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Abstract

Improved knowledge of the contributing sources of uncertainty in projections of Arctic sea ice over the 21st century is essential

for evaluating impacts of a changing Arctic environment. Here, we consider the role of internal variability, model structure and

emissions scenario in projections of Arctic sea-ice area (SIA) by using six single model initial-condition large ensembles and a

suite of models participating in Phase 5 of the Coupled Model Intercomparison Project. For projections of September Arctic

SIA change, internal variability accounts for as much as 40-60% of the total uncertainty in the next decade, while emissions

scenario dominates uncertainty toward the end of the century. Model structure accounts for approximately 60-70% of the total

uncertainty by mid-century and declines to 30% at the end of the 21st century during the summer months. For projections of

wintertime Arctic SIA change, internal variability contributes as much as 50-60% of the total uncertainty in the next decade

and impacts total uncertainty at longer lead times when compared to the summertime. Model structure contributes most of the

remaining uncertainty with emissions scenario contributing little to the total uncertainty during the winter months. At regional

scales, the contribution of internal variability can vary widely and strongly depends on the month and region. For wintertime

SIA change in the GIN and Barents Seas, internal variability contributes approximately 60-70% to the total uncertainty over

the coming decades and remains important much longer than in other regions. We further find that the relative contribution of

internal variability to total uncertainty is state-dependent and increases as sea ice volume declines. These results demonstrate

the need to improve the representation of internal variability of Arctic SIA in models, which is a significant source of uncertainty

in future projections.
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1. Introduction39

The rapid loss of Arctic sea ice over the last few decades has been one of the most iconic40

symbols of anthropogenic climate change. Since the beginning of the satellite record,41

September Arctic sea-ice extent (SIE) has decreased by approximately 50% (Stroeve42

and Notz, 2018) and experienced considerable thinning largely due to a lengthening of43

the melt season (Perovich and Polashenski, 2012; Stroeve et al., 2014). While state-of-44

the-art global climate models (GCMs) predict a decline of Arctic SIE throughout the45

21st century, the exact amount of ice loss remains highly uncertain (Massonnet et al.,46

2012; Notz et al., 2020). Studies suggest that in the summertime the Arctic will most47

likely be “ice free” by the end of the 21st century (Jahn, 2018; Niederdrenk and Notz,48

2018; Sigmond et al., 2018) and could possibly be ice free as early as 2050 (Jahn, 2018)49

or 2030 (Wang and Overland, 2009). To improve projections of Arctic sea ice, the rel-50

ative importance of the sources of uncertainty need to be characterized and if possible51

reduced, particularly at regional scales (Eicken, 2013; Barnhart et al., 2016; Årthun52

et al., 2020).53

54

Internal variability, which refers to natural fluctuations in climate that occur even in the55

absence of external forcing, has long been known as an important source of uncertainty56

in projections of future climate (Hawkins and Sutton, 2009; Deser et al., 2012, 2020;57

Lehner et al., 2020; Maher et al., 2020). These fluctuations — intrinsic to the climate58

system — have been shown to exert a strong influence on short-term trends in numer-59

ous climate variables, such as surface temperature (Wallace et al., 2012; Smoliak et al.,60

2015; Deser et al., 2016; Lehner et al., 2017), precipitation (Hawkins and Sutton, 2011;61

Deser et al., 2012), snowpack (Siler et al., 2019), glacier mass balance (Marzeion et al.,62

2014; Bonan et al., 2019; Roe et al., 2020), ocean biogeochemical properties (Lovenduski63

et al., 2016; Schlunegger et al., 2020), and sea ice (Kay et al., 2011; Swart et al., 2015;64

Jahn et al., 2016; Screen and Deser, 2019; Rosenblum and Eisenman, 2017; England65

et al., 2019; Ding et al., 2019; Landrum and Holland, 2020). Recent estimates suggest66

that internal variability has contributed to approximately 50% of the observed trend in67

September Arctic SIE decline since 1979 (Stroeve et al., 2007; Kay et al., 2011; Zhang,68

2015; Ding et al., 2017, 2019) and has strongly controlled regional patterns of sea ice69

loss (England et al., 2019).70

71

The large role of internal variability in determining changes to Arctic SIE over the ob-72

servational record means the predictability of future Arctic SIE at decadal timescales73

could remain heavily influenced by internal variability. The advent of decadal predic-74

tion systems (e.g., Meehl et al., 2009, 2014) raises the question whether realistic physics75

together with proper initialization of observations can lead GCMs to successfully con-76

strain this internal variability and result in skillful estimates of SIE at decadal lead times77

(Koenigk et al., 2012; Yang et al., 2016). Initial-value predictability of Arctic SIE has78

been shown to be regionally and seasonally dependent (Blanchard-Wrigglesworth et al.,79
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2011b; Bushuk et al., 2019), often only lasting a few years at most for total Arctic SIE80

(Blanchard-Wrigglesworth et al., 2011a; Guemas et al., 2016). Using a suite of perfect81

model experiments (which quantify the upper limits of predictability), Yeager et al.82

(2015) showed that the rate of sea ice loss in the North Atlantic may slow down in the83

coming decades due to a reduction of ocean heat transport into the Arctic, which itself84

is highly predictable. Similarly, Koenigk et al. (2012) found a link between meridional85

overturning circulation and the potential predictability of decadal mean sea ice concen-86

tration in the North Atlantic — consistent with Yang et al. (2016). Indeed, this means87

that uncertainty due to internal variability is an important — and possibly reducible —88

source of uncertainty for short-term projections in some regions with properly initial-89

ized forecasts, but not for long-term projections. However, even if uncertainty due to90

internal variability cannot be reduced, understanding its magnitude will allow for better91

decision making in light of that uncertainty. This raises an important question: what92

is the relative role of internal variability in future projections of Arctic sea ice? Any93

accounting for the sources of uncertainty in projections of Arctic SIE must quantify the94

relative importance of each source at different spatial and temporal scales. For example,95

how important is internal variability for projections of Arctic sea ice 15 versus 30 years96

from now? Moreover, because models exhibit different magnitudes of internal variability97

in sea ice, both at pan-Arctic (e.g., Notz et al., 2020; Olonscheck and Notz, 2017) and98

regional scales (e.g., England et al., 2019; Topál et al., 2020), such quantification must99

sample the influence of model uncertainty in the estimate of internal variability itself.100

101

To examine these questions we use an unprecedented suite of single model initial-102

condition large ensembles (SMILEs) from six fully-coupled GCMs. Due to their sample103

size, these SMILEs uniquely allow us to partition uncertainty in projections of Arctic104

sea-ice area (SIA) into the relative roles of internal variability, model structure, and105

emissions scenario at both Arctic-wide and regional spatial scales without relying on106

statistical representations of the forced response or internal variability (e.g., Lique107

et al., 2016). The SMILEs also allow us to quantify the influence of different estimates108

of internal variability, a feature of sea ice projection uncertainty that has received109

little attention. In what follows, we first investigate the role of internal variability in110

projections of total Arctic SIA change. We then explore how the relative partitioning of111

each source changes as a function of season and Arctic region and how this partitioning112

is influenced by the mean-state of Arctic sea ice.113

2. Data114

2.1. Observational data sets115

Monthly Arctic SIA from 1979 to 2020 (2019 for December) was derived using116

observations of monthly sea ice concentration (SIC) from the National Snow and Ice117

Data Center passive microwave retrievals bootstrap algorithm (Comiso et al., 2017). A118
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reconstruction of monthly Arctic SIA (Walsh et al., 2017) is used to analyze variability119

over a longer observational period. We choose to begin with the year 1930 from the120

reconstruction to account for uncertainties and sparse data coverage prior to the 1930s.121

2.2. MMLEA output122

We use six SMILEs from the Multi-Model Large Ensemble Archive (MMLEA; Deser123

et al., 2020) to investigate the role of internal variability on projections of Arctic124

sea ice. These include the: 40 member Community Earth System Model Large125

Ensemble Community Project (CESM1-LE; Kay et al., 2015), 50 member Canadian126

Earth System Model Large Ensemble (CanESM2-LE; Kirchmeier-Young et al., 2017), 30127

member Commonwealth Scientific and Industrial Research Organisation Large Ensemble128

(CSIRO-Mk3.6.0-LE; Jeffrey et al., 2013), 20 member Geophysical Fluid Dynamics129

Laboratory Large Ensemble (GFDL-CM3-LE; Sun et al., 2018), 30 member Geophysical130

Fluid Dynamics Laboratory Earth System Model Large Ensemble (GFDL-ESM2M-LE;131

Rodgers et al., 2015), and 100 member Max Planck Institute Grand Ensemble (MPI-GE;132

Maher et al., 2019). Each SMILE uses historical and RCP8.5 forcing. We also use the133

RCP2.6 and RCP4.5 100 member ensembles from the MPI-GE. From each SMILE we use134

SIC to compute monthly Arctic SIA for 6 Arctic regions and the pan-Arctic (see Figure135

S1). We also use sea ice thickness to compute monthly Arctic sea-ice volume (SIV) for136

these same spatial domains. Note that the output from GFDL-CM3 and GFDL-ESM2M137

is the average thickness over the ice-covered area of the grid cell. To compute SIV, the138

monthly averaged ice-covered thickness from both models was multiplied by the monthly139

average SIC of each cell to get the grid-cell average SIT. Prior to these calculations, all140

model output is regridded to a common 1˝ ˆ 1˝ analysis grid using nearest-neighbor141

interpolation. We choose SIA since SIE can be more grid-size dependent (Notz, 2014).142

2.3. CMIP5 output143

We use monthly output from the historical, RCP2.6, RCP4.5, and RCP8.5 simulations144

of 18 different GCMs participating in CMIP5 (Taylor et al., 2012). Since the historical145

simulations end in 2005, we merge the 1850-2005 fields from the historical simulations146

with the 2006-2100 fields under each RCP forcing scenario. For each experiment, we147

use SIC to compute monthly Arctic SIA. The set of GCMs evaluated reflects those that148

provide the necessary output for each RCP scenario (see Table S1). All model output149

is regridded to a common 1˝ ˆ 1˝ analysis grid using nearest-neighbor interpolation.150

3. Uncertainty in projections of Arctic sea ice151

We begin by partitioning three sources of uncertainty following Hawkins and Sutton

(2009) and Lehner et al. (2020), where the total uncertainty (T ) is the sum of the

uncertainty due to model structure (M), the uncertainty due to internal variability (I)

and the uncertainty due to emissions scenario (S). Each source can be estimated for a
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given time t and location x such that:

T pt, xq “ Ipt, xq `Mpt, xq ` Spt, xq (1)

where the fractional uncertainty from a given source is calculated as I{T , M{T ,152

and S{T . I is calculated as the variance across ensemble members of each SMILE,153

yielding one time-varying estimate of I per SMILE. Note, I is computed across RCP8.5154

forcing scenarios only. Averaging across the six I yields the multi-model mean internal155

variability uncertainty (see upper bold white lines in Figure 1c and Figure 1d). To156

quantify the influence of model uncertainty in the estimate of I we also use the model157

with the largest and smallest I (see white shaded regions in Figure 1). Model uncertainty158

in the estimate of I has emerged as an important and potentially reducible source of159

uncertainty in regional temperature and precipitation changes (Lehner et al., 2020; Deser160

et al., 2020) and projections of global ocean biogeochemical properties (Schlunegger161

et al., 2020). M is calculated as the variance across the ensemble means of the six162

SMILEs under RCP8.5 forcing. It is important to note that the SMILEs used in this163

study are found to be reasonably representative of the CMIP5 inter-model spread for164

the percent of remaining Arctic sea ice cover (see Fig. 1 and Fig. S2), but a more165

systematic comparison is necessary before generalizing this conclusion. Finally, since166

only a few of the SMILEs were run with more than one emissions scenario, we turn167

to CMIP5 for S, which is calculated as the variance across the multi-model mean168

RCP scenarios (see Table S1 for details). We include CMIP5 models that contain all169

three forcing scenarios (RCP2.6, RCP4.5, RCP8.5) to mitigate the influence of model170

structure in the estimate of S. This resulted in 18 CMIP5 models (see Table S1). Prior171

to these variance calculations, the monthly SIA was smoothed with a 5-year running172

mean to isolate the effect of uncertainty on short-term projections and then used to173

calculate the percent of remaining sea ice relative to the mean of each simulation174

from 1995-2014 (see Figure S2) following Boé et al. (2009). Thus, importantly, this175

study examines “response” uncertainty relative to a reference period, which differs from176

absolute uncertainty. Focusing on response uncertainty rather than absolute uncertainty177

removes the confounding issue of model differences due to mean state biases and may178

also help elucidate why models have different sea ice sensitivities to carbon-dioxide and179

warming (Winton, 2011; Notz and Stroeve, 2016; Notz et al., 2020).180

3.1. Total Arctic sea-ice area181

We first consider projections of Arctic SIA change in September (the seasonal minimum)182

and March (the seasonal maximum). Figure 1 shows the fractional contribution of each183

source of uncertainty to total uncertainty. In September, uncertainty due to internal184

variability is important initially, accounting for approximately 40% of total uncertainty.185

However, over time model uncertainty increases and eventually dominates for the first186

half of the 21st century, before scenario uncertainty starts to dominate after approxi-187

mately mid-century (Fig. 1c). However, model uncertainty in internal variability itself188
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a b

c d

Figure 1. (a-b) Percent of remaining sea ice for each single-model initial condition

large ensemble (SMILE) and the available CMIP5 output relative to 1995-2014 under

historical and RCP8.5 forcing for (a) September and (b) March. Both panels are for

five-year mean projections. The bold line represents the ensemble-mean of each SMILE

and the shading represents the standard deviation of each SMILE under historical and

RCP8.5 forcing. The colored dotted lines represent the multi-model mean of each

RCP scenarios from 18 CMIP5 models. The grey lines represent the 18 CMIP5 models

under RCP8.5. The black line denotes observations from 1979-2020. (c-d) Fractional

contribution of model structure, emissions scenario, and internal variability to total

uncertainty for the percent of remaining Arctic sea ice cover in (c) September and (d)

March. The solid white lines denote the borders between each source of uncertainty,

while the transparent white shading around those lines is the range of this estimate

based on different estimates of internal variability in the MMLEA. Both fractional

uncertainty panels are for five-year mean projections of percent of remaining Arctic

sea-ice cover relative to 1995-2014.
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can have an effect on climate projections (e.g., Lehner et al., 2020). Accounting for the189

minimum and maximum contribution of internal variability to total uncertainty suggests190

that internal variability could account for as much as 40-60% or as little as 10-20% of191

total uncertainty in projections of September SIA change in the coming decades and192

could contribute approximately 10% throughout the 21st century. Note, these results193

are similar for most summer months and summertime averages (see Fig. S4 and S5).194

195

A different story emerges for projections of Arctic SIA change in March. While un-196

certainty due to internal variability is again important initially and accounts for more197

of the total uncertainty at longer lead times, model uncertainty increases and quickly198

dominates until the end of the century (Fig. 1d). Scenario uncertainty is relatively less199

important for projections of Arctic SIA change in March and, more broadly, during the200

wintertime (see Fig. S4). This differs slightly from the results of Notz et al. (2020),201

which find a larger role for scenario uncertainty. These differences likely arise through202

our formulation of uncertainty due to emission scenario and model structure as response203

uncertainty rather than absolute uncertainty. Uncertainty in model internal variability204

remains large throughout the 21st century, suggesting internal variability could account205

for as much as 20% or as little as 5% of the total uncertainty beyond mid-century. The206

relative partitioning is similar for most winter months and wintertime averages (see Fig.207

S4 and S5).208

209

We also calculate model uncertainty using CMIP5 models from the RCP2.6, RCP4.5 and210

RCP8.5 scenarios to examine the effect of weak forcing and thus weak model response211

uncertainty for the late 21st century (see Fig. S6). To do this, we calculate the variance212

of each RCP scenario, which results in an estimate of model uncertainty for three RCP213

scenarios. This formulation of model uncertainty combines the influence of model un-214

certainty and internal variability, but we expect this to be very small across 2070-2100215

averages. We find little difference in the estimate of model uncertainty for RCP8.5 and216

the SMILEs, suggesting these models are indeed representative of the CMIP5 models.217

However, calculating model uncertainty from RCP2.6 and RCP4.5 suggests it can be218

overestimated in the winter months primarily because larger forcing results in larger219

model response (see Fig. S6). In the summer months, model uncertainty is similar220

across each RCP scenario (see Fig. S6) largely because model uncertainty is saturated221

as SIA goes to zero. Thus, there is an inherent limitation in our formulation of M222

as it is strongly dependent on the emission scenario, particularly in wintertime when223

enough sea ice remains for model differences to become more clear under strong and224

weak radiative forcing. Furthermore, examining the uncertainty partitioning without225

5-year running averages shows that the relative role of internal variability in projection226

uncertainty can increase by approximately 10-20% in the first decade across all months227

(see Fig. S7).228

229

These results suggest that uncertainty in short-term projections of Arctic sea ice change,230
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regardless of the season, is dominated by internal variability, while for long-term231

projections of Arctic sea ice, both scenario and model uncertainty become important. At232

long lead times, scenario uncertainty accounts for most of the uncertainty in projections233

of Arctic SIA change in the summer months and model uncertainty accounts for most234

of the uncertainty in projections of Arctic SIA change in the winter months. This likely235

reflects the fact that September Arctic SIA disappears in most GCMs by 2100 under236

RCP8.5.237

a b

Figure 2. Fractional contribution of model structure and internal variability to total

uncertainty for Arctic sea-ice area (SIA) in (a) September and (b) March as a function

of Arctic sea-ice volume (SIV). The solid white lines denotes the border between the

two sources of uncertainty. Both fractional uncertainty panels are for projections of

Arctic SIA with no temporal averaging or reference period. Note the x-axis is different

for (a) and (b).

3.2. State dependence of internal variability238

These results show a clear time-scale dependence for the relative importance of internal239

variability in uncertainty of projections of Arctic SIA change. However, recent studies240

have shown that the internal variability and the predictability of Arctic sea ice can241

change over time and under anthropogenic forcing (Goosse et al., 2009; Mioduszewski242

et al., 2019; Holland et al., 2019). September Arctic SIA variability is expected to in-243

crease under warming (Goosse et al., 2009; Mioduszewski et al., 2019), suggesting that244

the role of internal variability in sea ice projections is mean-state dependent. To in-245

vestigate the role of internal variability in projections of Arctic sea ice as a function of246

the mean-state, we partition the relative sources of uncertainty with respect to SIV by247

binning a given SIA to its associated SIV for each month. We then perform the same248

variance analysis described above as a function of SIV instead of as a function of time.249

Doing this for each SMILE member and the ensemble-mean of each SMILE allows us250

to examine the contributing sources of uncertainty as a function of SIV.251

252
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Figure 2 shows the fractional contribution of internal variability and model structure253

to total uncertainty for future Arctic SIA in September and March as a function of254

September and March Arctic SIV, respectively. Note, scenario uncertainty was excluded255

in these calculations (by using simulations from RCP 8.5 only) to isolate the effect of256

internal variability at different mean-states with respect to model uncertainty under257

the same mean-state. In September, as SIV declines — which is expected to occur258

throughout the 21st century — internal variability remains constant for most SIV259

values, accounting for approximately 10% of total uncertainty. However, at lower SIV260

regimes (ă 3,000 km3), the contribution of internal variability increases and accounts261

for approximately 80% of the total uncertainty at low thickness sea ice regimes (i.e.,262

SIV ă 1,000 km3). This is consistent with previous work that has shown increased263

variability of summer Arctic SIA as it approaches zero (e.g., Mioduszewski et al., 2019).264

In March, the contribution of internal variability to total uncertainty remains relatively265

constant at all SIV regimes, likely reflecting the fact that sea ice is present in most266

winter climates in future projections (e.g., Goosse et al., 2009). It is important to note267

that this increase in the contribution of internal variability to uncertainty at lower SIV268

regimes holds for summer (June, July, and August) months (not shown).269

a b c

Figure 3. Fractional contribution of model structure, emissions scenario, and internal

variability to total uncertainty for percent of remaining sea ice cover in July, August

and September (JAS) for the Central Arctic, Siberian Marginal Seas (Kara Sea, Laptev

Sea, East Siberian Sea), and North American Marginal Seas (Chukchi Sea, Beaufort

Sea, Canadian Archipelago). The solid white lines indicate the borders between sources

of uncertainty, while the transparent white shading around those lines is the range of

this estimate based on different estimates of internal variability in the MMLEA. All

panels are for five-year mean projections of percent of remaining Arctic sea-ice cover

relative to 1995-2014.

3.3. Regional Arctic sea-ice area270

While the loss of total Arctic SIA is important for understanding the global climate re-271

sponse, climate change and sea ice loss are experienced predominately at regional scales272

(Barnhart et al., 2014; Lehner and Stocker, 2015). To investigate uncertainty in regional273
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SIA projections, we compute SIA for 6 Arctic regions, which include the Central Arctic,274

Siberian Marginal Seas, North American Marginal Seas, Baffin/Hudson Bay and the275

Labrador Sea, the Bering Sea and Sea of Okhotsk, and Greenland-Iceland-Norwegian276

(GIN) and Bering Seas. These regions were chosen to represent geographically distinct277

parts of the Arctic ocean, where SIA retreat occurs with different velocities. As with278

total Arctic SIA change, the SMILEs used in this study are found to be reasonably279

representative of the CMIP5 inter-model spread for the percent of remaining Arctic sea280

ice cover in each region (see Figure S3).281

282

Figure 3 shows the fractional contribution of each source of uncertainty to total uncer-283

tainty in projections of July, August, and September (JAS) SIA change in the Central284

Arctic (Fig. 3a), Siberian Marginal Seas (Fig. 3b), and North American Marginal Seas285

(Fig. 3c). We only show summertime SIA change as these regions are fully ice covered286

in the wintertime and exhibit little wintertime variability throughout much of the 21st287

century. As with total September Arctic SIA change, there is a large role for internal288

variability initially, accounting for approximately 40% of total uncertainty in the Cen-289

tral Arctic (Fig. 3a) and 60% in the Siberian and North American Marginal Seas (Fig.290

3b and 3c). However, over time model uncertainty increases and eventually dominates291

for the first half of the 21st century in Central Arctic (Fig. 3a) and marginal seas (Fig.292

3b and Fig. 3c), accounting for 60-70% of the total uncertainty. Note, the contribu-293

tion of model structure to total uncertainty at the end of the century is lowest for the294

North American Marginal Seas. By the end of the 21st century scenario uncertainty295

dominates and accounts for over half of the uncertainty, meaning that whether or not296

an ice free Arctic occurs in the summertime is a direct consequence of climate change297

policy. Notably, the inter-model range of simulated internal variability contributions298

remains larger through the 21st century in each region when compared to total Arctic299

SIA change.300

301

Figure 4 shows the fractional contribution of each source of uncertainty to total un-302

certainty in projections of January, February, and March (JFM) Arctic SIA change in303

Baffin Bay, Hudson Bay and the Labrador Sea (Fig. 4a), Bering Sea and Sea of Okhotsk304

(Fig. 4b), and GIN and Barents Seas (Fig. 4c). These regions were selected to examine305

wintertime SIA change as there is highly variable SIA in winter and little-to-no SIA in306

summer. As with regions of variable summer sea ice cover, these regions show a distinct307

pattern of uncertainty partitioning. For Baffin Bay, Hudson Bay, and Labrador Sea,308

approximately 80% of total uncertainty in the next decade is attributable to internal309

variability. Note that the contribution of uncertainty in the estimate of internal variabil-310

ity itself can cause this to change to only 20% (mainly driven by CSIRO-Mk3.6.0 which311

exhibits less internal variability of SIA). The internal variability contribution dimin-312

ishes to approximately 10% by the end of the century, and model structure dominates313

by 2030. A similar picture emerges for the Bering Sea and Sea of Okhotsk, but instead314

scenario uncertainty dominates in the latter half of the 21st century. Interestingly, the315
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a b c

Figure 4. Fractional contribution of model structure, emissions scenario, and internal

variability to total uncertainty for percent of remaining sea ice cover in January,

February, and March (JFM) for (a) Baffin Bay, Hudson Bay, and the Labrador Sea,

(b) Being Sea and Sea of Okhotsk, and the (c) GIN and Barents Seas. The solid white

lines indicate the borders between sources of uncertainty, while the transparent white

shading around those lines is the range of this estimate based on different estimates

of internal variability in the MMLEA. All panels are for five-year mean projections of

percent of remaining Arctic sea-ice cover relative to 1995-2014.

uncertainty partitioning for the GIN and Barents Seas has a distinct structure: internal316

variability dominates projection uncertainty for the next 30 years and remains persistent317

throughout much of the 21st century. The contribution of internal variability is notably318

larger than in other regions and is most likely related to the influence of Atlantic heat319

transport on sea ice (Årthun et al., 2012). This contribution also suggests that since320

sea-surface temperature is much more predictable in the North Atlantic when compared321

to other regions (Pohlmann et al., 2004) on decadal timescales, so too is Arctic sea ice.322

Another explanation for the larger role of internal variability could be that Atlantic323

multidecadal variability is thought to play a primary role in determining the sea ice324

edge in this region, particularly in winter when it reaches into the zone of influence of325

multidecadal North Atlantic sea-surface temperature variability (Goessling et al., 2016).326

327

A key result here — in contrast to total Arctic SIA change for March and September — is328

the larger role of internal variability in contributing to total uncertainty, which persists329

throughout much of the 21st century. This suggests decadal predictions of regional330

Arctic SIA will be highly influenced by internal variability, especially for wintertime331

conditions in the GIN and Barents Seas — consistent with Årthun et al. (2020).332

Moreover, the range of internal variability across models presents a unique challenge333

as internal variability could account for as much as 80% or as little as 20% of the total334

uncertainty in regions like the Labrador Sea in the coming decades. Understanding the335

cause of the range in this internal variability uncertainty is an important next step,336

whether it is related to model biases in the representation of Atlantic multidecadal337

variability or dependent on the sea ice mean-state.338
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3.4. Reducing the inter-model spread of internal variability339

A unique result of this analysis is the partitioning of uncertainty due to different340

estimates of internal variability, which varies considerably across GCMs (see Figure341

1). This suggests that at least some GCMs are biased in their magnitude of variability.342

Due to the short observational record, it is difficult to precisely estimate the real-world343

magnitude of SIA internal variability (e.g., Brennan et al., 2020). However, using a344

reconstruction of September Arctic SIA back to 1930 (Walsh et al., 2017) we try to345

estimate historical Arctic SIA variability. To do this, we calculate non-overlapping346

5-year trends of September Arctic SIA in observations and models. Figure 5 shows347

histograms of separate 5-year trends in September Arctic SIA from 1950-2019 using all348

members of each SMILE. A 4th order polynomial was used to approximate and remove349

the forced response consistently in both observations and models. The grey bars indicate350

the range from Walsh et al. (2017) using separate 5-year trends from 1930 to 2019. While351

most models appear to span the range of internal variability in the historical record,352

CSIRO-Mk3.6.0 does not simulate a large enough range of 5-year trends, most likely353

reflecting the fact that sea ice is biased high throughout the summer. This suggests the354

lowest contribution of internal variability to total uncertainty in projections September355

Arctic SIA change seen earlier in the paper is likely not realistic. Understanding and356

resolving these biases in internal variability across fully-coupled GCMs should remain a357

focus of the sea ice community as it is important for attribution of observed sea ice loss358

to anthropogenic climate change as well as for efforts of decadal prediction.359

4. Concluding remarks360

The impacts of Arctic sea ice loss will be predominately felt by coastal communities,361

making it crucial to quantify and reduce projection uncertainty at regional scales. Here,362

we used a suite of SMILEs to investigate the sources of uncertainty in projections of363

Arctic SIA change. For September SIA change, model structure contributes between364

30-80% of the total uncertainty over the next century, while for March SIA change,365

model structure contributes approximately 40-80% of the total uncertainty over the366

next century and accounts for more uncertainty at the end of the 21st century. We367

find a clear timescale dependence for internal variability. For September SIA change,368

internal variability contributes approximately 40-60% of total uncertainty in the next369

few decades, while for March SIA change — and winter SIA change more generally —370

internal variability contributes between 50-60% of total uncertainty and influences pro-371

jections at longer lead times. Scenario uncertainty contributes mainly to uncertainty372

in summertime projections, accounting for approximately 70% of total uncertainty by373

the end of the century. We also find that the role for internal variability is mean-state374

dependent with thinner summer sea ice regimes more heavily influenced by internal375

variability, accounting for approximately 80% of total uncertainty for SIV ă 1,000 km3.376

At regional scales, the contribution of internal variability to total uncertainty increases,377
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Figure 5. Percent of occurrence of non-overlapping 5-year trends in September

Arctic sea-ice area (SIA) from 1950-2019 for the (a) CESM1, (b) CanESM2, (c)

CSIRO-Mk3.6.0, (d) GFDL-CM3, (e) GFDL-ESM2M, and (f) MPI-ESM. A 4th order

polynomial was removed from each member of each SMILE prior to trend calculations

to estimate the forced response. The bars show the distribution of trends for all

members. The grey bars show percent of occurrence of non-overlapping 5-year trends

in September Arctic SIA from 1930-2017 as estimated from Walsh et al. (2017). A

4th order polynomial was also removed from the dataset prior to trend calculations to

estimate the forced response.

but has a large range and strongly depends on the month and region. In the GIN and378

Barents Seas, for instance, internal variability contributes approximately 50-70% of the379

total uncertainty over the next 30 years, while for the Central Arctic, internal variabil-380

ity accounts for approximately 20-30% of the total uncertainty. This is likely related381

to the influence of Atlantic heat transport on sea ice in the North Atlantic during the382

wintertime and multidecadal variability of North Atlantic sea-surface temperature.383

384

An important result of this study is the inter-model spread in the contribution of inter-385

nal variability to projection uncertainty. Recent work has highlighted the role of remote386

internal processes in determining sea ice trends across these same SMILEs (Topál et al.,387

2020), but a more process-oriented analysis of the spatial and temporal timescales of388

this variability may better reveal the sources of inter-model spread. For instance, it has389
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been shown that these remote processes are not stable on longer time scales (Bonan390

and Blanchard-Wrigglesworth, 2020), suggesting that associated variability in Septem-391

ber SIA during the satellite era does not paint a complete picture of the future SIA392

variability. The outsized role for internal variability in projections of Arctic sea ice393

changes in the coming decades further motivates the use of SMILEs to investigate a394

wide range of possible sequences of sea ice internal variability and its drivers. However,395

such work is beyond the scope of this paper, whose primary goal is to highlight the396

relative contribution of different sources of uncertainty to Arctic sea ice projections at397

different spatial and temporal scales.398

399

While internal variability poses a great challenge for predicting Arctic SIA in the400

coming decades, the contribution of model structure to total uncertainty should not be401

ignored. So-called “emergent constraints”, which link the inter-model spread in climate402

projections to observable predictors, should be used when characterizing projection403

uncertainty. Indeed, model uncertainty has been reduced through observational404

constraints. Previous work has related the amount of future ice loss to the magnitude405

of historical SIA trends (Boé et al., 2009; Hall et al., 2019) and to the initial state of406

the sea ice (Bitz, 2008; Massonnet et al., 2012; Hall et al., 2019) and the Arctic climate407

(Senftleben et al., 2020), but open questions remain as to why these relationships exist408

and persist throughout the next century. Further comparison of new and old generations409

of climate models may better reveal the sources of this spread. Understanding biases in410

these trends (e.g., Rosenblum and Eisenman, 2016, 2017) and the physical mechanisms411

behind these constraints will improve the reliability of sea ice projections and increase412

confidence in our understanding of what controls the rate of Arctic sea ice loss.413
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