous stud-48

ies generally utilized global land surface models or regional hydrological models to rep-49

resent the hydro-meteorological processes involved across the HMA region. For exam-50

ple, Immerzeel, Droogers, De Jong, and Bierkens (2009) evaluated runoff simulations in51

a Himalayan river basin using the Snowmelt Runoff Model forced by remotely sensed pre-52
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cipitation at a spatial resolution of 0.25◦. Yoon et al. (2019) provided a thorough eval-53

uation of the terrestrial water budget estimation (i.e., precipitation, evapotranspiration,54

runoff, and terrestrial water storage) over HMA using a suite of uncoupled global land55

surface models at a spatial resolution of 0.25◦. Further, the study conducted by Ghatak56

et al. (2018) evaluated the Noah land surface model-derived runoff simulations in a HMA57

region at a spatial resolution of 5-km. To our current knowledge, there exists no pub-58

lished study performing land surface model simulations finer than 5-km for the entire59

HMA for a relatively long period (e.g., more than 10 years).60

As pointed out by Singh, Reager, Miller, and Famiglietti (2015), increasing com-61

putational efficiency and the need for improved accuracy are driving the development62

of “hyper-resolution” land surface models that can be implemented at regional scales,63

with spatial resolutions of 1-km or even finer. In addition, previous studies emphasized64

that high spatial heterogeneity over complex terrain requires land surface model simu-65

lations to be implemented at relatively high spatial resolutions (e.g., Zhao and Li (2015)).66

In addition to the tremendous amount of computational resources, one of the primary67

challenges of land surface modeling at hyper-resolution is the lack of forcing datasets at68

such resolution (Kollet et al., 2010; Singh et al., 2015). That is, we simply do not have69

reliable regional-scale 1-km in-situ or satellite observational capabilities from which to70

derive all meteorological forcing variables required as input into land surface models. Thanks71

to the recent developments in physical, and statistical downscaling approaches (e.g., Mei,72

Maggioni, Houser, Xue, and Rouf (2020); Rouf, Mei, Maggioni, Houser, and Noonan (2019)),73

which allows hyper-resolution forcing fields to be derived from coarser-resolution data74

based on ancillary information (e.g., land cover, surface roughness, and topography). Us-75

ing Yoon et al. (2019) as a benchmark, in this study, we attempt to address the follow-76

ing science question: “to what extent does the development of hyper-resolution forcing77

input improve or worsen land surface modeling, compared to ground-based observations78

or satellite-derived reference products”? To this end, this study systematically evaluates79

the 0.01◦ (∼ 1-km) and 0.25◦ (∼ 25-km) model simulations at point-scale, basin-scale,80

and domain-scale. The key variables of interest include various downscaled meteorolog-81

ical forcing input, as well as model output of surface net shortwave radiation, surface net82

longwave radiation, skin temperature, near-surface soil temperature, snow depth, snow83

water equivalent, and total runoff.84
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The ultimate goal of this research is to evaluate the newly-developed, hyper-resolution85

High Mountain Asia - Land Data Assimilation System (version 1) from 2003 to 2016.86

The High Mountain Asia - Land Data Assimilation System is intended to provide spa-87

tially and temporally continuous land surface estimates, which are believed essential to88

capture the spatio-temporal evolution of hydrometeorological conditions and their as-89

sociated processes across HMA. Part I, presented in this manuscript, focuses on demon-90

strating the predictability of a hyper-resolution (at ∼ 1-km spatial resolution), offline91

(uncoupled to the atmosphere) terrestrial modeling system (without assimilation) used92

for complex terrain regions.93

2 Data and Methods94

2.1 Study domain and models95

The study domain is the HMA region bounded between 20◦N and 41◦N and 66◦E96

and 101◦E. Meteorological fields from the European Centre for Medium-Range Weather97

Forecasts (ECMWF; Molteni, Buizza, Palmer, and Petroliagis (1996)) and Climate Haz-98

ards Group InfraRed Precipitation with Station data, Version 2 (CHIRPS; Funk et al.99

(2015)) (and two precipitation variants derived from CHIRPS; see Table 1) are used in100

this study. The ECMWF product is originally on a TL511 triangular truncation, linear101

reduced gaussian grid (0.25◦) for four synoptic hours: 00, 06, 12, and 18 UTC. The ECMWF102

forcing fields employed in this study include air temperature, specific humidity, down-103

ward longwave flux, downward shortwave flux, wind speed, and surface pressure. The104

CHIRPS precipitation product has a native spatial resolution of 0.05◦ at a daily time105

scale. Yoon et al. (2019) demonstrated that the joint use of ECMWF and CHIRPS forc-106

ings provides the best model estimates at 0.25◦ spatial resolution for daily output of wa-107

ter balance components.108

Four sets of model simulations are evaluated in this study, which are summarized109

in Table 1. 1) In “HMA-Coarse” (also denoted as “HMA-CS” in figures), the meteoro-110

logical inputs (i.e., air temperature, humidity, surface pressure, wind, downward short-111

wave, and longwave radiation) are adjusted for the elevation differences through lapse-112

rate and slope-aspect correction methods (Kumar, Peters-Lidard, Mocko, & Tian, 2013).113

Inputs obtained from ECMWF and CHIRPS are spatially interpolated and aggregated114

onto the same 0.25◦ grid for generating model output. 2) In “HMA-GMU”, all meteo-115
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rological inputs are downscaled using physically-based and statistically-based algorithms116

onto the 0.01◦ grid for model estimates. Section 2.1.1 summarizes key steps used in the117

downscaling process. 3) In “HMA-CHIRPS”, model output estimates are at a spatial118

resolution of 0.01◦. Except for the precipitation field, all other meteorological forcings119

remain the same as “HMA-GMU”. The precipitation field is replaced with original CHIRPS,120

which is then spatially interpolated onto the same 0.01◦ grid for model estimates using121

the simplistic conservative interpolation scheme. 4) In “HMA-corr-CHIRPS”, model out-122

put estimates are at a spatial resolution of 0.01◦. Except for precipitation, all other me-123

teorological forcings remain the same as “HMA-GMU” and “HMA-CHIRPS”. The pre-124

cipitation field is replaced with the bias-corrected CHIRPS (see Section 2.1.2 for details),125

which is then spatially interpolated onto the same 0.01◦ grid for model estimates using126

the simplistic conservative interpolation scheme.127

The land surface model used in this study is the baseline Noah-MP (Niu et al., 2011;128

Z.-L. Yang et al., 2011). Noah-MP is enhanced from the original Noah land surface model129

through the addition of improved model physics (i.e., dynamic vegetation phenology, a130

carbon budget and carbon-based photosynthesis, an explicit vegetation canopy layer, a131

multilayer snowpack representation and a groundwater module) and multi-parameterization132

options. We used Noah-MP version 3.6 within the NASA Land Information System (LIS)133

7.2 version (Kumar et al., 2006). The Noah-MP model configuration options are the same134

as Xue et al. (2019), and Yoon et al. (2019), which were shown to provide relatively good135

agreement with reference datasets in simulating hydrological conditions. The land sur-136

face model simulations are conducted with a 15-min time step for a 14-year time period137

(2003–2016) to generate daily output of water balance components. The initial condi-138

tions for the runs are generated by appropriate spin-up strategies as described by Xue139

et al. (2019) and Yoon et al. (2019), and then reinitializing all model runs in 2003.140

2.1.1 Downscaling of meteorological forcings141

Following Rouf et al. (2019), meteorological forcings including near-surface (∼ 10142

m above the ground) air temperature (denoted as “Ta”), surface pressure (denoted as143

“pr”), near-surface (∼ 10 m above the ground) specific humidity (denoted as “q”), near-144

surface (∼ 10 m above the ground) wind speed (denoted as “w”), downward surface short-145

wave radiation (denoted as “SW”), and downward surface longwave radiation (denoted146

as “LW”) obtained from ECMWF are spatially downscaled from their original resolu-147
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tions (0.25◦) onto the 0.01◦ model grid. The symbol of “(̃·)” denotes the variable at 0.01◦148

model grid. The downscaling methods are developed by the George Mason University149

(GMU) research team, and therefore we refer to the downscaled meteorological forcings150

as GMU downscaled forcings. The downscaled air temperature in the unit of K is com-151

puted as Marshall and Plumb (1989):152

T̃a = Ta + Γa(Z̃ − Z), (1)153

where Z (m) is the Shuttle Radar Topography Mission (SRTM) digital elevation model154

derived elevation at 0.25◦, Z̃ (m) is the elevation derived at 0.01◦ (see Figure 1a), and155

Γa (K/m) is the spatially distributed dynamic lapse rate in air temperature (Rouf et al.,156

2019). The downscaled surface pressure in the unit of Pa is computed as Cosgrove et al.157

(2003):158

p̃r = pr exp(−g(Z̃ − Z)

RTm
), (2)159

where exp(·) is the exponential operator. R (= 287 J/(kg · K)) is the ideal gas constant,160

g (= 9.81 m/s2) is the gravitational acceleration constant, and Tm (K) is the mean air161

temperature computed from Ta and T̃a. The downscaled specific humidity in the unit162

of kg/kg is computed as Lawrence (2005):163

q̃ =
0.622Ẽ

p̃r − 0.378Ẽ
, (3)164

where165

Ẽ = C1 exp
C2T̃d

T̃d + C3

, (4)166

T̃d = Td + Γd(Z̃ − Z), (5)167
168

where for water, C1 (= 611.21 Pa), C2 (= 17.268), C3 (= 238.88◦C), and for ice, C1 (=169

611.15 Pa), C2 (= 22.452), C3 (= 272.55◦C) as noted in Buck (1981). Td (K) is the dew170

point temperature, and Γd (K/m) is the spatially distributed dynamic lapse rate in dew171

point temperature. The downscaled wind speed in the unit of m/s is computed as Bohn172

and Vivoni (2019); Rouf et al. (2019); Tao and Barros (2018):173

w̃ =
µ̃∗

κ
ln
H

z̃0
, (6)174

where175

µ̃∗ = µ∗(
z̃0
z0

)0.09, (7)176

z̃0 = k̃

M∑
i=1

ρ̃iz0,i + z0 − k

M∑
i=1

ρiz0,i, (8)177

178
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where ln(·) is the natural logarithm operator, µ∗ (m/s) is the friction velocity, z0 (m)179

is the surface roughness, κ (= 0.41) is the Von Kármán constant, H (= 10 m) is the mea-180

surement height above the ground, and M is the number of land cover types. ρi is the181

fractional values of the ith land cover type. k represents the temporal variability of the182

Moderate Resolution Imaging Spectroradiometer (MODIS) derived normalized differ-183

ence vegetation index (NDVI), which is computed as the ratio of the NDVI obtained from184

the current time step versus the annual mean of the NDVI. The downscaled incident short-185

wave radiation in the unit of W/m2 is computed as Fiddes and Gruber (2014); Gupta186

and Tarboton (2016); Ruiz-Arias, Alsamamra, Tovar-Pescador, and Pozo-Vázquez (2010);187

Tao and Barros (2018):188

˜SW = δ cos(θ) exp(τ(p̃r − pr))SWb + FvSWd + αFt( ˜SWb + (1 − Fv) ˜SWd), (9)189

where SWb (W/m2) is the direct shortwave radiation, and SWd (W/m2) is the diffuse190

shortwave radiation. δ is the binary shadowing mask indicating whether the grid cell is191

blocked by the shadow of nearby terrain, cos(θ) is the cosine of the solar illumination192

angle, τ (Pa−1) is the broadband attenuation coefficient, α is the MODIS derived sur-193

face albedo, Fv is the fractional value of the visible sky, and Ft is the terrain configu-194

ration factor, which is computed as the function of terrain slope and Fv. The downscaled195

longwave radiation in the unit of W/m2 is computed as Fiddes and Gruber (2014); Konzel-196

mann et al. (1994):197

˜LW = (ε̃c + ∆ε)σT̃a
4
, (10)198

where199

ε̃c = 0.23 + 0.484(
Ẽ

T̃a
)

1
8 , (11)200

∆ε =
LW

σTa
4 − εc, (12)201

202

where σ (= 5.67 × 10−8 W/(m2 · K4)) is the Stefan-Boltzmann constant, and εc is the203

clear-sky emissivity.204

The original 0.05◦/daily CHIRPS precipitation is spatially and temporally down-205

scaled to 0.01◦/6-hourly by weighting factors. To disaggregate CHIRPS to 0.01◦, spatially-206

distributed weighting factors are derived from daily cumulative downscaled 0.01◦ ECMWF207

precipitation, which is derived from the original 0.25◦/6-hourly ECMWF precipitation208

following Mei et al. (2020). The kernel of the Mei et al. (2020) precipitation downscal-209

ing framework lies in a random forest (RF) classification along with a regression algo-210

rithm. The framework first applies the recursive feature elimination algorithm to select211
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important predictors in terms of their predictive values to the daily cumulative ECMWF212

precipitation from a list of potential predictors. There are 13 potential predictors includ-213

ing eight meteorological variables (air and dew point temperature, surface pressure, spe-214

cific and relative humidity, longwave and shortwave radiation, and wind speed) and five215

auxiliary variables (vegetation index with 30-day and 60-day lag, latitude, longitude, and216

day of year). The meteorological variables are either adopted or derived from the down-217

scaled 0.01◦ ECMWF estimates. For each year from 2003 to 2016, the first seven pre-218

dictors with higher predictive values are selected as important predictors. In a next step,219

with the identified predictors, RF classification models are trained to a binary precip-220

itation mask defining rainy (i.e., daily cumulative precipitation being greater than 0 mm)221

and non-rainy grid cells and RF regression models are trained to the daily cumulative222

precipitation for rainy grid cells (Note: one RF classification and one RF regression model223

for a year). Then, the trained RF classification models are used to produce the 0.01◦ daily224

binary precipitation masks with the 0.01◦/daily predictors. Finally, the RF regression225

models are used to estimate the daily cumulative precipitation for rainy grid cells (in-226

ferred by the 0.01◦ precipitation masks) with the identified predictors.227

After attaining the 0.01◦/daily ECMWF precipitation, the 0.05◦/daily CHIRPS228

precipitation is spatially disaggregated following the equations below:229

˜pdC =


˜pdE,i

1
N

∑N
i=1

˜pdE,i
pdC , if 1

N

∑N
i=1

˜pdE,i > 0,

pdC , if 1
N

∑N
i=1

˜pdE,i = 0

(13)230

where pdE and pdC represent the daily cumulative precipitation from ECMWF and CHIRPS,231

respectively. N is the total number of 0.01◦ grid cells within a 0.05◦ grid cell. The term232

of
˜pdE,i

1
N

∑N
i=1

˜pdE,i
denotes the spatially distributed weighting factors, which quantifies the233

0.01◦ variability of precipitation within the 0.05◦ grid cells. In the case that all 0.01◦ grid234

cells within a 0.05◦ grid cell have null precipitation, pdC is distributed evenly. The daily235

cumulative CHIRPS precipitation is then multiplied by a temporal weighting factor to236

attain the 6-hourly precipitation value at 0.01◦ (denoted as “ ˜ptC”). The temporal weight-237

ing factor is derived from the 0.25◦/6-hourly ECMWF precipitation, written as:238

˜ptC =


ptE,t∑T
t=1 ptE,t

˜pdC , if
∑T

t=1 ptE,t > 0,

˜pdC , if
∑T

t=1 ptE,t = 0

(14)239

where ptE denotes the 6-hourly ECMWF precipitation. T is the total number of time240

steps within one day. Similar to Equation 13, the term of
ptE,t∑T
t=1 ptE,t

is the 6-hourly tem-241
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poral weighting factor used to distribute the daily cumulative precipitation; if all 6-hourly242

precipitation values are zeros within a day, ˜pdC is distributed evenly.243

2.1.2 Bias-corrected CHIRPS244

The bias-corrected CHIRPS are generated using the original CHIRPS at 0.05◦ mul-245

tiplied with the monthly, spatially-distributed correction factors given by Beck et al. (2020).246

Their study used streamflow observations from 9372 stations for calibrations of several247

state-of-the-art (quasi-) global precipitation climatologies. Monthly climatological bias248

correction factors were calculated by disaggregating the long-term bias correction fac-249

tors on the basis of gauge catch efficiencies. An example of the spatially-distributed pre-250

cipitation correction factors as applied in CHIRPS product in February across HMA can251

be seen from Figure 1b. The domain-averaged precipitation correction factor is 1.43, with252

relatively high correction factors presence along Karakoram and Himalayan ranges. As253

noted in Beck et al. (2020), these regions exhibit marked elevation gradients, sparse gauge254

networks, and substantial snowfall: all factors that tend to favor precipitation underes-255

timation, and therefore, the newly-generated bias-corrected CHIRPS product is intended256

to increase the magnitude of precipitation across HMA (see Figure 11).257

2.2 Ground-based measurements of meteorological conditions258

A summary of ground-based measurements of meteorological conditions used for259

evaluation is listed in Tables 3 and 4. These measurements include air temperature, wind260

speed, specific humidity, surface pressure, incident shortwave radiation, incident long-261

wave radiation, and total precipitation. These dataset are obtained from 1) the Chinese262

Meteorological Administration (CMA), namely the Dataset of Daily Climate Data From263

Chinese Surface Stations for Global Exchange (V3.0) (https://data.cma.cn/en/?r=264

data/detail&dataCode=SURF CLI CHN MUL DAY CES V3.0&keywords=daily), or 2) the265

Coordinated Enhanced Observing Period (CEOP) Asia Monsoon project (https://www266

.eol.ucar.edu/projects/ceop/dm/insitu/sites/ceop ap/), or 3) the Department267

of Hydrology and Meteorology in Nepal (DHM), or 4) the Pakistan Meteorology Depart-268

ment (PMD), or 5) the weather underground (WU; https://www.wunderground.com).269

Locations of the ground-based stations are shown in Figures 3 through 5. The discrep-270

ancies between model estimates and measurements resulting from different measurement271

–9–
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heights are neglected in this study (Note: some in-situ data source do not provide the272

measurement height information).273

2.3 Ground-based measurements of modeled states274

A summary of ground-based measurements of modeled states used for evaluation275

is listed in Table 4.276

2.3.1 Surface radiation277

Surface net shortwave radiation and net longwave radiation, calculated as incoming-278

minus-outgoing radiant energy fluxes, are evaluated in this study, respectively. The in-279

situ radiation measurements are obtained from CEOP. Radiation fluxes are measured280

using CM21 Kipp & Zonen (or 2770 Aandera) sensors at a time step of an hour (or twenty281

minutes), and at a height of 1.58 m, 2 m (or 3.1 m) above from the ground surface (de-282

pending on the station). Daily-averaged, in-situ fluxes are then computed as the tem-283

poral mean of the values collected during the 24-hour period. The measurement discrep-284

ancies as a result of different sensor installation heights are neglected in this study.285

2.3.2 Skin temperature286

Two different sources of skin temperature measurements are obtained. First, in-287

situ, daily-averaged surface temperature measurements are obtained from CMA. The daily-288

averaged surface temperature values are computed by averaging the four measurements289

taken by platinum resistance thermometers at 02:00, 08:00, 14:00, and 20:00. Second,290

the in-situ surface temperature measurements are obtained from the CEOP Asia Mon-291

soon project. Skin temperature are measured at a time step of an hour. Daily-averaged,292

in-situ temperatures are then computed as the temporal mean of the values collected dur-293

ing the 24-hour period.294

2.3.3 Snow depth295

The in-situ, daily-averaged snow depth measurements are obtained from 1) the Global296

Summary of the Day (GSOD; https://data.noaa.gov/dataset/dataset/global-surface297

-summary-of-the-day-gsod), 2) the Contribution to High Asia Runoff from Ice and Snow298
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(CHARIS) project (http://himatmap.apps.nsidc.org/hma insitu.html), and 3) the299

CEOP Asia Monsoon project.300

2.3.4 Near-surface soil temperature301

Three different sources of the near-surface (5 cm below the ground) soil temper-302

ature measurements are obtained. First, in-situ soil temperature measurements are ob-303

tained from the CEOP Asia Monsoon project. Near surface soil temperatures are mea-304

sured at a time step of an hour or twenty minutes, and at the depth of 3 cm, 4 cm, and/or305

5 cm from the ground surface (depending on the station). Daily-averaged temperature306

values are then computed as the temporal mean of the temperatures collected during the307

24-hour period as a function of the measured depth. It is assumed that measurements308

taken at the depth of 5 cm (i.e., center of the soil layer) can best represent the modeled309

top-layer of soil (0 - 10 cm). Therefore, the Inverse Distance Weighting method is ap-310

plied to the model estimates to match with the measurement depths of 3 cm and 4 cm,311

respectively.312

Second, daily-averaged near-surface soil temperature measurements from one sta-313

tion located at (29.76◦N, 94.74◦E) are obtained from the Southeastern Tibet Observa-314

tion and Research Station for the Alpine Environment (SETORS; http://en.tpedatabase315

.cn/portal/MetaDataInfo.jsp?MetaDataId=197) maintained by the Chinese Academy316

of Sciences. At this station, soil temperature at a depth of 4 cm below the ground are317

measured using a Campbell 107 sensor. We then interpolate the modeled top-layer of318

soil (0 - 10 cm) temperature estimates to 4 cm using Inverse Distance Weighting to match319

with the measurement depth.320

Third, in-situ, daily- and spatially-averaged near-surface soil temperature measure-321

ments are obtained from the Central Tibetan Plateau Soil Moisture and Temperature322

Monitoring Network (CTP-SMTMN; http://dam.itpcas.ac.cn/rs/?q=data) main-323

tained by the Institute of Tibetan Plateau Research, Chinese Academy of Science. Near-324

surface soil temperature measurements are taken at the soil depth in between 0 and 5325

cm. Only the range of the near-surface measurement depth is given in the CTP-SMTMN326

document without the exact measurement depth (K. Yang et al., 2013). Therefore, the327

modeled top-layer soil temperature is used to approximate the measurement taken at328

in-situ sites.329
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2.3.5 Total runoff330

Table 2 summarizes the main characteristics of the five gauged basins (see Figure331

2) in the study area, including drainage area, data source, and mean elevation computed332

via averaging all grid cells coincident within the given basin. These ground-based mea-333

surements are obtained from 1) the Contribution to High Asia Runoff from Ice and Snow334

(CHARIS) project, or 2) Department of Hydrology and Meteorology in Nepal, or 3) the335

Global Runoff Data Centre, 56068 Koblenz, Germany (https://www.bafg.de/GRDC/336

EN/01 GRDC/grdc node.html). Basin #1 through Basin #5 are listed and organized by337

drainage area in ascending order in Table 2. It is important to note that only basins with338

drainage areas of greater than 625 km2 are included in this study.339

Basin #1 originates in the higher mountains in Nepal, where monsoon precipita-340

tion constitutes the major source of discharge water. In this basin, there exists a fairly341

clear rainfall-runoff relationship. That is, strong commonality with precipitation highs342

to lows matching up with flow magnitudes tends to occur frequently (Hannah, Kansakar,343

Gerrard, & Rees, 2005). According to Hannah et al. (2005), the flow regime shape in Basin344

#1 is Class C with marked August peak runoff. The flow regime magnitude in Basin #1345

is Class 2 with intermediate amount of both annual total precipitation and total runoff.346

Note names of “Class C” and “Class 2” are classification schemes based on Hannah et347

al. (2005).348

Basin #2 is a trans-boundary basin lying north-south in the central Himalayan re-349

gion. It extends from China in the north, and flows through Nepal. The majority of the350

glaciated region in Basin #2 are located in Tibet, China. The climate is dominated by351

the Indian summer monsoon system, with the majority of the precipitation falls between352

June and September. Total runoff varies throughout the year influenced by both snow353

(and glacier) melt and precipitation (Dandekhya et al., 2017). Peak flows generally oc-354

cur in July or August as the peak snow and glacier melt coincide with the monsoon peak355

(Mishra et al., 2018).356

Basin #3 originates in Tajikistan and flows towards Uzbekistan. The highest pre-357

cipitation is often brought by Westerlies during winter and spring periods, with mini-358

mums during summer and early autumn periods (Gafurov et al., 2015). The discharge359

regime is strongly dominated by snow (and glacier) melt in the area during summer time.360

The increase of water discharge typically begins in April and peaks around July or Au-361
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gust. The recession of the discharge river flow generally commences in August and con-362

tinues until February or March, when it reaches its minimum discharge point (Kulma-363

tov, Opp, Groll, & Kulmatova, 2013).364

Basin #4 is located in Tajikistan, which is mainly fed by melting snow and glaciers.365

The region is under the continental climate, characterized by a wide temperature vari-366

ation throughout the year, with the coldest temperature generally occurring in January.367

Similar to Basin #3, Mid Latitude Westerlies are the dominant climatic influence in the368

area. Precipitation decreases from west to east. The majority of the annual precipita-369

tion falls between February and May (Grin, Schaller, & Ehlers, 2018), while during the370

summer and early autumn seasons precipitation presents a minimum.371

Basin #5 is located in the North Western part of Myanmar. It is dominated by a372

mountainous forested terrain, except for the wide flood plain at its lowest southern part373

(Yuan et al., 2017). Rainfall is the major driver for the discharge regime in the area. Dur-374

ing the southwest monsoon season, Basin #5 is prone to severe floods, due to the high375

precipitation intensities with significant spatial and temporal variations (Yuan et al., 2017).376

Riverine floods are very common in Basin #5, and they occur as a result of the intense377

precipitation when the monsoon troughs or low pressure waves superimpose on the gen-378

eral monsoon pattern (Latt, 2015).379

2.4 Reference remotely sensed products380

A summary of remotely sensed products used for evaluation is listed in Table 5.381

2.4.1 Skin temperature382

Similar to the evaluation strategy described in Xue et al. (2019), the reference satellite-383

based surface temperature products utilized here are the MODIS/Terra Land Surface384

Temperature Daily L3 Global 1-km Grid (MOD11A1, version 6; Wan, Hook, and Hul-385

ley (2015)) and the MODIS/Aqua Land Surface Temperature Daily L3 Global 1-km Grid386

(MYD11A1, version 6; Wan et al. (2015)). Given the availability of both nighttime and387

daytime land surface maps generated by MOD11A1 and MYD11A1 from 2003 to 2016,388

we use the simple arithmetic mean of all four measurements to approximate daily-averaged389

values. It is important to note that when daytime MOD11A1, nighttime MOD11A1 as390

well as daytime MYD11A1, and nighttime MYD11A1 present simultaneously, we cal-391
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culate the daily-averaged surface temperature value; otherwise, a “no-value” flag is ap-392

plied.393

2.4.2 Snow water equivalent394

The reference satellite-based snow water equivalent (SWE) product utilized here395

is the Copernicus Global Land Service (CGLS) SWE product (v1.0.2; https://land.copernicus396

.eu/global/products/swe) at a spatial resolution of 5 km (Pulliainen, 2006; Takala et397

al., 2011) available from 01 January 2006. The CGLS SWE retrieval algorithm combines398

information from satellite-based microwave radiometer and optical spectrometer obser-399

vations with ground based weather station snow depth measurements and produces daily400

Northern Hemispherical scale SWE estimates. The SWE product covers all land surface401

areas between latitudes 35◦N and 85◦N with the exception of mountainous regions, and402

glaciers. Therefore, the CGLS SWE product only covers about 16.3% of the entire HMA403

land area.404

2.5 Evaluation methods405

All four experiments listed in Table 1 are integrated forward in time at a time step406

of 15 minutes, and the daily-averaged model output are generated. The overlapping pe-407

riod from 01 February 2003 to 30 November 2016 are used for evaluation in this study.408

It is important to note that stations (or grid cells) with records less than 200 days are409

excluded from the evaluation. Evaluations are conducted at three different spatial scales.410

The point-scale evaluations are performed via comparisons against the closest colocated411

ground-based stations. That is, the performance of air temperature, wind speed, spe-412

cific humidity, surface pressure, incident shortwave radiation, incident longwave radia-413

tion, total precipitation, surface radiation, skin temperature, snow depth, and near-surface414

soil temperatures are evaluated at daily time scales via comparisons against in-situ mea-415

surements taken by the closest ground-based stations. Goodness-of-fit statistics (see Sec-416

tion 2.5.1) are computed and a scoring system (see Appendix A) is designed to rank the417

performance of different sets of estimates. It is always difficult to compare 1-km scale418

estimates against in-situ scale stations due to the stations’ representativeness issue. There-419

fore, if the relative elevation difference between the 1-km scale grid cell and colocated420

station is greater than 50%, we deem that the station is unrepresentative of the large-421

scale model estimates, and thus such stations are removed from the evaluation.422
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The basin-scale evaluations are conducted for modeled runoff through comparisons423

against ground-based discharge measurements. That is, this study aggregates daily-averaged424

total runoff output onto monthly averages and then evaluates against ground-based dis-425

charge measurements taken at basin outlets. The main reason for comparing runoff at426

monthly scale, rather than at hourly and daily scales is that no river routing routines427

are employed in this study. For each of the model simulation listed in Table 1, the mod-428

eled basin-scale total runoff is computed by integrating the runoff output at each grid429

cell across each of the drainage basin. The goodness-of-fit statistics plus the Nash–Sutcliffe430

model efficiency coefficient (see Section 2.5.1) are computed to evaluate the modeled runoff431

performance.432

The domain-scale evaluations are conducted between 1) model estimates and ref-433

erence satellite-based products, as well as between 2) meteorological forcings before and434

after being downscaled. That is, the performance of regional model output of skin tem-435

perature, and SWE are evaluated at daily time scales via comparisons against reference436

remotely-sensed products using the goodness-of-fit statistics. All model output and ref-437

erence products are aggregated onto the same 0.25◦ grid for this set of evaluation. All438

SWE estimates in June, July, and August are excluded from evaluation due to minimized439

coverage of snow in summertime. In addition, the performance of the downscaled me-440

teorological forcings are evaluated using the normalized mutual information index (Sec-441

tion 2.5.2), which is intended to serve as a proxy for the spatial similarity between the442

multi-year averaged forcing variable before and after being downscaled.443

2.5.1 Evaluation statistics444

Goodness-of-fit statistics used for evaluation include bias, root mean squared er-445

ror (RMSE), unbiased root mean squared error (ubRMSE), and correlation coefficient446

(R). The symbol, xmodel, is used to denote estimates obtained from the given model sim-447

ulation. The symbol, xmeas, is used to denote in-situ measurements (or reference satellite-448

based measurements) at either daily or monthly time steps (Note: monthly time step is449

only applicable for runoff assessment). The bias is computed as:450

Bias =
1

Nt

Nt∑
j=1

(xmodel,j − xmeas,j), (15)451
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where Nt denotes the total sample size. A lower absolute value of bias is deemed bet-452

ter at decreasing the systematic errors. RMSE is computed as:453

RMSE =

√√√√ 1

Nt

Nt∑
j=1

(xmodel,j − xmeas,j)2. (16)454

A lower RMSE reflects decreased systematic errors and random errors. Further, ubRMSE455

is calculated as:456

ubRMSE =
√

(RMSE)2 − (Bias)2. (17)457

A lower ubRMSE reflects reduced amount of random errors. In addition, R is computed458

as:459

R =

∑Nt

j=1(xmodel,j − x̄model)(xmeas,j − x̄meas)√∑Nt

j=1(xmodel,j − x̄model)2
√∑Nt

j=1(xmeas,j − x̄meas)2
, (18)460

where x̄meas is the time-averaged estimates of the measurements, and x̄model is the time-461

averaged estimates obtained from model simulations. A higher R demonstrates better462

correlations with the reference. Overall, a relatively low absolute value of bias, or low463

RMSE, or low ubRMSE, or high R is deemed as a higher level of accuracy in the model464

estimates.465

In addition, we compute the Nash–Sutcliffe model efficiency coefficient (NSE) statis-466

tics (Nash & Sutcliffe, 1970) in the basin-scale runoff evaluation. NSEs are used to em-467

phasize peak values in evaluating simulation fit, which can be a useful indicator to dis-468

tinguish the skills among different experiments for peak runoff predictability. NSEs can469

range from -infinity to 1.0. An NSE of 1.0 corresponds to a perfect match between model470

and observed runoff, whereas an NSE less than 0 occurs when the model simulations are471

not better than solely the mean of the observations.472

2.5.2 Spatial similarity assessments for downscaled products473

Mutual information – without an upper bound – can be used to quantify the sta-474

tistical information shared between two distributions (Cover & Thomas, 1991; Strehl &475

Ghosh, 2002), provides a sound indication of the shared information between two dataset.476

On top of that, the normalized mutual information (NMI) could be further derived as477

a proxy for spatial similarity, which is the normalization of the mutual information in-478

dex to scale the results between 0 (no correlation) and 1 (perfect correlation). That is,479

the NMI close to zero indicates high dissimilarity between the two distributions, whereas480

the NMI close to one indicates high similarity.481
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Following Strehl and Ghosh (2002), we define the NMI between variable X and Y482

as follows:483

NMI(X,Y) =
I(X;Y)√
H(X)H(Y)

, (19)484

where I(X;Y) denotes the mutual information shared between the two variables, and485

H(X) and H(Y) are the entropies of the two variables, respectively. I(X;Y) can be fur-486

ther written as:487

I(X;Y) = H(X) +H(Y) −H(X,Y), (20)488

where H(X, Y) denotes the joint entropy of two distributions.489

3 Results490

3.1 Point-scale evaluations491

Figure 3 shows the evaluation of air temperature at both 0.25◦ and 0.01◦ against492

five sources of ground-based measurements. Except for the evaluation against DHM air493

temperature, the GMU downscaled 0.01◦ air temperature generally outperforms the 0.25◦494

one. The superiority of the 0.01◦ air temperature is mostly demonstrated in averaged495

bias and averaged RMSE improvements, but less so with respect to ubRMSE and R. For496

example, in the comparison against CEOP air temperature, the mean bias is improved497

by 32% from -4.98 K (0.25◦) to -3.38 K (0.01◦), and the mean RMSE is improved by 23%498

from 5.44 K (0.25◦) to 4.17 K (0.01◦). However, the mean ubRMSE is degraded slightly499

by 0.9% from 1.91 K (0.25◦) to 1.93 K (0.01◦), and the mean R (= 0.96) is the same.500

Figure 3 also shows the evaluation of surface pressure at both 0.25◦ and 0.01◦ against501

ground-based CMA measurements. The downscaled 0.01◦ estimate yields a perfect weighted502

score of 4.00 (see Table 3), which means the 0.01◦ surface pressure is superior to the 0.25◦503

estimate with respect to all goodness-of-fit statistics in both accuracy and precision mea-504

sures. These two evaluations together signifies the benefits of detailed adjustment of the505

elevation difference as air temperature and pressure are very sensitive to the change of506

altitude especially across highly elevated regions.507

Similarly, improvements are seen in the downscaled shortwave and longwave radi-508

ation estimates in the evaluation against ground-based measurements. That is, Figure509

4 shows the evaluation of incident shortwave radiation, and incident longwave radiation510

at both 0.25◦ and 0.01◦ against CEOP measurements. In general, the 0.01◦ downward511

longwave and shortwave radiation estimates are superior to those at 0.25◦ especially with512
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respect to bias and RMSE. For example, in the comparison against CEOP downward513

shortwave radiation, the mean bias is improved by 30% from 12.32 W/m2 (0.25◦) to 8.61514

W/m2 (0.01◦), and the mean RMSE is improved by 3% from 63.02 W/m2 (0.25◦) to 61.21515

W/m2 (0.01◦). In the comparison against CEOP downward longwave radiation, the mean516

bias is improved by 15% from -36.87 W/m2 (0.25◦) to -31.36 W/m2 (0.01◦), and the mean517

RMSE is improved by 6% from 43.91 W/m2 (0.25◦) to 41.23 W/m2 (0.01◦). In addition,518

the improvement in the downscaled 0.01◦ specific humidity (relative to 0.25◦) is mostly519

demonstrated in the mean bias (see Figure 4). That is, the mean bias is improved by 74%520

from -0.0011 kg/kg (0.25◦) to -0.0003 kg/kg (0.01◦).521

Figure 4 further shows the evaluation of wind speed at both 0.25◦ and 0.01◦ against522

three sources of ground-based measurements. On average, the range of R is generally higher523

(relative to other meteorological fields) possibly due to the uncertainty in wind speed524

measurements and estimates caused by random or turbulent disturbance, especially over525

the complex terrain. Generally, the 0.01◦ wind speed estimate slightly degrades the 0.25◦526

result. That is, the 0.01◦ wind speed estimate only outperforms the 0.25◦ estimate in527

the evaluation against CMA ground-based measurements; the 0.25◦ wind speed estimate528

demonstrates better skills in the evaluation against WU or CEOP measurements. The529

degradations seen in the 0.01◦ wind speed estimates may be partly caused by the assump-530

tions of the logarithmic wind profile used in the downscaling procedure (Rouf et al., 2019).531

Table 3 summarized the weighted scores obtained from 0.01◦ and 0.25◦ near-surface532

atmospheric forcings estimates, respectively. It is encouraging to see that the hyper-resolution533

modeling improves the skill in meteorological forcing estimates (exclude precipitation)534

by 9% relative to coarse-resolution results. The hyper-resolution modeling outperforms535

the coarse-resolution meteorological forcing estimates (exclude precipitation) in nine out536

of 12 sets of evaluation sources in terms of estimates accuracy and precision.537

Figure 5 shows the evaluation of the precipitation field used in all experiments, in-538

cluding HMA-Coarse, HMA-GMU, HMA-CHIRPS, and HMA-corr-CHIRPS. It is not539

surprising to see that the bias-corrected CHIRPS precipitation field used in the HMA-540

corr-CHIRPS experiment yields a much higher positive bias compared to the rest of the541

precipitation estimates. This phenomenon is especially notable in the evaluation against542

CMA ground-based measurements in that the difference between the mean bias of pre-543

cipitation estimates obtained from the HMA-corr-CHIRPS experiment at 0.01◦ is sta-544
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tistically different (at a significance level of 5%) from those obtained from all other three545

sets of experiments. As a result, the bias-corrected CHIRPS yields the lowest skill in pre-546

cipitation estimate according to Table 4. Beck et al. (2020) argued that the disagreement547

between bias-corrected CHIRPS and gauge observations might be attributed to either548

1) gauge under-catch issues or 2) scale mismatch between the model estimates and the549

gauge observations, which is reasonable. In general, the range of R is high and the mean550

value of R is low across all four sets of precipitation fields. The precipitation estimate551

skill varies more significantly over high elevated regions, whereas in flatter regions, four552

sets of precipitation fields demonstrate comparable skills. Comparatively, HMA-Coarse553

achieves the highest skills over relatively flat regions (i.e., with a mean elevation of less554

than 250 m). That is, the aggregated precipitation field used in the HMA-Coarse exper-555

iment at a spatial resolution of 0.25◦ yields a perfect score of 4.0 in the evaluation against556

precipitation measurements obtained from one WU station at an elevation of 250.0m.557

In relatively high elevations, the downscaled GMU precipitation at 0.01◦ yields the high-558

est skill among all, followed by the CHIRPS precipitation at 0.01◦.559

Figure 6 shows the evaluation of net shortwave radiation, and net longwave radi-560

ation generated by all experiments, including HMA-Coarse, HMA-GMU, HMA-CHIRPS,561

and HMA-corr-CHIRPS in the comparison against CEOP measurements. It is encour-562

aging to see that all 0.01◦ net shortwave radiation estimates (obtained from HMA-GMU563

or HMA-CHIRPS or HMA-corr-CHIRPS) generally outperform the 0.25◦ estimate ob-564

tained from HMA-Coarse, especially in terms of the mean bias. For example, the mean565

bias is improved from 38.11 W/m2 (HMA-Coarse) to -1.21 W/m2 (HMA-GMU). Sim-566

ilarly, it is encouraging to see all 0.01◦ net longwave radiation estimates outperform the567

0.25◦ estimate. The superiority of the 0.01◦ net longwave radiation is mostly demonstrated568

in averaged bias and averaged RMSE improvements, but less so with respect to ubRMSE569

and R. For example, the mean bias is improved by 39% from -34.80 W/m2 (HMA-Coarse)570

to -21.38 W/m2 (HMA-corr-CHIRPS), and the mean RMSE is improved by 13% from571

47.33 W/m2 (HMA-Coarse) to 41.27 W/m2 (HMA-corr-CHIRPS). However, both of the572

mean R and mean ubRMSE are comparable between HMA-Coarse and HMA-corr-CHIRPS.573

In general, HMA-CHIRPS yields the best performance in net shortwave and net long-574

wave radiation estimates, followed by HMA-GMU.575

Figure 6 further shows the evaluation of snow depth generated by all experiments576

in the comparison against three sources of ground-based stations. Due to the positive577
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bias seen within the bias-corrected CHIRPS precipitation, it is not surprising to see that578

HMA-corr-CHIRPS yields the worst performance due to the relatively high estimate of579

the snow depth relative to other experiments. For example, the mean bias is degraded580

from -0.05 m in HMA-GMU (or -0.06 m in HMA-CHIRPS) to 0.32 m in HMA-corr-CHIRPS.581

The mean RMSE is degraded from 0.33 m in HMA-GMU (or 0.29 m in HMA-CHIRPS)582

to 0.56 m in HMA-corr-CHIRPS. Further, the ubRMSE is degraded by 54% from 0.24583

m (HMA-GMU) to 0.37 m (HMA-corr-CHIPRS). The ubRMSE is degraded by 60% from584

0.23 m (HMA-CHIRPS) to 0.37 m (HMA-corr-CHIPRS). Again, it is difficult to discern585

whether such bad performance seen in HMA-corr-CHIRPS is due to the erroneous model586

estimate itself or under-representative and erroneous ground-based measurements or both.587

Based on the sum of the weighted scores, HMA-GMU yields the highest skill in snow depth588

estimates, followed by HMA-CHIRPS.589

Figure 6 also shows the evaluation of skin temperature generated by all experiments590

in the comparison against two sources of ground-based stations. It is encouraging to see591

that all experiments yield relatively good agreement with the ground-based measurements592

in terms of R, with all Rs being greater than 0.9. All 0.01◦ estimates tend to correct the593

positive bias in the 0.25◦ skin temperature likely arising from the positive bias in the net594

shortwave radiation. That is, in the evaluation against CMA skin temperature measure-595

ments, the bias decreases from 1.16 K (HMA-Coarse) to 0.03 K (HMA-GMU), and to596

0.0009 K (HMA-CHIRPS), and to -0.17 K (HMA-corr-CHIRPS). In the evaluation against597

CEOP skin temperature measurements, the bias drops from 1.13 K (HMA-Coarse) to598

-1.04 K (HMA-GMU), and to -1.06 K (HMA-CHIRPS), and to -1.47 K (HMA-corr-CHIRPS).599

HMA-corr-CHIRPS seems to over-correct the 0.25◦ skin temperature possibly due to the600

over-corrected precipitation, which yields the worst performance among all experiments.601

Although HMA-Coarse yields relatively high magnitude of the mean bias relative to both602

HMA-GMU and HMA-CHIRPS, HMA-Coarse yields the best performance among all603

experiments according to Table 4 mainly due to its superiority in the relatively low val-604

ues of interquartile range (IQR; see Appendix A) achieved across all goodness-of-fit statis-605

tics.606

Figure 7 shows the evaluation of soil temperature at different depths generated by607

all experiments in the comparison against five sets of ground-based stations. Due to the608

difficulty in in-situ soil temperature measurements as well as discrepancies in the mea-609

surement and model estimate depth in soil, it is not surprising to see that different ex-610
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periments are superior with respect to different set of ground-based measurements. In611

the evaluation against CTP-SMTMN soil temperature measurements, HMA-Coarse out-612

performs all 0.01◦ estimates with respect to all goodness-of-fit statistics. Although there613

are 63 CTP-SMTMN stations used for evaluation, only 12 model grid cells at a spatial614

resolution of 0.25◦ are used due to the close proximity of the ground-based stations. That615

is, because multiple stations are colocated within one 0.25◦ grid cell, we evaluate the same616

set of 0.25◦ model estimates against different in-situ measurements colocated within the617

model grid cell. Under such circumstances, HMA-Coarse still yields the best performance618

partly due to relatively low spatial variability in soil temperature measurements. For ex-619

ample, for three 0.25◦ model grid cells, all with more than five colocated ground-based620

stations, the temporally-averaged standard deviations of the ground-based measurements621

are 1.28 K, 0.97 K, and 0.96 K. Further, in the evaluation against CEOP 3-cm soil tem-622

perature measurements, HMA-corr-CHIRPS yields the best skill, whereas HMA-Coarse623

yields the worst performance mainly due to the relatively high positive bias. That is, the624

bias of the 3-cm soil temperature estimates in HMA-Coarse, HMA-GMU, HMA-CHIRPS,625

and HMA-corr-CHIRPS, are 3.05 K, 0.35 K, 0.36 K, and -0.24 K. In the evaluation against626

CEOP 4-cm soil temperature measurements, HMA-Coarse yields the best performance.627

HMA-Coarse is superior to all 0.01◦ estimates mainly in terms of significantly reduced628

bias and reduced RMSE. The degradation in the 0.01◦ estimates relative to 0.25◦ esti-629

mate might be caused by 1) errors in in-situ soil temperature measurements, or 2) over-630

correction in the downscaled incident shortwave radiation and net shortwave radiation631

although the point-scale evaluation shows better performance in 0.01◦ estimates (see Fig-632

ure 6). It is also possible that the relatively simple Inverse Distance Weighting method633

used to apply with the modeled soil temperature estimates to match with the measure-634

ment depth may not be appropriate in this case because the temperature gradient may635

not be linear. Further, in the evaluation against SETORS 4-cm soil temperature mea-636

surements, HMA-GMU yields a close-to-perfect score with improved performance seen637

across all goodness-of-fit statistics in terms of the accuracy measure. Compared with the638

estimates obtained from HMA-Coarse, HMA-GMU improves the bias by 54% from -9.21639

K to -4.21 K. The RMSE is improved by 51% from 9.44 K to 4.61 K, the ubRMSE is640

improved by 9% from 2.07 K to 1.88 K, and the R is improved by 6% from 0.94 to 0.95.641

Finally, the evaluation against CEOP 5-cm soil temperature measurements shows that642

HMA-CHIRPS is slightly superior to other experiments. HMA-CHIRPS’ better perfor-643
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mance is largely attributed to its relatively low ranges of IQRs achieved across all goodness-644

of-fit statistics. To summarize, HMA-CHIRPS yields the best performance in soil tem-645

perature estimates, followed by HMA-GMU.646

Table 4 summarizes the weighted score achieved by each of the experiment with647

respect to each set of the evaluation source. It is found that HMA-GMU yields the high-648

est predictability skill in precipitation and model output states, followed by HMA-CHIRPS.649

Compared with HMA-Coarse, HMA-GMU improves the skill by 7%. However, HMA-650

corr-CHIRPS yields the lowest skill, which degrades HMA-Coarse predictability by 10%.651

These analysis, on one hand, further corroborate the importance of employing the hyper-652

resolution modeling versus coarse-resolution modeling strategy across the complex ter-653

rain; on the other hand, emphasize the importance of the accuracy of the hyper-resolution654

precipitation product used to drive model simulations.655

3.2 Basin-scale evaluations656

Figure 8 shows the total runoff time series obtained from all experiments for the657

five gauged basins in the evaluation against ground-based measurements. In general, all658

experiments yield relatively good agreement with the ground-based measurements in terms659

of both low flow and high flow seasons, except for Basin #4. In Basin #4, HMA-Coarse660

yields the lowest R of 0.07, and HMA-corr-CHIRPS yields the highest R of 0.66. In ad-661

dition, all experiments yield positive NSEs except for Basin #3 and Basin #4. That is,662

HMA-corr-CHIRPS is the only experiment with a positive NSE of 0.32 for Basin #3.663

In Basin #4, although HMA-CHIRPS achieves the highest NSE of -0.62 among all ex-664

periments, a negative NSE is still not desirable. There can be several reasons contribut-665

ing to the relative poor performance of the modeled runoff simulations in Basin #3 and666

Basin #4. For example, in addition to the shortcoming of neglecting water travel time667

(residence time) within the basin, this study does not model human-related impacts (e.g.,668

water engineering works) and agriculture related activities (e.g., irrigation) in the total669

runoff simulation. Further, the discharge regime is strongly dominated by snow and glacier670

melt within these two basins during summer time (see Section 2.3.5), and therefore, it671

is possible that modeled snow melt discharge enter the stream network too soon due to672

too early onset of snow melt. Therefore, in Part 2 of the future study, we will determine673

if a simple snow cover assimilation scheme can help with modifying the snow melt tim-674
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ing and further improving the runoff modeling performance in snow and glacier dom-675

inated basins.676

Figure 9 shows all statistics computed for evaluating the performance of HMA-Coarse,677

HMA-GMU, HMA-CHIRPS, and HMA-corr-CHIRPS in comparisons against ground-678

based measurements. In terms of the NSE, model runs for Basin #2, Basin #3, and Basin679

#4 yield relatively low values (all below 0.6) as compared with Basin #1 and Basin #5.680

According to Table 2, Basins #2 through #4 have mean elevations of greater than 3000681

m, whereas Basin #1 has a mean elevation of 1638 m and Basin #5 has a mean eleva-682

tion of 681 m. Therefore, it is likely because precipitation estimates used to force mod-683

els vary more significantly over high elevated regions relative to flatter regions, which is684

also seen in the point-scale precipitation evaluation. In addition, in flatter regions (i.e.,685

Basin #5), all experiments yield relatively high Rs, which are greater than 0.96. Com-686

paratively, HMA-Coarse yields the best performance across all evaluated statistics, and687

HMA-corr-CHIRPS yields the worst performance. In relatively high elevated regions (i.e.,688

Basin #1 through Basin #4), 0.01◦ runoff estimates obtained from HMA-GMU, HMA-689

CHIRPS, or HMA-corr-CHIRPS are generally superior to 0.25◦ runoff estimates obtained690

from HMA-Coarse. In Basin #1, HMA-corr-CHIRPS yields the lowest bias (= 2.4 m3/s),691

lowest RMSE (= 14.5 m3/s), and highest NSE (= 0.85), whereas HMA-Coarse yields the692

worst performance across all statistics. In Basin #2, HMA-corr-CHIRPS seems to over-693

correct the total runoff especially in years 2007 through 2012. As a result, HMA-GMU694

yields the best performance in total runoff in terms of the lowest RMSE (= 140.2 m3/s),695

lowest ubRMSE (= 121.5 m3/s), and highest NSE (= 0.53), whereas HMA-Coarse yields696

the worst performance across all statistics. In Basin #3, HMA-corr-CHIRPS significantly697

outperforms other experiments, with a much lower bias (= -12.8 m3/s), lower RMSE (=698

352.2 m3/s), higher R (= 0.84), and higher NSE (= 0.32). The good performance in HMA-699

corr-CHIPRS derived runoff might be attributed to the relatively high correction fac-700

tors as applied to the region (see Figure 1b). In Basin #4, HMA-CHIRPS yields the best701

performance in terms of the lowest absolute value of bias (= -81.75 m3/s), lowest RMSE702

(= 194.9 m3/s), lowest ubRMSE (= 177.7 m3/s), and less negative value of NSE (= -703

0.62). The over-correction issue in HMA-corr-CHIRPS runoff can also be seen from 2005704

to 2012.705

Since the bias-corrected CHIRPS precipitation field is obtained through calibrat-706

ing against ground-based runoff measurements, it is probable that ground-based runoff707
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measurements used in the evaluation here are also used to calibrate the bias-corrected708

precipitation product. This argument might be also used to explain why HMA-corr-CHIRPS709

can significantly outperform all other experiments in Basin #1 and Basin #3 especially710

in bias. However, the over-correction issue in the bias-corrected CHIRPS field should not711

be neglected in Basin #2 and Basin #4. Therefore, in Part 2 of the future study, we will712

determine if a snow cover assimilation scheme can help HMA-corr-CHIRPS to mitigate713

much of the positive bias possibly caused by overly-corrected precipitation.714

3.3 Domain-scale evaluations715

3.3.1 Evaluation of meteorological forcings716

Figure 10 summarizes the multi-year averaged daily air temperature, specific hu-717

midity, surface pressure, wind speed, incident shortwave radiation, incident longwave ra-718

diation, and total precipitation before and after being downscaled from 2003 to 2016.719

In general, 0.01◦ downscaled forcings preserve the spatially and temporally averaged val-720

ues obtained from original 0.25◦ (or 0.05◦) estimates relatively well. Based on Table 6,721

the computed NMIs between before and after downscaled meteorological forcing field range722

from 0.82 to 0.96, which indicate relatively high similarities shared between the two set723

of forcing fields. The lowest NMI of 0.82 is obtained from the incident shortwave radi-724

ation field evaluation, which is likely due to the introduction of multiple correction fac-725

tors (i.e., clearness index, local illumination, cast-shadowing, sky obstruction, and to-726

pographic configuration; Rouf et al. (2019)) in the shortwave radiation downscaling pro-727

cedure.728

Figure 11 shows the spatial distribution of the annual mean total precipitation ob-729

tained from HMA-Coarse, HMA-GMU, HMA-CHIRPS, and HMA-corr-CHIRPS. The730

spatially-averaged annual mean precipitation difference between HMA-Coarse and HMA-731

CHIRPS is -5.89 mm/yr, which is largely attributed to the spatial aggregation proce-732

dure in the precipitation field used in the 0.25◦ estimate. Although the spatially-averaged733

annual mean precipitation difference between HMA-GMU and HMA-CHIRPS is neg-734

ligible (= -0.74 mm/yr), precipitation magnitudes still vary grid-by-grid between these735

two experiments. HMA-corr-CHIRPS yields the highest precipitation magnitude in terms736

of the spatially-averaged mean. For example, compared with the precipitation field used737

in HMA-CHIRPS, the bias-corrected CHIRPS increases the spatially-averaged annual738
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mean precipitation by 23%, with the majority of the notable increases in the mountain-739

ous regions. Despite of the discrepancies in magnitudes among all experiments, it is en-740

couraging to see that all four total precipitation field reveal similar patterns across HMA.741

For example, precipitation intensity exhibits a strong north-south gradient due to oro-742

graphic effects. Specifically, along the south slope of the Himalayas, annual precipita-743

tion is relatively high due to the prevalence of the Indian monsoon. While the height and744

extent of the Himalayas impose a significant barrier to atmospheric circulation patterns745

and the northward push of water vapor is greatly limited by the Himalayan mountain746

chain, regions north of the orographic barriers (e.g., Tibetan Plateau) receive little pre-747

cipitation throughout the year (Bookhagen & Burbank, 2010). Within the Tibetan Plateau748

region, there exists a gradual decrease of the annual precipitation from Southeastern Ti-749

betan Plateau to Northwestern Tibetan Plateau. The relatively dry Northwestern Ti-750

betan Plateau is dominated by the westerlies for almost the entire year as the center of751

the mean moisture contribution is concentrated toward the northwest, while the South-752

eastern Tibetan Plateau precipitation is more influenced by the summer monsoons as753

the center moves more toward the southeast (You, Min, Zhang, Pepin, & Kang, 2015;754

Zhang et al., 2019). Overall, generally wetter regions in Bangladesh, eastern India, and755

the central and eastern Ganges plains are observed in all three products assessed in this756

study, which is consistent with the findings from Bookhagen and Burbank (2010) and757

Yoon et al. (2019) using other different precipitation products.758

3.3.2 Evaluation of model estimates against satellite-based products759

Figure 12 shows the goodness-of-fit statistics computed for HMA-Coarse, HMA-760

GMU, HMA-CHIRPS, and HMA-corr-CHIRPS in the evaluation against the CGLS SWE761

product from 2006 to 2016 across part of HMA above latitude 35◦. It is expected that762

the worst agreement (i.e., relatively high magnitudes of bias, RMSE, ubRMSE, and low763

R) of all four experiments are colocated with relatively high elevated regions inside the764

Tibetan Plateau, to the south of the Kunlun Mountain relative to the north of the Moun-765

tain (a.k.a., Taklamakan dessert) due to the difference in different climate regions. Al-766

though HMA-corr-CHIRPS yields the best performance in terms of the spatially-averaged767

bias (= -1.23 mm) compared with the rest of the experiments due to the higher total pre-768

cipitation magnitude, it still yields the worst performance in terms of RMSE (= 9.87 mm)769

and ubRMSE (= 9.41 mm). Among HMA-Coarse, HMA-GMU, and HMA-CHIRPS, the770
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two 0.01◦ SWE estimates obtained from HMA-GMU, and HMA-CHIRPS generally out-771

perform the 0.25◦ SWE estimates obtained from HMA-Coarse across all goodness-of-fit772

statistics. In terms of the spatially-averaged bias, both HMA-GMU and HMA-CHIRPS773

yield slight improvements relative to HMA-Coarse. The spatially-averaged bias is im-774

proved by 13% from -2.29 mm (HMA-Coarse) to -1.99 mm (HMA-GMU), and it is im-775

proved by 12% from -2.29 mm (HMA-Coarse) to -2.02 mm (HMA-CHIRPS). Similarly,776

the spatially-averaged R derived by HMA-GMU and HMA-CHIRPS are improved slightly777

relative to HMA-Coarse. In addition, both HMA-GMU and HMA-CHIRPS yield slight778

improvements in RMSE and ubRMSE relative to HMA-Coarse. Overall, HMA-GMU yields779

the best performance in SWE estimates in the evaluation against the CGLS SWE prod-780

uct, followed by HMA-CHIRPS. This finding also corroborates the results in the ground-781

based snow depth evaluation that HMA-GMU achieves the highest score in the snow es-782

timates.783

Figure 13 shows the goodness-of-fit statistics computed for HMA-Coarse, HMA-784

GMU, HMA-CHIRPS, and HMA-corr-CHIRPS in the evaluation against the MODIS785

skin temperature product from 2003 to 2016 across HMA. The worst agreement (i.e., rel-786

atively high magnitudes of bias, RMSE, ubRMSE, and low R) of all four experiments787

are along the Himalayas. The spatially-averaged bias is negative for all four experiments,788

however, with noticeable positive biases present in Pakistan and Northern India along789

Ganges and Indus rivers, covered with cropland. As discussed in Xue et al. (2019), such790

positive biases are possibly attributed to the lack of irrigation related activities in the791

Noah-MP model, and therefore yield an overestimation of the surface temperature in this792

region across all experiments. Comparatively, HMA-Coarse yields the most agreement793

(i.e., relatively low magnitudes of bias, RMSE, and ubRMSE) with the MODIS skin tem-794

perature product among all experiments, whereas HMA-corr-CHIRPS yields the worst795

agreement, which is consistent with the finding obtained from ground-based skin tem-796

perature evaluation. Compared with HMA-Coarse, HMA-GMU and HMA-CHIRPS de-797

crease the spatially and temporally averaged skin temperature by 1.10 K (from 285.30798

K to 284.20 K) and 1.13 K (from 285.30 K to 284.17 K), respectively (not shown). This799

reduction in the skin temperature magnitude is mainly caused by the reduction in the800

incident shortwave radiation before and after being downscaled (see Figure 10). Since801

HMA-Coarse already yields a negative bias in the skin temperature in the evaluation,802

the reduction in the HMA-GMU or HMA-CHIRPS derived skin temperature magnitude803
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further exacerbates the negative bias, which leads to significant degradations in terms804

of both bias and RMSE. HMA-corr-CHIRPS skin temperature yields more negative bias805

than HMA-GMU and HMA-CHIRPS because more precipitation is associated with more806

chances of evapotranspiration, which will lead to further reduction in the skin temper-807

ature estimates. In Part 2 of the future study, we will determine if a freeze/thaw assim-808

ilation scheme can help improving the performance of the 0.01◦ skin temperature esti-809

mates.810

4 Conclusions and discussions811

This first article of a two-part series focuses on demonstrating the predictability812

of a hyper-resolution, offline terrestrial modeling system used for High Mountain Asia813

(HMA) region. To this end, this study systematically evaluates four sets of model sim-814

ulations obtained from different spatial resolutions including 0.01◦ (∼ 1-km) and 0.25◦815

(∼ 25-km) at point-scale, basin-scale, and domain-scale. The advantages of employing816

a hyper-resolution modeling unit (versus the coarse-resolution modeling unit) within the817

Noah-MP model are demonstrated in this study, especially in terms of its ability in re-818

ducing systematic errors in model estimates. That is, over relatively complex terrain,819

the 0.01◦ modeling demonstrates superiority in estimating air temperature, surface pres-820

sure, incident shortwave radiation, incident longwave radiation, specific humidity, pre-821

cipitation, surface net shortwave radiation, surface net longwave radiation, snow depth,822

and total runoff based on point-scale and basin-scale evaluations. In terms of wind speed,823

skin temperature, and near-surface soil temperature, mixed performance – sometimes824

improvements and sometimes degradations – are seen in 0.01◦ estimates relative to 0.25◦825

estimates. The exact reason of the mixed performance seen in 0.01◦ estimates remains826

unclear, but may be partly attributed to measurement errors arising from scale mismatch827

or measurement height discrepancies.828

In the domain-scale evaluations against satellite-based products, HMA-GMU yields829

the largest agreement with the CGLS SWE product, and HMA-Coarse yields the largest830

agreement with the MODIS skin temperature product. We are aware that skill metrics831

computed during these comparisons are impacted by errors in the reference products.832

For example, the CGLS SWE product may yield higher uncertainty in estimating rel-833

atively deep snow especially over the forested regions. The accuracy of the MODIS skin834

temperature product is largely impacted by atmospheric attenuation effect, surface emis-835
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sivity variability, as well as the procedure to derive the daily-averaged value. In this re-836

gard, systematic errors metrics such as bias and RMSE, may be secondary or tertiary837

as compared with the random errors measures such as ubRMSE. In Part II of this study,838

we will present the effects of the joint assimilation of satellite-based snow cover and freeze/thaw839

observations into the system. We will present to what extent the assimilation procedure840

will improve or degrade the performance of the 0.01◦ estimate without assimilation, es-841

pecially for the random error measure metrics, such as ubRMSE. It is also hopeful that842

some of the over-correction issues seen in HMA-corr-CHIRPS can be reduced by the as-843

similation procedure.844

Among all meteorological forcings used to drive land surface model simulations,845

precipitation is undoubtedly one of the most important fields. Through evaluating four846

sets of model simulations forced by different precipitation products, it is seen that the847

0.01◦ estimate forced by an inaccurate precipitation representation would lead to mod-848

est degradations in model estimates relative to the 0.25◦ estimate. Among all 0.01◦ es-849

timates, in general, HMA-GMU and HMA-CHIRPS yield relatively high skills in model850

estimates. Key conclusions drawn from this study are summarized below:851

1) In the evaluation against ground-based measurements of air temperature, sur-852

face pressure, wind speed, incident shortwave radiation, incident longwave radiation, and853

specific humidity, it is found that the hyper-resolution modeling improves the skill in me-854

teorological forcing estimates (exclude precipitation) by 9% relative to coarse-resolution855

estimates using the sum of the weighted scores as the criteria (see Table 3). The hyper-856

resolution modeling outperforms the coarse-resolution meteorological forcing estimates857

(exclude precipitation) in 9 out of 12 sets of evaluation sources in terms of estimates ac-858

curacy and precision. In terms of precipitation, the downscaled GMU precipitation yields859

the highest skill across relatively high elevated regions, which improves the predictabil-860

ity skill by 3% relative to the 0.25◦ aggregated precipitation across the complex terrain.861

2) In the evaluation against ground-based net shortwave radiation measurements,862

all 0.01◦ estimates generally outperform the 0.25◦ estimate obtained from HMA-Coarse,863

especially in terms of bias and RMSE. Compared with HMA-Coarse performance in net864

radiation estimates, HMA-CHIRPS improves the skill by 10%.865

3) In the evaluation against ground-based snow depth measurements, HMA-GMU866

yields the highest skill in snow depth estimates, followed by HMA-CHIRPS. Compared867
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with HMA-Coarse performance in snow depth estimates, HMA-GMU improves the skill868

significantly by 39%.869

4) In the evaluation against ground-based skin temperature measurements, although870

HMA-Coarse yields relatively high magnitude of the mean bias relative to both HMA-871

GMU and HMA-CHIRPS, HMA-Coarse yields the best performance among all exper-872

iments mainly due to its superiority in the relatively low ranges of IQRs achieved across873

all goodness-of-fit statistics. Overall, HMA-CHIRPS degrades HMA-Coarse skill in skin874

temperature estimates slightly by 6%.875

5) In the evaluation against ground-based near-surface soil temperature measure-876

ments, different experiments demonstrate their superiority with respect to different set877

of ground-based measurements. In general, compared with HMA-Coarse performance878

in soil temperature estimates, HMA-CHIRPS improves the skill slightly by 6%.879

6) In the evaluation against ground-based total runoff measurements obtained from880

five gauged basins, HMA-Coarse yields the best performance across all evaluated statis-881

tics in relatively flat regions. In relatively high elevated regions, 0.01◦ runoff estimates882

obtained from HMA-GMU, HMA-CHIRPS, and HMA-corr-CHIRPS are generally su-883

perior to 0.25◦ runoff estimates obtained from HMA-Coarse.884

7) 0.01◦ downscaled forcings preserve the spatially and temporally averaged val-885

ues obtained from original 0.25◦ (or 0.05◦) estimates relatively well with relatively high886

spatial similarity.887

8) In the evaluation against the CGLS SWE product, HMA-GMU yields the most888

agreement, followed by HMA-CHIRPS.889

9) In the evaluation against the MODIS skin temperature product, HMA-Coarse890

yields the most agreement.891
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a) b)

Figure 1. a) The SRTM derived HMA elevation map at a spatial resolution of 0.01◦. b) An

example of the spatially-distributed precipitation correction factors at a spatial resolution of

0.05◦ as applied in the bias-corrected CHIRPS product in February across HMA.
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Figure 2. a) HMA study domain with gauged basin outlines in black. Gauged Basin #1

through Basin #5 are shown in b) through f) with elevation information and basin outlet loca-

tions.
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Figure 3. Box plots of bias (column 1), RMSE (column 2), ubRMSE (column 3), R (column

4) computed from 0.25◦ (∼25-km) and downscaled GMU 0.01◦ (∼1-km) meteorological forcings

in the evaluation against ground-based CMA air temperature (row 1), CEOP air temperature

(row 2), DHM air temperature (row 3), PMD air temperature (row 4), WU air temperature (row

5), and CMA surface pressure (row 6). The study domain with dots showing ground-based sta-

tions for each evaluation source are shown in column 5. The plus signs and red lines in the box

plots are shown as outliers and medians, respectively. A close-up sub-figure of the DHM stations

is shown in column 6.
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Figure 4. Same as Figure 3, but for the evaluation against ground-based WU wind speed

(row 1), CMA wind speed (row 2), CEOP wind speed (row 3), CEOP incident shortwave ra-

diation (row 4), CEOP incident longwave radiation (row 5), and CEOP specific humidity (row

6).
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Figure 5. Box plots of bias (column 1), RMSE (column 2), ubRMSE (column 3), R (column

4) computed from HMA-Coarse, HMA-GMU, HMA-CHIRPS, and HMA-corr-CHIRPS in the

evaluation against ground-based CMA daily precipitation (row 1), CEOP daily precipitation (row

2), DHM daily precipitation (row 3), PMD daily precipitation (row 4), and WU daily precipi-

tation (row 5). The study domain with dots showing ground-based stations for each evaluation

source are shown in column 5. The plus signs and red lines in the box plots are shown as outliers

and medians, respectively. The prefix of the experimental name of “HMA” is omitted for clarity.
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Figure 6. Same as Figure 5, but for the evaluation against ground-based CEOP net short-

wave radiation (row 1), CEOP net longwave radiation (row 2), CHARIS snow depth (row 3),

CEOP snow depth (row 4), GSOD snow depth (row 5), CMA skin temperature (row 6), and

CEOP skin temperature (row 7).
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Figure 7. Same as Figure 5, but for the evaluation against ground-based CTP-SMTMN 0-5

cm soil temperature (row 1), CEOP 3 cm soil temperature (row 2), CEOP 4 cm soil tempera-

ture (row 3), SETORS 4 cm soil temperature (row 4), and CEOP 5 cm soil temperature (row

5). Note there is only one CEOP station measuring 3 cm soil temperature, and there is only one

SETORS station. A close-up sub-figure of the CTP-SMTMN stations is shown in column 6.
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Figure 8. Monthly runoff estimates obtained from HMA-Coarse, HMA-GMU, HMA-CHIRPS,

and HMA-corr-CHIRPS for the five gauged basins in the evaluation against ground-based mea-

surements.
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Figure 9. Statistics of bias (column 1), RMSE (column 2), ubRMSE (column 3), R (column

4), and NSE (column 5) computed from HMA-Coarse, HMA-GMU, HMA-CHIRPS, and HMA-

corr-CHIRPS in the evaluation against five sets of ground-based monthly runoff measurements.

Each row represents statistics for each basin. In addition, experiments with the best goodness-of-

fit statistics for each basin are marked with grey bars or noted with numbers if their bars are too

tiny to visualize.
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Figure 10. Multi-year (2003-2016) average of daily air temperature, specific humidity, surface

pressure, wind speed, shortwave radiation, longwave radiation, and precipitation before and after

being downscaled across HMA. m in the title denotes the domain-averaged value.
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Figure 11. Annual mean total precipitation computed from a) HMA-Coarse, b) HMA-GMU,

c) HMA-CHIRPS, and d) HMA-corr-CHIRPS. m in the title denotes the domain-averaged value.
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Figure 12. Goodness-of-fit statistics computed for HMA-Coarse (column 1), HMA-GMU (col-

umn 2), HMA-CHIRPS (column 3), and HMA-corr-CHIRPS (column 4) at a spatial resolution of

0.25◦ in the evaluation against the CGLS SWE product. Note the domain is truncated because

the CGLS SWE product only covers area above latitude 35◦N. Each row represents one set of

goodness-of-fit statistics. m in the title denotes the domain-averaged value.
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Figure 13. Goodness-of-fit statistics computed for HMA-Coarse (column 1), HMA-GMU (col-

umn 2), HMA-CHIRPS (column 3), and HMA-corr-CHIRPS (column 4) at a spatial resolution of

0.25◦ in the evaluation against the MODIS skin temperature product. Each row represents one

set of goodness-of-fit statistics. m in the title denotes the domain-averaged value.
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Table 2. Summary of gauged basins shown in Figure 2. CHARIS = Contribution to High Asia

Runoff from Ice and Snow project; DHM = Department of Hydrology and Meteorology in Nepal;

GRDC = Global Runoff Data Centre.

Basin name Drainage area Data Source Mean Elevation

(Figure number) (km2) (m)

Basin #1 (Figure 2b) 654.9 DHM 1637.9

Basin #2 (Figure 2c) 4629.1 DHM 4329.1

Basin #3 (Figure 2d) 10320.6 CHARIS 3092.8

Basin #4 (Figure 2e) 29110.9 CHARIS 3534.2

Basin #5 (Figure 2f) 110350.0 GRDC 680.7

–44–



manuscript submitted to JGR: Atmospheres

Table 3. Summary of meteorological forcings evaluation (except for precipitation; see precip-

itation evaluation in Table 4) in the comparisons against ground-based stations. Forcing fields

from ECMWF before downscaling at 0.25◦ and after downscaling at 0.01◦ are evaluated. The

final weighted scores are calculated following the method described in Section A and higher

weighted scores are bold. CMA = Chinese Meteorological Administration; CEOP = Coordinated

Enhanced Observing Period project; DHM = Department of Hydrology and Meteorology in

Nepal; PMD = Pakistan Meteorology Department; WU = Weather Underground.

Data Source Number of Variables Weighted score Weighted score

stations (Mean elevation) (temporal scale) by 0.25◦ by 0.01◦

CMA 30 (2442.7m) Air temperature (daily) 3.47 3.76

CEOP 16 (4263.5m) Air temperature (daily) 3.49 3.94

DHM 6 (2689.7m) Air temperature (daily) 3.41 3.04

PMD 3 (1360.7m) Air temperature (daily) 2.83 3.55

WU 15 (393.9m) Air temperature (daily) 3.56 3.89

CMA 30 (2442.7m) Surface pressure (daily) 2.29 4.00

WU 14 (414.1m) Wind speed (daily) 3.97 3.94

CMA 30 (2442.7m) Wind speed (daily) 3.80 3.86

CEOP 18 (4264.4m) Wind speed (daily) 3.96 3.71

CEOP 16 (4263.5m) Incident shortwave (daily) 3.71 3.93

CEOP 7 (4684.8m) Incident longwave (daily) 3.70 3.98

CEOP 14 (4181.2m) Specific humidity (daily) 3.38 3.65

Total scores 41.57 45.25
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Table 5. Summary of reference satellite-based products used for evaluation. MODIS = Moder-

ate Resolution Imaging Spectroradiometer; CGLS = Copernicus Global Land Service.

Data Source Temporal coverage Variables (temporal scale)

MODIS 01 Feb 2003 - 30 Nov 2016 Skin temperature (daily)

CGLS 01 Jan 2006 - 30 Nov 2016 SWE (daily)
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Table 6. The normalized mutual information (NMI) index computed between 25-km and 1-

km multi-year (2003-2016) average of daily forcing estimates (except precipitation), as well as

between 5-km and 1-km multi-year average of daily precipitation estimates as shown in Figure

10.

Forcing field NMI (-)

Air temperature 0.89

Specific humidity 0.95

Surface pressure 0.89

Wind speed 0.96

Downward surface shortwave radiation 0.82

Downward surface longwave radiation 0.93

Precipitation 0.93
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A A scoring system for point-scale evaluations892

Many evaluation data sources provide more than one station to compare against893

(see Tables 3 and 4). Therefore, the mean and the range (or spread) of the goodness-894

of-fit statistics (including bias, RMSE, ubRMSE, and R) are computed as measures for895

estimates accuracy and precision, respectively. The range of each set of goodness-of-fit896

statistics is calculated as the difference between the third quartile and the first quartile897

(a.k.a., interquartile range (IQR)). The lower the IQR is, the lower the spread is, and898

the higher the precision is achieved by the corresponding experiment. However, if the899

number of stations used for evaluation is less than three, the IQRs of goodness-of-fit statis-900

tics are not calculated, and only the means of them are calculated. As a second step, for901

each set of the goodness-of-fit statistics, we normalize the value (either mean or IQR of902

the goodness-of-fit statistics) with respect to the best statistics obtained across all ex-903

periments. Then, for each set of the model estimate, we sum up the normalized scores904

across all four goodness-of-fit statistics for its accuracy (mean) and precision (IQR) mea-905

sures, respectively. Third, we give equal weight (50% vs. 50%) to the accuracy and the906

precision measures to derive the weighted score. Note that in the absence of the preci-907

sion measure when the number of stations used for evaluation being less than three, we908

give all weight (100%) to the accuracy measure. Finally, the experiment with the high-909

est weighted score is deemed as the best model.910

Using the CEOP air temperature evaluation as an example, through averaging the911

bias computed via comparing against 16 ground-based stations, the mean bias of the air912

temperature at 0.25◦ (0.01◦) is -4.98 K (-3.38 K). Thus, the normalized score of the 0.25◦913

(0.01◦) air temperature estimates is 0.68 (1.00) in terms of mean bias. Similarly, the IQR914

of bias of the air temperature at 0.25◦ (0.01◦) is 4.04 K (3.46 K). Thus, the normalized915

score of 0.25◦ (0.01◦) air temperature estimates is 0.85 (1.00) in terms of the bias IQR.916

Similar steps were also taken for other goodness-of-fit statistics. Then, the sum of the917

normalized scores in the mean of the goodness-of-fit statistics for air temperature at 0.25◦918

(0.01◦) is 3.44 (3.99). The sum of the normalized scores in the IQRs of the goodness-919

of-fit statistics for air temperature at 0.25◦ (0.01◦) is 3.54 (3.89). Finally we give equal920

weight (50% vs. 50%) to the accuracy and the precision measures. As a result, in the921

evaluation against CEOP air temperature measurements, the weighted score for air tem-922

perature at 0.25◦ (0.01◦) is 3.49 (3.94). Since the downscaled air temperature yields a923

higher weighted score than the original air temperature, we deem that the downscaled924
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air temperature performs better than the air temperature at the coarse spatial resolu-925

tion.926
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