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Abstract

Although air pollution is largely due to anthropogenic emission, the observed pollution levels in a city are confounded by meteo-

rological conditions and regional transportation of pollutants. However, effective air quality management requires measures for

local emissions of the city. With a data selection algorithm, we choose calm episodes after strong cleaning processes to measure

the growth of three air pollutants (PM2.5, NO2 and SO2) before the arrival of transported pollution. Panel data regression

models are used to analyze the episode data from the quasi-experiments to quantify the local emission in three North China

cities from March 2013 to February 2019. The study reveals a significant reduction in the average hourly growth rates for

PM2.5 and SO2 in 2017-2018 as compared to the levels in 2013 in almost all seasons and cities. However, the local emission

with respect to NO2 was little changed for almost all seasons and cities. The study also finds the winter growth rates of PM2.5

in Beijing were comparable to those in the heavy industrialized Tangshan and Baoding, even the PM2.5 hourly growth rates

for winter 2018 in Beijing were higher than those in Tangshan and Baoding, revealing Beijing’s substantial emission.
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Key Points:

• Calm periods after sustained cleaning processes but before the arrival of trans-
ported pollutants are selected to gauge local emissions.

• Three North China cities saw significant reductions in the average hourly growth
rates of PM2.5 and SO2, but not NO2 in 2017 and 2018.

• Beijing’s winter growth rates of PM2.5 were comparable to those in the heavy in-
dustrialized Tangshan and Baoding, and even higher in 2018.
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Abstract
Although air pollution is largely due to anthropogenic emission, the observed pollution
levels in a city are confounded by meteorological conditions and regional transportation
of pollutants. However, effective air quality management requires measures for local emis-
sions of the city. With a data selection algorithm, we choose calm episodes after strong
cleaning processes to measure the growth of three air pollutants (PM2.5, NO2 and SO2)
before the arrival of transported pollution. Panel data regression models are used to an-
alyze the episode data from the quasi-experiments to quantify the local emission in three
North China cities from March 2013 to February 2019. The study reveals a significant
reduction in the average hourly growth rates for PM2.5 and SO2 in 2017-2018 as com-
pared to the levels in 2013 in almost all seasons and cities. However, the local emission
with respect to NO2 was little changed for almost all seasons and cities. The study also
finds the winter growth rates of PM2.5 in Beijing were comparable to those in the heavy
industrialized Tangshan and Baoding, even the PM2.5 hourly growth rates for winter 2018
in Beijing were higher than those in Tangshan and Baoding, revealing Beijing’s substan-
tial emission.

1 Introduction

Air pollution is both environmental and public health issues in many countries, which
is largely driven by excessive emissions due to anthropogenic activities. The purpose of
air quality management is to reduce the amount of emissions. However, quantifying the
amount of emission in a city or a small area is a challenging task. Emission inventory
(EI) is a tool for emission measurement by enumerating human and industrial activities,
which involves down-scaling larger area production and energy statistics to smaller ge-
ographical areas (Y. Huang et al., 2015; Kuykendal, 2017; Zhong et al., 2017). The in-
ventory is usually compiled every 2-3 years which implies temporal delays in compiling
the measurements, and is also subject to reporting errors.

Studies have shown air quality is much influenced by meteorology and regional trans-
portation. Regional transport of pollutants was found to contribute to concentrations
of PM2.5 (L. T. Wang et al., 2014; Z. Wang et al., 2014; Zheng et al., 2015) and SO2 (Yang
et al., 2013) in Beijing. K. Huang et al. (2014) and L. Wang et al. (2014) showed that
anomalous wind and humidity conditions were related to high PM2.5 concentrations in
Beijing. Seo et al. (2017) investigated a severe haze episode in 2014 at both an urban
site in Seoul and an upwind background site on Deokjeok Island, and found warm, hu-
mid and stagnant meteorological conditions were conducive to the accumulation of pol-
lutants and the oxidation of precursors. Su et al. (2017) found a dilution effect on the
pollution by the planetary boundary layer height (BLH) which defines the aerosol ver-
tical conditions. Su et al. (2018) conducted an analysis of the BLH and PM2.5 concen-
trations over four major regions of China, and concluded that BLH was largely negatively
correlated with the particulate matter concentration. An adjustment approach to remov-
ing meteorological confounding in the observed concentrations was proposed in (X. Liang
et al., 2015; Zhang et al., 2020) via the nonparametric regression model and construct-
ing a baseline meteorological distribution.

Numerical models have been constructed to account for pollutant emission, the me-
teorological and chemical processes, as well as their interactions on regional air quality,
such as the Community Multi-Scale Air Quality (CMAQ), the Comprehensive Air Qual-
ity Model with extensions (CAMx), the PSU/NCAR Mesoscale Model (MM5) and the
Weather Research and Forecast (WRF)-Chem model; see L. T. Wang et al. (2014); Xing
et al. (2011) and Li et al. (2015); Titov et al. (2007); Wu et al. (2013) and Lee et al. (2009)
and Tie et al. (2007) for applications in air quality assessment. The numerical models
can evaluate the effectiveness of control measures via simulating different emission con-
trol scenarios. In the CAMx model, Particulate Source Apportionment Technology (PSAT)
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which is a source tagging method can track the relative source contribution to pollutant
concentrations (Li et al., 2015). Z. Chen et al. (2019) employed a combined CAMx, WRF,
the source emission model (SMOKE) to evaluate four pollution episodes and found a dra-
matic decrease in SO2 with nitrate ions being the dominant PM2.5 component. The rel-
ative contribution of coal combustion to PM2.5 concentrations in Beijing dropped from
40% in March 2013 to 11% in March 2018 as a result of China’s “Coal to Gas” project
and “2 + 26 Cities” regional air quality management strategy (MEP, 2017). T. Huang
et al. (2017) compiled and analyzed a global NOx emission inventory to explore spatial
and temporal trends in emissions from 1960 to 2014, which suggested a dramatic increase
in annual anthropogenic emissions of NOx from 7.39 to 67.8 teragrams in developing coun-
tries and showed slow progress on NOx emission control.

In the last two decades, live air quality monitoring data are increasingly available
to provide timely measurements on a set of pollutants in many locations in the world.
However, the data may not entirely reflect emission at a location because they are in-
fluenced by regional transportation and meteorological conditions as shown above. As
revealed in X. Liang et al. (2015); Zhang et al. (2017), the air quality in the North China
Plain (NCP) is governed by the northerly versus southerly wind regimes. The cleaning
processes in the NCP are typically conducted by strong northerly winds that blow away
the pollutants and refresh the near earth atmosphere, while southerly wind brings more
polluted air mass from the southern part of the NCP which is installed with excessive
heavy industrial capacities (Zheng et al., 2015).

Motivated by the geographical and meteorological reality in the NCP, we develop
an algorithm to select temporal segments of the time series observations corresponding
to calm periods after sustained northerly cleaning but before the arrival of the transported
pollutants for three cities: Beijing, Tangshan and Baodin in the northern part of NCP.
Indeed, every time after a strong northerly system thoroughly refreshes the air, it offers
an opportunity to check on the growth of air pollution in a city over the quasi-experiment
period of calm weather before transported pollutants are brought from the south. By
applying seasonal regression for panel data with hourly dummy variables, the hourly growth
rates of the three pollutants (PM2.5, SO2 and NO2) from the start of the calm episodes
are estimated. To remove meteorological confounding, the estimated growth rates are
adjusted according to the meteorological baseline distributions based on data from 2013
to 2018.

The analysis reveals a sustained reduction trend in the adjusted average growth
rates of PM2.5 and SO2 since 2013. Relative to the 2013 levels, the meteorologically ad-
justed average hourly growth rates in 2018 in Beijing were reduced by 2.9-3.7 µg/m3 (52.9%-
66.4%) in the non-winter seasons, 1.3-2.5 µg/m3 (16.1%-31.9%) in winter for PM2.5; and
0.6-3 µg/m3 (65.1%-87.1%) for SO2. Tangshan and Baoding also saw a significant re-
duction in the average hourly growth rates of PM2.5 and SO2. The reduction for PM2.5

ranged 5.6-9.7 µg/m3 (68.9%-78.3%) in Baoding; 0.5-1.7 µg/m3 (14%-24.6%) for spring
and summer, 5.4-7 µg/m3 (52.5%-62.3%) for fall and winter in Tangshan. And those for
SO2 were 1.2-1.6 µg/m3 (34.7%-52.1%) for summer and autumn, 5.9-20.2 µg/m3 (80.9%-
85.9%) for spring and winter in Baoding; 1.1-2.3 µg/m3 (27.8%-63.3%) for non-winter
seasons, 8 µg/m3 (75.1%) for winter in Tangshan, respectively. However, the NO2 growth
rates had not been reduced in the two Hebei cities with some notable increases over the
years, and for Beijing there were only some signs of reduction emerging in 2018. This
reflects the air quality management strategy in North China which has been much fo-
cused on improving the coal related emission, and vehicle related emission control has
lagged much behind that for coal.
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2 Data and Variables

The air pollution data analyzed in this study are hourly concentrations from the
so-called Guokong monitoring sites in three North China cities: Beijing, Baoding and
Tangshan. The Guokong sites are directly administrated by China’s Ministry of Ecol-
ogy and Environment (MEE) to avoid potential local interference. We focus on the hourly
PM2.5, SO2 and NO2 concentrations during the constructed pollution growth episodes
from six sites in Beijing, three sites in Baoding and Tangshan, respectively. Among the
six Guokong sites in Beijing, there are two clusters of sites with each having three sites.
One cluster is located in the northwest (hence Beijing NW), and another in the south-
east of central Beijing (Beijing SE). Tangshan is a steel-making city 155 kilometers (KMs)
to the east slightly south of Beijing, and Baoding is 140 KMs to the southwest of Bei-
jing. Figure S1 of the supporting information (SI) provides a map on the northern por-
tion of the NCP that encompasses the three cities, and Table S1 has details on the site
clusters in three cities. To reduce measurement errors, we applied a five point moving
average filter over the hourly time series data with weights 0.1, 0.2, 0.4, 0.2 and 0.1 for
t− 2, t− 1, t, t+ 1 and t+ 2, respectively.

We matched each of the air quality monitoring clusters in the three cities with the
nearest meteorological station from China Meteorological Administration (CMA). Specif-
ically, two CMA stations are employed in Beijing, one for Baoding and Tangshan, re-
spectively, as shown in Table S1. The meteorological variables include hourly measure-
ments of the dew point temperature (DEWP), relative humidity (HUMI), air pressure
(PRES) and temperature (TEMP), wind direction (W) and speed (WS), cumulative wind
speed (CWS) and precipitation (R). The wind directions are grouped into five categories
based on the study of X. Liang et al. (2015): northeast (NE) having NNE, NE and ENE
(according to the azimuth degrees on the rose wind plot); northwest (NW) for W, WNW,
NW, NNW and N; southeast (SE) including E, ESE, SE, SSE and S; southwest (SW)
having SSW, SW and WSW; and CV for the calm and variable wind. The CWS at time
t sums over wind speed from the first hour of a wind direction to time t under the same
wind direction. Whenever there is a change of direction, CWS is set to zero and starts
to accumulate under the new direction. Furthermore, we define the cumulative northerly
(southerly) wind speed CNWS (CSWS) that merges NE and NW (SE and SW).

We obtained the hourly boundary layer height from the Global Reanalysis data ERA5
provided by the European Centre for Medium-Range Weather Forecasts (ECMWF) at
a grid resolution of 0.5×0.5 (latitude by longitude). The grid location of the ERA5 data
stream which was closest to the center of the air quality monitoring clusters was used
for each site in this cluster. We took the logarithm of humidity (LogHUMI) and bound-
ary layer height (LogBLH) to reduce the skewness of the measurements. Furthermore,
we composed two pre-episode variables: the sum of hourly northerly wind speed (SNWS)
and the maximum of the cumulative northerly wind speed (MCNWS) in the 24 hours
before the calm episodes. These two variables reflected the extent of northerly cleaning.

The time range of the study is from March 2013 to February 2019 which spans over
six seasonal years, where one seasonal year covers spring (March to May), summer (June
to August), fall (September to November), and winter (December to February next year).
The season is the study unit of analysis.

Figure S2 shows PM2.5 versus the accumulated wind speed under five wind direc-
tions in four seasons in 2015 for the four site clusters. Patterns of the wind effects for
other years are similar. The figure shows strong cleaning effects of the northerly winds
while such effects can not be seen for southerly winds in three cities. Figure S3 reports
pair-wise Spearman’s rank correlation coefficients between the three pollutants (PM2.5,
SO2 and NO2) and the cumulative northerly (CNWS) and southerly (CSWS) wind speeds
in 2015 for the four site clusters, which confirms Figure S2’s revelation. The only excep-
tion is for NO2 in the summer and the southerly wind’s effect in Baoding in winter. The
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latter is because Baoding is closer to the middle of the NCP, where the effect of the northerly
cleaning is not as profound as in the other two cities located toward the northern edge
of the NCP. In contrast, Beijing tends to be the first one among NCP cities to be scav-
enged by the northerly cleaning processes (Zheng et al., 2015), which makes the corre-
lation more pronounced.

We write {WSt}Lt=1, {CNWSt}Lt=1 and {CSWSt}Lt=1 for time series of the instan-
taneous wind speed, the cumulative northerly and southerly wind speed, respectively,
{Rt}Lt=1 for the cumulative precipitation, and {PM2.5t}Lt=1 for concentrations of PM2.5.
Here L is the total length of observation time.

3 Calm Episodes

The selection of calm episodes for gauging local emissions consists of identifying
three key time points: (i) the end time tω of northerly cleaning processes, (ii) the begin-
ning time ts and (iii) the ending time te of calm episodes. We first define A to be the
set of ending times tω of northerly cleaning processes, which satisfy

CNWStω−1 ≥ 10.8m/s and CNWStω = 0. (3.1)

It is noted that CNWStω = 0 implies a change of wind direction from the northerly,
and 10.8 m/s (meters/second) corresponds to the lower limit of a strong breeze at grade
6 on the Beaufort scale. As it is cumulative northerly, it would not be restrictive.

We then locate the starting time ts of a calm episode around each tω ∈ A, which
corresponds to the lowest PM2.5 in a neighborhood of tω within a calm, cleaned and dry
period, as the purpose of the study is to investigate PM2.5 growth characteristics after
cleaning by the northerly but before the transported pollution under the southerly wind.
Imposing the dryness condition is to avoid mixing the cleaning due to strong northerly
wind and that by precipitation. As North China is generally dry in non-summer seasons,
the dryness requirement is not restrictive.

Let C be the set of times when the system is calm, clean and dry satisfying

WSt ≤ 5.4m/s,max{PM2.5t−1,PM2.5t} ≤ 35µg/m3,Rt−1 = Rt = 0, (3.2)

where the wind speed (WSt) is confined to grades 0-3 (no more than 5.4m/s) on the Beau-
fort wind scale. It requires that PM2.5 is not larger than 35µg/m3 for two consecutive
hours, where 35µg/m3 is the daily threshold level for acceptable air quality in China. We
replace 35µg/m3 with 50µg/m3 for Tangshan and Baoding due to more severe baseline
pollution in the two cities because of heavier industrial installations in the two cities.

Let Etω be the set of the ending times of the previously selected calm episodes that
end before tω. It starts as an empty set E0 = ∅ and is updated by adding the ending
times of selected calm episodes. The start time ts of a new episode is obtained by search-
ing within an 8-hour neighborhood of tω within C after the ending time of the previous
episode, namely

ts = arg min
t∈Btω

PM2.5t, (3.3)

where Btω = [tω − 8, tω + 8] ∩ (max{t : t ∈ {0} ∪ Etω}, L] ∩ C. Due to the atmospheric
variation and measurement errors, ts and tω may not coincide as the cleaning processes
can stop before or continue after tω. Table 1 reports the seasonal averages for ts − tω
for each site cluster, which shows that ts tended to be earlier than tω with the differences
to be the largest in winter.

After attaining a ts, we monitor the calm episodes starting from ts until

Rt = 0,CNWSt ≤ 3.3m/s and CSWSt ≤ 13.8m/s (3.4)
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is not satisfied. The last hour such that Condition (3.4) is satisfied is the episode’s end-
ing time te. Condition (3.4) excludes continuous cleanings by the northerly or substan-
tial transportation by the southerly wind, respectively. It is noted that 3.3 m/s and 13.8
m/s correspond to Beaufort wind force at grade 2 and grade 6, respectively. Grade 6 may
look strong. However, again it is on the cumulative southerly wind over previous hours,
hence it is not that restrictive.

Figure 1: The time series of PM2.5 (µg/m3), cumulative northerly wind speed (green) and
cumulative southerly (purple) wind speed (m/s) in winter of 2013 in Dongsi with obser-
vations of PM2.5 during the calm episode shown in red, otherwise in blue. The black and
brown dashed lines mark 35 µg/m3 and 10.8 m/s, respectively.

We filtered out episodes whose length (te − ts) is less than three hours to avoid
short and unstable ones. The algorithm for calm episode selection is described in Algo-
rithm 1 in the SI. The episodes selected in the winter of 2013 in Beijing’s Dongsi site are
shown in Figure 1 against the overall time series of PM2.5 and CNWS or CSWS. The
numbers of episodes and their summary statistics in the four site clusters are reported
in Table 1. For clusters in Beijing and Tangshan, the number of calm episodes was largest
in winter, followed by autumn, summer and spring, as northerly cleaning processes were
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Cluster Season Count Day Night Length PM2.5 Range ts − tω Gap Time

Average Q1 Q2 Q3

Beijing SE

spring 284 187 97 7.4(0.3) 4 6 9 33(2.2) -1.5(0.2) 122.9(7.9)

summer 337 273 64 7.8(0.2) 5 7 10 25.7(1.3) -0.5(0.2) 106.3(6)

autumn 424 354 70 9.2(0.2) 6 8 12 33.6(1.3) -1(0.1) 80.2(3.4)

winter 494 413 81 9.3(0.2) 6 9 12 62.6(2.5) -2.2(0.1) 67(2.4)

Beijing NW

spring 293 209 84 7.6(0.2) 4 7 10 31.8(1.8) -1.2(0.2) 124.8(6.1)

summer 334 273 61 9.5(0.3) 5 9 12 26.2(1.2) -0.7(0.2) 103.2(5.7)

autumn 409 326 83 10.7(0.3) 6 10 13 32.2(1.4) -1.1(0.2) 82.8(3.6)

winter 451 392 59 9.7(0.2) 7 9 12 56.1(2.4) -2.5(0.1) 74.7(3.2)

Tangshan

spring 346 245 101 6.9(0.2) 4 6 9 37.2(1.6) -1.5(0.2) 101.4(5.3)

summer 313 186 127 8.5(0.3) 5 8 12 31(1.5) -0.2(0.2) 114.3(7.5)

autumn 443 356 87 10.5(0.3) 6 10 14 45.8(2) -1.6(0.1) 71.1(3.6)

winter 533 432 101 9.2(0.2) 5 8 12 56.1(2.1) -1.9(0.1) 61.8(2.9)

Baoding

spring 294 207 87 7.9(0.3) 4 6 10 38(2.3) -0.6(0.2) 122.2(6.9)

summer 378 250 128 9.6(0.3) 5 8 12 35.1(2.1) -0.7(0.2) 91.4(4.9)

autumn 289 231 58 13(0.5) 7 12 18 54.7(3.7) -0.6(0.2) 109.1(4.7)

winter 321 255 66 11.1(0.4) 5 9 17 70.7(3.7) -0.9(0.2) 107.6(7.2)

Table 1: Summary statistics of selected calm episodes in four different clusters from
March 2013 to February 2019, including the total number and the numbers of episodes
which began during the Day (6 am-6 pm) and at the Night (7 pm-5 am), the average,
25%, 50% and 75% quantiles of the Length of the episodes, the average Range (the dif-
ference between the maximum and minimum PM2.5 in the calm episode, µg/m3), the
average ts − tω (hours) between the episode’s start and the ending time tω of a northerly
cleaning process and the average Gap Time (hours) between two consecutive episodes
with the standard error in the parentheses.

more frequent in winter. The numbers of calm episodes in Baoding were less than those
of the other two cities, which was largely due to generally weaker northerly wind in Baod-
ing as shown in panel (d) of Figure S2. Table 1 also shows that the majority of calm episodes
happened during the day (6 am-6 pm). For all the four site clusters, the average length
of calm episodes was smallest in spring, which was around seven hours, due to more air
turbulence in the more windy spring season in that part of China.

Figure S4 shows the seasonal distribution of ts−tω for selected calm episodes of
each cluster, while Figure S5 presents the radar plots that depict the distributions of the
wind direction and speed four hours before min{ts, tω} and four hours after max{ts, tω},
respectively, in spring of cluster Beijing SE. The wind distribution before min{ts, tω} is
dominated by NW and NE, and the four hours after max{ts, tω} is dominated by SW
and SE. The period between ts and tω saw a drop in NW in both percentage and veloc-
ity. Furthermore, Figure 2 displays changes in the average meteorological variables in
the four hours before and after the start of the calm episodes for cluster Beijing NW in
each season. Similar figures for the other three clusters are provided in Figure S6 - S8.
In general, we can find a common downward trend in BLH, TEMP and CNWS and an
upward trend in DEWP, HUMI and CSWS after the calm episodes start. These char-
acteristics are related to the build-up of pollutants in the calm episodes, which is in line
with the conclusions in the existing literature about the effects of meteorological con-
ditions on pollutant concentrations (Zheng et al., 2015). From Figure S9 we can find that
the patterns of pollutants during the episodes with the beginning in two time periods,
day (6 am-6 pm) and night (7 pm-5 am), are different. Meanwhile, more episodes hap-
pened in the day. Therefore, we only consider comparing the results of episodes which
started between 6 am and 6 pm.
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Figure 2: The average boundary layer height (BLH), dew point (DEWP), relative hu-
midity (HUMI), temperature (TEMP), cumulative northerly wind speed (CNWS), and
cumulative southerly wind speed (CSWS) in the four hours before and after the start of
the calm episodes indicated by the dashed vertical line at zero in Beijing NW in spring
(green), summer (red), autumn (purple) and winter (blue) with the 95% confidence inter-
vals indicated by the colored areas.

4 Methods

4.1 Models for Calm Episodes

As shown in Table 1, the average length of the gap time between consecutive episodes
was at least 60 hours in all seasons, and that in the non-winter seasons was even longer.
Hence, different episodes may be regarded as independent, which leads us to consider
a linear model for the growth of the pollutants during the episodes. It is noted that the
sites within a cluster are quite close to each other, thus data from the three air-quality
monitoring sites in a cluster are pooled to fit a common model for a season to make the
analysis robust.

For a site cluster and a season, at an hour t in the j-th episode of year i, let Yijt
be the concentration of a pollutant (PM2.5, NO2 or SO2), Cij = (SNWSij ,MCNWSij)

>
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Cluster Variable 2013 2014 2015 2016 2017 2018 Average Rank Average R2 Average AIC Average BIC

Beijing SE

Time dummies 1 1 1 1 1 2 1.2 0.68 1735 1800

∆LogBLH — 2 — 2 2 5 5.2 0.70 1726 1795

∆DEWP 3 — 2 — 4 4 5.5 0.72 1700 1771

MCNWS — 4 — — 3 1 6.3 0.75 1693 1768

∆PRES 2 3 — — 6 — 6.8 0.77 1669 1747

SNWS 4 — — — — 3 7.8 0.78 1667 1748

∆TEMP — — — 3 — 6 8.2 0.79 1661 1745

∆LogHUMI — — 4 — 5 — 8.2 0.81 1644 1732

∆CNWS — — 3 — — — 8.8 0.81 1645 1736

∆CSWS — — 5 — — — 9.2 0.81 1643 1737

Beijing NW

Time dummies 1 1 1 1 1 1 1.0 0.68 2145 2215

∆DEWP 2 — 4 — 3 2 5.2 0.71 2126 2199

∆PRES — 4 2 — — 4 6.7 0.72 2121 2197

∆TEMP — 5 3 3 — — 6.8 0.75 2092 2172

MCNWS — 2 — — 2 — 7.3 0.76 2084 2167

∆CSWS — — — 2 5 — 7.8 0.77 2078 2164

∆LogHUMI — 6 — — — 3 8.2 0.78 2074 2165

∆CNWS — 3 — — 6 — 8.2 0.78 2068 2161

SNWS — — — — 4 5 8.2 0.79 2067 2165

∆LogBLH — — — 4 — — 9.0 0.79 2065 2166

Tangshan

Time dummies 1 1 1 1 1 1 1.0 0.80 2401 2469

∆PRES 2 2 3 5 — 2 4.0 0.85 2327 2399

SNWS 3 5 — — 5 5 6.3 0.85 2321 2396

∆LogHUMI — 4 — 2 4 — 6.7 0.86 2310 2389

MCNWS 4 — — — 3 3 6.7 0.86 2300 2382

∆CSWS — — — 4 2 6 7.0 0.87 2297 2383

∆DEWP — 3 — 6 — 4 7.2 0.87 2283 2372

∆TEMP — — 2 — — — 8.7 0.88 2282 2375

∆LogBLH — — — 3 — — 8.8 0.88 2277 2374

∆CNWS — — — — — — 10.0 0.88 2277 2377

Baoding

Time dummies 1 1 1 1 1 1 1.0 0.81 2264 2341

∆PRES — 2 3 — 2 2 4.8 0.83 2223 2303

∆LogHUMI 2 6 2 — 5 — 5.8 0.86 2157 2240

∆LogBLH — 5 — 4 — 3 7.0 0.87 2153 2239

∆CNWS — — — 3 3 6 7.0 0.87 2146 2236

SNWS — 3 — — 6 5 7.3 0.87 2141 2235

∆CSWS — — — 5 7 4 7.7 0.88 2132 2230

∆TEMP 3 — 4 — — — 7.8 0.88 2124 2225

∆DEWP — — 5 2 — — 7.8 0.89 2109 2213

MCNWS — 4 — — 4 — 8.0 0.89 2098 2206

Table 2: Variable ranks by the forward selection method for PM2.5 in the spring of each
year in different clusters during calm episodes and their average ranks, and the successive
average R2, AIC and BIC scores. A ”-” indicates the selection was ended before the vari-
able, which is given a rank of 10. The variables above the dashed line are those selected
into the common baseline model according to the lowest average BIC.

be the two pre-episode variables, and

Mijt = (DEWPijt,PRESijt,TEMPijt,LogBLHijt,LogHUMIijt,CNWSijt,CSWSijt)
>

be the vector of seven meteorological variables, for i = 1, · · · , A, j = 1, · · · , ni and
t = 0, · · · , Tij . Here A = 6 is the total number of years in the study, ni is the num-
ber of episodes in year i of the season in the site cluster, t = 0 corresponds to the start-
ing time ts of a calm episode defined in Section 3 and Tij is the length of the j-th episode.
Since the focus of the study is the pattern of pollution build-up in the episodes, we in-
troduce a difference operator ∆Aijt = Aijt − Aij0 for a generic variable A. To reflect

the hourly growth, we define Iijt = (I1ijt, I
3
ijt, · · · , I

Tij

ijt )> of dummy variables for 1, 2, · · · , Tij
hours after the episode starts for the time-effect. Then the model in year i for the lon-
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gitudinal (panel) data in a cluster of a season is

∆Yijt = ∆M>ijtβi + C>ijγi + I>ijtηi + εijt, (4.1)

where εijt are possibly heterogeneous random errors with zero conditional mean and fi-
nite conditional variance given the explanatory variables. Let θi = (β>i , γ

>
i , η

>
i )> be

the p×1 vector of parameters, where p is the number of covariates. As the model pa-
rameters and their estimation are year, season and cluster specific, the year, season and
cluster fixed effects are reflected in the parameters.

Model (4.1) allows heteroskedasticity and serial correlations in the error terms {εijt}
Tij

t=1

that can be detected by the residual plot or tests (Breusch & Pagan, 1979; Wooldridge,
2010). In this study we use the OLS estimator for θi with the robust variance estima-
tor for variance estimation to avoid potential misspecifications on the dynamic structure
of {εijt}

Tij

t=1 (Beck & Katz, 1995).

Let T̃i = maxj Tij be the maximum length of episodes in year i. As there are T̃i+
9 candidate covariates in the panel regression, to avoid model over-fitting, we first se-
lect the important variables by the forward step-wise method based on the Bayesian in-
formation criterion (BIC) (Hastie et al., 2008), which chooses one variable at each step
that leads to the largest reduction in the BIC until none variable can be added to reduce
the BIC. Since the length of calm episodes varies, we regard the time dummies as a whole
in the forward selection. Table 2 reports the selected variables and their order of selec-
tion for PM2.5 in spring. It is shown that the time dummies were the most important
one and were always selected first, and there was much accordance in the variable im-
portance for the growth of a pollutant among different site clusters at a season. Table
3 summarizes the relative frequencies of the selected variables for the three pollutants
in the four seasons in 2013-2018. It shows that PRES, DEWP and TEMP were key vari-
ables for the growth of PM2.5 in the calm episodes. Besides, the pre-episode variable SNWS
was also significant for the growth of PM2.5 in autumn and winter. TEMP, BLH and HUMI
were important for the growth of NO2. As for the growth of SO2, HUMI and BLH were
important with TEMP, SNWS and MCNWS also selected frequently in autumn and win-
ter. Figure S10-12 present estimates for the year, season and cluster specific coefficients
of selected variables in the model for each pollutant. All predictors have been standard-
ized before the estimation so that the estimates are directly comparable, which confirms
the importance of variables shown in Table 3 and implies a generally strong and posi-
tive effect of DEWP and HUMI on pollutant concentrations as well as the negative ef-
fect of the pre-episode variables.

The subsequent analyses are based on the selected variables under Model (4.1). With-
out causing confusion, the selected meteorological and pre-episode variables are denoted
as ∆Mijt and Cij , respectively. Let Xijt = (∆M>ijt, C

>
ij , I

>
ijt)
> be the vector of selected

covariates at time t for episode j in year i. The OLS estimator for θi is

θ̂i = (

ni∑
j=1

Tij∑
t=1

XijtX
>
ijt)
−1

ni∑
j=1

Tij∑
t=1

Xijt∆Yijt.

It is shown in the SI that under some assumptions, θ̂i is unbiased and consistent for θi
with the asymptotic normality. To estimate the variance of OLS estimator θ̂i in the case
of heteroskedastic and serial correlated errors {εijt}, several robust variance estimators
for panel data regression have been proposed (Arellano, 1987; K.-Y. Liang & Zeger, 1986;
White, 1980). In consideration of the unbalanced panels (different lengths of the episodes)
in our setting, we use the robust variance estimator

V̂ar(θ̂i) = (

ni∑
j=1

Tij∑
t=1

XijtX
>
ijt)
−1[

ni∑
j=1

(

Tij∑
t=1

Xijtε̂ijt)(

Tij∑
t=1

Xijtε̂ijt)
>](

ni∑
j=1

Tij∑
t=1

XijtX
>
ijt)
−1, (4.2)

where ε̂ijt = ∆Yijt −X>ijtθ̂i is the OLS residual.
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(a) PM2.5

Spring Time dummies ∆PRES ∆DEWP ∆TEMP ∆LogHUMI ∆LogBLH SNWS ∆CSWS MCNWS ∆CNWS

1 1 0.75 0.5 0.5 0.5 0.5 0.5 0.5 0.25

Summer Time dummies ∆PRES ∆TEMP ∆LogBLH ∆DEWP ∆LogHUMI ∆CSWS SNWS MCNWS ∆CNWS

1 1 0.75 0.75 0.75 0.5 0.5 0.25 0.25 0.25

Autumn Time dummies SNWS ∆TEMP ∆DEWP ∆LogHUMI ∆PRES ∆LogBLH ∆CSWS MCNWS ∆CNWS

1 1 0.75 0.75 0.5 0.5 0.5 0.5 0.25 0.25

Winter Time dummies ∆TEMP SNWS ∆LogHUMI ∆PRES ∆LogBLH ∆DEWP MCNWS ∆CSWS ∆CNWS

1 1 1 0.75 0.5 0.5 0.5 0.5 0.25 0

(b) NO2

Spring Time dummies ∆TEMP ∆LogBLH ∆LogHUMI ∆PRES SNWS ∆CSWS ∆DEWP ∆CNWS MCNWS

1 1 1 0.75 0.5 0.5 0.5 0.25 0.25 0

Summer Time dummies ∆TEMP ∆PRES ∆LogHUMI ∆CSWS MCNWS ∆CNWS ∆LogBLH SNWS ∆DEWP

1 1 1 0.75 0.75 0.5 0.5 0.25 0.25 0

Autumn Time dummies ∆LogHUMI ∆LogBLH ∆PRES ∆CNWS ∆TEMP ∆CSWS MCNWS SNWS ∆DEWP

1 1 1 0.75 0.75 0.5 0.5 0.5 0 0

Winter Time dummies ∆TEMP ∆LogHUMI ∆LogBLH SNWS ∆CSWS ∆DEWP ∆PRES ∆CNWS MCNWS

1 1 1 0.75 0.75 0.5 0.5 0.25 0.25 0

(c) SO2

Spring Time dummies ∆PRES ∆LogBLH ∆CSWS ∆TEMP ∆LogHUMI SNWS ∆DEWP MCNWS ∆CNWS

1 1 0.75 0.75 0.5 0.5 0.5 0.5 0.5 0

Summer ∆PRES Time dummies ∆LogBLH SNWS ∆CSWS ∆LogHUMI ∆DEWP MCNWS ∆TEMP ∆CNWS

1 0.75 0.75 0.75 0.75 0.5 0.5 0.5 0.25 0.25

Autumn Time dummies ∆LogHUMI SNWS ∆TEMP ∆LogBLH ∆PRES MCNWS ∆DEWP ∆CNWS ∆CSWS

1 1 1 0.75 0.75 0.5 0.5 0.25 0.25 0

Winter Time dummies ∆LogHUMI MCNWS ∆TEMP ∆LogBLH ∆DEWP ∆CNWS ∆PRES SNWS ∆CSWS

1 1 1 0.75 0.75 0.5 0.5 0.25 0.25 0

Table 3: Relative frequencies of variables being selected within the first six steps of the
forward selection procedure for the four seasons and three pollutants.

4.2 Meteorological Adjustment

As meteorological variables are subject to yearly variations, we need to adjust for
such variation in order to compare fairly the pollution growth characteristics within episodes
among different years. Doing so would make the estimated growth rates within episodes
reflect the local emission rather than the meteorological profiles. We extend the adjust-
ment framework established in X. Liang et al. (2015) and Zhang et al. (2020) for the cur-
rent episode-based analysis by constructing meteorological baseline distributions for each
season and cluster.

As the calm episodes have different lengths, let nil denote the number of episodes
whose length is l hours for a site cluster and a season in year i. Let Uijt := (∆M>ijt, C

>
ij )>

be the meteorological variables used in Model (4.1). We assume the episodes with the
same length share the same meteorological distribution and define a set of positive prob-

ability weights {pil}T̃i

l=3 that adds up to one and is subject to nil

ni
→ pil as ni → ∞

for any 3 ≤ l ≤ T̃i in a site cluster and a season of year i.

Let fit(u|l) be the conditional density of Uijt given Tij = l for t ≤ l. Then, the
density fit (u) of Uijt at hour t in a site cluster and a certain season of year i is a mix-
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ture of the densities with different lengths of episodes not smaller than t, namely

fit (u) = (
∑
l≥t

pil)
−1

∑
l≥t

pilfit(u|l).

Let µit(∆mijt, cij) := E(∆Yijt|∆Mijt = ∆mijt, Cij = cij) = ∆m>ijtβi + c>ijγi + I>t ηi,

where It is a T̃i dimensional vector of which all elements are 0 except the t-th element
equals 1. Then, the average concentration at hour t of the episode is

E (∆Yijt) =

∫
µit(u)fit(u)du.

However, the above average based on the density fit(u) of year i is confounded by the
meteorological condition of year i. A version that is free of the confounding is needed.

In consideration of the unbalanced data panels, we focus on the adjustment at hours
t = 1, · · · ,min1≤a≤A T̃a so that the data of all A years can be utilised for the baseline
meteorological construction. A solution to remove the yearly meteorological confound-
ing is to replace fit(u) by an equally weighted density over A years:

f·t (u) =
1

A

A∑
a=1

fat (u) =
1

A

A∑
a=1

(
∑
l≥t

pal)
−1

∑
l≥t

palfat(u|l), (4.3)

which defines the baseline meteorological condition over the A (identical to 6 here) years.

The adjusted average at time t in year i is the mean of ∆Yijt for Uijt ∼ f·t (u),
that is

µ∗it =

∫
µit(u)f·t (u) du =

1

A

A∑
a=1

(
∑
l≥t

pal)
−1

∑
l≥t

pal

∫
µit(u)fat (u|l) du

=I>t ηi +
1

A

A∑
a=1

(
∑
l≥t

pal)
−1

∑
l≥t

palE(∆Majt|Taj = l)>βi

+
1

A

A∑
a=1

(
∑
l≥t

pal)
−1

∑
l≥t

palE(Caj |Taj = l)>γi.

(4.4)

The meteorologically adjusted mean µ∗it can be estimated by

µ̂∗it =I>t η̂i +

 1

A

A∑
a=1

1∑
l≥t nal

∑
s:Tas≥t

∆M>ast

 β̂i +

 1

A

A∑
a=1

1∑
l≥t nal

∑
s:Tas≥t

C>as

 γ̂i,

(4.5)
which makes the concentration during the calm episodes in different years comparable
and reflects changes in the underlying emission.

In the SI, we provide the consistency, the asymptotic normality and the variance
estimation of µ̂∗it for any i = 1, · · · , A and µ̂∗it − µ̂∗i′t for any i 6= i′ as min1≤a≤A na →
∞ under some assumptions, which can be used to test if any two years’ growth rates were
the same or not. We choose the growth rate in the first T hours of the episodes µ∗iT /T
as the criterion to compare the pollution growth in different years.

5 Results and Analyses

Using Model (4.1) with the selected variables and the meteorological adjustment
approach, we obtain the within-episode growth patterns for PM2.5, NO2 and SO2 in the
four site clusters. Figure 3 displays the meteorologically adjusted growth curves µ̂∗it with
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the 95% confidence intervals for the first six hours of episodes in the four seasons of years
2013-2018 for Beijing NW. Figures for other site clusters and pollutants are provided in
Figure S13-S23 of the SI. It is noted that the smallest 25%, 50% and 75% quantiles of
the episode lengths among the four site clusters for each season (Table 1) were 4, 6 and
9 hours, respectively. We chose the first six hours to ensure at least half of the data be-
ing used to construct the growth curves and to build the baseline meteorological distri-
butions. The raw growth curves by directly averaging the hourly concentrations of the
episodes are also shown in Figure 3. While most of the adjusted curves were close to the
raw ones, there were occasions, for instance, spring of 2014 and 2018 and summer and

(a) Spring

(b) Summer

(c) Autumn

(d) Winter

Figure 3: The adjusted (blue) and original (red) average growth (µg/m3) of PM2.5 in the
first six hours of the calm episode for cluster Beijing NW in (a) spring (b) summer (c)
autumn and (d) winter of six years. The 95% confidence intervals of adjusted averaged
change of PM2.5 are indicated by shading. And the adjusted average growth rate (µg/m3

per hour) in the first six hours of the episodes that is the slope of the line between the
first point and the last point on the curve of adjusted average growth as well as standard
errors is marked in the parentheses.
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fall of 2015, where the discrepancies between two curves for PM2.5 were substantial.
Figures S16 to S19 in the SI also displayed larger discrepancies for NO2. The meteoro-
logical adjustment avoids the likely meteorological confounding. Figure 3 and the sim-
ilar figures in the SI display monotone growth in the episodes with increased volatility.
In most situations, the growth pattern was largely linear in the early hours with some
tapering off toward the six hour cut-off. Table S2 in the SI reports the detailed 6-hour
growth rates for all three pollutants and four site clusters.

(a) PM2.5

(b) NO2

(c) SO2

Figure 4: The adjusted average growth rate (µg/m3 per hour) of (a) PM2.5, (b) NO2 and
(c) SO2 in the first six hours of the episodes for four clusters in four seasons of six sea-
sonal years, 2013 (red), 2014 (purple), 2015 (pink), 2016 (yellow), 2017 (light blue), 2018
(blue) with the bars indicating the 95% confidence intervals.

Figure 4 displays the average growth rates µ̂∗i6/6 within the first six hours of the
calm episodes for the three pollutants and the four site clusters. It shows different sea-
sonal patterns in the local emission, with the growth rates in winter being the largest
and those in the summer the smallest for PM2.5 and SO2, while the seasonal variation
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for NO2 in Beijing was the least among the three cities. It also indicates temporal de-
clines in the growth rates for PM2.5 and SO2 in all four seasons, with the most signif-
icant declines happened in winter in all four site clusters. The largest declines happened
in winter 2017 for PM2.5 and winter 2018 for SO2 in Beijing, and in winter 2018 in Baod-
ing for both PM2.5 and SO2. The declines in PM2.5 and SO2 were largely driven by a
significant reduction in coal consumption and improvements in the coal combustion pro-
cesses in North China. It is surprising to see that the winter growth rates of PM2.5 in
Beijing were comparable to those in the heavy industrial Tangshan and Baoding. Alarm-
ingly, the 2018’s winter PM2.5 growth rates in Beijing’s two site clusters were all higher
than their Hebei peers.

In contrast to the general reduction in local emission related to PM2.5 and SO2,
there had been no significant reduction in NO2 related emission in all three cities. In-
deed, for all city clusters and seasons, no significant reduction in the growth rate of NO2

occurred earlier than that of PM2.5. A substantial portion of the Tangshan’s NO2 came
from its huge steel making activities (91.2 million tonnes in 2017, accounting for more
than 11% of China’s and 5% of the world production), and its much lower NO2 growth
rate in summer reflects the annual cycle in the steel production. However, for non-summer
seasons, the growth rates in Tangshan were quite similar to those in the two site clus-
ters in Beijing, except being slightly higher in the spring. As Beijing has no major in-
dustrial activities, these suggest that Beijing’s 5-6 million cars’ emissions from 2013-2018
generated as much NO2 as the 2 millions vehicles plus the steel making activities in Tang-
shan. Beijing’s NO2 growth rates out-numbered those in Baoding in almost all seasons
and years. These highlight the enormous contribution of Beijing’s huge vehicle fleet for
NOx and then to PM2.5 and O3 generation.

Figure 5 displays the difference series between the adjusted 6-hour average growth
rates of the three pollutants in 2014-2018 and those in 2013, which confirm the tempo-
ral patterns displayed in Figure 4 and provides more detailed information on the tim-
ing and the extent of the temporal changes in the 6-hour growth rates; Table S3 in the
SI provides more details. For PM2.5, the significant reduction in summer and fall mostly
happened in 2014 in the four site clusters, with the exception in summer for Tangshan
and fall for Baoding, which was delayed to 2017 and 2015, respectively. For spring, de-
clines in the PM2.5 growth rates took place for Beijing SE, Tangshan and Baoding in 2016,
but earlier in 2015 for Beijing NW. For winter, the growth rates in two site clusters of
Beijing started to reduce in 2017, while those in Tangshan and Baoding happened 1-2
years earlier. In summary, the declines in growth rates in PM2.5 has been established
for all seasons and all site clusters by 2017.

For all seasons except the winter in Beijing, the slowing down in the average growth
rates of PM2.5 over the levels in 2013 was extended in 2016-2017. However, in winter 2018,
the slowing down was reversed by 1.4-1.7 µg/m3 over the same period in 2017 in both
site clusters in Beijing. The reduction in the growth rates of SO2 as compared with those
in 2013 was the most pronounced in winter with all four clusters started to see signif-
icant decline no later than 2015. Beijing was the earliest city that saw a significant re-
duction in spring and fall no later than 2015, while its summer decline came one year
later in 2016 for Beijing NW. Baoding’s SO2 did not show a significant decrease from
spring to fall before 2018. Tangshan faired better than Baoding for the SO2 reduction,
but the spring and summer reduction still came quite later. These show variation among
the three cities in reducing the local emission related to the SO2. However, the situa-
tion of NO2 pollution was rather disappointing. A significant reduction in the spring and
winter of Beijing did not happen before 2017. Tangshan’s NO2 growth actually increased
over the 2013 level in recent years. The average reductions in both absolute and rela-
tive terms in the 6-hour average growth rates in years 2014-2018 over those in 2013 are
reported in Table S3, which supports the result in Figure 4. The changes in adjusted av-
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(a) Beijing SE

(b) Beijing NW

(c) Tangshan

(d) Baoding

Figure 5: Seasonal differences in the average adjusted growth rates (µg/m3 per hour)
of PM2.5 (green), NO2 (red) and SO2 (blue) in the first six hours of the calm episodes
between years 2014-2018 and 2013 with the 95% confidence intervals. The significant
(non-significant) differences away from zero at the 5% level with one-sided alternative are
marked by asterisks (points), respectively.

erage growth rates for each year relative to the levels in 2013 are listed in Table S2 whose
results are summarized at the end of the introduction.
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6 Discussion

In order to measure the local emission, we construct an algorithm to distract calm
episodes from monitoring time series, which happened after sustained cleaning by the
pollution-reducing wind to gauge local emission in a city and avoided regional transporta-
tion. The calm episode selection algorithm is much motivated by the geographical re-
ality in North China. The algorithm can be applied to other locations in the world by
replacing the northerly vs southerly regimes corresponding to the air pollutants’ removal
and transportation with ones suitable to the particular location. The statistical model
and analysis for estimating the growth rates stay the same.

Our results on the meteorologically adjusted growth rates of the three pollutants
are consistent with some published results, for instance, the revelation of an increased
contribution of vehicle exhaust to PM2.5 concentrations in the Beijing–Tianjin–Hebei
region from 19% in March 2013 to 54% in March 2018 (Z. Chen et al., 2019) and the find-
ings in T. Huang et al. (2017); C.-S. Liang et al. (2020). Figure S24-27 demonstrate that
our main conclusions are also in accordance with the trend of the official statistics on
energy consumption, outputs of heavy industry products and the aggregated emission
estimates released by Municipal Bureau of Statistics and NBS Survey Office in three cities
since 2013. The declined growth rates in SO2 and PM2.5 were mostly the result of sus-
tained effort in cleaner combustion of coal and forbidding domestic use of coal for cook-
ing and winter heating over the NCP (H. Chen & Chen, 2019). The lack of improvement
in the NO2 growth rate reflects a dilemma that the three cities have been facing in con-
trolling emissions from their ever increasing motor vehicle fleets. Clearly, the policies hav-
ing been put in place in recent years to control motor vehicle emissions, which include
making every domestic car off the road one day per working week and upgrading the fuel
emission standards, are insufficient to cut back the NO2 growth rates. The stubborn NO2

situation explained the sustained O3 rise in the NCP (L. Chen et al., 2018), which should
encourage city authorities to unveil policies to reduce the growth rate of NO2 that can
lead to a further decline in PM2.5.
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Introduction This supporting information provides some additional figures that can

support the analysis of this study, as well as some technical details.

Text S1.

The algorithm for calm episode selection is described in Algorithm 1.

Text S2.

We outline the conditions assumed in our study here to derive the asymptotic properties

in Section 4. For a season and a site cluster, let Xij = (X>ij1, · · · , X>ijTij)
> be the vector of
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Algorithm 1: Selection of Calm Episodes

Input: Time series of wind speed {WSt}Lt=1, cumulative northerly {CNWSt}Lt=1 and

southerly wind speed {CSWSt}Lt=1, cumulative precipitation {Rt}Lt=1 and

concentration of PM2.5 {PM2.5t}Lt=1.

Output: Sets of starting time S and ending time E of the selected calm episodes.

Initialize: S = E = ∅.

Select the ending times of strong northerly processes

A = {tω|CNWStω−1 ≥ 10.8m/s and CNWStω = 0} and the candidate set for starting

times of episodes

C = {t|WSt ≤ 5.4m/s,max{PM2.5t−1,PM2.5t} ≤ 35µg/m3,Rt−1 = Rt = 0}.

for tω ∈ A do
1. Btω = [tω − 8, tω + 8] ∩ (max{t : t ∈ {0} ∪ E}, L] ∩ C, ts = arg mint∈Btω PM2.5t.

2. if ts < tω and max{Rt|ts < t < tω} = 0 then
k = tω

else if ts ≥ tω then
k = ts.

3. while Rk = 0,CNWSk ≤ 3.3m/s and CSWSk ≤ 13.8m/s do
k = k + 1.

4. te = k − 1.

5. if te − ts ≥ 3 then
S = S ∪ {ts} and E = E ∪ {te}.
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selected covariates for Model (4.1) observed within Tij hours for episode j. The following

assumptions are needed for the statistical inference.

Assumption 1. For different i or j, {(∆M>
ij1, εij1, · · · ,∆M>

ijTij
, εijTij , C

>
ij )
>} are mutually

independent.

Assumption 2. For t = 1, · · · , Tij, E(εijt|Xij) = 0 and Var(εijt|Xij) is finite.

Assumption 3. (i) For each i, Tij is finite and n−1i
∑ni

j=1 Var(
∑Tij

t=1Xijtεijt) → Ωi as

ni →∞; and for all ξ > 0, n−1i
∑ni

j=1 E‖
∑Tij

t=1Xijtεijt‖21
{∥∥∥∑Tij

t=1Xijtεijt

∥∥∥ > ξn
1/2
i

}
→ 0.

(ii) E(|XijtX
>
ijt|) is finite for any i, j, and t. For each i, n−1i

∑ni

j=1

∑Tij
t=1 E(XijtX

>
ijt)→ Hi

for a positive definite Hi and n−2i
∑ni

j=1 Var(
∑Tij

t=1XijtX
>
ijt)→ 0 as ni →∞.

Assumption 4. (i) For all the calm episodes whose length is equal to l, the distributions

of (U>ij1, · · · , U>ijl)> are identical. (ii) For a season and a site cluster in year i, nil

ni
→ pil

as ni →∞, and nil∑
l≥t nil

− pil∑
l≥t pil

= o(n
−1/2
i ) for any 1 ≤ t ≤ l ≤ T̃i, where {pil}T̃il=3 are a

set of positive probability weights summing to one.

Assumption 5. As ni →∞, i = 1, · · · , A, ni∑A
a=1 na

→ κi > 0 where
∑A

a=1 κa = 1.

Assumption 1 assumes the data in different episodes are independent. The strict exo-

geneity of Xij in Assumption 2 implies εijt is uncorrelated with the explanatory variables

of episode j observed at all hours. Assumption 3 (i) gives the Lindeberg condition for

establishing the asymptotic normal distribution of the OLS estimator, and Assumption 3

(ii) guarantees the consistency of n−1i
∑ni

j=1

∑Tij
t=1XijtX

>
ijt. Assumption 4 (i) assumes the

episodes with the same length share the same meteorological distribution. Assumption 4

(ii) and Assumption 5 avoid the extremely small number of episodes with length l relative

to ni in year i and the extremely small sample size in some years of a certain season in a

site cluster, respectively.
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Text S3.

The following theorem establishes the asymptotic normality of the OLS estimator θ̂i.

Theorem 1. Under Assumptions 1-3, θ̂i is unbiased and consistent for θ with the asymp-

totic normality

√
ni(θ̂i − θi)

d→ N
(
0,AVar(θ̂i)

)
,

where AVar(θ̂i) = H−1i ΩiH
−1
i .

Proof. Note that θ̂i−θi = (n−1i
∑ni

j=1

∑Tij
t=1XijtX

>
ijt)
−1n−1i

∑ni

j=1

∑Tij
t=1Xijtεijt. By Assump-

tions 1 and 2, E(θ̂i − θi) = 0, thus θ̂i is unbiased.

Base on Assumption 3, n−1i
∑ni

j=1

∑Tij
t=1XijtX

>
ijt is consistent for Hi. Furthermore,

n
−1/2
i

∑ni

j=1

∑Tij
t=1Xijtεijt

d→ N (0,Ωi) follows from the Lindeberg-Feller theorem.

√
ni(θ̂i − θi) = (n−1i

ni∑
j=1

Tij∑
t=1

XijtX
>
ijt)
−1n

−1/2
i

ni∑
j=1

Tij∑
t=1

Xijtεijt

= H−1i n
−1/2
i

ni∑
j=1

Tij∑
t=1

Xijtεijt + op(1)

Therefore, θ̂i− θi
P→ 0 and the estimator θ̂i− θi is asymptotic normal with mean zero and

the asymptotic variance H−1i ΩiH
−1
i .

Note that Ω̂i = n−1i
∑ni

j=1(
∑Tij

t=1Xijtε̂ijt)(
∑Tij

t=1Xijtε̂ijt)
> is an estimate for Ωi by con-

vergence conditions for Ωi in Assumption 3, thus we can construct a robust variance

estimator

V̂ar(θ̂i) = (

ni∑
j=1

Tij∑
t=1

XijtX
>
ijt)
−1[

ni∑
j=1

(

Tij∑
t=1

Xijtε̂ijt)(

Tij∑
t=1

Xijtε̂ijt)
>](

ni∑
j=1

Tij∑
t=1

XijtX
>
ijt)
−1.

Text S4.

In this section, we provide the asymptotic properties and variance estimation of µ̂∗it. By

the law of total expectation, E(Uajt) = (
∑

l≥t pal)
−1∑

l≥t palE(Uajt|Taj = l). Let E(Xa·t) =
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(E(Uajt)
>, I>t )> be the expectation of covariates at hour t for all calm episodes in year a,

Ẽ(Xt) = 1
A

∑A
a=1 E(Xa·t) be the expectation under the baseline meteorological distribution

with density f·t, X̄a·t = 1∑
l≥t nal

∑
s:Tas≥tXast be the average meteorological conditions

at hour t during episodes in year a and X∗t = 1
A

∑A
a=1 X̄a·t. Then, 1

nal

∑
s:Tas=l

∆Mast,

1
nal

∑
s:Tas=l

Cas, X̄a·t and X∗t are consistent estimators of E(∆Majt|Taj = l), E(Caj|Taj =

l), E(Xa·t) and Ẽ(Xt), respectively, according to the law of large numbers. Since

µ̂∗it − µ∗it =X∗>t θ̂i − Ẽ(Xt)
>θi = [X∗t − Ẽ(Xt)]

>θi +X∗>t (θ̂i − θi),

µ̂∗it is also a consistent estimator of µ∗it. The following theorem gives the asymptotic

normality of µ̂∗it.

Theorem 2. Under Assumptions 1 – 5, for any i = 1, · · · , A and t = 1, · · · ,min1≤a≤A T̃a,

as min1≤a≤A na →∞,

√
ni(µ̂

∗
it − µ∗it)

d→ N
(
0, σ2

i,t

)
,

where σ2
i,t = Ẽ(Xt)

>H−1i ΩiH
−1
i Ẽ(Xt) + 1

A2

∑A
a=1

∑
l≥t

κipal
κa(

∑
l≥t pal)

2 Var(X>astθi|Tas = l).

By the plug-in principle that replaces the expectations and the variance by the corre-

sponding estimates, a consistent estimator of σ2
i,t is

σ̂2
i,t =X∗

>

t ÂVar(θ̂i)X
∗
t +

1

A2

A∑
a=1

∑
l≥t

ni
(
∑

l≥t nal)
2

∑
s:Tas=l

[(Xast − n−1al
∑
s:Tas=l

Xast)
>θ̂i]

2,

where ÂVar(θ̂i) = niV̂ar(θ̂i). Thus, an estimator for the variance of µ̂∗it is

X∗
>

t V̂ar(θ̂i)X
∗
t +

1

A2

A∑
a=1

(
∑
l≥t

nal)
−2
∑
l≥t

∑
s:Tas=l

[(Xast − n−1al
∑
s:Tas=l

Xast)
>θ̂i]

2.

Proof. By Assumption 4 and Assumption 5, we have

√
ni(E(X̄a·t)− E(Xa·t)) =

∑
l≥t

√
ni[

nal∑
l≥t nal

− pal∑
l≥t pal

]E(Xast|Tas = l) = op(1). (1)
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From the CLT, we have

√
ni(X̄a·t − E(X̄a·t)) =

∑
l≥t

nal∑
l≥t nal

√
nina
nanal

n
−1/2
al [

∑
s:Tas=l

Xast − E(Xast|Tas = l)]

=
∑
l≥t

pal∑
l≥t pal

√
κi
κapal

n
−1/2
al [

∑
s:Tas=l

Xast − E(Xast|Tas = l)] + op(1)

d→ N

(
0,
∑
l≥t

κipal
κa(
∑

l≥t pal)
2

Var(Xast|Tas = l)

)
. (2)

Thus, by adding equation (1) and equation (2) we obtain

√
ni(X̄a·t − E(Xa·t)) =

√
ni(X̄a·t − E(X̄a·t)) + op(1) (3)

d→ N

(
0,
∑
l≥t

κipal
κa(
∑

l≥t pal)
2

Var(Xast|Tas = l)

)
.

Using the consistency of X∗t for Ẽ(Xt) and equation (3), we decompose
√
ni(µ̂

∗
it − µ∗it) by

√
ni(µ̂

∗
it − µ∗it) =Ẽ(Xt)

>√ni(θ̂i − θi) +
√
ni[X

∗
t − Ẽ(Xt)]

>θi + [X∗t − Ẽ(Xt)]
>√ni(θ̂i − θi)

=Ẽ(Xt)
>√ni(θ̂i − θi) +

√
ni[X

∗
t − Ẽ(Xt)]

>θi + op(1)

=Ẽ(Xt)
>√ni(θ̂i − θi) +

1

A

A∑
a=1

√
ni[X̄a·t − E(Xa·t)]

>θi + op(1)

=Ẽ(Xt)
>√ni(θ̂i − θi) +

1

A

A∑
a=1

√
ni[X̄a·t − E(X̄a·t)]

>θi + op(1)

=Φ
(1)
it + Φ

(2)
it + Φ

(3)
it + op(1),

where

Φ
(1)
it = Ẽ(Xt)

>√ni(θ̂i − θi),

Φ
(2)
it =

√
ni

1

A
[X̄i·t − E(X̄i·t)]

>θi, and

Φ
(3)
it =

√
ni

1

A

∑
a6=i

[X̄a·t − E(X̄a·t)]
>θi.
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As for the first term, we have

Φ
(1)
it =Ẽ(Xt)

>(n−1i

ni∑
j=1

Tij∑
t=1

XijtX
>
ijt)
−1n

−1/2
i

ni∑
j=1

Tij∑
t=1

Xijtεijt

=Ẽ(Xt)
>H−1i n

−1/2
i

ni∑
j=1

Tij∑
t=1

Xijtεijt + op(1).

From equation (2) we have

Φ
(1)
it + Φ

(2)
it =Ẽ(Xt)

>H−1i n
−1/2
i

ni∑
j=1

Tij∑
t=1

Xijtεijt

+
1

A

∑
l≥t

√
pil∑

l≥t pil
n
−1/2
il

∑
s:Tis=l

[Xist − E(Xist|Tis = l)]>θi + op(1)

=
∑
l≥t

∑
s:Tis=l

1

A

√
pil∑

l≥t pil
n
−1/2
il [Xist − E(Xist|Tis = l)]>θi + Ẽ(Xt)

>H−1i n
−1/2
i

Tis∑
t=1

Xistεist

+
∑
j:Tij<l

Ẽ(Xt)
>H−1i n

−1/2
i

Tij∑
t=1

Xijtεijt + op(1)

Note that for s such that Tis = l,

Cov(Xist′εist′ , Xist − E(Xist|Tis = l)) = 0 for any t and t′.

Let ςi = Ẽ(Xt)
>H−1i ΩiH

−1
i Ẽ(Xt) + 1

A2

∑
l≥t

pil
(
∑

l≥t pil)
2 Var(X>istθi|Tis = l). Then,

∑
l≥t

∑
s:Tis=l

Var{ 1

A

√
pil∑

l≥t pil
n
−1/2
il [Xist − E(Xist|Tis = l)]>θi + Ẽ(Xt)

>H−1i n
−1/2
i

Tis∑
t=1

Xistεist}

+
∑
j:Tij<l

Var[Ẽ(Xt)
>H−1i n

−1/2
i

Tij∑
t=1

Xijtεijt]→ ςi as ni →∞.

By the Lindeberg-Feller Theorem and the Slutsky’s Theorem, as ni →∞,

Φ
(1)
it + Φ

(2)
it

d→ N (0, ςi) .

The independence of episode data in different years results in

Φ
(3)
it

d→ N

(
0,

1

A2

∑
a6=i

∑
l≥t

κipal
κa(
∑

l≥t pal)
2

Var(X>astθi|Tas = l)

)
.
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Φ
(3)
it is independent of Φ

(1)
it + Φ

(2)
it , therefore,

√
ni(µ̂

∗
it − µ∗it)

d→ N
(
0, σ2

i,t

)
,

where σ2
i,t = Ẽ(Xt)

>H−1i ΩiH
−1
i Ẽ(Xt) + 1

A2

∑A
a=1

∑
l≥t

κipal
κa(

∑
l≥t pal)

2 Var(X>astθi|Tas = l).

Note that

n−1al
∑
s:Tas=l

[(Xast − n−1al
∑
s:Tas=l

Xast)(Xast − n−1al
∑
s:Tas=l

Xast)
>]

P→ Var(Xast|Tas = l),

X∗t
P→ Ẽ(Xt), θ̂i

P→ θi, ÂVar(θ̂i)
P→ H−1i ΩiH

−1
i , and

ninal
(
∑

l≥t nal)
2
→ κipal

κa(
∑

l≥t pal)
2
.

Hence, we obtain the consistency of σ̂2
i,t for σ2

i,t.

Text S5.

In order to test whether there are significant changes in the growth of air pollutants

at a hour t between two years i and i′, the following theorem provides the asymptotic

distribution of µ̂∗it − µ̂∗i′t for two different years i and i′.

Theorem 3. Under Assumptions 1 – 5, for i 6= i′, as min1≤a≤A na →∞,

√
ni[µ̂

∗
it − µ̂∗i′t − (µ∗it − µ∗i′t)]

d→ N
(
0, σ2

i,i′,t

)
where

σ2
i,i′,t =Ẽ(Xt)

>AVar(θ̂i)Ẽ(Xt) +
κi
κi′

Ẽ(Xt)
>AVar(θ̂i′)Ẽ(Xt)

+
1

A2

A∑
a=1

∑
l≥t

κipal
κa(
∑

l≥t pal)
2

Var(X>ast(θi − θi′)|Tas = l).

A consistent estimator of σ2
i,i′,t is

σ̂2
i,i′,t =X∗>t [ÂVar(θ̂i) +

ni
ni′

ÂVar(θ̂i′)]X
∗
t

+
1

A2

A∑
a=1

∑
l≥t

ni
(
∑

l≥t nal)
2

∑
s:Tas=l

[(Xast − n−1al
∑
s:Tas=l

Xast)
>(θ̂i − θ̂i′)]2.
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Therefore, an estimator for the variance of µ̂∗it − µ̂∗i′t is

σ̂2
i,i′,t =X∗>t [V̂ar(θ̂i) + V̂ar(θ̂i′)]X

∗
t

+
1

A2

A∑
a=1

(
∑
l≥t

nal)
−2
∑
l≥t

∑
s:Tas=l

[(Xast − n−1al
∑
s:Tas=l

Xast)
>(θ̂i − θ̂i′)]2.

Proof. Similarly,
√
ni[µ̂

∗
it − µ∗it − (µ̂∗i′t − µ∗i′t)] = Ψ

(1)
it + Ψ

(2)
it + Ψ

(3)
it + op(1), where

Ψ
(1)
it =Ẽ(Xt)

>√ni(θ̂i − θi) +
√
ni

1

A
[X̄i·t − E(X̄i·t)]

>(θi − θi′)

Ψ
(2)
it =−

√
κi
κi′

Ẽ(Xt)
>√ni′(θ̂i′ − θi′) +

√
ni

1

A
[X̄i′·t − E(X̄i′·t)]

>(θi − θi′)

Ψ
(3)
i =
√
ni

1

A

∑
a6=i,i′

[X̄a·t − E(X̄a·t)]
>(θi − θi′).

These three terms are independent and their asymptotic distributions are normal, with

the proof mirroring the one used for Theorem 2.

Ψ
(1)
it

d→ N

(
0, Ẽ(Xt)

>AVar(θ̂i)Ẽ(Xt) +
1

A2

∑
l≥t

pil
(
∑

l≥t pil)
2

Var(X>ist(θi − θi′)|Tis = l)

)

Ψ
(2)
it

d→ N

(
0,
κi
κi′

Ẽ(X>t ) AVar(θ̂i′)Ẽ(Xt) +
1

A2

∑
l≥t

κipi′l
κi′(
∑

l≥t pi′l)
2

Var(X>i′st(θi − θi′)|Ti′s = l)

)

Ψ
(3)
it

d→ N

(
0,

1

A2

∑
a6=i,i′

∑
l≥t

κipal
κa(
∑

l≥t pal)
2

Var(X>ast(θi − θi′)|Tas = l)

)
.

Hence, µ̂∗i − µ̂∗i′ is asymptotic normal N
(
0, σ2

i,i′,t

)
. And by the same argument as used

to prove the consistency of σ̂2
i,t in the proof of Theorem 2, we can verify the consistency

of σ̂2
i,i′,t for σ2

i,i′,t.

To compare the grow rate of pollutants µ∗iT/T in the first T hours of the episodes

in different years, it is essential to compare µ∗iT over different years. For testing the

yearly difference hypotheses H0 : µ∗iT = µ∗i′T versus H1 : µ∗iT > µ∗i′T ( or µ∗iT < µ∗i′T ) at a

significance level α, we use the test statistic Vi,i′,T =
√
ni[µ̂

∗
iT − µ̂∗i′T ]/σ̂i,i′,T , and reject the
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null hypothesis, if the p-value 1− Φ(|Vi,i′,T |) < α, where Φ is the cumulative distribution

function of the standard normal distribution.
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Figure S1: The northern portion of the NCP that encompasses Beijing, Baoding and Tangshan
and the locations of air-quality monitoring sites in the four clusters.

Cluster Location Air-quality monitoring sites CMA station

1 Beijng SE Southeast of the central Beijing Dongsi, Nongzhanguan and Tiantan Chaoyang

2 Beijng NW Northwest of the central Beijing Aotizhongxin, Guanyuan and Wanliu Haidian

3 Tangshan Tangshan Leidazhan, Shierzhong and Wuziju Tangshan

4 Baoding Baoding Huadianerqu, Jiancezhan and Youyongguan Baoding

Table S1: Information for the four site-clusters in Beijing, Baoding and Tangshan.
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(a) Beijing SE

(b) Beijing NW

(c) Tangshan

(d) Baoding

Figure S2: PM2.5 (µg/m3) versus the cumulated wind speed (CWS, m/s) under the five wind
directions in the four site clusters from March 2015 to February 2016 with locally weighted
scatterplot smoothing curves (solid lines) for spring (red), summer (green), autumn (blue) and
winter (purple). The plots for other years were similar.
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(a) Beijing SE

(b) Beijing NW

(c) Tangshan

(d) Baoding

Figure S3: Pair-wise seasonal Spearman’s rank correlation coefficients between the three pollu-
tants (PM2.5, SO2 and NO2, µg/m3) and the cumulative northerly and southerly wind speeds
(m/s) in 2015 for the four site clusters: (a) Beijng SE, (b) Beijng NW, (c) Tangshan and (d)
Baoding. The number of * indicates the level of significance in the association (*: p-value<0.05;
**: p-value < 0.01; ***: p-value < 0.001).
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(a) Spring

(b) Summer

(c) Autumn

(d) Winter

Figure S4: The histograms of the differences ts− tω (hours) between the ending time tω of strong
northerly cleaning processes and the starting time ts of the selected calm episodes in different
seasons for four clusters.
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(a) ts < tω (60.6%)

(b) ts = tω (15.0%)

(c) ts > tω (24.4%)

Figure S5: The distributions of five wind directions (via angle widths) and the average wind
speed (via radius) for three periods (4 hours before min{ts, tω}, between ts and tω, and 4 hours
after max{ts, tω}) of selected calm episodes in the spring of Beijing SE: (a) the episode starts
before the end of northerly cleaning, ts < tω, (b) the starting time of the episode equals to the
end of northerly cleaning, ts = tω and (c) the episode starts after the end of northerly cleaning
ts > tω. The percentages of the three situations are given in the parentheses.
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Figure S6: The average boundary layer height (BLH), dew point (DEWP), relative humid-
ity (HUMI), temperature (TEMP), cumulative northerly wind speed (CNWS), and cumulative
southerly wind speed (CSWS) in the four hours before and after the start of the calm episodes in-
dicated by the dashed vertical line at zero in Beijing SE in spring (green), summer (red), autumn
(purple) and winter (blue) with the 95% confidence intervals indicated by the colored areas.
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Figure S7: The average boundary layer height (BLH), dew point (DEWP), relative humid-
ity (HUMI), temperature (TEMP), cumulative northerly wind speed (CNWS), and cumulative
southerly wind speed (CSWS) in the four hours before and after the start of the calm episodes
indicated by the dashed vertical line at zero in Tangshan in spring (green), summer (red), autumn
(purple) and winter (blue) with the 95% confidence intervals indicated by the colored areas.
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Figure S8: The average boundary layer height (BLH), dew point (DEWP), relative humid-
ity (HUMI), temperature (TEMP), cumulative northerly wind speed (CNWS), and cumulative
southerly wind speed (CSWS) in the four hours before and after the start of the calm episodes
indicated by the dashed vertical line at zero in Baoding in spring (green), summer (red), autumn
(purple) and winter (blue) with the 95% confidence intervals indicated by the colored areas.
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(a) PM2.5

(b) NO2

(c) SO2

Figure S9: The boxplots of concentrations (µg/m3) for (a) PM2.5, (b) NO2 and (c) SO2 in the
first six hours during the episodes in spring of cluster Beijing NW with the start point of episodes
(hour 0 on the horizontal axis) in the day (6 am-6 pm, yellow) and night (7 pm-5 am, blue).
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(a) Beijing SE

(b) Beijing NW

(c) Tangshan

(d) Baoding

Figure S10: The estimates for coefficients of selected variables in models for PM2.5 in the first
six hours of calm episodes for cluster (a) Beijing SE, (b) Beijing NW, (c) Tangshan, (d) Baoding
in spring (red), summer (green), autumn (blue) and winter (purple) of six seasonal years with
significant and non-significant effects shown by points in the shape of triangle and circular,
respectively. The dotted line represents zero.
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(a) Beijing SE

(b) Beijing NW

(c) Tangshan

(d) Baoding

Figure S11: The estimates for coefficients of selected variables in models for SO2 in the first six
hours of calm episodes for cluster (a) Beijing SE, (b) Beijing NW, (c) Tangshan, (d) Baoding
in spring (red), summer (green), autumn (blue) and winter (purple) of six seasonal years with
significant and non-significant effects shown by points in the shape of triangle and circular,
respectively. The dotted line represents zero.
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(a) Beijing SE

(b) Beijing NW

(c) Tangshan

(d) Baoding

Figure S12: The estimates for coefficients of selected variables in models for NO2 in the six seven
hours of calm episodes for cluster (a) Beijing SE, (b) Beijing NW, (c) Tangshan, (d) Baoding
in spring (red), summer (green), autumn (blue) and winter (purple) of six seasonal years with
significant and non-significant effects shown by points in the shape of triangle and circular,
respectively. The dotted line represents zero.
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(a) Spring

(b) Summer

(c) Autumn

(d) Winter

Figure S13: The adjusted (blue) and original (red) average growth (µg/m3) of PM2.5 in the first
six hours of the calm episode for cluster Beijing SE in (a) spring (b) summer (c) autumn and
(d) winter of six years. The 95% confidence intervals of adjusted averaged change of PM2.5 are
indicated by shading. And the adjusted average growth rates (µg/m3 per hour) in the first six
hours of the episodes with the standard errors are marked in the parentheses.
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(a) Spring

(b) Summer

(c) Autumn

(d) Winter

Figure S14: The adjusted (blue) and original (red) average growth (µg/m3) of PM2.5 in the first
six hours of the calm episode for cluster in Tangshan in (a) spring (b) summer (c) autumn and
(d) winter of six years. The 95% confidence intervals of adjusted averaged change of PM2.5 are
indicated by shading. And the adjusted average growth rates (µg/m3 per hour) in the first six
hours of the episodes with the standard errors are marked in the parentheses.
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(a) Spring

(b) Summer

(c) Autumn

(d) Winter

Figure S15: The adjusted (blue) and original (red) average growth (µg/m3) of PM2.5 in the first
six hours of the calm episode for cluster in Baoding in (a) spring (b) summer (c) autumn and
(d) winter of six years. The 95% confidence intervals of adjusted averaged change of PM2.5 are
indicated by shading. And the adjusted average growth rates (µg/m3 per hour) in the first six
hours of the episodes with the standard errors are marked in the parentheses.
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(a) Spring

(b) Summer

(c) Autumn

(d) Winter

Figure S16: The adjusted (blue) and original (red) average growth (µg/m3) of NO2 in the first
six hours of the calm episode for cluster Beijing SE in (a) spring (b) summer (c) autumn and
(d) winter of six years. The 95% confidence intervals of adjusted averaged change of NO2 are
indicated by shading. And the adjusted average growth rates (µg/m3 per hour) in the first six
hours of the episodes with the standard errors are marked in the parentheses.

October 21, 2020, 10:47pm



: X - 27

(a) Spring

(b) Summer

(c) Autumn

(d) Winter

Figure S17: The adjusted (blue) and original (red) average growth (µg/m3) of NO2 in the first
six hours of the calm episode for cluster Beijing NW in (a) spring (b) summer (c) autumn and
(d) winter of six years. The 95% confidence intervals of adjusted averaged change of NO2 are
indicated by shading. And the adjusted average growth rates (µg/m3 per hour) in the first six
hours of the episodes with the standard errors are marked in the parentheses.
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(a) Spring

(b) Summer

(c) Autumn

(d) Winter

Figure S18: The adjusted (blue) and original (red) average growth (µg/m3) of NO2 in the first
six hours of the calm episode for cluster in Tangshan in (a) spring (b) summer (c) autumn and
(d) winter of six years. The 95% confidence intervals of adjusted averaged change of NO2 are
indicated by shading. And the adjusted average growth rates (µg/m3 per hour) in the first six
hours of the episodes with the standard errors are marked in the parentheses.
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(a) Spring

(b) Summer

(c) Autumn

(d) Winter

Figure S19: The adjusted (blue) and original (red) average growth (µg/m3) of NO2 in the first
six hours of the calm episode for cluster in Baoding in (a) spring (b) summer (c) autumn and
(d) winter of six years. The 95% confidence intervals of adjusted averaged change of NO2 are
indicated by shading. And the adjusted average growth rates (µg/m3 per hour) in the first six
hours of the episodes with the standard errors are marked in the parentheses.
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(a) Spring

(b) Summer

(c) Autumn

(d) Winter

Figure S20: The adjusted (blue) and original (red) average growth (µg/m3) of SO2 in the first
six hours of the calm episode for cluster Beijing SE in (a) spring (b) summer (c) autumn and
(d) winter of six years. The 95% confidence intervals of adjusted averaged change of SO2 are
indicated by shading. And the adjusted average growth rates (µg/m3 per hour) in the first six
hours of the episodes with the standard errors are marked in the parentheses.
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(a) Spring

(b) Summer

(c) Autumn

(d) Winter

Figure S21: The adjusted (blue) and original (red) average growth (µg/m3) of SO2 in the first
six hours of the calm episode for cluster Beijing NW in (a) spring (b) summer (c) autumn and
(d) winter of six years. The 95% confidence intervals of adjusted averaged change of SO2 are
indicated by shading. And the adjusted average growth rates (µg/m3 per hour) in the first six
hours of the episodes with the standard errors are marked in the parentheses.
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(a) Spring

(b) Summer

(c) Autumn

(d) Winter

Figure S22: The adjusted (blue) and original (red) average growth (µg/m3) of SO2 in the first
six hours of the calm episode for cluster in Tangshan in (a) spring (b) summer (c) autumn and
(d) winter of six years. The 95% confidence intervals of adjusted averaged change of SO2 are
indicated by shading. And the adjusted average growth rates (µg/m3 per hour) in the first six
hours of the episodes with the standard errors are marked in the parentheses.
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(a) Spring

(b) Summer

(c) Autumn

(d) Winter

Figure S23: The adjusted (blue) and original (red) average growth (µg/m3) of SO2 in the first
six hours of the calm episode for cluster in Baoding in (a) spring (b) summer (c) autumn and
(d) winter of six years. The 95% confidence intervals of adjusted averaged change of SO2 are
indicated by shading. And the adjusted average growth rates (µg/m3 per hour) in the first six
hours of the episodes with the standard errors are marked in the parentheses.
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(a) Total energy consumption (b) Composition of energy consumption

(c) NOx emissions (d) SO2 emissions

Figure S24: The (a) total energy consumption, (b) composition of energy consumption from 2012
to 2017, (c) nitrogen oxides emissions and (d) SO2 emissions from 2013 to 2018 in Beijing.
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(a) Output of main industrial products

(b) Coal consumption

Figure S25: (a) Outputs of main industrial products from 2013 to 2016 and (b) coal consumptions
from 2013 to 2018 in Baoding.
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(a) Output of main heavy industrial products

(b) SO2 emissions

(c) NOx emissions

Figure S26: (a) Outputs of main heavy industrial products from 2013 to 2018, (b) SO2 emissions
and (c) nitrogen oxides emissions from 2014 to 2018 in Tangshan.
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Figure S27: The number of civil motor vehicles from 2013 to 2018 in Baoding (red), Beijing
(green) and Tangshan (blue).
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Pollutant Season Cluster Adjusted average growth rate(SE, µg/m3 per hour) and its relative increase (%)

2013 2014 2015 2016 2017 2018

PM2.5

Spring

Beijing SE 5.3(1), 0 7.7(1.1), 45.8 4(0.4), -24.2 3.1(0.4), -41 2.9(0.3), -45.7 1.8(0.5), -66.4

Beijing NW 5.8(0.9), 0 4.2(0.9), -26.7 3.1(0.4), -45.5 2.6(0.3), -54.8 3.2(0.7), -45.3 2.1(0.4), -64.2

Tangshan 6.9(0.8), 0 6.7(0.5), -2.7 6.7(0.7), -1.9 5(0.8), -27.5 4.8(0.4), -29.4 5.2(0.3), -24.6

Baoding 8.1(1.5), 0 7(0.7), -13.5 5.5(0.7), -32.5 5.5(0.4), -31.8 5(0.4), -38.5 2.5(0.8), -68.9

Summer

Beijing SE 5.5(0.6), 0 3.1(0.5), -43.9 5.2(0.7), -4.2 2.8(0.2), -48.1 3(0.4), -44.4 1.9(0.2), -64.8

Beijing NW 4.6(0.4), 0 3.4(0.3), -26.2 3.9(0.5), -15.5 2.8(0.2), -38.5 2.6(0.4), -44 1.7(0.2), -63.4

Tangshan 3.8(0.8), 0 6.4(0.9), 65.5 4.1(0.7), 6.7 3.1(0.2), -20.2 1.4(0.4), -63.7 3.3(0.6), -14

Baoding 11.7(1.9), 0 4.5(0.5), -61.7 3.2(0.3), -72.9 3.5(0.4), -70.3 3.4(0.3), -70.6 2.5(0.2), -78.3

Autumn

Beijing SE 7(0.4), 0 4(0.5), -43.4 6.1(0.6), -12.6 4.6(0.7), -33.9 3.3(0.2), -52.5 3.3(0.4), -52.9

Beijing NW 5.5(0.5), 0 4.2(0.6), -23.1 5.8(0.7), 5.2 6.9(1.5), 25.5 3(0.4), -46.4 2.4(0.2), -56.9

Tangshan 11.3(0.9), 0 8.5(0.7), -25 5(0.4), -56.2 6.6(0.6), -41.8 3.7(0.2), -67.4 4.3(0.3), -62.3

Baoding 11.7(1.2), 0 12.3(1.9), 5.8 6(0.6), -48.3 6(1.1), -48.4 4(0.4), -65.8 3.5(0.5), -69.8

Winter

Beijing SE 8.1(0.7), 0 11.2(1), 38.2 9.1(0.9), 12.9 9.4(1.4), 15.9 5.4(0.5), -33.5 6.8(0.6), -16.1

Beijing NW 7.7(0.6), 0 10.2(1.3), 31.6 9.3(1.2), 20.9 9.1(1.2), 18.2 3.6(0.5), -54 5.3(0.4), -31.9

Tangshan 10.3(0.7), 0 10.3(0.9), -0.2 9.9(0.8), -3.4 8(0.6), -22.4 5.3(0.3), -48.3 4.9(0.4), -52.5

Baoding 13.8(1.1), 0 13.6(1.7), -1.5 7.7(1.5), -44.6 11.1(1.3), -19.6 5.2(0.5), -62.3 4.1(0.5), -70.2

NO2

Spring

Beijing SE 5.1(0.8), 0 7.2(0.7), 41.3 6.9(0.7), 36.4 7.2(0.4), 41.5 5.2(0.6), 3.3 3.2(0.2), -37.9

Beijing NW 6.1(0.6), 0 6.5(0.7), 5.9 7.6(0.7), 24 6.7(0.4), 9.2 7.1(0.8), 16.2 3.8(0.6), -38.8

Tangshan 6.6(0.7), 0 7.4(0.6), 12.1 8.4(0.8), 27 7(1.1), 6.5 9.2(1.1), 38.8 9.2(0.6), 39

Baoding 2.3(0.6), 0 6.6(1.2), 190.7 6(0.7), 164.3 6.4(0.5), 182 4.8(0.7), 109.7 2(1.3), -10.8

Summer

Beijing SE 5.9(0.5), 0 8.5(0.7), 44 4.3(0.5), -27.2 5.7(0.6), -2.8 5.3(0.7), -9.4 4.1(0.4), -30.7

Beijing NW 7.8(0.5), 0 6.3(0.6), -18.9 5.6(0.4), -28.3 5.9(0.6), -24.2 5.5(0.7), -28.5 3.7(0.3), -51.9

Tangshan 3.3(0.7), 0 4.1(0.6), 26.5 4.8(0.7), 47 3.9(0.7), 17.8 4.2(1.2), 28.1 3.8(0.5), 16.6

Baoding 3.4(0.7), 0 1.8(0.3), -46.8 4.3(0.5), 26 2.6(0.4), -24.3 3.8(0.5), 11.7 4.4(0.5), 28.4

Autumn

Beijing SE 6.9(0.5), 0 6.2(0.4), -10.1 6.5(0.5), -5.1 5.2(0.5), -24.5 5(0.4), -26.8 5.1(0.4), -26.4

Beijing NW 7.2(0.4), 0 8(0.5), 10.3 7.5(0.6), 4.5 8.4(0.8), 16.6 7.9(0.5), 9.8 6.5(0.4), -10.1

Tangshan 7.3(0.4), 0 6.1(0.5), -15.3 6.1(0.5), -15.4 7.5(0.7), 3.2 6.9(0.4), -4.5 8(0.3), 10

Baoding 6.5(0.6), 0 5.5(0.9), -15.3 8.5(0.8), 29.1 7(0.8), 7 4.5(0.4), -32 5(0.3), -22.9

Winter

Beijing SE 5.9(0.4), 0 7(0.5), 18.3 5.9(0.5), -0.3 6.4(0.5), 7.3 3.5(0.5), -41.7 5.2(0.3), -11.5

Beijing NW 7.3(0.4), 0 7.6(0.5), 5.1 6.6(0.5), -9.3 7.1(0.4), -1.8 5.2(0.6), -27.8 6.6(0.4), -9.3

Tangshan 6.3(0.3), 0 7(0.5), 10.4 6.2(0.4), -2.9 7.5(0.5), 17.6 7.3(0.4), 14.7 6.7(0.3), 5.9

Baoding 6.8(1.1), 0 4.5(0.7), -33.2 5.7(0.4), -15.8 11(0.5), 63 5.8(0.4), -14.9 5(0.3), -26.6

SO2

Spring

Beijing SE 2(0.4), 0 2.3(0.3), 15.2 1.1(0.1), -43.8 0.6(0.1), -68.7 0.8(0.1), -60.7 0.6(0.3), -70.5

Beijing NW 2.5(0.3), 0 2(0.5), -19.4 0.8(0.2), -69.4 0.5(0.2), -82 0.6(0.1), -74.6 0.5(0.2), -81.9

Tangshan 5.9(1.6), 0 4.6(0.8), -22 3.7(0.4), -37.1 7.1(1.9), 20.6 3.1(0.2), -46.7 3.6(0.4), -39

Baoding 7.3(1.7), 0 11.8(4.2), 61.1 7.9(1.3), 7.7 4.8(0.8), -34.5 6.2(1.4), -14.9 1.4(0.8), -80.9

Summer

Beijing SE 1(0.2), 0 0.6(0.2), -36.6 0.3(0.1), -71.5 0.1(0), -86.7 0.3(0.1), -75.1 0.4(0), -65.1

Beijing NW 0.8(0.2), 0 0.8(0.3), 1 0.5(0.2), -37.4 -0.2(0.3), -131.5 0.3(0.1), -58.7 0.2(0.1), -77.5

Tangshan 2.8(0.8), 0 2.6(0.4), -6.8 3.3(0.7), 19.9 2.4(0.6), -14.9 1.6(0.6), -41.5 1(0.4), -63.3

Baoding 2.2(0.5), 0 2.4(0.6), 9.5 3.6(0.9), 60.2 2.3(0.2), 2.7 2.7(1.2), 21 1.1(0.2), -52.1

Autumn

Beijing SE 2.3(0.3), 0 1.2(0.2), -45.6 1(0.1), -56.3 0.8(0.2), -63.1 0.7(0.1), -67.8 0.6(0.1), -71.5

Beijing NW 2.1(0.4), 0 1.1(0.2), -44.4 1.2(0.2), -43.7 1.3(0.2), -36.1 0.7(0.1), -68 0.3(0.1), -87.1

Tangshan 4(0.7), 0 1.5(0.6), -63.2 2.1(0.2), -48.2 2.8(0.3), -30.8 2(0.2), -50.5 2.9(0.5), -27.8

Baoding 4.5(1.5), 0 5.4(1.9), 20 2.2(0.4), -50.6 5.1(0.8), 13.6 3.3(1.1), -27.1 2.9(0.5), -34.7

Winter

Beijing SE 3.4(0.3), 0 4.3(0.5), 27.6 2.4(0.2), -28.4 2.1(0.4), -36.1 1.1(0.2), -67.4 1(0.1), -71.1

Beijing NW 3.8(0.4), 0 4.7(0.6), 22.8 2.7(0.2), -28.3 2.4(0.2), -35.8 1.2(0.2), -68.3 0.8(0.1), -80.1

Tangshan 10.6(0.7), 0 7.4(0.7), -30 5(0.4), -52.7 6.6(0.6), -37.7 3.4(0.3), -67.5 2.6(0.3), -75.1

Baoding 23.5(3.3), 0 16.9(3.2), -28.1 10.3(1.5), -56.1 10.2(1.2), -56.6 9.6(1.6), -59 3.3(1), -85.9

Table S2: Seasonal and annual adjusted average growth rates (µg/m3 per hour), their standard
errors (SEs) and the corresponding relative increase (%) of adjusted average growth rates based
on the level of those in 2013 for PM2.5, NO2 and SO2 in the first six hours of the calm episodes
for each cluster.
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Pollutant Season Cluster Adjusted average growth rate in the first six hours

Change point Reduction Year Largest reduction Average (relative) reduction

PM2.5

Spring

Beijing SE 2016 2.2(1) 2018 3.5(1.1) 1.4(26.3%)

Beijing NW 2015 2.6(1) 2018 3.7(1) 2.7(47.3%)

Tangshan 2016 1.9(1.1) 2017 2(0.9) 1.2(17.2%)

Baoding 2016 2.6(1.5) 2018 5.6(1.7) 3(37%)

Summer

Beijing SE 2014 2.4(0.7) 2018 3.5(0.6) 2.2(41.1%)

Beijing NW 2014 1.2(0.5) 2018 2.9(0.5) 1.7(37.5%)

Tangshan 2017 2.4(0.9) 2017 2.4(0.9) 0.2(5.1%)

Baoding 2014 7.2(2) 2018 9.2(1.9) 8.3(70.8%)

Autumn

Beijing SE 2014 3(0.6) 2018 3.7(0.6) 2.7(39%)

Beijing NW 2014 1.3(0.7) 2018 3.1(0.6) 1.1(19.1%)

Tangshan 2014 2.8(1.2) 2017 7.6(1) 5.7(50.5%)

Baoding 2015 5.6(1.3) 2018 8.1(1.2) 5.3(45.3%)

Winter

Beijing SE 2017 2.7(0.9) 2017 2.7(0.9) -0.3(-3.5%)

Beijing NW 2017 4.2(0.8) 2017 4.2(0.8) 0.2(3%)

Tangshan 2016 2.3(1) 2018 5.4(0.8) 2.6(25.4%)

Baoding 2015 6.2(1.9) 2018 9.7(1.2) 5.5(39.6%)

NO2

Spring

Beijing SE 2018 1.9(0.8) 2018 1.9(0.8) -0.9(-16.9%)

Beijing NW 2018 2.4(0.8) 2018 2.4(0.8) -0.2(-3.3%)

Tangshan — — — — -1.6(-24.7%)

Baoding — — 2018 0.2(1.5) -2.9(-127.2%)

Summer

Beijing SE 2015 1.6(0.7) 2018 1.8(0.6) 0.3(5.2%)

Beijing NW 2014 1.5(0.7) 2018 4(0.6) 2.4(30.4%)

Tangshan — — — — -0.9(-27.2%)

Baoding 2014 1.6(0.7) 2014 1.6(0.7) 0(1%)

Autumn

Beijing SE 2016 1.7(0.7) 2017 1.8(0.7) 1.3(18.5%)

Beijing NW — — 2018 0.7(0.5) -0.4(-6.2%)

Tangshan 2014 1.1(0.7) 2015 1.1(0.7) 0.3(4.4%)

Baoding 2017 2.1(0.8) 2017 2.1(0.8) 0.4(6.8%)

Winter

Beijing SE 2017 2.5(0.7) 2017 2.5(0.7) 0.3(5.6%)

Beijing NW 2017 2(0.7) 2017 2(0.7) 0.6(8.6%)

Tangshan — — 2015 0.2(0.5) -0.6(-9.1%)

Baoding — — 2014 2.2(1.3) 0.4(5.5%)

SO2

Spring

Beijing SE 2015 0.9(0.4) 2018 1.4(0.5) 0.9(45.7%)

Beijing NW 2015 1.8(0.4) 2016 2.1(0.4) 1.7(65.4%)

Tangshan 2017 2.7(1.6) 2017 2.7(1.6) 1.5(24.8%)

Baoding 2018 5.9(1.9) 2018 5.9(1.9) 0.9(12.3%)

Summer

Beijing SE 2015 0.7(0.2) 2016 0.9(0.2) 0.7(67%)

Beijing NW 2016 1(0.4) 2016 1(0.4) 0.5(60.8%)

Tangshan 2018 1.8(0.9) 2018 1.8(0.9) 0.6(21.3%)

Baoding 2018 1.2(0.6) 2018 1.2(0.6) -0.2(-8.3%)

Autumn

Beijing SE 2014 1(0.4) 2018 1.6(0.4) 1.4(60.9%)

Beijing NW 2014 0.9(0.5) 2018 1.8(0.4) 1.2(55.9%)

Tangshan 2014 2.5(0.9) 2014 2.5(0.9) 1.8(44.1%)

Baoding — — 2015 2.3(1.6) 0.7(15.8%)

Winter

Beijing SE 2015 1(0.4) 2018 2.4(0.4) 1.2(35.1%)

Beijing NW 2015 1.1(0.4) 2018 3(0.4) 1.4(37.9%)

Tangshan 2014 3.2(1) 2018 8(0.7) 5.6(52.6%)

Baoding 2015 13.2(3.6) 2018 20.2(3.4) 13.4(57.2%)

Table S3: Years when significant (at 5%) reduction in the adjusted average growth rates as com-
pared to those in 2013 happened and after which the significant increase in the adjusted average
growth rate did not happen in subsequent years, together with the amount of the reductions
(µg/m3 per hour) and their standard errors (SEs) at the years; Years with the largest reduc-
tion in growth rates occurred and the amount (SEs), and the average (relative) reduction from
2014-2018. ’-’ indicates no significant reduction happened.
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