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Abstract

Ionospheric Faraday rotation distorts satellite radar observations of the Earth’s surface. While its impact on radiometric

observables is well understood, the errors in repeat-pass InSAR observations and hence in deformation analysis are largely

unknown. Because Faraday rotation cannot rigorously be compensated for in non-quad-pol systems, it is imperative to determine

the magnitude and nature of the deformation errors. Focusing on distributed targets at L-band, we assess the errors for a range

of land covers using airborne observations with simulated Faraday rotation. We find that the deformation error may reach 2 mm

in the co-pol channels over a solar cycle. It can exceed 5 mm for intense solar maxima. The cross-pol channel is more susceptible

to severe errors. We identify the leakage of polarimetric phase contributions into the interferometric phase as a dominant error

source. The polarimetric scattering characteristics induce a systematic dependence of the Faraday-induced deformation errors

on land cover and topography. Also their temporal characteristics, with pronounced seasonal and quasi-decadal variability,

predispose these systematic errors to be misinterpreted as deformation. While the relatively small magnitude of 1-2 mm is of

limited concern in many applications, the persistence on semi- to multi-annual time scales compels attention when long-term

deformation is to be estimated with millimetric accuracy. Phase errors induced by uncompensated Faraday rotation constitute

a non-negligible source of bias in interferometric deformation measurements.

1



SUBMISSION TO IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING 1

Radar interferometric phase errors induced by
Faraday rotation

Simon Zwieback, Franz J. Meyer, Senior Member, IEEE

Abstract—Ionospheric Faraday rotation distorts satellite radar
observations of the Earth’s surface. While its impact on ra-
diometric observables is well understood, the errors in repeat-
pass InSAR observations and hence in deformation analysis are
largely unknown. Because Faraday rotation cannot rigorously
be compensated for in non-quad-pol systems, it is imperative to
determine the magnitude and nature of the deformation errors.
Focusing on distributed targets at L-band, we assess the errors for
a range of land covers using airborne observations with simulated
Faraday rotation.

We find that the deformation error may reach 2 mm in the
co-pol channels over a solar cycle. It can exceed 5 mm for intense
solar maxima. The cross-pol channel is more susceptible to severe
errors. We identify the leakage of polarimetric phase contribu-
tions into the interferometric phase as a dominant error source.
The polarimetric scattering characteristics induce a systematic
dependence of the Faraday-induced deformation errors on land
cover and topography. Also their temporal characteristics, with
pronounced seasonal and quasi-decadal variability, predispose
these systematic errors to be misinterpreted as deformation.
While the relatively small magnitude of 1–2 mm is of limited
concern in many applications, the persistence on semi- to multi-
annual time scales compels attention when long-term deformation
is to be estimated with millimetric accuracy. Phase errors induced
by uncompensated Faraday rotation constitute a non-negligible
source of bias in interferometric deformation measurements.

I. INTRODUCTION

Microwaves propagating through the ionosphere are sub-
ject to Faraday rotation, which manifests as a rotation of
the polarization plane of linearly polarized waves [1], [2].
Equivalently, the Earth’s magnetic field turns the ionospheric
plasma into a circularly birefringent medium [3], [4]. Left- and
right-circularly-polarized waves propagate at slightly different
phase velocities. The Faraday effect’s magnitude increases
with the total electron content (TEC) in the ionosphere [3],
[5]. It also depends on the frequency. Spaceborne observations
at frequencies below ∼3 GHz are affected most significantly,
with one-way Faraday angles χ of up to 30◦ at L-band [6].

There is insufficient information in single- or dual-pol data
to rigorously correct for Faraday rotation. This is in contrast to
quad-pol observations, for which numerous physically based
correction approaches have been devised [1], [2]. In analyses
dealing with single- or dual-pol observations, usually no
attempt is made to correct for Faraday rotation.

Uncompensated Faraday rotation distorts interferometric
observations, as well as those of backscatter magnitudes and

Both authors are with the Geophysical Institute, University of Alaska Fair-
banks. This work was supported by the National Aeronautics and Space Ad-
ministration (NASA) under Grants 80NSSC19K1494 and NNH18ZDA001N-
RST.

polarimetric parameters [6], [7]. While these latter have been
studied in detail, the Faraday-induced errors in interferometric
analyses of distributed targets have received scant scrutiny
[8], [6]. Reductions in the interferometric coherence due to
Faraday rotation have been reported, their magnitudes varying
with the target scattering characteristics [6]. Conversely, we
lack a clear picture of the controls and magnitude of the
Faraday-induced errors in the interferometric phase. There is a
need to quantify how the Faraday-induced phase errors distort
deformation estimated using InSAR (interferometric synthetic
aperture radar). The upcoming L-band InSAR satellite mission
NISAR [9] aims to estimate secular deformation with a high
accuracy of better than 2 mm per year, which necessitates
a sound understanding of even minor error terms such as
Faraday rotation.

Our objectives are to

• identify the magnitude and nature of the Faraday-induced
phase errors

• assess their relevance for InSAR deformation measure-
ments

To identify their magnitude, we evaluate the errors for
a range of land covers using airborne L-band observations
with simulated Faraday rotation. Adding simulated Faraday
rotation to observations undistorted by ionospheric errors is
a compelling approach for quantifying errors because we
have a sound mechanistic understanding of Faraday rotation
[10], [1], [6]. We quantify the co-pol and cross-pol errors
in the observed interferometric phase φ and in the split-
spectrum ionospherically corrected phase φc. Both are relevant
to deformation analyses [11], as the Faraday-induced errors
in the displacement estimates will closely follow those in
φ and φc on small and large spatial scales, respectively. To
characterize the nature of the errors, we theoretically analyze
the errors as a function of the target scattering characteristics.
We identify two contributions: the leakage of polarimetric
phases into the interferometric phase; and the polarimetric
diversity of the interferometric phase [12].

To assess the relevance for InSAR deformation measure-
ments, we characterize the temporal and spatial properties of
the errors. We find that the temporal characteristics, inferred
from a multi-annual time series, mimic those of real deforma-
tion processes, with systematic variations on seasonal to multi-
annual time scales. Spatially, the errors vary systematically
with land cover and topography, a pattern that can largely be
explained by polarimetric leakage. The systematic nature of
the Faraday-induced errors implies that they cannot be miti-
gated by simple filtering. We conclude that the magnitude of
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up to 2 mm and the pernicious spatiotemporal characteristics
of these errors necessitate their inclusion in error budgets. We
thus outline a way forward on how to mitigate their influence
in geodetic deformation analyses.

II. THEORETICAL CONSIDERATIONS

A. Faraday rotation

The magnitude of the ionospheric Faraday rotation angle χ
is inversely proportional to the square of the signal frequency
f . L-band observations are subject to Faraday effects that are
approximately 20 times larger than at C-band. The magnitude
further depends on the observation geometry and the magnetic
field. [1] derived the following approximate relation

χ =
K

f2
B

cos(ψ)

cos(θ)
TEC (1)

where K is a constant and B is the scalar magnetic flux density
in the ionosphere. ψ the angle between the wave vector and
the Earth’s magnetic field, θ the incidence angle, and TEC the
total electron content in the ionosphere.

Ionospheric Faraday rotation is subject to pronounced spa-
tial and temporal variability. Faraday rotation is minimal near
the geomagnetic equator because of the cos(ψ) factor. In mid-
and high-latitude regions, Faraday rotation angles can exceed
10◦ at L-band for spaceborne observation geometries. TEC
fluctuations cause the Faraday rotation angles to vary diurnally,
seasonally, and with solar activity. The largest values of
approximately 30◦ are expected to preferentially occur in mid-
latitudes during solar maxima [1]. While such extreme values
are rare, [1] estimate Faraday rotation to exceed 10◦ more than
half the time along an orbit. Weak solar maxima such as the
2013 maximum are associated with χ approximately half as
large. During solar minima, χ rarely exceeds 5◦ [1].

B. Interferometric covariance matrix

The ionospheric Faraday effect alters the microwave signals
a radar satellite receives and hence the apparent scattering
properties of the Earth’s surface.

Its impact on the interferometric covariance matrix C [13]
is described by

FC(χ1, χ2) =[
RF (χ1)

RF (χ2)

] [
Σ1 Ω
Ω† Σ2

] [
RF (χ1)

RF (χ2)

]T
(2)

where

RF (χ) =


cos(2χ) 0 0 − sin(2χ)

0 1 0 0
0 0 1 0

sin(2χ) 0 0 cos(2χ)


is a unitary matrix [1], [6]. Σ1 and Σ2 are the
polarimetric covariance matrices of acquisitions 1 and
2, respectively, whereas the off-diagonal block Ω contains
the interferometric information. Equation (2) is given in
the Pauli basis of the quad-pol scattering vector [13]
in the backscattering alignment convention, i.e. k =

1√
2

[
SHH + SVV SHH − SVV SHV + SVH i (SHV − SVH)

]T
.

We will use the Pauli basis for our theoretical analyses because
the simple form of RF (χ) streamlines the expressions.

The Faraday-affected interferometric phase Fφ for polari-
metric measurement functionals w†1 and w†2 – linear function-
als are denoted by row vectors that act through the standard
inner product – is then given by

Fφ = arg
(
w†1RF (χ1)ΩRT

F (χ2)w2

)
. (3)

To isolate purely interferometric signals from what are
essentially polarimetric phase contributions [14], one generally
chooses w†1 = w†2 ≡ w† to obtain a phase φw† . In presence
of unequal uncompensated Faraday rotation however, the
interferogram is then effectively formed from two different
channels. It can be thought of as the result of a Faraday-free
covariance matrix C observed with two distinct functionals
w†RF (χ1) 6= w†RF (χ2). .

C. Phase errors

The Faraday-induced interferometric phase error is defined
to be the difference between the Faraday-affected phase Fφw†

and the Faraday-free phase φw† .

F δφw† ≡ Fφw† − φw† . (4)

We identify two contributions to the phase error Fφw† . The
first one is the polarimetric leakage that arises from forming an
interferogram from two distinct channels whenever χ1 6= χ2.
It is the only contribution and thus identical to the overall
error Fφw† when the Faraday-unaffected Ω is phase invariant,
i.e. when the interferometric phase does not depend on w†

(see Sec. VII). The second contribution arises from the phase
diversity of Ω, i.e. when Ω is not phase invariant. It induces
errors even when χ1 = χ2 6= 0.

The total phase error cannot be neatly decomposed into
the two contributions whenever Ω is not phase invariant and
χ1 6= χ2. They are both present at the same time and interact
nonlinearly on F δφw† . It is mathematically expedient to focus
on polarimetric leakage errors (for phase-invariant Ω, i.e. no
phase diversity) and the overall error (for general Ω). We have
summarized the key theoretical properties of the error types
in Tab. I.

1) Polarimetric leakage: Polarimetric leakage for phase-
invariant Ω is a confounding of the interferometric phase
signal with polarimetric phase contributions. It arises when
χ1 6= χ2, as one then forms an interferogram from two distinct
channels. We define it as the Faraday-induced phase error for
a phase-invariant Ω = eiφ̃Ω̃ from Sec. VII:

F δφ
pol
w† ≡ arg

(
w†RF (χ1)Ω̃RT

F (χ2)w
)
. (5)

It only depends on the Hermitian matrix Ω, which only con-
tains polarimetric phases. For equal Faraday rotation, χ1 = χ2,
this error vanishes because Ω is positive (semi-)definite. When
χ1 6= χ2, polarimetric phases from the off-diagonal elements
Ω̃ leak into the interferometric phase.

The polarimetric leakage errors tend to accumulate along
interferogram chains. Even if the difference in χ is small for
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TABLE I
SUMMARY OF THEORETICAL RESULTS. THE POLARIMETRIC LEAKAGE ERROR F δφ

pol IS EQUAL TO THE PHASE ERROR F δφw† WHEN Ω IS PHASE
INVARIANT. IF Ω IS NOT PHASE INVARIANT, CONTRIBUTIONS FROM POLARIMETRIC LEAKAGE AND PHASE DIVERSITY INTERACT NONLINEARLY. THE

SPLIT-SPECTRUM ERROR EQ. 15 IS THE TOTAL ERROR OF THE IONOSPHERICALLY CORRECTED PHASE φc .

Error type Property of Faraday-induced error

Polarimetric leakage F δφ
pol

defined for phase-invariant Ω
vanishes for χ1 = χ2

leading order of χ dependence: 2 (co-pol) and 1 (cross-pol)
cross-pol: vanishes for reflection symmetry across PV

accumulates along interferogram chains

Phase error F δφ
nonlinear combination of phase diversity and polarimetric leakage
does not vanish when χ1 = χ2

leading order of χ dependence: 2 (co-pol) and 1 (cross-pol)
Split-spectrum errors F δφ

c same order of magnitude as F δφ for ∆f ′ � 1

individual short-term interferograms, the errors add up over
time, as demonstrated in Sec. VIII.

To understand the polarimetric leakage error in general
Ω, we introduce a phase-invariant approximation Ω′. It is
useful for constraining the nature of the errors, but it does
not amount to a decomposition of the phase errors because
the two components interact nonlinearly. To obtain Ω′, we
first remove an average interferometric phase φ′ = arg (trΩ)
and extract the Hermitian component:

Ω′H =
1

2

(
e−iφ

′
Ω + eiφ

′
Ω†
)
, (6)

which would be positive (semi-)definite if Ω were phase in-
variant to begin with. We enforce positive-(semi-)definiteness
using the PSD operator that sets any negative eigenvalues to
zero, and then reapply φ′:

Ω′ = eiφ
′
PSD (Ω′H) (7)

2) Total errors: When Ω is not phase invariant, the phase
diversity will also contribute to the total error. It interacts
nonlinearly with polarimetric leakage when χ1 6= χ2 be-
cause of the nonlinear argument operation in (3). Math-
ematically, it is natural to focus on the complex scalar
w†RF (χ1)ΩRT

F (χ2)w. By decomposing Ω into Ω′ (polari-
metric leakage) and a remainder (phase diversity), we obtain
a linear superposition. But in practice we are interested in the
phase, so we restrict our attention to the combined impact of
the two error contributions.

The physical significance of the phase-diversity error can
be seen most clearly when χ1 = χ2. Provided both scenes are
affected by non-zero Faraday rotation, one forms an interfero-
gram in the wrong channel. Its phase will then generally differ
from that of the Faraday-free scenario because of the phase
diversity of Ω.

3) Co-pol phase errors: We now derive explicit expressions
and approximations for the co-pol phase error. Expressing Ω
in the Pauli basis and assuming reciprocity in the absence of
Faraday rotation [13], one obtains from (4)

F
φHH/VV = arg

[
Ω22 + Ω11 cos (2χ1) cos (2χ2)

± Ω12 cos (2χ1)± Ω21 cos (2χ2)
]
. (8)

The plus and minus of the ± sign refer to HH and VV,
respectively.

Dependence of phase errors on Faraday rotation
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Fig. 1. Faraday-induced phase errors F δφ for general Ω and the polarimetric
leakage errors F δφ

pol for phase-invariant Ω are shown for an agricultural
field in a) HH and b) HV polarization. χ1 was set to 3◦. The Ω observation
was taken from stack 31606 (Tab. II); the phase-invariant component was
computed from the Hermitian/skew-Hermitian decomposition (Sec. III-C)

The error with respect to the Faraday-free phase, φHH/VV,
is of second order in the Faraday rotation angles

F δφHH/VV =
F
φHH/VV − φHH/VV

= ∓2
Im (tcΩ12)χ2

1 + Im (tcΩ21)χ2
2

Re (tc (Ω11 + Ω22 ± Ω12 ± Ω21))
+ o

(
χ3
)
,

(9)

using tc = e−iφHV/VV and assuming phase wrapping is not an
issue.

The second-order χ dependence of the co-pol phase error
is illustrated in Fig. 1a for an agricultural field. It does not
vanish when χ1 = χ2 because it contains phase diversity and
polarimetric leakage components.

For a phase-invariant Ω̃, the error is entirely due to polari-
metric leakage and is given by

F δφ
pol
HH/VV = ∓2

Im
(

Ω̃12

) (
χ2
1 − χ2

2

)
Ω̃11 + Ω̃22 ± 2Re

(
Ω̃12

) + o
(
χ3
)
. (10)

The leading-order term χ2
1 − χ2

2 induces asymmetry in the
Faraday-induced error (Fig. 1a). For fixed χ1 > 0, F δφ

pol
HH/VV

increases more rapidly in magnitude for χ2 > χ1 than it does
for χ2 < χ1. The error vanishes when χ1 = χ2.
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The polarimetric origin of this error is most evident when
Ω̃ = Σ1 = Σ2 ≡ Σ, i.e. in absence of any interferometric
changes between acquisitions one and two (other than Faraday
rotation). The error is controlled by Im (Σ12). This term,
along with the associated phase arg(Σ12), is known to be
difficult to predict when both surface and volume scattering
are appreciable [15]. Simple models, such as the small-
perturbation model for surface scattering and volume models
with azimuthal symmetry [13], predict a small (compared to
Σ11) or even vanishing magnitude, and are thus prone to
underestimating its size. Azimuth slopes θ reduce the Im (Σ12)
term by cos 2θ for an otherwise reflection-symmetric target
[16], so that flat terrain is expected to have comparatively
large co-pol polarimetric leakage errors.

4) Cross-pol phase errors: For a reciprocal target, the
cross-pol phase error from Eq. 4 can be expressed as

F
φHV/VH = arg

[
Ω33 + Ω11 sin (2χ1) sin (2χ2)

∓ Ω13 sin (2χ1)∓ Ω31 sin (2χ2)
]
. (11)

Faraday rotation thus induces first-order errors with respect to
φHV = φVH, viz.

F δφHV/VH = ∓2
Im (txΩ13)χ1 + Im (txΩ31)χ2

Re (tx (Ω33))
+ o (χ) ,

(12)

using tx = e−iφHV . For fixed χ1, the error can be approxi-
mated by a linear function in χ2 near χ1 (Fig. 1b).

The cross-pol errors are expected to be small for flat terrain,
or more precisely for targets with reflection symmetry across
the plane PV formed by the line of sight and the vertical
polarization direction [16]. This is because i) polarimetric
leakage is zero due to Ω13 = Ω31 = 0 [13], and ii) the phase-
diversity error arising from arg(Ω33) 6= arg(Ω11) is only of
second order in χ.

Conversely, the errors can be substantial when the terrain
is tilted in azimuth. We consider a target that is reflection
symmetric across PV with phase-invariant Ω̃r. If the target
is tilted by θ in azimuth, the Faraday-induced phase error
increases with θ as

F δφ
pol
HV/VH = ±2

sin(2θ)Im
(

Ω̃r12

)
Ω̃r22 sin(2θ)2 + Ω̃r33 cos(2θ)2

(χ1 − χ2) + o(χ) .

(13)

The rate at which this polarimetric leakage error increases with
θ is determined by the ratio of the imaginary part of Ω̃r12 and
the cross-pol magnitude Ω̃r33. For sparsely vegetated areas, the
low magnitude and coherence of the cross-pol return will tend
to increase this ratio and accentuate phase errors in rolling
terrain.

D. Split-spectrum errors

1) Split-spectrum correction: Split-spectrum analyses serve
to estimate and remove the ionospheric phase screen [17],
[11]. Their rationale is to exploit the dispersive nature of the
ionospheric phase screen by quantifying interferometric phase
differences across spectral sub-bands [3].

Faraday rotation may bias split-spectrum analyses when
the Faraday-induced F δφ in the sub-bands propagate to the
ionospherically corrected phase. The bias in turn depends on
how F δφ changes with frequency. Frequency-dependent F δφ
arises because i) Faraday rotation angles and ii) the Ω matrix
(other than multiplication by a scalar) vary with frequency.

A potential additional source of frequency-dependent errors
are iii) sub-band differences in polarization. In the quasi-
quadpol mode under consideration for NISAR, the main band
with HH and HV polarizations would be complemented by a
sideband with VV and VH polarizations [9]. Then, differences
in polarization that arise directly from phase diversity (e.g.
an HH–VV phase difference associated with birefringence
in agricultural canopies [12], [18]) or from the polarization-
dependent impact of Faraday rotation (HV vs. VH) could
distort the ionospheric correction.

Our theoretical analyses focus on the errors in the
ionosphere-corrected phase φc at frequency f = f0 obtained
by split-spectrum analysis [11]. The spectrum is split into
a lower band with f = f ′−f

0 and an upper band with
f = f ′+f0 ≡ (f ′− + ∆f ′)f0, whose interferometric phase
observations are denoted as φ− and φ+, respectively. The
corrected phase φc is given by [17]

φc =
φ+f ′+ − φ−f ′−

∆f ′ (f ′+ + f ′−)
. (14)

There is a definitional ambiguity in the corrected phase φc

and in ionospheric corrections more generally. For non-zero
Faraday rotation, the ionospheric phase depends on the target
and the polarimetric functional. To estimate and interpolate the
ionospheric phase, one needs to resort to convention. We adopt
the standard convention that defines the ionospheric phase to
be removed as that of the co-polar circular channels LL and
RR [19]. This is also the delay for a pure idealized dihedral
(Pauli 2) or a pure cross-pol (Pauli 3) signal when measured
with the associated polarimetric functional [13]. As a metric of
the ambiguity, we define Γ = 2|χ2−χ1|, the magnitude of the
deviation in the ionospheric phase delay between a pure Left-
Right (LR) or an RL scatterer, neither of which is reciprocal.

The corrected phase φc is more of theoretical than of prac-
tical value. In practice, it can only be estimated at the reduced
resolution of φ− and φ−. To retain the full resolution, actual
implementations instead subtract a smoothed split-spectrum
ionospheric estimate from the full-resolution phase. The two
corrections are equivalent when the scattering characteristics
are uniform across the ionospheric smoothing filter. With our
focus on φc, we thus implicitly concentrate on homogeneous
environments. Conversely, at length scales smaller than size
of the smoothing filter, the Faraday-induced error will be
dominated by that of the raw phase, F δφ.

2) Error analysis: The split-spectrum ionospheric cor-
rected phase is impacted by frequency-varying and frequency-
invariant phase errors to a different extent [11]. Phase errors
in the upper and lower band propagate into the split-spectrum
corrected phase from 14 as

δφc =
(δφ+ − δφ−) f ′− + δφ+∆f ′

∆f ′ (2f ′− + ∆f ′)
. (15)



SUBMISSION TO IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING 5

Roughly speaking, frequency-invariant errors are halved,
whereas differences between the bands ∆δ = δφ+ − δφ− get
amplified substantially, by a factor of ≈ (2∆f ′)

−1.
The contributions from frequency-varying and frequency-

invariant Faraday errors to δφc are of the same order of
magnitude. This is because the ∆δ term that gets amplified
is small, as it generally scales as ∆f ′. We consider identical
sub-band polarizations and assume that i) the frequency-
dependence of Faraday errors is the only cause for diverging
Faraday-induced errors in the sub-bands. As χ ∼ f ′−2 (1),
∆δ ∼ 2∆f ′ in the cross-pol channel (first-order scaling of the
Faraday errors), while it is proportional to 4∆f ′ for the co-pol
channel (second-order errors).

The Faraday error in the corrected phase φc and the raw
phase φ are of the same order of magnitude, provided that the
same polarization is used for both subbands. This is because
the frequency-varying and frequency-invariant contributions
are of the same order of magnitude, the latter corresponding
to the error of the raw phase. If the two contributions are of
opposite sign, partial cancellation can occur.

A radically different picture emerges for quasi-quadpol
systems. The inter-band error ∆δ is then also due to iii)
polarization differences, and its potentially large magnitude
gets further amplified by a large factor of approximately
(2∆f ′)

−1.

III. OBSERVATIONAL ANALYSES

A. Faraday-free radar observations

We studied five fully polarimetric SLC stacks, summarized
in Tab. II, acquired by NASA’s L-band UAVSAR system [20].
These airborne data are not affected by ionospheric distortions.

We estimated the interferometric covariance matrix by box-
car multilooking with L = 100 looks, obtaining a resolution of
∼10 m. To ensure the polarimetric fidelity of the observations,
we zeroed the Pauli 4 return for each SLC pixel. This enforces
scattering reciprocity, as assumed throughout Sec. II.

The polarimetric calibration of the UAVSAR data is reliable
and stable [20]. Among the five calibration parameters, the
copol channel imbalance and phase offset are critical because
they impact the Ω12 term in 10. While we could not assess
them independently in absence of calibration targets, we could
investigate forests. The Faraday-induced phase errors in (10)
vanish to leading order for azimuthally symmetric targets such
as dense forests. If, conversely, polarimetric calibration error
dominated the results obtained using (10), the error estimates
over forests would cease to be small compared to those
over other land covers. The data do not point to dominant
polarimetric calibration errors over forests.

B. Quantifying phase errors by adding Faraday rotation

To estimate the Faraday-induced co-pol and cross-pol phase
errors F δφ, we simulated Faraday-affected interferometric
pairs with a temporal baseline of 1–3 weeks using (2). The
phase errors F δφ were estimated by subtracting the Faraday-
unaffected from the Faraday-affected phase.

The Faraday rotation angles χ1 and χ2 were chosen to
cover the range of potential values at L-band [6]. For most

analyses, we focused on four values, namely 0◦ (none), 3◦

(weak), 10◦ (strong), and 30◦ (maximum). An interferogram
formed from scenes with 0◦ and 30◦, corresponding to a strong
solar maximum, is intended to bound the maximum errors that
may reasonably be expected in the mid-latitudes [1], [6]. Weak
and strong Faraday rotation represent seasonally and diurnally
averaged conditions over the course of a solar cycle, during
the solar minimum and maximum, respectively [1].

C. Magnitude and nature of Faraday-induced phase errors

To assess how the Faraday-induced errors vary with land
cover, we summarized the mean F δφ values for each inter-
ferogram across multiple regions of interest for three land
cover classes (Tab. II): agricultural, sparsely vegetated (scrub,
wetlands, clearcuts), and forest.

To quantify the F δφ contribution from polarimetric leakage
relative to that induced by phase diversity, we estimated
F δφ

pol for the phase-invariant approximation Ω′ of (6).
We assessed the association of the cross-pol errors with

deviations from reflection symmetry. We estimated the ori-
entation angle θ for tilted reflection-symmetric targets [16]
and the Pauli 1–Pauli 3 polarimetric coherence ρ13 =

|Σ13| (Σ11Σ33)
− 1

2 , which is zero for reflection symmetry
across PV .

D. Simulated temporal evolution of Faraday-induced errors

The temporal evolution of the Faraday-induced phase error
was simulated using Faraday rotation angles χ derived from
the International GNSS Service (IGS) TEC products. We
extracted the final combined IGS TEC [21] estimate evaluated
at the site of the Californian UAVSAR stack at 5 pm local time
every 11 days, roughly corresponding to the late afternoon
acquisitions of a sun-synchronous satellite. From these TEC
estimates, we computed χ using the expression by [1] for a
polar L-band satellite with an incidence angle of 30◦.

We estimated the Faraday-induced errors with respect to
the first acquisition due to polarimetric leakage alone, F δφ

pol,
using a fixed phase-invariant Ω derived from the UAVSAR
observations. We focused on the polarimetric leakage error
because it is often the dominant contribution, and because we
lack long-term observations to characterize the phase diversity
adequately. Furthermore, by using a single phase-invariant
covariance matrix, the impact of the arbitrary choice of adding
up 11-day interferograms to obtain a long time series is
minimized for dominant surface scattering. This is because
polarimetric leakage does not induce closure errors [22] for
rank-one Ω (see Sec. VIII).

E. Split-spectrum errors

We estimated the impact of Faraday rotation on the split-
spectrum ionospheric correction for an L-band system such as
NISAR [9]. The system parameters were given by f0 = 1.243
GHz, f ′− = 1.0, f ′+ = 1.02. We assumed that Ω(f ′) =
exp iφ (f ′))Ω(f0), thus neglecting changes in intensity, po-
larimetric phases, and coherence magnitudes as well as in
polarimetric interferometric phase differences with frequency.
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TABLE II
THE LOCATION, DOMINANT LAND COVER, UAVSAR STACK NUMBER, AND THE NUMBER N· OF STUDIED REGIONS OF INTEREST WITH CROPS (Nc),

SPARSE VEGETATION (Ns) OR FOREST COVER (Nf ).

Location Stack Land cover Nc Ns Nf

California, USA 31.1N 122.2W 05508 semiarid scrub, wetland 0 3 0
Manitoba, Canada 49.6N 98.0W 31606 fields: cereals, oilseeds 5 0 1
Quebec, Canada 46.8N 71.1W 18801 forest, clearcuts, fields 1 2 2
Maine, USA 45.1N 68.6W 16701 mixed forest 0 0 4
Estuaire, Gabon 0.5N 9.5E 27080 tropical rain forest 0 0 1

We further assumed the interferometric phase differences
between any two w† were less than 2π in magnitude. Under
these assumptions, we assessed the split-spectrum phase errors
for same-polarization split-spectrum analyses (HH, HV) but
also for the quasi-quadpol mode combinations proposed for
NISAR (HH-VV, HV-VH).

The error due to Faraday rotation, F δφ
c, was computed

using (15) from the F δφ phase errors in the two bands. For
the quasi-quadpol configurations, we also computed the total
error, which is due to Faraday rotation and the polarimetric
interferometric phase difference between the polarization of
the − and the + band, ∆φ. This total error of the corrected
phase, T δφ

c, was obtained by setting the error in φ+ to
T δφ

+ = F δφ
+ −∆φ.

IV. RESULTS

A. Co-pol phase errors

The co-pol phase errors induced by Faraday rotation are
expected to be small or moderate unless ionospheric Faraday
rotation is exceptionally large (Fig. 2a–d). The predicted
magnitude of F δφ at HH remains below 3◦, or 1 mm, for
an increase in Faraday rotation from χ1 = 0◦ to χ2 = 3◦

and 10◦. It is only when the second Faraday rotation angle
is extremely large, χ2 = 30◦ that |F δφ| in excess of 6◦ (2
mm) are predicted. It is not only the difference in Faraday
rotation that matters. The errors over croplands are appreciable
(Fig. 2d) even when the Faraday rotation angles for the two
acquisitions are identical but very large, χ1 = χ2 = 30◦.

The errors are most pronounced for sparsely vegetated
slopes and for agricultural fields. In sparsely vegetated terrain,
large phase errors are predominantly associated with polari-
metric leakage. The polarimetric leakage error F δφ

pol from
a phase-invariant approximation Ω′ can largely explain the
spatial patterns of F δφ in hilly terrain in the San Francisco
Bay area (Fig. 3a–b). The dominance of polarimetric leakage
also applies to bare surfaces observed at grazing incidence
angles. Large negative values F δφ ∼ −45◦, corresponding to
deformation errors of 15 mm, prevail for maximum Faraday
rotation χ2 = 30◦ (Fig. 3a–b). The large magnitudes are
associated with arg(Σ12) ∼ −140◦ and a high polarimetric
correlation of∼0.8. Over agricultural fields during the growing
season, the errors vary from field to field in a way that can
largely but not entirely be explained by polarimetric leakage
(Fig. 4a–b). Phase diversity also contributes to the errors, as
the HH−−VV phase difference exceeds 90◦ in magnitude in
several fields in Fig. 4f). The contribution of phase diversity

to the Faraday-induced errors over croplands is evident for
χ1 = χ2 (Fig. 2d).

B. Cross-pol phase errors

Faraday rotation can readily induce substantial cross-pol
phase errors. For χ1 = 0◦ and small χ2 = 3◦, the predicted
magnitudes are shown in Fig. 5 to reach values up to 6◦, or 2
mm. For strong and maximum Faraday rotation in the second
acquisition, the deformation errors can exceed 10 mm. Errors
of comparable magnitude are also obtained when the Faraday
rotation is very large but constant.

Particularly large errors are expected in moderate to high-
relief terrain. For the sparsely vegetated rolling terrain in in
Fig. 3, the error is closely associated with topography and can
largely be explained by polarimetric leakage predicted using a
phase-invariant Ω′. The error sign changes with the direction
of the azimuth slopes, as predicted by (13) for polarimetric
leakage errors.

Even in flat terrain such as that in Fig. 4, polarimetric
leakage and phase diversity can induce substantial F δφHV.
Despite the low relief, the ρ13 polarimetric coherence in Fig.
4e indicates prominent deviations from reflection symmetry
across PV in croplands [23], which enable substantial errors
according to (11).

C. Simulated temporal evolution of Faraday-induced errors

The Faraday rotation angle χ derived from the IGS TEC
product and the simulated errors exhibit complex temporal
patterns around the 2002 solar maximum. Figure 6 shows the
simulated errors for the two locations annotated in Fig. 3e.
Both are sparsely vegetated and on slopes: at HH, the slope
faces away from the instrument, while at HV it is mainly in
the azimuth direction. As the errors are large for these two
locations, the simulations constitute a pessimistic scenario for
rolling, sparsely vegetated terrain in California.

The magnitude of the simulated errors is not negligible
compared to the desired millimetric geodetic accuracy on
semi- to multi-annual time scales. The maximum magnitude
differs substantially between the co-pol (HH) and cross-pol
(HV) observations. The semi-annual and multi-annual co-pol
phase errors are ∼ 5◦, corresponding to 2 mm. The cross-pol
errors are 5 times as large.

The temporal patterns differ between the two polarizations.
This can be explained by the contrasting dependence of the
Faraday-induced errors on χ. At HH, the second-order impact
(Tab. I) of χ i) emphasizes the peak TEC (χ = 16◦) in 2002
and ii) dampens the annual variations at low TEC after 2004.
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Co-pol phase errors

−3◦ 3◦

forest

sparse vegetation

crops

F δφHH [◦]

a) none | weak

−1 mm 1 mm
−3◦ 3◦

F δφHH [◦]

b) none | strong

−1 mm 1 mm
−24◦ 24◦

F δφHH [◦]

c) none | max

−8 mm 8 mm
−12◦ 12◦

F δφHH [◦]

d) max | max

−4 mm 4 mm

Fig. 2. Faraday-induced phase errors at HH across multiple regions of interest for four different Faraday rotation combinations χ1 | χ2 (none, weak, strong,
and max are 0◦, 3◦, 10◦, and 30◦, respectively). The corresponding deformation error is shown in gray.

Phase errors in rolling terrain
a) HH error F δφHH

χ1 = 0◦, χ2 = 30◦
c) HV error F δφHV

χ1 = 0◦, χ2 = 10◦
e) intensity

HH

HV

b) HH pol. leakage error F δφ
pol
HH d) HV pol. leakage error F δφ

pol
HV f) orientation angle θ

-45 0 45◦=̂ 15 mm -90 0 90◦=̂ 30 mm -30 0 30◦

Fig. 3. Faraday-induced phase errors in rolling, predominantly sparsely vegetated terrain near Vallejo, California. The look direction is from the left. a) Error
in HH for maximum Faraday rotation χ2 = 30◦; b) HH error predicted by polarimetric leakage using a phase-invariant approximation; c–d) same as a–b) but
in HV for strong Faraday rotation χ2 = 10◦; e) Pauli RGB composite showing sparsely vegetated hillslopes and ridges in dark, blueish tones and densely
vegetated valleys in white, while the yellow circles indicate the locations shown in Fig. 6; f) polarimetric orientation angle θ.

Phase errors in flat agricultural terrain
a) HH error F δφHH c) HV error F δφHV e) ρ13 polarimetric coherence

b) HH pol. leakage error F δφ
pol
HH d) HV pol. leakage error F δφ

pol
HV f) HH–VV phase difference ∆φ

-3 0 3◦ =̂ 1 mm -60 0 60◦=̂ 20 mm 0.1 0.7 -180 0 180◦

Fig. 4. Faraday-induced phase errors in a flat agricultural landscape near Carman, Winnipeg. The look direction is from below. a, c) Error in HH and HV
respectively for strong Faraday rotation χ2 = 10◦ while χ1 = 0◦; b, d) polarimetric leakage errors predicted from a phase-invariant approximation; e)
elevated ρ13 [-] for certain fields despite the low relief; f) HH–VV interferometric phase difference can be substantial for rapidly changing crops.

Cross-pol phase errors
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F δφHV [◦]

a) none | weak
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−30◦ 30◦

F δφHV [◦]

b) none | strong
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−60◦ 60◦

F δφHV [◦]

c) none | max

−20 mm 20 mm
−30◦ 30◦

F δφHV [◦]

d) max | max

−10 mm 10 mm

Fig. 5. Faraday-induced phase errors at HV across multiple regions of interest for the same four different Faraday rotation combinations χ1 | χ2 as in Fig. 2



SUBMISSION TO IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING 8

Simulated temporal evolution of Faraday-induced errors
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Fig. 6. Simulated Faraday-induced phase errors in California around the
2002 solar maximum for the two locations shown in Fig. 3e. The errors are
exclusively due to polarimetric leakage because of the phase-invariant Ω. a)
Simulated HH phase F δφ

pol
HH (left) and displacement error (right); b) same

for HV; c) Faraday angle χ estimated from the IGS ionospheric TEC product.
The markers show the respective values at an interval of 11 days; the line is
a smoothed monthly estimate.

Intuitively, the second-order scaling in Eq. 10 is equivalent to
the product of the mean χ and their difference ∆χ. For a large
initial χ1 = 13◦, the second-order error thus i) emphasizes ∆χ
when both χ are large, and ii) dampens the influence of ∆χ
when the mean is small. Conversely, the leading first-order
term at HV is i) less sensitive to the initial increase in χ from
2001 to 2002, but it ii) amplifies the large difference to the
TEC minima after 2004, aided by deviations from purely first-
order scaling. To summarize, the Faraday-induced errors can
exhibit complex patterns across time scales.

D. Split-spectrum errors

The errors in the ionospherically corrected phase associated
with uncompensated Faraday rotation are generally of compa-
rable magnitude to those in the uncorrected phase when the
same polarization is used for the upper and lower band (Fig.
7).

For the co-pol channel HH, the error in the corrected
phase, F δφ

c, is on the order of 2◦ for strong Faraday rotation
(χ1 = 0◦ and χ2 = 10◦). It is thus substantially smaller than
the inherent ionospheric phase ambiguity of Γ = 20◦. For
maximum Faraday rotation χ2 = 30◦, the errors can exceed
those of the uncorrected phase, reaching values of up to 60◦,
or 20 mm.

For the cross-pol channel HV, the predicted error F δφ
c can

exceed 10◦ for certain croplands at χ2 = 10◦. For maximum
χ2 = 30◦, the areas studied are subject to a compensation
effect in that the F δφc decrease in magnitude (and sometimes
change sign) for increasing χ2.

The quasi-quadpol split-spectrum ionospheric correction is
severely compromised (Fig. 8). For the co-pol HH–VV band
combination, the total errors T δφ

c commonly exceed 12 cm
in Fig. 8a. The errors due to Faraday rotation alone are an
order of magnitude smaller (panel b). The large total errors

are induced by HH–VV phase differences ' 20◦, which get
amplified in the split spectrum correction. For the cross-pol
HV–VH combination, the situation is different because the
phase differences φHV and φV H are identical for reciprocal
targets without Faraday rotation. The errors, which are exclu-
sively due to Faraday rotation, nevertheless commonly exceed
360◦, or 12 cm, in Fig. 8c–d.

V. DISCUSSION

A. Magnitude and nature of Faraday-induced phase errors

In the co-polar channels, Faraday-induced interferometric
phase errors are often, but not always, small. For both the
observed phase (Fig. 2a–b, Fig. 6) and the split-spectrum
ionospherically corrected phase (Fig. 7a), they are predicted to
generally remain / 5◦, or 2 mm at L-band over a solar cycle.
However, our analyses reveal two factors that can conceivable
induce larger errors. First, barely vegetated slopes facing
away from the radar and other locations whose polarimetric
scattering characteristics (large imaginary part of the Pauli
12 component; 10) promote elevated Faraday-induced phase
errors due to polarimetric leakage. Second, exceptionally large
TEC values, which may occur during strong solar maxima.
The associated Faraday rotation angles of up to 30◦ (Fig. 2c–
d) induce substantial errors of ∼5 mm.

For the cross-pol channel, Faraday-induced interferometric
phase errors are a major concern (Fig. 5). The magnitude of
the F δφ errors can exceed 30◦, or 10 mm, even for Faraday
rotation that is not exceptionally strong. Sparsely vegetated
high-relief terrain is prone to large errors, as the errors contain
a topographic signature induced by polarimetric leakage (Fig.
3).

B. Relevance for measuring deformation

The Faraday-induced phase errors in the co-pol channels
compel attention in geodetic analyses of deformation, chiefly
for three reasons.

First, their magnitudes of ∼2 mm on semi- to multi-annual
time scales (co-pol; Fig. 6b) are comparable to the accuracy
requirements for the NISAR mission, which are 2 mm/year
for secular deformation rates [9]. On shorter time scales, the
errors may reach ∼1 cm for very large peak TEC and χ during
a solar maximum (Fig. 2d, 3a).

Second, the temporal patterns, with pronounced variability
on subseasonal and (semi)-annual time scales as well as per-
sistent longer-term trends (Fig. 6), mimic those of deformation
processes such as landslides or aseismic creep. They can
thus systematically distort geophysical model inversions and
interpretations.

Third, these systematic errors exhibit complex spatial pat-
terns. Their strong association with relief and landcover mim-
ics that of deformation processes such as solifluction. In
contrast to other atmospheric errors, the F δφ errors can exhibit
sharp boundaries (Fig. 3–4) because the ionospheric patterns
are modulated by surface characteristics. Simple spatial high-
pass filtering or corrections with sparse GNSS stations cannot
mitigate the errors.
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Split-spectrum errors
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Fig. 7. Faraday-induced errors in the split-spectrum ionospherically corrected phase at a–b) HH and c–d) HV across multiple regions of interest. The Faraday
rotation combinations χ1 | χ2 overlap with those in Fig. 2

Split-spectrum errors for the quasi-quadpol mode
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a) co-pol: total
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d) cross-pol: Faraday only

Fig. 8. Faraday-induced errors in the split-spectrum ionospherically corrected phase in the quasi-quadpol mode for χ1 = 0◦ (none) | χ2 = 10◦ (strong). a
and c) show the total errors for the HH–VV and the HV–VH band combinations, respectively. b and d) show the error due to Faraday rotation alone for the
same combinations. Panels c) and d) are identical because reciprocity was enforced.

In summary, the error magnitudes in the co-pol channels are
large enough to warrant consideration, compounded by their
pernicious spatiotemporal characteristics.

C. Mitigating Faraday-induced errors in geodetic analyses

It would be desirable to correct the errors, but there is
insufficient information to do so rigorously for single-pol and
dual-pol data [10], [2]. Even if the Faraday rotation were
known accurately, error correction requires estimates of in-
terferometric scattering terms such as Ω12 that are unobserved
and difficult to predict [15].

A less ambitious goal than error correction is to flag large
Faraday-induced errors. Such flagging needs to account for
both factors conducive to large errors: elevated TEC and
adverse scattering characteristics. Discarding entire scenes
with elevated TEC irrespective of the scattering characteristics
is akin to throwing out the baby with the bath water. The
example of the persistently elevated TEC during the 2002
solar maximum in Figure 6 illustrates that not all compromised
scenes can meaningfully be discarded.

Error correction and flagging of single and dual-pol ob-
servations is potentially amenable to statistical approaches.
The interferometric phase differences between the co-pol and
the cross-pol channels are promising predictors. We expect
that the predictive skill of statistical correction models will
benefit from external ionospheric, land cover, and topographic
information (cf. Fig. 3). Another promising avenue is the
combination with higher-frequency data such as C-band ob-
servations from Sentinel-1.

The best way to avoid Faraday-induced deformation errors
is to use quad-pol observations [8]. The error can be removed
reliably [2], [19]. Hybrid-pol acquisitions – in which a cir-
cularly polarized wave is transmitted – are also robust to
Faraday-induced phase errors. This is because Faraday rotation

does not add target-dependent phase errors provided one of
the circular polarizations is used on receive [10]. In summary,
quad-pol and hybrid-pol modes warrant consideration at L-
band because they are robust to Faraday-induced deformation
errors.

VI. CONCLUSIONS

Our theoretical and observational analyses show that phase
errors induced by uncompensated Faraday rotation constitute
an important and hitherto neglected error in interferometric
deformation measurements. Over a solar cycle, the magnitude
is generally smaller than 2 mm in the co-pol channels at L-
band. However, for surfaces with adverse scattering character-
istics, it exceeded 5 mm in the worst-case scenario (intense
solar maximum) we simulated. The cross-pol channel is more
prone to severe errors, which can exceed several centimeters.

These errors are systematic, as they can add up and persist
over time. Their temporal characteristics, such as pronounced
seasonal and quasi-decadal variability, are similar to those of
common deformation processes. The errors are further strongly
associated with the topography and land cover because they
result from the modulation of ionospheric delays by surface
scattering characteristics. They can largely be attributed to a
leakage of polarimetric phases into the interferometric phase.
Even when these errors remain subtle (∼ 6◦ or 2 mm at L
band), their systematic nature makes the spurious Faraday-
induced patterns prone to being misinterpreted as deformation.

These errors cannot rigorously be corrected for in single-
and dual-pol modes because they depend on unobserved
quantities. Statistical detection and mitigation approaches thus
appear to be a promising avenue for error mitigation. The best
and most rigorous way to avoid these errors is to use quad-pol,
or hybrid, observations. In absence of quad-pol observations,
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the Faraday-induced deformation errors deserve to be included
in error budgets and accounted for in quantitative analyses.

VII. APPENDIX: INVARIANCE / DIVERSITY OF THE
INTERFEROMETRIC PHASE

To describe how the interferometric phase formed from the
interferometric Ω, depends on the polarimetric functional w†.
We speak of invariance of the phase when for any two non-
zero polarimetric functionals w†A and w†B

arg
(
w†AΩwA

)
= arg

(
w†BΩwB

)
. (16)

We refer to such an Ω as phase invariant. If the condition is
not fulfilled, we say Ω exhibits phase diversity. The condition
in (16) requires that w†Ωw 6= 0 for w†A and w†B . We treat
functionals for which w†Ωw = 0 as separate cases, i.e. they
are assumed not to break invariance in and of themselves.

Invariance of the phase
Ω is phase invariant if and only if Ω can be written as eiφ̃Ω̃
where Ω̃ = Ω̃† is positive semi-definite.

Proof
If: Provided w†Ωw 6= 0

φw† = arg

(
eiφ̃ w†Ω̃w︸ ︷︷ ︸

>0

)
= φ̃ ,

which is independent of w†.
Only if: Pick a w†♥ such that the magnitude of w†♥Ωw♥ ≡

a♥eiφ♥ is strictly greater than zero, i.e. a♥ > 0. If one cannot
pick such a w†♥, this can be shown to imply that Ω is the zero
matrix, in which case interferometric phases are not defined.
Having found w†♥, we can write for general w†

φw† = arg

eiφ♥ w†e−iφ♥Ωw︸ ︷︷ ︸
m(w†)

 .

(17)

Invariance of the phase implies that m(w†) must be real and
≥ 0. This in turn implies that e−iφ♥Ω is Hermitian (real)
positive semidefinite (≥ 0). For any phase-invariant Ω, it thus
follows that φ♥ = φ̃ and unique (modulo 2π). Furthermore,
Ω̃ = e−iφ̃Ω.

A complementary way of interpreting invariance is by
relation to the coherence region and the numerical range [24],
[25] of Ω, W (Ω). The set of all valid φw† is the image of
W (Ω) under the argument function. If it is to collapse to a
single value (invariance), W (Ω) must be contained in a ray.
This in turn is equivalent to Ω being a normal matrix whose
eigenvalues all have the same argument [26], viz. Ω = eiφ̃Ω̃
if we allow for zero eigenvalues.

VIII. APPENDIX II: ACCUMULATION OF POLARIMETRIC
LEAKAGE ERRORS

We show that the polarimetric leakage errors are temporally
persistent across chains of interferograms. Even if the Faraday
rotation change and hence the error is small for short temporal
baselines, long-term changes in Faraday rotation will induce
systematic long-term errors.

We assume the phase-invariant Ω = Ω̃ is time invariant for
nearest-neighbour interferograms. The proportionality constant
of the leading-order error from (10) and (13) is constant.
Referreng to it by β, the total error when adding up nearest-
neighbour interferograms

F δφ
1 2 + · · ·+ F δφ

(K−1)K =

K−1∑
k=1

β(χnk − χnk+1) + o(χn)

= β(χn1 − χnK) + o(χn) , (18)

so that up to the leading order n (1 for cross-pol, 2 for co-pol),
this would be equal to φ1K if the latter had the same Ω̃. To
arbitrary order of accuracy, it is the single-interferogram error
for an effective phase-diverse Ωe

Ωe = Ω̃
1
2 l2l

†
2 · · · lK−1l

†
K−1Ω̃

1
2 , (19)

where lk ≡ Ω̃
1
2 RT

F (χk)w, and where Ω̃
1
2 is the Hermitian

square root. Because variable χk maps variable polarimetric
components in Ω̃

1
2 to lk, the polarimetric leakage errors do

not add up perfectly in general. The non-additive nature can
be interpreted as a breaking of phase closure [27] due to
polarimetric leakage. Conversely, for rank-one interferometric
scatterers Ω̃ = aa†, the errors add up.
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