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Abstract

Multi-physics ensemble simulations have emerged as a promising approach to ensemble hydrological simulations due to the

advantages in process understanding and model development. As a multi-physics ensemble is constructed by perturbing the

physics of multi-physics models, the ensemble members share a substantial portion of the same physics and hence are not

independent of each other. It is unknown whether and to what extent the independence of the ensemble members affects the

ensemble skill gain, especially compared with the multi-model ensemble approach. This study compares a multi-physics ensemble

constructed from the Noah land surface model with multi-parameterization options (Noah-MP) with the North American Land

Data Assimilation System (NLDAS) multi-model ensemble. The two ensembles are evaluated at 12 River Forecast Centers

over the conterminous United States. The ensemble skill gain is measured by the difference between the performance of the

ensemble mean and the average of the ensemble members’ performance, and the inter-member independence is measured by

error correlations. The results show that the Noah-MP members outperform, on average, the NLDAS models, especially in

the snow-dominated areas. In addition, the best-performing models among the two ensembles are mostly Noah-MP members.

However, these two performance superiorities do not lead to the superiority of the ensemble mean. The Noah-MP multi-physics

ensemble has a low ensemble skill gain, resulting from a high error correlation among the ensemble members. This study suggests

that the methods of ensemble construction and optimization should be improved to also consider inter-member independence,

especially for a multi-physics ensemble.
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 The performance of the ensemble mean responds asymmetrically to the inclusion of an 21 

independent versus a non-independent member 22 

 An ensemble averaging and optimization method that can account for the inter-member 23 

independence is needed to maximize the multi-physics ensemble skill gain 24 
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Abstract 26 

Multi-physics ensemble simulations have emerged as a promising approach to ensemble 27 

hydrological simulations due to the advantages in process understanding and model development. 28 

As a multi-physics ensemble is constructed by perturbing the physics of multi-physics models, 29 

the ensemble members share a substantial portion of the same physics and hence are not 30 

independent of each other. It is unknown whether and to what extent the independence of the 31 

ensemble members affects the ensemble skill gain, especially compared with the multi-model 32 

ensemble approach. This study compares a multi-physics ensemble constructed from the Noah 33 

land surface model with multi-parameterization options (Noah-MP) with the North American 34 

Land Data Assimilation System (NLDAS) multi-model ensemble. The two ensembles are 35 

evaluated at 12 River Forecast Centers over the conterminous United States. The ensemble skill 36 

gain is measured by the difference between the performance of the ensemble mean and the 37 

average of the ensemble members’ performance, and the inter-member independence is 38 

measured by error correlations. The results show that the Noah-MP members outperform, on 39 

average, the NLDAS models, especially in the snow-dominated areas. In addition, the best-40 

performing models among the two ensembles are mostly Noah-MP members. However, these 41 

two performance superiorities do not lead to the superiority of the ensemble mean. The Noah-42 

MP multi-physics ensemble has a low ensemble skill gain, resulting from a high error correlation 43 

among the ensemble members. This study suggests that the methods of ensemble construction 44 

and optimization should be improved to also consider inter-member independence, especially for 45 

a multi-physics ensemble.  46 
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1 Introduction 47 

Multi-model ensemble simulations have been broadly shown to offer a systematic 48 

improvement over individual models (Georgakakos et al., 2004; Shamseldin et al., 1997). 49 

Models are remarkably different from each other in parameterizing various hydrological 50 

processes. No single model exhibits clear superiority in all terrestrial water fluxes under all 51 

climatic conditions. By combining multiple models, Gao and Dirmeyer (2006), Gudmundsson et 52 

al. (2012b), Xia et al. (2012a), and Beck et al. (2017) showed that the arithmetic average of the 53 

ensemble outperforms all or most of the constituent members. This superiority is reflected as an 54 

asymmetric response of the ensemble mean to the inclusion of better- versus worse-performing 55 

models: there is an improvement when a better model is included, but little or no apparent 56 

degradation when a worse model is added (Ajami et al., 2006; Guo et al., 2007). This asymmetry 57 

indicates that the performance of the ensemble mean (PEM) differs from the arithmetic average 58 

of the ensemble members’ performance (AEP). 59 

“The key to the success of the multi-model concept lies in combining independent and 60 

skillful models, each with its own strengths and weaknesses” (Hagedorn et al., 2005). With 61 

independent models, the errors associated with individual models can somehow cancel each 62 

other out, leading to a superior-performing ensemble mean. This importance of inter-model 63 

independence has been clearly shown in various analyses. Yoo and Kang (2005) measured the 64 

performance by the error correlation coefficient. Using mathematical decomposition of the 65 

correlation coefficient, they showed that the difference between the PEM and the AEP increases 66 

if the errors of the ensemble members are less correlated with each other. Winter and Nychka 67 

(2009) represented model errors as vectors in 𝑇 dimensions (where 𝑇  is the number of time 68 

steps), the length of which is the root mean square error. Their geometric analyses clearly 69 
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showed that the PEM reaches a maximum (i.e., mean square error reaches a minimum) if the set 70 

of member models can sample the error space evenly. From the perspective of information 71 

theory (Goodwell et al., 2020; Goodwell & Kumar, 2017a, 2017b), non-independent models 72 

contain redundant information. On the basis of a measure of mutual information content, Sharma 73 

et al. (2019) demonstrated that the skill gains obtained by multi-model ensembles are dominated 74 

by model independence. 75 

The North American Land Data Assimilation System (NLDAS) (Mitchell et al., 2004) 76 

adopts the concept of the multi-model ensemble and runs four distinct models over the 77 

conterminous United States (CONUS). The four models in NLDAS phase 2 are the Noah land 78 

surface model (Noah, version 2.8), Mosaic, the Variable Infiltration Capacity (VIC, version 79 

4.0.3) model, and the Sacramento Soil Moisture Accounting Model (SAC). These NLDAS 80 

models differ remarkably in model structure and process parameterization (Kumar et al., 2017; 81 

Xia et al., 2012b). Using confirmatory factor analysis, Kumar et al. (2017) confirmed that these 82 

structural differences result in dissimilar model behaviors, especially in the simulations of runoff. 83 

However, with a long history of extensive evaluations and improvements (Xia et al., 2019; Xia et 84 

al., 2012a; Xia et al., 2012b), the performances of these NLDAS models are shown to be high. 85 

They can well replicate the observed evapotranspiration (ET) (Long et al., 2014; Zhang et al., 86 

2020), streamflow (Xia et al., 2012a), soil moisture (Xia et al., 2015), and groundwater (Xia et 87 

al., 2017) patterns over the CONUS. The sound inter-model independence and satisfactory 88 

model performance make the NLDAS multi-model ensemble an ideal benchmark for new 89 

ensemble techniques at a continental scale.  90 

Recently, multi-physics models have emerged as a new tool for performing ensemble 91 

simulations. The multi-physics models host different parameterization schemes for several key 92 
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processes (M. P. Clark et al., 2011). An ensemble of model configurations can be generated by 93 

selecting different combinations of parameterization schemes given land surface processes (Gan 94 

et al., 2019; Yang et al., 2011; Zhang et al., 2016; Zheng & Yang, 2016). Numerous studies 95 

using this kind of multi-physics ensemble simulation have already been conducted (Clark et al., 96 

2010; Coxon et al., 2014; Krueger et al., 2010; McMillan et al., 2010; Oudin et al., 2006), 97 

addressing various research questions. By discriminating competing model parameterizations, 98 

the linkage between model parameterizations and catchment type and hydrological signatures 99 

can be established (Clark et al., 2010; Clark et al., 2016; McMillan et al., 2010). Such analyses 100 

improve our understanding of the dominant hydrological processes in various catchments and 101 

hydrological events (Coxon et al., 2014; Douinot et al., 2018). The multi-physics ensemble can 102 

also benefit uncertainty attribution and model development. The impacts of a specified process 103 

on the overall model behavior can be pinpointed, and the interplays between different processes 104 

can be disentangled (Li et al., 2019; You et al., 2020; Zhang et al., 2016; Zheng et al., 2019). 105 

Recognizing these advantages in process understandings and uncertainty attribution, several 106 

mainstream models have adopted this concept. Available multi-physics models include the Noah 107 

land surface model with multi-parameterization options (Noah-MP) (Niu et al., 2011), the 108 

Community Land Model version 5 (CLM5) (Lawrence et al., 2019), the Structure for Unifying 109 

Multiple Modeling Alternatives (SUMMA) (Clark et al., 2015a; Clark et al., 2015b), and the 110 

Joint UK Land Environment Simulator (JULES) (Best et al., 2011; D. B. Clark et al., 2011). 111 

Among these available multi-physics models, Noah-MP has been broadly tested at a 112 

variety of spatiotemporal scales. Noah-MP (Niu et al., 2011; Yang et al., 2011) is augmented 113 

over the Noah model by improving the physical realism of the parameterization of snow (Yang 114 

et al., 2011), vegetation canopy (Dickinson et al., 1998), groundwater (Niu et al., 2007), and 115 
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frozen soil (Niu & Yang, 2006). Various configurations of the Noah-MP model have been 116 

broadly evaluated. Yang et al. (2011) and Cai et al. (2014a) verified that the physical realism 117 

improves the model performance in simulating runoff, groundwater, soil moisture, snow, and 118 

total water storage (TWS) at the basin and global scales. Ma et al. (2017) reported that Noah-MP 119 

is more skillful than the NLDAS models in simulating runoff. Xia et al. (2016a) and Cai et al. 120 

(2014b) also showed that Noah-MP outperforms NLDAS models in capturing the seasonal cycle 121 

of snow and snowmelt runoff due to the inclusion of a multilayer snowpack and the 122 

improvement of the turbulence parameterization. The credibility obtained from the improved 123 

physical realism and model performance promotes the adoption of Noah-MP in large-scale 124 

operational systems, including the Weather Research and Forecasting (WRF) model (Barlage et 125 

al., 2015) for weather forecasts and the National Water Model (NWM) (Maidment, 2017) for 126 

hydrological forecasts. The model is also undergoing extensive tests for the next phase of  127 

NLDAS (Xia et al., 2017; Zhang et al., 2020). Any improvement in the simulation performance 128 

from Noah-MP would directly benefit these operational systems. 129 

However, it is largely unknown how the emerging multi-physics approach compares with 130 

the well-established multi-model approach for ensemble hydrological simulations. It is often 131 

hypothesized that the multi-physics approach has a performance advantage. Multi-physics 132 

ensembles provide a broad coverage of the feasible model physics space (M. P. Clark et al., 133 

2011). There is likely a multi-physics ensemble member that can best approximate the reality. 134 

The inclusion of such a superior-performing member can result in a superior PEM, as a 135 

consequence of its asymmetric response to the constituent’s performance. Furthermore, the best-136 

performing multi-physics member varies with basins and climatic conditions (Gan et al., 2019). 137 

A multi-physics ensemble that includes these members can offer a systematic performance 138 
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improvement under various conditions. However, these advantages may be offset by a hidden 139 

pitfall. The multi-physics ensemble members share a substantial portion of the same 140 

parameterization schemes with each other. These physics overlaps reduce the inter-member 141 

independence and may lower the ensemble skill gains. This negative effect has been greatly 142 

outlooked. A comprehensive comparison of the multi-physics and multi-model ensemble 143 

approaches is needed. 144 

This study presents such a comparison between the Noah-MP multi-physics ensemble 145 

and the NLDAS multi-model ensemble. The comparisons are performed for the 12 River 146 

Forecast Centers (RFCs) over the CONUS. This area covers a wide variety of climatic regimes, 147 

which could ensure the robustness of the comparison (Gupta et al., 2014). In the remainder of 148 

this paper, section 2 details the two ensembles and the observations. Section 3 describes the 149 

definition of ensemble skill gain and skill metrics. Section 4 shows the results with discussion. 150 

Section 5 provides conclusions. 151 

2 Model and data 152 

2.1 The NLDAS multi-model ensemble 153 

We use three NLDAS models: Noah-2.8, VIC-4.0.3, and Mosaic. They are the only three 154 

NLDAS models whose outputs are publicly available from NASA Goddard Earth Sciences 155 

(GES) Data and Information Services Center (DISC) 156 

(https://disc.gsfc.nasa.gov/datasets?keywords=NLDAS). A brief introduction of these three 157 

models is as follows. 158 

Noah (Ek et al., 2003) is developed as the land component of the weather and climate 159 

forecasting models of Nation Centers for Environmental Prediction (NCEP) and National 160 

https://disc.gsfc.nasa.gov/datasets?keywords=NLDAS
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Oceanic and Atmospheric Administration (NOAA). Noah has four soil layers and one snow layer. 161 

There is a dominant vegetation type for each grid cell. In terms of model physics, Noah considers 162 

a comprehensive time-dependent canopy resistance (Chen et al., 1996), seasonal frozen soils, and 163 

the snow accumulation/ablation processes (Koren et al., 1999). Noah 2.8 (the version used in 164 

NLDAS-2 and this study) has made many improvements based on Noah 2.7.1 (the version used 165 

in NLDAS-1), including modification of the albedo formulation by combining snow-albedo 166 

decay and liquid-water refreeze (Livneh et al., 2010) and the introduction of seasonal factors to 167 

the simulation of warm-season processes (Wei et al., 2013).  168 

Mosaic (Koster & Suarez, 1992) is a land surface model developed for use within the 169 

general circulation model (GCM) (Ducharne et al., 1999). It includes three soil layers and one 170 

snow layer. Mosaic features the “mosaic” strategy for considering the surface heterogeneity. 171 

There are several vegetation tiles within each model grid cell, where energy and water balance 172 

are calculated separately (Yang et al., 2003). The calculations are based on the Simple Biosphere 173 

(SiB) model (Sellers et al., 1986), which is analogous to the electrical resistance method in 174 

calculating the energy and matter transfer in biophysical processes.  175 

VIC (Liang et al., 1994) is a widely used semi-distributed hydrology model with a full 176 

Surface Vegetation-Atmosphere Transfer (SVAT) representation. It features a variable 177 

infiltration capacity approach for parameterizing runoff generation. VIC includes three soil 178 

layers and two snow layers. Like Mosaic, VIC also considers several vegetation types with a 179 

tiling method (Cherkauer et al., 2003). Furthermore, VIC utilizes subgrid elevation bands to 180 

realistically describe the dependence of temperature, precipitation, and snow on elevation in the 181 

snow-dominated regions (Liang et al., 1994). The version used in this study, 4.0.3, is subject to 182 

the constraints of both surface water and energy conservations. 183 
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All the NLDAS models are driven by a set of high-quality atmospheric forcings, 184 

topography, vegetation, and soil types. The spatial resolution of these datasets is 0.125° × 0.125°. 185 

The NLDAS-2 total precipitation field combines the gauge-based precipitation from NOAA 186 

Climate Prediction Center (CPC) with the monthly Parameter-elevation Regressions on 187 

Independent Slopes Model (PRISM) topographical adjustment, Doppler Stage II radar 188 

precipitation data, NOAA CPC Morphing Technique data (CMORCH), and the NARR 189 

precipitation. The non-precipitation forcings are derived from the NCEP North American 190 

Regional Reanalysis (NARR) analysis fields (Cosgrove et al., 2003). The surface downward 191 

shortwave radiation data are also bias-corrected by the hourly 1/8th-degree GOES-based surface 192 

downward shortwave radiation fields (1996-2000) (Pinker et al., 2003). The NLDAS topography 193 

is based on the GTOPO30 Global 30 Arc Second (~1 km) Elevation Dataset. The 14-class UMD 194 

map at 1 km of the University of Maryland’s UMD Land Cover Classification is used as the 195 

NLDAS vegetation class dataset. The monthly leaf area index (LAI) dataset is re-gridded from 196 

NOAA National Environmental Satellite, Data, and Information Service (NESDIS) 0.144° 197 

monthly climatology LAI (Gutman & Ignatov, 1998). The NLDAS soil data with 16 texture 198 

types over the CONUS is derived from 1 km Penn State STATSGO data. These datasets have 199 

been widely used and tested (Cai et al., 2014a; Cai et al., 2014b; Xia et al., 2016a; Xia et al., 200 

2016b; Xia et al., 2015). 201 

2.2 The Noah-MP multi-physics ensemble 202 

Forty-eight configurations of Noah-MP version 3.6 are constructed by perturbing the 203 

model physics of runoff generation, stomatal conductance, soil moisture limitation factor to 204 

transpiration (β-factor), and turbulence. These processes are selected based on their importance 205 

suggested in previous studies (Yang et al., 2011; Zhang et al., 2016; Zheng et al., 2019). There 206 

https://www.emc.ncep.noaa.gov/mmb/rreanl/
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are two distinct stomatal conductance schemes (Ball–Berry, Jarvis), three β-factor schemes 207 

(NOAHB, CLM, SSiB), four runoff schemes (SIMGM, SIMTOP, NOAHR, BATS), and two 208 

turbulence schemes (M-O, Chen97) (48 = 2 × 3 × 4 × 2). The four runoff schemes fall into two 209 

groups. The first group consists of SIMGM and SIMTOP. They are TOPMODEL-based schemes 210 

with a groundwater component. The groundwater in SIMGM is dynamic, which interacts with 211 

the soil moisture, whereas the groundwater in SIMTOP is determined by the bottom soil 212 

moisture based on an equilibrium assumption. The second group, namely NOAHR and BATS, 213 

does not have a groundwater component. NOAHR represents the infiltration excess runoff-214 

generation mechanism, whereas BATS represents the idea of fractional saturation area. Details of 215 

the parameterization schemes can be found in Table 1 of Zheng et al. (2019). 216 

The Noah-MP multi-physics ensemble is driven by the same atmospheric forcings and 217 

static inputs as the NLDAS models. The simulations span 30 years from January 1982 to 218 

December 2011. The initial condition on 1 January 1980 is generated by looping the 1979 219 

simulations 100 times. 220 

2.3 The USGS HUC8 runoff data 221 

The monthly 8-digit Hydrologic Unit Code (HUC8) runoff data from 1982 to 2011 are 222 

used as the observations. The data are derived from daily stream-gauge observations by the 223 

USGS. The derivation is based on two assumptions: (1) the runoff is uniform within each HUC8; 224 

(2) the river routing can be ignored because the propagation of flow waves at basin scale is in 225 

days (Allen et al., 2018). With these two assumptions, the HUC8 runoff data are weighted across 226 

the stream-gauge observations within each HUC8, where the weight is the overlap area of the 227 

gauge-observed basins and the HUC8 basin. The USGS HUC8 runoff data have been widely 228 

selected to evaluate runoff simulation at regional scales (Ma et al., 2017; Zheng et al., 2019). 229 
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2.4 RFCs over the CONUS and their climatology 230 

The above-mentioned simulations and observations are upscaled into 12 RFCs over the 231 

CONUS, namely Northeast (NE), Mid-Atlantic (MA), Ohio (OH), Lower Mississippi (LM), 232 

Southeast (SE), North Central (NC), Northwest (NW), Arkansas (AB), Missouri (MB), West 233 

Gulf (WG), California-Nevada (CN), and Colorado (CB). As discussed in Gudmundsson et al. 234 

(2012a) and Gudmundsson et al. (2012b), the spatial aggregation of the observations/simulations 235 

from smaller basins (HUC8 and NLDAS grid cells) reduces the measurement errors in 236 

observations and modeling errors in spatially varying parameters. Furthermore, as the 237 

observations are taken in relatively smaller basins (i.e., HUC8) and used for a relatively long 238 

timescale (i.e., monthly), river routing is not necessary, which may also introduce modeling 239 

errors. 240 

Figure 1 shows the boundaries and climatology, including multi-year averaged 241 

precipitation, potential evapotranspiration, runoff, runoff ratio, and Budyko’s aridity index. The 242 

potential evapotranspiration is calculated from the NLDAS daily forcings based on the FAO-56 243 

algorithm (Allen et al., 1998) of the Penman–Monteith equation (Monteith, 1965; Penman, 1956). 244 

Budyko’s aridity index (Budyko, 1974) is defined as the ratio of potential evapotranspiration 245 

over precipitation. The RFC-averaged values of the climatology are shown in Table S1. 246 

Consistent with Budyko’s hypothesis, the runoff ratio generally decreases with increasing aridity. 247 

However, three abnormalities exist in NW, CN, and CB. These abnormally high values hint at 248 

possible precipitation underestimation and/or runoff overestimation. 249 
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2.5 Annual cycle and interannual anomaly 250 

The annual cycle and interannual anomaly are evaluated separately. The decomposition 251 

of the modeled and observed runoff into multi-year averaged climatology (𝑟𝑐𝑙𝑖𝑚), mean annual 252 

cycle (𝑟𝑎𝑛𝑐𝑦,𝑚), and interannual anomaly (𝑟𝑎𝑛𝑜𝑚,𝑦,𝑚) is as follows. For a modeled or observed 253 

runoff 𝑟𝑦,𝑚 for the mth month (𝑚 = 1 … 12) of the yth year (𝑦 = 1 … 𝑌), where 𝑌 = 𝑇 12⁄  254 

𝑟𝑐𝑙𝑖𝑚 =
1

12𝑌
∑ ∑ 𝑟𝑦,𝑚

12

𝑚=1

𝑌

𝑦=1

 (1) 

𝑟𝑎𝑛𝑐𝑦,𝑚 =
1

𝑌
∑ 𝑟𝑦,𝑚

𝑌

𝑦=1

− 𝑟𝑐𝑙𝑖𝑚 (2) 

𝑟𝑎𝑛𝑜𝑚,𝑦,𝑚 = 𝑟𝑦,𝑚 − 𝑟𝑎𝑛𝑐𝑦,𝑚 − 𝑟𝑐𝑙𝑖𝑚 (3) 

The mean annual cycle gives insights into seasonal variation. The interannual anomaly 255 

reflects year-to-year variation, which reflects a model’s responses to the monthly perturbations in 256 

atmospheric forcings. 257 

3 Ensemble skill gain and skill measures 258 

3.1 Ensemble skill gain 259 

For an ensemble of 𝑁 members (𝑥(𝑖), 𝑖 = 1 ⋯ 𝑁), we define the ensemble skill gain (𝐺) 260 

as the difference between the PEM (𝑆(�̅�)) and the AEP (𝑆(𝑥)̅̅ ̅̅ ̅̅ )). 261 

𝐺 = 𝑆(�̅�) − 𝑆(𝑥)̅̅ ̅̅ ̅̅  (4) 

�̅� = ∑ 𝑤𝑖𝑥(𝑖)

𝑁

𝑖=1

 (5) 
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𝑆(𝑥)̅̅ ̅̅ ̅̅ = ∑ 𝑤𝑖𝑆(𝑥𝑖)

𝑁

𝑖=1

 (6) 

 262 

where 𝑆 denotes a skill measure, which is detailed in the next section. 𝑤𝑖 is the weight for 𝑥(𝑖) 263 

with a constraint of ∑ 𝑤𝑖
𝑁
𝑖=1 = 1. A larger value of 𝐺 indicates a large ensemble skill gain.  264 

As broadly reported, the ensemble weights (𝑤𝑖) have a significant influence on the PEM 265 

(𝑆(�̅�)) (Ajami et al., 2006; Bohn et al., 2010), and thus on the ensemble skill gain (𝐺). There are 266 

a number of sophisticated weighting methods that can optimize the PEM (Ajami et al., 2007; 267 

Arsenault et al., 2015; Duan et al., 2007; Hsu et al., 2009; Marshall et al., 2006; Oudin et al., 268 

2006; Vrugt et al., 2006; Vrugt & Robinson, 2007). However, most of these methods assume 269 

inter-model independence, which is not appropriate for this study. Furthermore, the derivation of 270 

an optimal set of weights heavily depends on the objective functions, the referencing model 271 

signatures, the variables of interests, research catchments, study periods, and reference datasets. 272 

These will unnecessarily complicate this study without improving the universality of the 273 

conclusions. As results, in this study, we use equal weights (i.e., 𝑤𝑖 = 1 𝑁⁄ ), which are also 274 

widely used without utilizing prior information (Gao & Dirmeyer, 2006) and shown to be robust 275 

under non-stationary conditions (Ajami et al., 2006; Beck et al., 2017; Georgakakos et al., 2004; 276 

Guo et al., 2007).  277 

3.2 Skill measures 278 

We quantify the ensemble skill gains based on several different skill measures. However, 279 

for conciseness, we summarize the performance mainly based on the Taylor diagram and Taylor 280 

skill score (TSS) (Taylor, 2001). The analyses based on Nash–Sutcliffe efficiency (NSE), Kling–281 
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Gupta efficiency (KGE) (Gupta et al., 2009), and correlation coefficient (𝑅) can be found in the 282 

supporting information (Tables S2–S5). 283 

The Taylor diagram (Taylor, 2001) is a two-dimensional plot that visually summarizes 284 

multiple aspects of the performance of a model simulation (𝑓) relative to the observations (𝑜), 285 

including the correlation coefficient (𝑅), normalized unbiased root-mean-square error (nuRMSE), 286 

and normalized variability (𝜎�̂�): 287 

𝑅 =

1
𝑇

∑ (𝑓𝑡 − �̅�)(𝑟 − �̅�)𝑇
𝑡=1

𝜎𝑓𝜎𝑜
 (7) 

nuRMSE =
uRMSE

𝜎𝑜
=

1

𝜎𝑜

√
1

𝑇
∑[(𝑓𝑡 − 𝑓)̅ − (𝑜𝑡 − �̅�)]

2
𝑇

𝑡=1

 (8) 

𝜎�̂� =
𝜎𝑓

𝜎𝑜
=

1

𝜎𝑜

√
1

𝑇
∑ ((𝑓𝑡 − 𝑓)̅)

2
𝑇

𝑡=1

 (9) 

𝜎𝑜 = √
1

𝑇
∑((𝑜𝑡 − 𝑜))

2
𝑇

𝑡=1

 (10) 

where 𝑇 is the total time step number, 𝑓̅ = ∑ 𝑓𝑡
𝑇
𝑡=1  is the temporal mean of the model simulation 288 

(𝑓𝑡 ), and �̅� = ∑ 𝑟𝑡
𝑇
𝑡=1  is the temporal average of the observation. 𝜎𝑓  and 𝜎𝑜  are the standard 289 

deviation of the model simulation and the observation, respectively. In the Taylor diagram, 𝜎�̂� 290 

measures the magnitude of the variation of the model simulation and 𝑅 measures the timing of 291 

the variation. 292 

According to the diagram, the TSS (Taylor, 2001) is defined as follows: 293 
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TSS =
4(1 + 𝑅)

(
𝜎𝑓

𝜎𝑜
+

𝜎𝑜

𝜎𝑓
)

2

(1 + 𝑅0)

 
(11) 

 294 

where 𝑅0 is the maximum correlation coefficient attainable. 𝑅0 is assumed to be 1 in this study. 295 

TSS ranges from 0 to 1. A higher value indicates a higher consistency between the model 296 

prediction and the observations. 297 

3.3 Error correlation 298 

The independence between each two ensemble members is measured by the error correlation 299 

coefficient (ECC) as follows. 300 

ECC𝑖,𝑗 =  
𝑐𝑜𝑣(𝑒𝑖 , 𝑒𝑗)

√𝜎𝑒𝑖√𝜎𝑒𝑗

=  
∑ (𝑒𝑖,𝑡 − �̅�𝑖)(𝑒𝑗,𝑡 − �̅�𝑗)𝑇

𝑡=1

√𝜎𝑒𝑖√𝜎𝑒𝑗

 (12) 

𝑒𝑡 = 𝑓𝑡 − 𝑜𝑡 (13) 

where error (𝑒𝑡) is defined as the difference between the model simulation and the observations; 301 

𝑒𝑖,𝑡  and 𝑒𝑗,𝑡  (𝑖, 𝑗 = 1 … 𝑁, 𝑖 ≠ 𝑗 ) are the errors of two ensemble members; �̅�𝑖  and �̅�𝑗  are their 302 

temporal means; 𝜎𝑒𝑖
 and 𝜎𝑒𝑗

 are their standard deviations. 303 

The error correlation coefficient ranges from −1 to +1. A lower error correlation indicates 304 

strong independence and can potentially generate a higher ensemble skill gain. If the error 305 

correlation between two ensemble members equals −1, their errors can somehow cancel each 306 

other out at each time step. The ensemble mean should show superior performance. If two 307 

ensemble members have an error correlation of +1, we do not expect an ensemble skill gain from 308 

the average of the two ensemble members. As the ensemble size increases beyond two, an 309 
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ensemble of independent members is expected to have an average error correlation coefficient of 310 

0. 311 

4 Results and Discussion 312 

We individually examine the performance of the ensemble members in section 4.1. Then, 313 

in section 4.2, they are ranked for inter-comparisons. The best member and the ensemble mean 314 

are identified. Lastly, inter-member independence and its impacts on the PEM are presented and 315 

discussed. 316 

4.1. Performance difference within and between the two ensembles 317 

Figure 2 compares the simulated annual runoff cycle from the NLDAS multi-model 318 

ensemble and the Noah-MP multi-physics ensemble. The NLDAS models produce different 319 

timing of the runoff peaks. The differences are the most notable in NE, NC, NW, and CB. These 320 

RFCs are either in the northern CONUS or in mountainous areas, where the spring runoff peak is 321 

dominated by snowmelt. Among the NLDAS models, VIC performs the best in capturing the 322 

timing of the runoff peak, with a relatively small bias of approximately one month earlier. Such 323 

outperformance may be attributable to the detailed consideration of elevation bands (Liang et al., 324 

1994). Noah performs the worst, with a one- to two-month lag in NE and NC and a two-month 325 

lead in CB. Compared with the NLDAS models, the Noah-MP ensemble members perform 326 

better, especially in the snow-dominated RFCs mentioned above (i.e., NE, NC, NW, and CB). 327 

This superiority has been previously reported and considered to be due to the multilayer 328 

snowpack physics (Cai et al., 2014b; Ma et al., 2017; Xia et al., 2016a).  329 

Figure 2 also shows the simulated magnitude (or variability) of the annual cycle. The 330 

NLDAS models differ from each other remarkably. The Noah model tends to overestimate the 331 
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variability, whereas the Mosaic model tends to underestimate it. The VIC model lies between 332 

these two models and is closest to the observations. Compared with the NLDAS models, the 333 

Noah-MP multi-physics ensemble members again show an overall better performance. This 334 

outperformance can also be found in other performance criteria, including NSE, KGE, and 𝑅 335 

(Tables S2–S4). It is of interest to notice that the inter-member difference tends to be related to 336 

the climatic aridity, especially for the Noah-MP multi-physics ensemble (also shown in Figures 3, 337 

4, and S7). In NE and MA, where the climate is humid, the Noah-MP ensemble members 338 

perform similarly to each other. The significant inter-member difference appears in AB, MB, 339 

WG, CN, and CB (Figure S7). All these RFCs are spatially adjacent in the southwest CONUS, 340 

with a semi-arid or arid climate. The remarkable inter-member differences in arid RFCs may be 341 

related to the difficulties in simulating terrestrial water storage anomalies (Cai et al., 2014b). 342 

The performance of the NLDAS models and the Noah-MP ensemble is shown in Figure 3. 343 

The NLDAS models scatter significantly, in which the climatic aridity and snow play different 344 

roles. The spread in semi-arid and arid RFCs (e.g., AB, MB, WG, CN) are mainly manifested in 345 

modeled variability (i.e., spread in the radial direction). The spread in snow-dominated RFCs 346 

(e.g., NE, NC, NW) is mainly manifested in the correlation coefficient, which corresponds to the 347 

above-mentioned bias in the simulated timing of the spring runoff peak. In CB, where the 348 

climate is the driest and where snow is important, the spread is the most pronounced, suggesting 349 

a double difficulty in this arid and snow-dominated RFC. 350 

The performance spread among the Noah-MP ensemble members is generally 351 

comparable to that among the NLDAS models. In humid RFCs (e.g., NE, MA, OH, LM), the 352 

Noah-MP ensemble members are similar to each other and comparable to the observations. The 353 

spread increases in arid RFCs and the spread increase is mainly manifested in the modeled 354 
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variability (i.e., spread in the radial direction). However, there are two notable differences 355 

between the Noah-MP and the NLDAS ensembles. First, in snow-dominated RFCs (e.g., NE, NC, 356 

NW), the spread in the correlation coefficient among the Noah-MP ensemble members is small. 357 

All Noah-MP configurations correlate well with the observations, suggesting the superiority of 358 

the multilayer snowpack physics. Second, the Noah-MP ensemble members cluster according to 359 

the runoff parameterizations. SIMTOP (r2) tends to have a relatively low variability, whereas 360 

BATS (r4) tends to obtain a relatively high variability. SIMGM (r1) separates from the others 361 

with a high correlation coefficient in NE and CB but a low correlation coefficient in OH, LM, SE, 362 

and AB. It is interesting to note that the SIMTOP scheme (r2) with equilibrium groundwater 363 

performs closer to the two runoff parameterization schemes without groundwater (i.e., NOAHR 364 

(r3) and BATS (r4)). 365 

Figure 4 shows the Taylor diagram for the interannual anomaly. Compared with the 366 

annual cycle (Figure 3), the performance spread is slightly reduced for the Noah-MP ensemble 367 

but significantly reduced for the NLDAS models. The decrease in the spread is mainly 368 

attributable to the decreases in the correlation coefficient spread, which is the most obvious in 369 

snow-dominated RFCs (e.g., NE, NC, NW, CB). This smaller spread in the correlation 370 

coefficient suggests a tighter control of the atmospheric forcing on the interannual anomalies 371 

than on the annual cycle. The cluster of the runoff parameterization schemes is clearly apparent. 372 

The separation is mainly manifested in the correlation coefficient, and SIMGM (r1) is 373 

distinguishable from the others. In most RFCs except CN and CB, SIMGM (r1) obtains a 374 

distinguishable low correlation coefficient. The other three runoff parameterizations of Noah-MP 375 

(i.e., SIMTOP (r2), NOAHR (r3), BATS (r4)) and the three NLDAS models obtain a similar 376 
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correlation coefficient. They mainly differ in the modeled variability. The BATS runoff scheme 377 

(r4) tends to have the largest variability, whereas SIMTOP (r2) tends to have the lowest. 378 

Table 1 summarizes the average TSS obtained from the NLDAS and the Noah-MP 379 

ensembles. Their performance deteriorates from the humid to arid RFCs. On average, Noah-MP 380 

outperforms NLDAS for both the annual cycle and interannual anomaly. For the annual cycle, 381 

the Noah-MP ensemble outperforms the NLDAS ensemble in humid RFCs, but the 382 

outperformance is marginal in arid RFCs. In snow-dominated RFCs (e.g., NE, NC, and CB), the 383 

NLDAS ensemble further deteriorates, and Noah-MP shows a clearer superiority. For the 384 

interannual anomaly, the performance of the Noah-MP ensemble is consistently high in both 385 

humid and arid RFCs. The NLDAS ensemble is only marginally worse than Noah-MP in humid 386 

RFCs, but the performance deteriorates quickly in arid RFCs. Furthermore, for the interannual 387 

variability, snow does not have an obvious impact on the NLDAS models. 388 

4.2. The best member and the ensemble mean 389 

In the previous section, we explored how climatic aridity, snow, and groundwater 390 

influence the ensemble performance. Here, we analyze how Noah-MP members and NLDAS 391 

models perform across different RFCs. The analyses are based on rankings — by ranking the 48 392 

Noah-MP and the 3 NLDAS ensemble members together, we can identify the best ensemble 393 

member.   394 

Figure 5 shows the model rankings for the annual cycle. No single Noah-MP 395 

configuration/NLDAS model shows clear superiority in all RFCs. The BATS (r4) runoff option 396 

outperforms the other runoff options in MA, OH, and NC. However, it performs the worst in NE, 397 

SE, NW, MB, WG, CN, and CB. As shown in Figure 3, the reasons for the underperformance 398 
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also vary: low correlation and high variability in NE, MB, CN, and CB, and high variability in 399 

SE, NW, and WG. SIMGM (r1) outperforms the other runoff options in NE, NW, MB, WG, CN, 400 

and CB, but it performs the worst in OH, NC, and AB. Consistent with previous work (Li et al., 401 

2019; Zheng et al., 2019), different parameterizations interplay with each other. The Ball–Berry-402 

type scheme (c1) of the stomatal conductance parameterization outperforms the Jarvis-type 403 

scheme (c2) in combination with the SIMGM runoff scheme (r1) at most RFCs except SE, NW, 404 

WG, and CN, whereas the Jarvis scheme (c2) outperforms the Ball–Berry scheme (c1) in 405 

combination with the NOAHR runoff scheme (r3) in SE, NW, MB, WG, CN, and CB. We also 406 

find that the two runoff options with groundwater (i.e., SIMGM (r1) and SIMTOP (r2)) show 407 

some superiority in snow-dominated RFCs, including NE, NW, CN, and CB. These interplays 408 

among different processes and climatic aridity are not completely understood. 409 

Figure 6 shows the model rankings for the interannual anomaly. Compared with the 410 

annual cycle (Figure 5), the SIMGM runoff option (r1) clearly degrades, whereas SIMTOP (r2) 411 

and BATS (r4) improve. Note that in SIMGM (r1), runoff is parameterized with the groundwater 412 

level, which interacts with soil moisture. In the other schemes, runoff is directly controlled by 413 

soil moisture. The improvements of SIMTOP (r2) and BATS (r4) may suggest that soil moisture 414 

plays a more important role in mediating the interannual atmospheric anomaly and runoff 415 

anomaly. This hypothesis is further supported by the fact that BATS (r4) performs better in 416 

humid RFCs, whereas SIMTOP (r2) performs better in arid RFCs. This difference reflects the 417 

dependence of the active soil layer depth on climatic aridity: BATS (r4) parameterizes runoff 418 

using surface soil moisture, whereas SIMTOP (r2) parameterizes runoff using bottom soil 419 

moisture. However, despite the overall underperformance of SIMGM (r1), it still shows 420 
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superiority in CB. There is still no single Noah-MP configuration or NLDAS model that can 421 

outperform all the others in all RFCs. 422 

We also identified the best member among all the members of the two ensembles. 423 

Consistent with the hypothesis described in the Introduction, the Noah-MP multi-physics 424 

ensemble contains the best member in almost all the RFCs. The VIC model is only marginally 425 

better than the best Noah-MP ensemble member in NW for the annual cycle and in OH for the 426 

interannual anomaly. As shown in Table 2, the performance of the best ensemble member is 427 

remarkably high, with a TSS value higher than 0.9 in all RFCs for both the annual cycle and 428 

interannual anomaly. The best ensemble member varies significantly with the RFCs, and no 429 

parameterization schemes clearly stand out. 430 

The Noah-MP ensemble has better average performance (Table 1) and always contains 431 

the best ensemble members (Table 2). Thus, the Noah-MP ensemble mean should clearly 432 

outperform the NLDAS ensemble mean in all RFCs. However, the following results contradict 433 

this hypothesis. 434 

Figure 5 also shows the ranking of the ensemble mean for the annual cycle at the bottom. 435 

The NLDAS ensemble mean shows comparable or better performance than the Noah-MP 436 

ensemble mean in semi-humid to semi-arid RFCs, including OH, LM, SE, NC, NW, AB, and 437 

WG. The superiority of the NLDAS ensemble mean is more apparent for the interannual 438 

anomaly (Figure 6) than for the annual cycle (Figure 5), where the NLDAS ensemble mean 439 

clearly outperforms the Noah-MP ensemble mean in humid to semi-humid RFCs, including NE, 440 

MA, OH, LM, SE, and NC. The relatively higher performance of the NLDAS ensemble mean 441 

suggests a higher ensemble skill gain obtained from the NLDAS models, which is confirmed in 442 

Table 3. The ensemble skill gain measured in NSE and KGE is also shown in Table S5. As 443 
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discussed in the Introduction, the relatively lower ensemble skill gain obtained from the Noah-444 

MP multi-physics ensemble hints that the multi-physics ensemble members may be too similar to 445 

each other. 446 

4.3. Inter-member independence measured by error correlation 447 

Figure 7 shows the error correlation for the Noah-MP multi-physics and NLDAS multi-448 

model ensembles. The average of the error correlations among the NLDAS models is less than 449 

0.5 in most RFCs. They are independent models. This assessment based on error correlation is 450 

consistent with the assessment of model similarity by Kumar et al. (2017). However, the error 451 

correlation is high in NW, CN, and CB (greater than 0.5), which was not reported by Kumar et al. 452 

(2017). This may be partly caused by systematic errors in the forcing and evaluation data. The 453 

error stemming from the forcings can propagate into all the model outputs, yielding a high error 454 

correlation. Compared with the NLDAS models, the error correlation of the Noah-MP multi-455 

physics ensemble is higher for both the annual cycle and interannual anomaly, suggesting that 456 

the Noah-MP ensemble members are not adequately independent. This high error correlation 457 

corresponds well to the low ensemble skill gain shown in Table 3. 458 

4.4. Asymmetric responses of the PEM to the inclusion of the most versus least independent 459 

members 460 

The above analyses show that there is a correspondence between the low ensemble skill 461 

gain and low independence. In this section, we further confirm the effects of independence by 462 

removing the most and least independent members from consideration. The most independent 463 

member has the lowest average error correlation with the other members, whereas the least 464 

independent member has the highest average value. Figure 8 shows the performance of the 465 
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Noah-MP multi-physics ensemble mean at the 12 RFCs. The immediate left points from the 466 

center denote the cases in which the least independent one or five members are removed, 467 

whereas the immediate right points denote the cases in which the most independent one or five 468 

members are removed. Note that independence is measured by the average of the error 469 

correlation. Figure 8 also shows the responses of the PEM to the removal of the worst-470 

performing one or five members (left) and the best-performing one or five members (right). The 471 

effects of independence and constituent performance can thus be compared. 472 

Figure 8 highlights four interesting observations. First, there is an asymmetry in the 473 

response of the PEM to the removal of the best- versus worst-performing members, which are 474 

consistent with previous studies on hydrological ensemble simulations (Ajami et al., 2006). 475 

Second, removing the most independent members degrades the performance of the ensemble 476 

mean, suggesting that the superiority of the ensemble mean could come from these independent 477 

members. Third, removing the least independent members does not have an obvious impact on 478 

the PEM, suggesting that the Noah-MP multi-physics ensemble can be optimized by eliminating 479 

these ensemble members. Fourth, the asymmetry of the independence effects is more pronounced 480 

than the asymmetry of the performance effects. 481 

5 Conclusions 482 

In this study, we compared the Noah-MP multi-physics ensemble and the NLDAS multi-483 

model ensemble in simulating the annual cycle and interannual variability of runoff at 12 RFCs 484 

of the CONUS. The performance of the constituent members, the best member, the PEM, and its 485 

relation to inter-member independence are analyzed. The results are summarized below. 486 
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First, on average, the 48 Noah-MP configurations outperform the NLDAS models. In 487 

snow-dominated regions of the CONUS, Noah-MP can better capture the timing of the spring 488 

runoff peak from snowmelt. The models scatter more in arid than in humid RFCs, and the spread 489 

in arid RFCs is manifested in the different variability. The Noah-MP configurations with 490 

groundwater dynamics produce a distinguishable correlation coefficient to those without 491 

groundwater. The difference is more pronounced for the interannual anomaly than for the annual 492 

cycle. 493 

Second, the Noah-MP ensemble contains the best-performing member among all the 494 

constituents of the two ensembles. This is the result of the broad coverage of the feasible model 495 

physics space. However, the best member varies significantly with the RFCs and differs between 496 

the annual cycle and interannual anomaly. 497 

Third, the arithmetic average of the NLDAS models shows comparable performance to 498 

the Noah-MP multi-physics ensemble mean. This hints that the ensemble skill gain obtained 499 

from the Noah-MP multi-physics ensemble is significantly low compared with that obtained 500 

from the NLDAS multi-model ensemble. The low ensemble skill gain corresponds well to the 501 

high error correlation among the ensemble members. 502 

Fourth, there is an asymmetry in the responses of the PEM to the inter-member 503 

independence. The performance of the ensemble mean deteriorates when the most independent 504 

members are removed, whereas it shows little change when the least independent members are 505 

removed. It is crucial for an ensemble to include independent members. 506 

This study highlights the importance of the independence among the constituent members 507 

of an ensemble. This issue has been overlooked in many previous studies on Bayesian model 508 

averaging (Ajami et al., 2007) and ensemble optimization (Gan et al., 2019). Its negative effect is 509 
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pronounced for the multi-physics ensemble. As shown in equation (4), the PEM is the sum of the 510 

AEP and ensemble skill gain. Improved ensemble averaging methods that can consider both the 511 

performance and independence of an ensemble member are desirable. Improved ensemble 512 

optimization methods that can select a skillful and independent subset are also crucial for 513 

reducing the high computation cost of the multi-physics ensembles, which is crucial for 514 

continental-scale operational systems (e.g., NLDAS). 515 
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Table 1. Comparison of the average (AEP) and the median performance between the Noah-MP 836 

multi-physics and the NLDAS multi-model ensembles. 837 

RFC 

Annual cycle Interannual anomaly 

AEP (TSS) 

The median of the 

ensemble performance 

(TSS) 

AEP (TSS) 

The median of the 

ensemble performance 

(TSS) 

Noah-MP NLDAS Noah-MP NLDAS Noah-MP NLDAS Noah-MP NLDAS 

NE 0.96 0.88 0.96 0.92 0.92 0.91 0.92 0.93 

MA 0.96 0.90 0.97 0.93 0.88 0.92 0.89 0.95 

OH 0.91 0.89 0.93 0.96 0.81 0.88 0.82 0.94 

LM 0.95 0.90 0.95 0.90 0.93 0.93 0.95 0.93 

SE 0.90 0.91 0.92 0.90 0.94 0.94 0.94 0.94 

NC 0.90 0.79 0.90 0.77 0.87 0.85 0.90 0.85 

NW 0.88 0.89 0.89 0.88 0.96 0.94 0.96 0.93 

AB 0.95 0.84 0.96 0.83 0.90 0.75 0.92 0.81 

MB 0.90 0.72 0.95 0.68 0.88 0.70 0.90 0.69 

WG 0.74 0.73 0.75 0.84 0.88 0.73 0.90 0.79 

CN 0.74 0.69 0.75 0.65 0.94 0.88 0.96 0.87 

CB 0.82 0.77 0.82 0.79 0.84 0.75 0.85 0.76 

RFC 

mean 
0.88 0.83 0.90 0.84 0.90 0.85 0.91 0.87 
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Table 2. The best member of the Noah-MP multi-physics and the NLDAS multi-model 839 

ensembles in simulating the annual cycle and interannual anomaly over each RFC. The best 840 

members of the two ensembles are shown in italic. The labels are r1 for SIMGM, r2 for 841 

SIMTOP, r3 for NOAHR, and r4 for BATS; b1 for NOAHB, b2 for CLM, b3 for SSiB; t1 for M-842 

O, t2 for Chen97; c1 for Ball–Berry, c2 for Jarvis. 843 

RFC 

Annual cycle Interannual anomaly 

Noah-MP NLDAS Noah-MP NLDAS 

Best 

member 

Best 

TSS 

Best 

member 

Best 

TSS 

Best 

ranking 

Best 

member 

Best 

TSS 

Best 

member 

Best 

TSS 

Best 

ranking 

NE r1b1t1c1 0.99 Mosaic 0.92 44 r4b1t1c2 0.95 VIC 0.94 4 

MA r3b3t2c2 0.98 VIC 0.97 23 r4b1t2c1 0.97 VIC 0.96 6 

OH r4b2t2c1 1.00 VIC 1.00 5 r4b1t2c1 0.94 VIC 0.97 1 

LM r2b1t1c1 0.99 Mosaic 0.91 43 r4b3t1c1 0.99 Noah 0.96 24 

SE r2b1t2c1 0.99 VIC 0.98 11 r2b1t2c1 0.98 Mosaic 0.97 7 

NC r4b1t1c1 0.98 VIC 0.97 9 r4b2t1c1 0.96 VIC 0.93 18 

NW r1b1t1c2 0.96 VIC 0.96 1 r3b2t1c1 0.97 Noah 0.94 37 

AB r2b1t2c1 0.99 VIC 0.89 46 r2b1t2c1 0.95 Mosaic 0.82 44 

MB r3b3t1c2 0.99 Mosaic 0.90 31 r2b1t2c1 0.95 Mosaic 0.78 44 

WG r1b3t1c2 0.93 Noah 0.85 10 r2b3t1c1 0.95 Mosaic 0.90 24 

CN r1b1t1c2 0.91 Mosaic 0.86 7 r2b1t1c2 0.98 Mosaic 0.95 28 

CB r1b3t1c1 0.98 VIC 0.87 10 r1b1t1c1 0.91 VIC 0.87 19 

 844 
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Table 3. The performance of the ensemble mean (PEM) obtained from the Noah-MP multi-846 

physics and NLDAS multi-model ensembles. Note that the ensemble mean is ranked within each 847 

of the two ensembles. 848 

RFC 

Annual cycle Interannual anomaly 

PEM  

(TSS) 

Ensemble 

skill gain 

(TSS) 

Ranking of the 

ensemble mean 
PEM 

(TSS) 

Ensemble 

skill gain 

(TSS) 

Ranking of the 

ensemble mean 

Noah-

MP 
NLDAS 

Noah-

MP 
NLDAS 

Noah-

MP 
NLDAS 

Noah-

MP 
NLDAS 

Noah-

MP 
NLDAS 

Noah-

MP 
NLDAS 

NE 0.98 0.92 0.02 0.04 12 1 0.94 0.96 0.03 0.05 5 0 

MA 0.98 0.92 0.02 0.03 2 1 0.90 0.96 0.02 0.04 23 0 

OH 0.93 0.94 0.02 0.06 23 2 0.82 0.95 0.01 0.06 28 0 

LM 0.98 0.98 0.03 0.08 5 1 0.96 0.98 0.03 0.05 22 0 

SE 0.95 0.98 0.05 0.08 12 1 0.97 0.97 0.04 0.03 3 0 

NC 0.93 0.92 0.03 0.13 12 1 0.90 0.96 0.03 0.11 24 0 

NW 0.90 0.92 0.01 0.03 22 0 0.97 0.96 0.01 0.03 15 0 

AB 0.99 0.98 0.04 0.13 0 1 0.96 0.88 0.05 0.13 0 2 

MB 0.96 0.80 0.06 0.08 18 0 0.94 0.85 0.07 0.15 3 2 

WG 0.77 0.86 0.03 0.13 23 0 0.93 0.79 0.05 0.07 9 1 

CN 0.74 0.69 0.00 0.00 26 0 0.96 0.90 0.01 0.01 24 3 

CB 0.88 0.79 0.06 0.02 8 1 0.89 0.83 0.04 0.09 8 2 

RFC 

mean 
0.92  0.89  0.03  0.07  14  1  0.93  0.92  0.03  0.07  14  1  
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  850 

Figure 1. Spatial patterns of (a) multi-year averaged precipitation (1982 to 2011), (b) potential 851 

evapotranspiration, (c) Budyko’s aridity index, (d) runoff, (e) runoff ratio (R/P), and (f) elevation 852 

over the CONUS. The RFC labels are NE for Northeast, MA for Mid-Atlantic, OH for Ohio, LM 853 

for Lower Mississippi, SE for Southeast, NC for North Central, NW for Northwest, AB for 854 

Arkansas, MB for Missouri, WG for West Gulf, CN for California-Nevada, and CB for 855 

Colorado. 856 

  857 
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 858 

Figure 2. Modeled and observed annual cycle at each RFC. Black dots denote the observations. 859 

The shaded areas denote the maxima and minima of the 48-member Noah-MP ensemble. The 860 

solid red line denotes the Noah-MP multi-physics ensemble mean. The three NLDAS models 861 

(Noah, Mosaic, VIC) and their ensemble mean are denoted by the blue, green, cyan, and dark 862 

golden lines, respectively. The aridity of the 12 RFCs increases monotonically from the top to 863 

bottom, left to right (i.e., the most humid RFC on the top left, and the driest RFC on the bottom 864 

right).  865 
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 867 

Figure 3. Normalized Taylor diagrams showing the performance of the modeled annual runoff 868 

cycle from the 48 Noah-MP multi-physics ensemble members, which are denoted by the red, 869 

green, magenta, and cyan dots for different runoff parameterizations, including SIMGM (r1), 870 

SIMTOP (r2), NOAHR (r3), and BATS (r4), the three NLDAS models (Noah, VIC, and Mosaic) 871 

(blue dot, star, and square), the Noah-MP multi-physics ensemble mean (purple diamond), and 872 

the NLDAS multi-model ensemble mean (dark golden diamond) at each RFC. The black star 873 

denotes the observations. The distance between a point of the model simulation to the 874 

observations denotes the normalized unbiased root-mean-square error. The radical lines denote 875 

the correlation coefficient, while the distance to the origin along the line denotes the normalized 876 

variability.  877 
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 879 

Figure 4. Same as Figure 3, but for the interannual anomaly.  880 
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 881 

Figure 5. The performance ranking of the 48 Noah-MP multi-physics plus and the three NLDAS 882 

multi-model (Noah, VIC, and Mosaic) ensemble members for simulating the annual runoff cycle 883 

over the 12 RFCs. The ranking is across the two ensembles and ranges from 1 to 51 (51 = 48 + 884 

3), from the best to the worst. Stars mark the best member among the two ensembles at each 885 

RFC. White indicates the performance median (a ranking of 26). Red indicates better than the 886 

median and blue indicates worse than the median. The bottom panel shows the ranking of the 887 
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ensemble mean, which ranges from 0 to 52. A ranking of 0 (52) indicates that it outperforms 888 

(underperforms) all the 51 constituent members. The labels are r1 for SIMGM, r2 for SIMTOP, 889 

r3 for NOAHR, and r4 for BATS; b1 for NOAHB, b2 for CLM, b3 for SSiB; t1 for M-O, t2 for 890 

Chen97; c1 for Ball–Berry, c2 for Jarvis. 891 
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 893 

Figure 6. Same as Figure 6, but for the interannual runoff anomaly.  894 
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 896 

Figure 7. The error correlation in simulating the annual runoff cycle (Ancy) and interannual 897 

anomaly (Anom) for the Noah-MP multi-physics and NLDAS multi-model ensembles. There are 898 

1128 (48 × 47/2) samples for the Noah-MP multi-physics ensemble and 3 (3 × 2/2) samples 899 

for the NLDAS multi-model ensemble. The upper and lower quantile lines show the 75th 900 

percentile value and 25th percentile value, respectively. The green and red lines denote the 901 

average and median values, respectively. The black dots denote the outliers, which are outside 902 

1.5 times the interquartile range (the upper quantile value minus the lower quantile value) above 903 

the upper quartile and below the lower quartile. 904 
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 906 

Figure 8. The performance of the Noah-MP multi-physics ensemble mean in simulating the 907 

annual runoff cycle (Ancy, upper subpanel, solid line) and interannual anomaly (Anom, lower 908 

subpanel, dash line) at the 12 RFCs. In each panel, the least independent or the worst-performing 909 

one or five member(s) are removed on the left, whereas the most independent or the best-910 

performing one or five member(s) are removed on the right. The zero indicates the original 911 

Noah-MP ensemble with 48 members. The effect of removing the worst/best-performing 912 

(highest/lowest TSS) members is shown by the red lines and the effect of removing the 913 

least/most independent (highest/lowest ECC) members is shown by the blue lines. 914 
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Figure 7.
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Figure 8.
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