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Abstract

This paper applies statistical methods to interpolate missing values in a dataset of radiative energy fluxes at the surface of

Earth. We apply Random Forest (RF) and seven other conventional spatial interpolation models to a global Surface Solar

Radiation (SSR) dataset. We apply three categories of predictors; climatic, spatial, and time series variables. Although the

first category is the most common in research, our study shows that it is actually the last two categories that are best suited to

predict the response. In fact, the best neighboring variable is almost 40 times better than the best climatic variable in predicting

SSR. Furthermore, our analysis shows that the Mean Absolute Error is 10.2 on average using RF, with a standard deviation

of 1.5. Conventional methods have an average MAE of 21.3, with an average standard deviation of 6.4. This highlights the

benefits of using machine learning in environmental research.

1



A Machine learning technique for spatial interpolation
of solar radiation observations

Thomas Leirvik∗a and Menghan Yuan†a

a

Graduate School of Business, Nord University, 8049 Bodø, Norway

Abstract

This paper applies statistical methods to interpolate missing values in a dataset
of radiative energy fluxes at the surface of Earth. We apply Random Forest (RF)
and seven other conventional spatial interpolation models to a global Surface Solar
Radiation (SSR) dataset. We apply three categories of predictors; climatic, spatial,
and time series variables. Although the first category is the most common in research,
our study shows that it is actually the last two categories that are best suited to predict
the response. In fact, the best spatial variable is almost 40 times better than the best
climatic variable in predicting SSR. Furthermore, our analysis shows that the Mean
Absolute Error is 10.2 on average using RF, with a standard deviation of 1.5, which
is significantly less than conventional methods; the average MAE of 21.3, more than
twice the size of the RF method, and an average standard deviation of 6.4, more than
four times larger than the RF standard deviation. This highlights the benefits of using
machine learning in environmental research.

Keywords: Spatial interpolation; Surface Solar Radiation; Random Forest; Ordinary Kriging;
Regression Kriging; Comparison

1 Introduction

Spatial data is the foundation for climate research (Zhu et al., 2016; Tao et al., 2018; Pfeifroth
et al., 2018). In particular, downward shortwave radiation is a fundamental determinant of the
Global Energy Balance, a crucial driving force for temperature change and hydrological cycles
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variation (Budyko, 1969). Obryk et al. (2018) showed that a significant decrease of solar radiation in
Antarctica has affected the polar desert processes substantially and that it is important to project the
trend of solar radiation in order to determine the predictions of future desert processes. Furthermore,
the impact of solar radiation on various aspects of a country’s economy, for example the relationship
to crop yields, is also highly important to secure food distribution both globally and locally, in
particular as Earth’s human population is expected to increase significantly over the next hundred
years, see, for example, Yang et al. (2019); Thornton et al. (2009); Aaheim et al. (2015) and
Tollenaar et al. (2017). As the population grows, urban planners rely on simulations for energy
production and consumption when constructing future urban areas, see, for example Calcabrini
et al. (2019). Therefore the importance of solar radiation on all aspects of the environment is
difficult to underestimate. In this paper, we investigate the trends in solar radiation, both globally,
and for each continent on Earth. We furthermore explore the best opportunities to improve a
current dataset which has observations spanning several decades over hundreds of geographical
areas on Earth. However, the physical stations collecting observations of climatological variables
can have unexpected failures, and might not report values for a month. This leads to a variable
with a probability of one, or many, so-called missing values. Ignoring, and deleting, missing values
is one option. However, this approach reduces statistical power and increases estimation bias, see
Nakagawa and Freckleton (2008). Thus, ignoring missing values is not acceptable when methods
exists for dealing with this issue. Furthermore, due to strong seasonal, latitudinal, longitudinal,
altitude, and other geographical dependencies of the observation stations, simple linear interpolation
is suboptimal. For example, if the December value for solar radiation is missing in the far north
of the Northern hemisphere, a simple average between November and January will not represent a
good estimate of the true value. We propose to use sophisticated statistical tools, in particular a
specific machine learning approach called Random Forest (RF), to deal with missing values. We
show that RF is far better than any of the other, more conventional methods, often applied for
interpolation. Our end result is a balanced panel dataset, i.e. information over time and space,
with monthly values spanning almost five decades. The resulting dataset makes it possible to carry
out a wide range of analyses on climate change, as solar radiation is shown to be a key driver of
temperature, see Storelvmo et al. (2016) and Phillips et al. (2020).

The variability of solar radiation has been analyzed in many studies (Zhang et al., 2015; Sanchez-
Lorenzo et al., 2017; Stephens et al., 2012; Wang et al., 2013; Wild, 2009), and is observed in the
form of "global dimming and brightening" for a large-scale decrease and increase of solar radiation
respectively. A significant dimming was observed between 1950s to 1980s (Wild, 2009; Stanhill and
Cohen, 2001; Zhang et al., 2015), followed by general brightening since the mid-1980s, especially
in developed regions such as Europe (Wild, 2009). In particular, Sanchez-Lorenzo et al. (2017)
found that there had been a mean increase of SSR of at least 2 Wm−2 per decade from 1983
to 2010 over European land areas. Our imputed dataset exhibits strong non-linear trends in the
SSR, corroborating earlier results on the matter, see, for example, Liepert (2002) and Stanhill and
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Cohen (2001). However, we find that these trends vary significantly geographically, whereas some
similarities are present: for our time-range there is at first a strong decrease in SSR from 1964 to
1990s, followed by a reversal, broadly consistent with the periods for which global dimming and
brightening have been reported in the literature. We further show that the trends, and changes in
trends, varies significantly continent by continent.

Solar radiation has been a key input in many climate studies, for example related to climate
sensitivity, its effect on agriculture, and other economic sectors. Based on a climate econometric
model that uses surface radiation as one of the inputs, Phillips et al. (2020) estimated the tran-
sient climate response, which is the change in global mean surface temperature for a doubling of
CO2. Storelvmo et al. (2016) decomposed observed temperature development into components at-
tributable to changes in greenhouse gas concentrations (CO2) and surface radiation. The increase
in greenhouse gas pulls the temperature up, while a reduction in downward solar radiation drags
the temperature down. We construct a more complete dataset than has been available previously,
which simplifies analysis of trends in SSR and its impact on climate, environment, and the economies
around the world.

To study the importance and impact of solar radiation on climate, environment, and other areas,
it is of utmost importance to have reliable data on solar radiation, which can be used for analyzing
a wide range of global, and local, aspects of the environment. Unfortunately, there are few, if any,
complete datasets for solar radiation over long time periods for many locations. One such dataset
is the Global Energy Balance Archive (GEBA). The GEBA dataset has a long time range, with
the first observations from the early 1950’s, continuing to 2013. However, many values are missing
due to maintenance and operational failures of observational devices. To fill missing values, many
different techniques have been tested, with linear interpolation as one of the simplest. This, however,
does not perform very well if the data is highly spatially correlated, and moreover if the data is
seasonal, which is certainly true for solar radiation. Other, more advanced, techniques used by
researchers are, for example, Inverse Distance Weighting (IDW), Kriging, splining, regression and
etc. (Collins, 1995; Scudiero et al., 2016; Erxleben et al., 2002). We will apply advanced statistical
methods, often called machine learning techniques, together with conventional spatial interpolation
methods, to simulate values in a solar radiation dataset. We compare all methods described above
and find that machine learning methods are by far the best choice for the kind of dataset we analyze
in this paper. The methods and our contribution is explained in the next paragraph.

IDW is a deterministic estimation method where the value at a missing location is determined
by weighted average of values at neighboring points, where the weights are assigned as inversely
proportional to the distance from the target location. Although its simplicity makes it easy to
implement, a drawback is that it will have a discontinuous slope of the estimation surface at each
data point (Collins, 1995). The Kriging method is an interpolation technique where the interpolated
values are modeled by a more sophisticated relationship between observed values with target missing
values. The relationship is depicted by a variogram function, which calculates the semi-variance
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differences (spatial autocorrelation) between the neighboring values. The variogram function can
be exponential, spherical, logarithmic or any other function. Spline models, a class of functions
often called polynomial interpolation models, use mathematical functions to connect the sampled
data points in order to produce a continuous elevation and grade surface while minimizing the
curvature of the surface. It is useful when the surface varies smoothly without sharp fluctuation.
The models mentioned above are all univariate, which means that they apply only information about
the variable of interest. Regression methods break this limitation by characterizing the response’s
relationship with other potential explanatory variables, such as the location (latitude, longitude)
of the measurement station, and other correlated meteorologic variables. However, it is difficult for
regression models to take into account spatial autocorrelation between nearby data points. This
deficiency leads to the emergence of Regression Kriging (RK) which combines regression predicted
trends with Kriging fitted residuals, generating a prediction that brings together the merits of the
two methods.

Recently, machine learning methods have seen an increasing number of applications in envi-
ronmental research, see, for example Jiang (2008); Sun et al. (2016); Zhou et al. (2017). Machine
learning consists of many different statistical models that computer systems use to effectively per-
form a specific task without using explicit instructions and strong assumptions; it relies mostly on
pattern recognition and inference instead. An effective application in predicting evapotranspiration
is established by Xu et al. (2018), who upscaled site observations to a regional grid scale over a con-
tinuous time period. Among the five machine learning methods (including artificial neural network,
Cubist, deep belief network, random forest, and support vector machines) applied in the paper,
all have almost identical performance quantified by root-mean-square error, however, the random
forest shows lower uncertainty than other methods based on the three-corned hat algorithm, which
measures the predictive stability by capturing the variability for the prediction against the reference.
More applications can be found in predicting storm movement trend and growth (Han et al., 2017),
halogenated substances (Wang et al., 2019), solar radiation (Jiang, 2008), etc. Machine learning
approaches are also commonly applied in pattern detection and factor quantification. Stirnberg
et al. (2020) identified the contributors in the levels of particles in the air using a machine learning
method, which is shown to be capable of reproducing concentrations of particles with high accuracy
and reliability, and important drivers of the series are identified through the process.

Among a variety of machine learning models, the Random Forest (RF) model provides a dis-
tinctive solution for accommodating a high dimension of the covariates; specifically, it is effective,
straightforward, and relatively less computationally intensive (Grabska et al., 2020). This makes it
practical, and feasible, to implement and analyze large datasets, which can be difficult for conver-
gence in other machine learning algorithms. For example, Sun et al. (2016) presented a RF model
to estimate solar radiation based on three types of input variables, sunshine hours, air temperature,
and their derivative types. Surface albedo, emissivity and vegetation indices data were used as
predictors by Zhou et al. (2017) in a RF model in order to generate an accurate prediction of solar
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radiation. Most of the research on spatial interpolation are on regional scale and/or only consider
a relatively short period of time for testing model quality, such as a one year period. The main
contribution of this paper is to apply an effective machine learning method in spatial interpolation
of Surface Solar Radiation (SSR), that is applicable for the global scale over a long time-span.
Moreover, spatial and temporal dependency is incorporated in the model by constructing a group
of neighboring variables and time series variable.

In this paper, we apply eight models, including random forest, ordinary Kriging, three regression
models, and their respective Regression Kriging methods, to predict SSR values in the GEBA
dataset and evaluate their performance. The highlight of our model is that we explore not only
the explanatory ability of climatic and geographical variables, but also the contribution of intrinsic
spatial and temporal characteristic of the response. Specifically, three groups of predictors are
constructed: i) climatic and geographical variables, such as cloud coverage, temperature, etc., to
describe station climatic status; ii) spatial neighboring variables to reflect spatial autocorrelation of
SSR in the vicinity of the station; and iii) time series variables, which are variants of lagged SSR,
to account for seasonality and temporal autocorrelation. To our best knowledge, the first group of
predictors are commonly used, the latter two groups are rarely contemporarily included as a part
of a regressor ensemble. Nevertheless, we show that groups ii) and iii) have significant explanatory
power for predicting SSR. Furthermore, an analysis of the RF permutation variable importance
shows that the neighboring variables actually carry the highest importance, in particular, the best
neighboring variable is almost twice important as the best time series variable, and nearly 40 times
important as the best climatic variable. Intuitively, neighboring variables and time series variables
provide direct information about the response, whereas the climatic variables only function as
assistant predictors, which serves as drivers for the variation in the response. It is not surprising
that direct information is the best predictor among all, though a limit of neighboring and time
series variables is that these variables require high data completeness, which could be demanding
in practice.

A 10-fold cross validation for each continent is implemented to assess model performance. The
results shows that (1) the RF generates the smallest prediction errors and is least affected by
observation density. The relative density independence of RF is an essential property to ensure a high
prediction accuracy even in a setting with scarce observations. (2) Ordinary Kriging’s performance
is strongly determined by a high density of data points. When the stations are sparsely scattered,
the performance of the OK deteriorates significantly. However, the OK has higher accuracy than
regression models in most cases, which highlights the essential necessity of introducing spatial
autocorrelation in prediction. (3) Regression Kriging is more preferred than just having the OK or
regression models alone, however the accuracy improvement is not considerable. On the contrary,
the improvement of RF is quite substantial. The RF model has a 44% lower MAE than the best
regression Kriging model. The results show that we obtain estimates broadly consistent with Li
et al. (2011) in terms of the relative better performance of RF, compared to OK, and regression
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Kriging methods. Li et al. asserts the superior predictive accuracy and sensitivity to inputs of
RF, especially its combination with OK or IDW, out of 23 methods (including RF, support vector
machines, OK, IDW and their combinations), in a spatial interpolation application of mud content
samples in the southwest Australian coast. However, the combination of RF and OK show no
significant improvement in accuracy in our application. One possible explanation could be that
the spatial dependency is well captured by introducing the spatial neighboring variables, therefore
combining OK contributes little in adding new information to the final estimation.

The rest of the paper is organized as follows: Section 2 describes the study data and methods.
Section 3 gives an assessment of model performance in prediction. Section 4 investigates SSR
trends both globally as well as for each continent. The study is discussed and concluded in Section
5. Finally, technical notes are addressed in Section 6.

2 Data and Method

This section describes the data source we used in the empirical study, as well as the spatial inter-
polation methods which we apply to the SSR estimation.

2.1 Climatic Datasets

A. The GEBA global radiation dataset

The Surface Solar Radiation (SSR, measured inWm−2) used in this study is provided by the Global
Energy Balance Archive (GEBA), which is a dataset maintained by the Institute for Climate and
Atmospheric Science at ETH Zurich. It stores energy fluxes at the surface, mainly SSR measure-
ments (Sanchez-Lorenzo et al., 2017). These data are collected from climate stations worldwide and
it provides the longest record for monthly SSR starting from the early 1950s and up to recent time.
Its large spatial and temporal coverage is exceptional and therefore makes GEBA one of the best
choices among datasets for this type of variable for testing our spatial interpolation models.

B. The CRU-TS climate dataset

The CRU-TS climate dataset comprises monthly time series of meteorological variables that might
be used as predictors for SSR prediction. Data is available for all global land areas, excluding
Antarctica, and can be downloaded from the Climate Research Unit (CRU) website. It has a spatial
resolution of 0.5× 0.5 degree grid cells. For each grid cell, we obtain from CRU-TS observations for
the following climatic variables:

• cld: cloud cover as percentage

• dtr: diurnal temperature range in ◦C
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• frs: number of days with ground frost

• pre: monthly total precipitation in mm/month

• tmn: minimum temperature in ◦C

• tmp: mean temperature in ◦C

• tmx: maximum temperature in ◦C

• vap: vapour pressure in hPa

• wet: number of rain days

C. The GRUMP station location dataset

The Global Rural-Urban Mapping Project (GRUMP) dataset provides a 30 arc-second Urban Ex-
tends Grid for all land except Antarctica and parts of the Greenland ice sheet. Locations of the
climate stations contributing to the GEBA dataset are classified as rural or urban based on the
value of the grid cell containing the location of each climate station. The variables from GRUMP
are shown in the following list:

• LAT: latitude of station

• LON: longitude of station

• ALT: altitude of station

• URB: whether station is in an urban/rural area

The three datasets are joined together to provide a climatic and geographical description for
each climate station in the GEBA dataset.

2.2 Random Forest Model

The Random Forest algorithm is an ensemble classifier that applies bootstrap samples to construct
multiple decision trees, where each decision tree is built on a random subset of the training samples,
see Breiman (2001) for a thorough introduction to the method. During the tree growing process,
the best split of the data is determined through n randomly selected features. The advantages
of RF are that it can select the most important variables at each node split and it can deliver
good predictive performance even when most predictive variables are noisy (Li, 2013). Moreover, a
variable importance analysis can easily be conducted so that it is possible to obtain an overview of
the contribution for each explanatory variable.
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The input variables of RF are selected based on previous studies and empirical analyses. The
predictors can be categorized into three classes: climatic and geographical variables, spatial neighbor-
ing radiation variables and time series variables. In our study, we include climatic and geographical
variables encompassing the following indicators: year, month, the CRU − TS and the GRUMP

variables. Spatial neighboring variables as a group describes the spatial distribution of SSR in
the neighborhood, with respects to its level, spread and tendency, which will be elaborated in de-
tail below. Time series variables are lagged SSR observations to account for autocorrelation and
seasonality in the data.

Neighborhood is constructed such that we are able to use data from nearby areas provided that
these sections share similar spatial dynamics with the target location (Ohashi and Torgo, 2012). Our
intuition is that radiation within a neighborhood is correlated, also known as spatial autocorrelation,
and therefore spatial dependency might be useful in predicting the value at a target location. In
this paper, we define three layers of neighborhoods with the search scope limited by k1, k2, k3

respectively. Neighborhood size should be limited to relatively small values, since as the distance
between climate stations increases, the similarity decreases and there is most likely less useful
information we could extract from the neighbors. We define a spatial dataset Z = {z1, z2, · · · , zn},
where zi is the value of radiation z at location i. Let Nk

o = {zi ∈ Z : d(o, i) ≤ d(o, jk), ∀i 6= o} be
the neighborhood of station o, where d(o, i) indicates the distance between station o and station i,
d(o, jk) denotes the distance between station o and its kth-nearest station jk.

We use the notation z(Nk
o ) for the average of zi in the neighborhood Nk

o , and z̃(Nk
o ) for the

weighted average counterpart, based on the Inverse Distance Weighting (IDW). The weighted aver-
age is then given by:

z̃(Nk
o ) =

∑
zi∈NK

o

λizi

λi =
d−rio∑

zi∈Nk
o
d−rio

(1)

This means that λi measures the relative inverse distance weights between stations, where r is
the specified exponent parameter that amplifies the relevance of nearer neighbors, while reducing
the weights of further apart neighbors. A higher value of r indicates a larger influence of nearby
points on the predicted values. Rojas-Avellaneda (2007) suggests an exponent ranging from 1 to 4,
whereas a more recent study (Zaki et al., 2019) states an exponent of 5 outperforms an exponent
value of 2. We thus take r = 5 in this study. For the arithmetic spatial average, z(Nk

o ), we use
the same equation as above, though with λi = 1

k , where k is the number of spatial stations in the
neighborhood Nk

o . Figure 1 illustrates an example for the 2-nearest neighborhood, N2
o . The average

thereby consists of the mean of the two red stations within the green circle.
To capture the spread of the values, we use the standard deviation of the values within this
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Fig. 1 Neighborhood illustration. o is the target station, × indicates a station within the boundary
and × a station outside.

neighborhood, given by

σz(N
k
o ) =

√√√√ 1

|Nk
o |
∑

zi∈Nk
o

(zi − z(Nk
o ))

2 (2)

σz(N
k
o ) measures the volatility of SSR within the neighborhood Nk

o . The ratio between two averages
of two spatial neighborhoods are calculated to describe the tendency when the target variable values
evolve in the vicinity of this location. The ratio is defined as follows,

Z
k1,k2
o =

z(Nk1
o )

z(Nk2
o )

(3)

where k1 and k2 are two neighborhood sizes (k1 < k2) and z() is the average of a set of the values in
the neighborhood of o. This means that Zk1,k2

o captures spatial trends, and can provide very useful
information in determining any missing values. Such trends can be the latitude and longitude, as
well as elevation of the grid, and thus captured by the specific variables measuring this. Such a
trend can also be moving towards, or away, from the ocean, closer to densely populated areas, etc.
A variation of this indicator is the weighted average counterpart given by

Z̃k1,k2
o =

z̃(Nk1
o )

z̃(Nk2
o )

(4)

where z̃() is the weighted average of a set of the values in the neighborhood of o.
To summarize, we have spatial neighboring variables containing the following predictors, z(Nk1

o ),
z(Nk2

o ), z(Nk3
o ), Zk1,k2

o , Zk2,k3
o , z̃(Nk1

o ), z̃(Nk2
o ), z̃(Nk3

o ), Z̃k1,k2
o , Z̃k2,k3

o , σz(Nk1
o ), σz(Nk2

o ), σz(Nk3
o ),

where k1, k2 and k3 satisfying k1 < k2 < k3.
Moreover, autoregressive terms are introduced to remove trend and seasonality. For the same

reason, we also include moving average terms to reduce the effect of short-term fluctuation. The
trend in radiation is removed by including monthly lagged values, i.e. RADt−1, RADt−2, RADt−3, . . ..
Meteorological variables are likely to show the propensity of seasonality that previous years’ radia-
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tion in the same month has significant correlation with that of the current month. To account for
this, we introduce annual lagged values. i.e RADt−12, RADt−24, RADt−36, . . ., where for example
RADt−12 is the observed RAD twelve months before month t.

Moving average terms are often used for smoothing out short-term fluctuations and highlight
long-term trends or cycles, therefore we introduce moving average terms for both monthly lagged
radiation and annual lagged radiation, with RADmamk representing the moving average of the
previous k months’ radiation and RADmayK for the counterpart of the yearly lagged radiation with
K annual lags.

2.3 Ordinary Kriging

Ordinary Kriging uses a particular function, called a semivariogram, to measure the spatial de-
pendence between observations. Assumed to be intrinsically stationary, the semivariogram γ(h) is
defined as

γ(h) =
1

2
average

[
(z(xi)− z(xj))2

]
(5)

where h is the distance between points xi and xj , and z(xi) is the measured value at sample point xi.
Equation 5 means finding all pairs of points xi and xj that are separated by a distance h, and then
calculating the average squared difference and dividing by 2. The empirical semivariogram provides
insights on the spatial autocorrealation of observations in datasets. It represents the average rate
of change in the target variable with distance h. The semivariogram is fitted with sample data
and used to derive the weights of an unbiased linear interpolator by means of minimizing the error
estimate variance V ar(z∗(xo)− z(xo)). The weights can be used to make a prediction by

z∗(xo) =
n∑

i=1

ωOK
i z(xi) (6)

where ωOK
i is the semivariogram weight, z∗(xo) is the linear estimator of the unknown true value

z(xo).

2.4 Regression Kriging

Regression Kriging (RK) combines regression predicted trends with Kriging predicted residuals
where the trend is obtained by regressing the response on auxiliary variables (such as climatic and
geographical variables) and the spatial dependence of the response is captured by a Kriging model.
Here we have a RK model given by
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ẑ(xo) = m̂(xo) + ê(xo)

=

p∑
k=0

β̂k · qk(xo) +
n∑

i=1

ω̂i · e(xi)
(7)

where m̂(xo) is the fitted trend, ê(xo) is the interpolated residual, β̂k, k = 0, . . . , p, is the
estimated regression coefficients, p is the number of auxiliary variables, q0(xo) = 1 is the constant
term, and ω̂i, i = 1, . . . , n, are the Kriging weights.

In the RK, we use the group of climatic and geographical variables as regressors, and apply three
forms of regression, i.e. simple linear regression (LR), generalized additive regression (GAM) and
least squares dummy variable (LSDV) model. Figure 2 shows the distribution of SSR per month
for Europe. It is noteworthy that SSR varies with month nonlinearly, therefore it makes sense to
include highly polynomial terms for month, which is realized by a GAM model. Another way of
capturing the various levels of SSR is to introducing eleven new dummy variables to represent the
twelve months, when the eleven dummy variables all equal to zero, it indicates the reference month.

Fig. 2 Box plot for each month. It plots the monthly SSR distribution for Europe.

3 Empirical Results

We start out with a dataset of 1523 stations scattered around land areas on Earth. Figure 3 shows
an overview of how the stations are distributed. We can see that the stations are not equally
distributed in all regions. Middle and Southern Europe and Japan own the most concentration of
stations, whereas northern North America, Asia and Africa have relatively sparsely, though even,
distribution, while in South America and Australia stations are more located at the borders of
the continents. There are also a few stations scattered on islands across the ocean. Each station
registers the average downward shortwave solar radiation each month during the year. The first
stations were starting to operate in the early 1950’s. Due to data maintenance and quality checks,
a substantial number of observations are only available through 2013. This leaves us with about 60
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years of data. However, due to instrument failure and other errors, some months’ observed values
are not registered. This leads to a so-called missing value. One of the main tasks in this paper is
to estimate those missing values using advanced statistical methods. We implement a data quality
control process that prepares the dataset for the input of Random Forest. The following stations
are dropped in the dataset: 1) stations that exist for less than three years; 2) stations that don’t
have at least once three consecutive months of observations; and 3) stations for which the layers of
neighborhoods we defined above before cannot be found. After the data quality control, we are left
with data from 1227 stations, see Figure 4 for the number of observations every year.

Fig. 3 Locations of all stations contributing to the GEBA dataset

1950 1960 1970 1980 1990 2000 2010
Year

0

1000

2000

3000

4000

5000

6000

7000

Nu
m

be
r o

f o
bs

er
va

tio
ns

Fig. 4 Number of observations every year

The following evaluation metrics are used to assess model prediction performance: R2, Mean
Absolute Error (MAE), Mean Absolute Percentage Error (MAPE), and Root Mean Squared Error
(RMSE).
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R2 = 1−
∑n

i=1(ẑi − zi)2∑n
i=1(zi − z̄i)2

MAE =
1

n

n∑
i=1

|ẑi − zi|

MAPE =
1

n

n∑
i=1

∣∣∣∣ ẑi − zizi

∣∣∣∣
RMSE =

√√√√ 1

n

n∑
i=1

(ẑi − zi)2

(8)

where n is the number of predictions, ẑi is the predicted value by the model, and zi is the
observed value.

3.1 Parameter setup for regressors

A. Define the neighborhood size

Defining the size of the neighborhood is challenging, as it is desirable to include as many relevant
stations as possible while excluding irrelevant stations. Since we are most interested in how radiation
from a number of the nearest stations coincides with the target station, the neighborhood should
not be too large, nor too small. We define neighborhood size by the number of nearest stations that
are included, moreover, we add a cutoff distance that intends to avoid bias from outlier stations.
Figure 5 shows the distribution of natural logarithmic distance between the second nearest stations.
Given a roughly symmetric distribution of logarithmic distance, it indicates a fat right tail in the raw
distance distribution, which confirms our statement about the existence of distant stations. Since
these outlier stations are isolated, even their nearest stations do not share similar characteristics
with them, leading us to provide cutoff distances to confine the definition of neighborhoods. The
cutoff distances are determined by the 95 percentile of distance between the nearest 2, 3 and 5

neighbors. In summary, we set k1 = 2, k2 = 3, k3 = 5, with cutoff distances being d1 = 691km, d2 =

790km, d3 = 1047km respectively.

B. Order of seasonal autoregression

To see the characteristics of radiation evolution in the past, Figure 6 shows the time series of
radiation from a randomly picked station. As expected, we observe that the radiation demonstrates
strong annual cycles, and we hypothesize that previous radiation from the same month from previous
years may have close correlation with that of any future months for the station.

In order to test the seasonality, Figure 7 plots the AutoCorrelation Function (ACF) and Partial
AutoCorrelation Function (PACF) of the radiation time series. Both figures show significant annual
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Fig. 6 Radiation time series of a random station, in Wm−2

seasonality. The ACF shows spikes at lags for multiples of 12, and the PACF shows exponential
decay in seasonal lags, which means that the importance of lagged values decreases as the lag
increases. Based on these results, we add RADt−K×s seasonal lagged terms as predictors for RADt,
where s = 12 is the seasonal length, and K = 1, 2, . . . , P , where P is the optimal order of seasonal
lagged terms.

C. Order of autoregression

We also want to investigate how previous monthly lagged radiation affects future values. Therefore,
we add RADt−k, k = 1, . . . , p, where k stands for k months’ lagged radiation, where p is the optimal
lag-length, as predictors for RADt.

D. Seasonal moving average

Moving average is a calculation to smooth data, it uses the arithmetic mean of the last several
observations to forecast the next observation. We want to compute the moving average of the last
K SSR observations for the same month. The following formula is used to calculate yearly moving
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Fig. 7 ACF and PACF of the sample Radiation time series

average of radiation:

RADt_mayK =

∑K
i=1RADt−i×s

K
(9)

where K = 2, 3, . . ., and s is the seasonal length equal to 12. An optimal number K of observation
could to be found by calculating the MAE for n arguments and choosing the one with the minimum
MAE.

E. Moving average

A smoothed trend of past few months radiation is represented as the average of the last k terms,
i.e., the moving average term. We add this term to reflect how previous months’ trend affect the
future value. The monthly moving average is defined as:

RADt_mamk =

∑k
i=1RADt−i

k
(10)

where k = 2, 3, . . .. The number of previous months, k, is also optimized by minimizing the error
MAE.

To summarize the parameters, we use lower case k and p to represent the optimal order of
moving average terms and lagged terms respectively in ordinary monthly autoregression; whereas
the upper case K and P represent the counterparts in seasonal autoregression.

F. Implementation of the Random Forest model

We use a "grid search" to iteratively explore different combinations of parameters for the autore-
gressive terms and the moving average terms. For each combination of parameters, we fit a Random
Forest model and calculate the MAE. Once we have explored the entire set of parameters, one opti-
mal combination of parameters will be the one that yields the best performance for the estimation.

15



In our case, this turns out to be: p = 1, k = 3, P = 3, K = 3.
Two sources of randomness in the RF model are the number of trees and the number of candidate

independent variables to split at in each node. The first parameter determines how large the forest
is, i.e., the number of bootstraps to generate independent samples, and the latter parameter decides
the number of randomly preselected variables to split at in each tree. The number of trees is specified
as 700 and the number of candidate independent variables is set as 6 according to a tuning process.
The relationship between MAE with the two model parameters can be found in the Supplement
Material S1.

Figure 8 plots the natural logarithm of permutation variable importance for the first ten most
important variables in the Random Forest model. The importance is first computed as the R squared
percentage change if we permute the target variable and keep the remainders unchanged, and then
scale the importance to its logarithm in order to mitigate the importance difference in visualization.
We observe that the most influential variable is one of the spatial neighboring variables (labeled
in violet), z_k3, which is the simple average of radiation of the k3 neighborhood, consisting of
the nearest five climate stations. It indicates that the stations within one neighborhood share
significant similar dynamics of radiation, and therefore their observations could be used as powerful
explanatory variables to predict the value at any missing locations. Another variable within the
same class is its weighted average variant, zw_k3, which is the fourth most useful variable that
also explains a large part of the radiation variation. The result also highlights the importance of
using a sophisticated statistical model which allows for other types of explanatory variables. The
time series variables (labeled in magenta), especially the three-year moving average radiation on
the same month (RAD_may3) and the previous month’s radiation (RAD_tm1), are the second
and third most important indicators, which accords with our previous observation of autoregression
and seasonality in the time series of radiation. If we transform to actual importance by taking
natural exponent, we observe that the most important neighboring variable is indeed almost twice
as important as the best time series variable. By contrast, the group of climatic variables is not as
important as the preceding two groups, as the importance decays very fast as ranks decrease. Among
the group of meteorological variables (labeled in light blue) that describes the state of climatic and
geophysical information of stations, the ones that provide the most explanatory power are Cloud
Coverage (CLD), Latitude (LAT ) and Precipitation (PRE). Nonetheless, if we focus on the actual
importance, the best neighboring variable (z_k3) is almost 40 times more important than the best
climatic variable (CLD).

3.2 Evaluation for prediction errors

Due to differing, or even opposing, climatic and geographical characteristics, we implement model
training and testing on a continental level. A 10-fold Cross Validation (CV) is implemented for the
RF. For regression Kriging, trend regression and spatial dependence Kriging needs to be trained
separately. A 10-fold CV is first implemented and generates out-of-sample predictions for SSR
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Fig. 8 Random Forest permutation logarithm scaled variable importance. Note that the importance
is measured in natural logarithm scale, actual importance could be obtained by taking its natural
exponent. z_k3 is the simple average of radiation for its nearest five neighbors.

trends. On the other hand, Ordinary Kriging can only be trained for a static cross sectional
map, which allows only one observation for each unique location. Hence data training and testing
for Kriging is carried out monthly. Thereafter, spatial dependence, represented by residuals of
regression models, is fed to Ordinary Kriging by a monthly 10-fold CV, and generating SSR residual
predictions. By adding regression trends and Kriging residuals together, we eventually obtain our
final predictions.

Table 1 shows error metrics for each continent. By comparing the values across columns, we
observe the performance difference among various models. The four models with the best overall
performance are RF, OK, GAM+OK and LSDV+OK, we will mainly focus on these models there-
after. The RF model has the most accurate prediction with the highest stability among all the
models no matter at which measure we are comparing. For instance, if we look at the MAEs, the
RF has the lowest global average MAE of 10.2 and a standard deviation of 1.5, while the ensemble
of the other seven methods generates an average MAE of 21.3, and an average of standard deviation
of 6.4. By comparing the values row-wisely, we see how model performance varies across continents.
Note that the relative accuracy among continents, as indicated by MAE, RMSE and R2, generally
coincides, while contradicts what is reflected by MAPE. In particular, taking the RF model as an
example, Europe has the lowest error indicated by MAE, RMSE, and R2, whereas it has the second
largest error, only smaller than Asia, if measured by MAPE. Conversely, Africa and South America
perform relatively poor among all the continents in terms of absolute error terms, yet they become
the good-performed models under MAPE. One possible explanation could be that the percentage
error tend to be biased by the absolute levels of observations. In other words, the small MAPE value
(5.31) in Africa does not necessarily reflect a high accuracy, the value is merely biased downward
by high levels of SSR in Africa, therefore showing a false high accuracy. Consequently, the abso-
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lute error measures, i.e., MAE and RMSE, are more appropriate indicators for model evaluation
regarding SSR in our case. It is worth noticing that another preferable advantage for the RF is
that observation density is not as influential on model performance as the other models. We see
from the station distribution map that South America has the most clustered and uneven station
placement, and we hence observe a significant decrease in performance in the continent for the
conventional regression Kriging methods, whereas the error measures under the RF model are not
deteriorating as much, compared to other continents. The relative stability of RF prediction errors
indicates its potential applications in spatial interpolation in sparsely and unevenly scattered data
points settings.

The three regression models (LR, GAM and LSDV) generate profoundly different errors, with
LR having the largest errors, and GAM and LSDV having substantially lower errors. LR differs
from the other two models in how it copes with the MON (month) variable. The striking larger
errors for LR indicate that regarding MON as a regular numeric variable is not adequate, a special
treatment is apparently needed. Moreover, the results show that it has quite similar beneficial effects
either introducingMON as high polynomial terms (in GAM) or treating each month like they have
different levels (in LSDV). The OK model generally outperforms regression models to a certain
degree, which indicates the essential importance of including spatial autocorrelation in prediction.
The OK method fails to outperform regression in Oceania in which stations are scattered especially
sparsely. Additionally, it does not work effectively in South America. The outperformance of OK is
nonetheless noticeable in Europe, which indicates that the performance of the OK model is highly
determined by observation density. The regression Kriging methods incorporate spatial dependence
by adding a spatial correlated residual term in the trend prediction. The effectiveness of this
method is confirmed by its lower error metrics. In Figure 9, predicted values in Europe are plotted
against observed values for the four best performance models. We observe that all coefficient of
determination (R squared) are above 95%, indicating the models’ remarkable ability in predicting
more than 95% of the response variance. The narrow scatter of points alongside the regression line
in RF suggests that the RF model generates the most stable predictions.

Figure 10 shows monthly anomalies for one chosen station, located at Locarno-Monti (46.17N,
8.78E) in Switzerland, which is one of the most long-standing climate observation stations in Europe.
RF model shows a relative advantage in reproducing SSR trends, in particular during the highly
volatile period 1970-1980, during which SSR fell largely. Although the RF predictions do not exactly
reproduce the observations, it captures the general trends better than either the OK or GAM+OK
(LSDV+OK) model.

In Figure 11, monthly anomalies are plotted for Europe (See Supplement Material S2 for monthly
anomalies for the other continents). The aggregated predictions for all the three models replicate
trends of observations reasonably well. By comparing Figure 10 and Figure 11, it is worth noting
that RF is more capable of capturing idiosyncratic trends of single stations, while the aggregated
performance is equally comparable with that of OK and GAM+OK (LSDV+OK).
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Table 1 Evaluation metrics. Numbers in bold face represent to best fit. We see that the Random
forest methods is better for all continents, for all performance metrics, whereas linear regression
performs the worst.

Models

Measure Continent RF LR GAM LSDV OK LR+OK GAM+OK LSDV+OK

MAE

Africa 11.73 30.78 30.15 30.14 26.7 25.4 25.37 25.35
Asia 10.7 25.23 19.34 19.34 16.82 17.25 15.81 15.81

Europe 7.93 30.74 14.15 14.14 11.83 18.18 11.29 11.28
North America 9.69 30.91 15.8 15.79 13.75 16.04 12.91 12.91

Oceania 9.52 30.96 14.98 14.99 20.49 20.91 13.98 14.05
South America 11.70 31.18 30.52 30.53 29.98 29.73 29.69 29.70

Average 10.21 29.97 20.82 20.82 19.93 21.25 18.18 18.18
Std. dev 1.46 2.33 7.58 7.58 7.22 5.33 7.52 7.51

MAPE
(%)

Africa 5.31 14.3 13.95 13.94 12.7 11.63 11.6 11.59
Asia 7.17 18.22 13.43 13.43 11.67 11.59 10.73 10.73

Europe 7.08 45.27 17.27 17.26 12.39 23.72 12.58 12.59
North America 6.65 32.57 16.62 16.62 10.87 15.3 12.44 12.46

Oceania 5.66 22.11 11.4 11.42 14.79 15.7 11.3 11.32
South America 6.44 18.74 18.23 18.22 17.62 17.21 17.2 17.2

Average 6.39 25.20 15.15 15.15 13.34 15.86 12.64 12.65
Std. dev 0.76 11.63 2.63 2.62 2.47 4.47 2.34 2.34

RMSE

Africa 15.88 39.08 38.63 38.63 35.6 33.54 33.54 33.5
Asia 14.79 32.38 25.87 25.87 23.56 24.5 22.12 22.12

Europe 12.12 39.05 19.72 19.72 18.06 26.57 16.94 16.95
North America 13.75 39.13 21.98 21.97 20.4 22.07 18.34 18.35

Oceania 13.29 39.75 21.54 21.56 29.99 30.25 22.81 22.9
South America 16.17 39.72 39.02 39.03 39.43 37.99 37.96 38.02

Average 14.33 38.19 27.79 27.80 27.84 29.15 25.29 25.31
Std. dev 1.57 2.86 8.78 8.78 8.58 5.95 8.52 8.52

R2

Africa 0.90 0.38 0.39 0.39 0.48 0.54 0.54 0.54
Asia 0.94 0.70 0.81 0.81 0.84 0.83 0.86 0.86

Europe 0.98 0.77 0.94 0.94 0.95 0.90 0.96 0.96
North America 0.97 0.77 0.93 0.93 0.94 0.93 0.95 0.95

Oceania 0.97 0.78 0.93 0.93 0.87 0.87 0.93 0.93
South America 0.88 0.31 0.34 0.34 0.31 0.36 0.36 0.36

Average 0.94 0.62 0.72 0.72 0.73 0.74 0.77 0.77
Std. dev 0.04 0.21 0.28 0.28 0.27 0.23 0.25 0.25

a MAE and RMSE are measured in Wm−2; b MAPE is measured in %; cR2 is the coefficient of determination by regressing predicted values
on observed values;

4 Trends in Global and Continental Average Surface So-

lar Radiation

In this section, annual global and continental average trends for SSR are explored. Figure 12 shows
the cumulative annual global average radiation change from 1964 to 2013. 1964 is chosen as radiation
observations are few, clustered in a few continents, and fluctuate a lot before this year. Including
data before that might thus bias the SSR trends. The global SSR first experienced a decrease (global
dimming) until the beginning of the 1990s, and started to increase onward (global brightening). The
trend could be broadly explained by the changes in global anthropogenic sulfur emissions shown in
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Fig. 9 Simulation against observation values in Europe. The figure illustrates that the RF model
produces simulated values with a lower variability than the other models. See the Supplement
Material for corresponding figures for the other continents.

Stern (2006). According to Stern, global anthropogenic sulfur emissions experienced drastic increase
during the period from 1960 to 1980, thereafter the emission level fluctuated from 1980 to 1990, and
started to decrease afterwards. The exact correlation between SSR and sulfur emissions is examined
further in what follows.

Annual cumulative continental average change is shown in Figure 13 and Figure 14 for all
continents except for Antarctica, as it has too few observations to form a valid basis for trend
analysis. Note that Storelvmo et al. (2018) presented a similar continental SSR figure, where the
authors used a balanced GEBA data set together with interpolated missing values. This contrasts
our paper, where we aim to reproduce existing observations as precisely as possible. The trends
reported in Storelvmo et al. (2018) are generally in agreement with our results, though with a
relatively stronger trend in our study. It is interesting to notice that the spatial difference of SSR
trends is intriguingly significant among continents. SSR over Europe has a trend of increase during
the period 1967-1976, at what follows, a decrease has been observed until the mid of the 1980s.
Beyond that, it seems that SSR enters an accelerating increase in the 10-15-year period until 2013.
The recent brightening period corroborates the pronounced effect of sulfur emissions regulations
imposed in Europe starting from 1990 (Stern, 2006). Similar regulations were enforced in North
America around the same time, though the result is not as profound, the declining trend ceases
regardless.

The trends in Asia are fairly alike that of North America, the distinct decrease prevails until the
beginning of 1990s and SSR fluctuates around a zero-trend afterwards. The remarkable decrease
is mostly attributed to the increase in aerosol loading caused by rapid economic expansion and
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Fig. 10 SSR monthly anomalies for one chosen station. Each panel encompasses monthly SSR
anomalies (dashed line) of observations (red) and model simulations (blue), together with their
corresponding smoothed series (solid line) by a 12-month Gaussian kernel. The series are expressed
as anomalies from the 1964-2013 mean. Corresponding prediction models for each panel: Panel A
- RF, Panel B - OK, Panel C - GAM+OK. Since LSDV+Ok prediction has very similar trends
with GAM+OK, see Supplement Material Figure S4 for details.

population growth during that period (Liang and Xia, 2005). At the beginning of the 1990s, when
major economic crises occurred in Asia, the decreasing trend stops persisting and SSR fluctuates
with no evident trend.

As atmospheric sulfur aerosol loading is known to have essential impacts on SSR variation, see
Wild (2016). The sulfur emissions increase Earth’s albedo either by direct interaction with solar
radiation, or by increasing cloud reflectivity, areal extent and etc. (Storelvmo et al., 2016), and
thereby attenuate SSR and cause global dimming. An inspection of the relationship between SSR
and SO2, a precursor of sulfate aerosol, is discussed thereafter. Figure 15 illustrates the relationship
between SSR and SO2 emissions, see also (Smith et al., 2011; Klimont et al., 2013) for a thorough
treatment of the matter. Significant correlation coefficients are observed as -0.601 for the period
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Fig. 11 SSR monthly anomalies for Europe. Each panel encompasses monthly SSR anomalies
(dashed line) of observations (red) and model simulations (blue), together with their corresponding
smoothed series (solid line) by a 12-month Gaussian kernel. The series are expressed as anomalies
from the 1967-2013 mean. Corresponding prediction models for each panel: Panel A - RF, Panel B
- OK, Panel C - GAM+OK. Since LSDV+OK prediction has very similar trends with GAM+OK,
see Supplement Material Figure S5 for details.

1964-1985, and -0.607 for 1986-2011, which are in agreement with the result shown in Storelvmo
et al. (2018). A similar analysis over Europe is shown in Figure 16. A jump at 2000 is noticed due
to change of dataset. Two datasets are joined at 2000, where a country level is used for 1964-1999
and a regional level for 2000-2011, see Smith et al. (2011) and Klimont et al. (2013). A discrepancy
emerges when we try to aggregate datasets to generate continental emissions for Europe. Europe
is hard to reconcile for the two datasets, as some countries locate transcontinentally, for example
Russia. This aggregation problem does not exist on a global level, thereby we observe a rather
smooth curve in Figure 15. To reduce bias from the jump, correlation coefficients are calculated for
sub periods split by 2000. From 1964 to 1999, correlation coefficient is 0.137, and insignificant, in
contrast with a very significant correlation coefficient of -0.971 for 2000-2011.
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Fig. 12 Cumulative annual global average trend for SSR from 1964 to 2013 for observations (rad)
and RF predictions (blue), plotted together with five-year moving average (solid line). The series
are expressed as cumulative change from 1964.

5 Conclusion

This paper explores the potential of applying a machine learning approach, Random Forest, to spa-
tial interpolation. A wide range of explanatory variables is explored in the interpolation, including
climatic and geographical variables, spatial neighboring variables, and time series variables, among
which spatial neighboring variables are proved to be the determinant factor for the RF. RF shows
the highest predictive accuracy among all eight implemented models in the study, in addition to
that, its performance is less contingent on data density, which makes RF an preferable alternative in
spatial interpolation applications. The performance advantage is evident, whereas there are short-
comings as well. When including a large number of explanatory variables, the criteria for admitting
sample data become strict. In our particular model, a geographical station should not isolated, and
needs to have existed for a certain time in order for our model to reach an accurate prediction.
This limits the model’s extrapolation ability to predict values in unsampled areas. In addition, the
complexity of machine learning models makes it behave like a black box and thereby restrains our
understanding in terms of interpreting exactly how explanatory variables affect radiation.

We investigate the global SSR trend and find that Earth first experienced global dimming from
1964 to 1990, and then a significant trend reversal or recovery until 2013. Each continents’ SSR is
analyzed and a significant geographical discrepancy is observed. The imputed SSR dataset could
be applied in further climate research. One of the applications could be a comparison of observed
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Fig. 13 Cumulative annual continent average SSR trend - part I. Cumulative annual continent
average trend for SSR for observations (rad) and RF predictions (blue), plotted together with five-
year moving average (solid line). The series are plotted for various time periods for each continent
such that a valid number of stations exist within the time (referring to Supplementary Material
for each continent’s recorded number of stations). Panel A for Europe (1967-2013), Panel B for
Africa (1964-1998), Panel C for North America (1964-2006).

SSR with simulated SSR from Global Climate Models.

6 Software and technical notes

The modelling is implemented in the statistical environment R (R Core Team, 2018) and Python
(Van Rossum and Drake Jr, 1995). We apply the randomForest (Wright and Ziegler, 2017) to train
the random forest model. GAM model is estimated using package mgcv (Wood, 2003). Ordinary
Kriging is conducted with geostatistical packages sp (Pebesma and Bivand, 2005), gstat (Gräler
et al., 2016) and raster (Hijmans, 2019). Ggplot2 (Wickham, 2016) is used in visualization. Python is
used in covariates parameter estimation and data quality control. The codes for spatial interpolation
models are available at https://github.com/my1396/SSR-Spatial-Interpolation.git.
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Fig. 14 Cumulative annual continent average SSR trend - part II. Cumulative annual continent
average trend for SSR for observations (rad) and RF predictions (blue), plotted together with five-
year moving average (solid line). The series are plotted for various time periods for each continent
such that a valid number of stations exist within the time (referring to Supplementary Material for
each continent’s recorded number of stations). Panel D for South America (1967-1998), Panel
E for Asia (1964-2010), Panel F for Oceania (1971-1991).
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Fig. 15 Annually global average of SSR (green line, left axis) and global emissions of SO2 (blue
line, right axis). Both curves show 5-year running averages. SO2 data are from ScocioEconomic
Data and Applications Center (SEDAC).
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Fig. 16 Annually European average of SSR (green line, left axis) and European emissions of SO2

(blue line, right axis). Both curves show 5-year running means. SO2 data are from SEDAC.
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Supplementary Material

S1 RF model parameter tuning

Fig. S1 MAE changing with the number of decision trees

Fig. S2 MAE changing with the number of randomly preselected predictor variables
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S2 Monthly anomalies

S2.1 Europe

Number of station Figure S3

Monthly anomalies for one station Figure S4

Monthly anomalies for LSDV+OK Figure S5

Fig. S3 Number of recorded stations in EU
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Fig. S4 Monthly SSR anomalies for observations and LSDV+OK simulations for one chosen station
in Europe

Fig. S5 Monthly SSR anomalies for observations and LSDV+OK simulations for Europe
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S2.2 Africa

Number of station Figure S6

Prediction against observation plot Figure S7

Monthly anomalies trend Figure S8

Fig. S6 Number of recorded stations in AF

Fig. S7 Simulation v.s. observation values for AF
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Fig. S8 Monthly anomalies for AF
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S2.3 North America

Number of station Figure S9

Prediction against observation plot Figure S10

Monthly anomalies trend Figure S11

Fig. S9 Number of recorded stations in NA

Fig. S10 Simulation v.s. observation values for NA
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Fig. S11 Monthly anomalies for NA
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S2.4 South America

Number of station Figure S12

Prediction against observation plot Figure S13

Monthly anomalies trend Figure S14

Fig. S12 Number of recorded stations in SA

Fig. S13 Simulation v.s. observation values for SA

8



Fig. S14 Monthly anomalies for SA
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S2.5 Asia

Number of station Figure S15

Prediction against observation plot Figure S16

Monthly anomalies trend Figure S17

Fig. S15 Number of recorded stations in AS

Fig. S16 Simulation v.s. observation values for AS
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Fig. S17 Monthly anomalies for AS
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S2.6 Oceania

Number of station Figure S18

Prediction against observation plot Figure S19

Monthly anomalies trend Figure S20

Fig. S18 Number of recorded stations in OC

Fig. S19 Simulation v.s. observation values for OC
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Fig. S20 Monthly anomalies for OC
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