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Abstract

Ocean observations are expensive and difficult to collect. Designing effective ocean observing systems therefore warrants

deliberate, quantitative strategies. We leverage adjoint modeling and Hessian uncertainty quantification (UQ) within the

ECCO (Estimating the Circulation and Climate of the Ocean) framework to explore a new design strategy for ocean climate

observing systems. Within this context, an observing system is optimal if it minimizes uncertainty in a set of investigator-defined

quantities of interest (QoIs), such as oceanic transports or other key climate indices. We show that Hessian UQ unifies three

design concepts. (1) An observing system reduces uncertainty in a target QoI most effectively when it is sensitive to the same

dynamical controls as the QoI. The dynamical controls are exposed by the Hessian eigenvector patterns of the model-data misfit

function. (2) Orthogonality of the Hessian eigenvectors rigorously accounts for redundancy between distinct members of the

observing system. (3) The Hessian eigenvalues determine the overall effectiveness of the observing system, and are controlled

by the sensitivity-to-noise ratio of the observational assets (analogous to the statistical signal-to-noise ratio). We illustrate

Hessian UQ and its three underlying concepts in a North Atlantic case study. Sea surface temperature observations inform

mainly local air-sea fluxes. In contrast, subsurface temperature observations reduce uncertainty over basin-wide scales, and can

therefore inform transport QoIs at great distances. This research provides insight into the design of effective observing systems

that maximally inform the target QoIs, while being complementary to the existing observational database.
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Key Points:8

• We apply Hessian uncertainty quantification (UQ) to the global ocean state es-9

timate ECCO, and explore its use for observing system design.10

• Hessian UQ elucidates oceanic teleconnections that communicate observational11

constraints over basin-scale distances.12

• Going beyond previous adjoint ocean modeling techniques, Hessian UQ rigorously13

assesses redundancy and optimality of observing systems.14

Corresponding author: Nora Loose, nora.loose@colorado.edu

–1–



manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

Abstract15

Ocean observations are expensive and difficult to collect. Designing effective ocean ob-16

serving systems therefore warrants deliberate, quantitative strategies. We leverage ad-17

joint modeling and Hessian uncertainty quantification (UQ) within the ECCO (Estimat-18

ing the Circulation and Climate of the Ocean) framework to explore a new design strat-19

egy for ocean climate observing systems. Within this context, an observing system is op-20

timal if it minimizes uncertainty in a set of investigator-defined quantities of interest (QoIs),21

such as oceanic transports or other key climate indices. We show that Hessian UQ uni-22

fies three design concepts. (1) An observing system reduces uncertainty in a target QoI23

most effectively when it is sensitive to the same dynamical controls as the QoI. The dy-24

namical controls are exposed by the Hessian eigenvector patterns of the model-data mis-25

fit function. (2) Orthogonality of the Hessian eigenvectors rigorously accounts for redun-26

dancy between distinct members of the observing system. (3) The Hessian eigenvalues27

determine the overall effectiveness of the observing system, and are controlled by the sensitivity-28

to-noise ratio of the observational assets (analogous to the statistical signal-to-noise ra-29

tio). We illustrate Hessian UQ and its three underlying concepts in a North Atlantic case30

study. Sea surface temperature observations inform mainly local air-sea fluxes. In con-31

trast, subsurface temperature observations reduce uncertainty over basin-wide scales, and32

can therefore inform transport QoIs at great distances. This research provides insight33

into the design of effective observing systems that maximally inform the target QoIs, while34

being complementary to the existing observational database.35

Plain Language Summary36

Ocean observing faces multiple challenges: high instrument cost, difficult deploy-37

ment logistics via ships, harsh environments, and the necessity to sustain observations38

over long periods of time. Since oceanographers cannot measure the ocean everywhere39

and at all times, they have to carefully choose the location of their instruments. In an40

ideal scenario, measurements from a small number of instruments provide maximum in-41

formation about important ocean metrics, such as poleward ocean heat transport or re-42

gional heat content. This paper presents a new method for planning optimal instrument43

configurations, by combining computer simulations of the global ocean with the math-44

ematics of uncertainty quantification (UQ). As an example, we show that North Atlantic45

temperature measurements taken below the ocean surface do not only tell us about the46

ocean properties at the instrument locations themselves, but reduce uncertainty in re-47

gions hundreds to thousands of kilometers away. We can therefore use existing ocean ob-48

servations to extract more information about the ocean than previously appreciated. Our49

method helps to plan informative observing networks that are complementary to the ex-50

isting observational database.51

1 Introduction52

Sustaining long-term ocean observations to develop climate-quality observational53

records is crucial for understanding the ocean’s role in climate and for evaluating climate54

model simulations (National Academies of Sciences, Engineering, and Medicine, 2017).55

Yet, ocean observing faces multiple challenges: complex deployment operations in fre-56

quently rough weather (or ice) conditions, limited instrument lifetime due to corrosive57

and high-pressure environments, and the necessity of adequate spatial and temporal sam-58

pling. The high cost and logistical challenges call for deliberate, quantitative approaches.59

Here, we leverage adjoint modeling and Hessian uncertainty quantification (UQ) within60

the ECCO (Estimating the Circulation and Climate of the Ocean) framework to explore61

a new design strategy for ocean climate observing systems. This approach has two dis-62

tinguishing features, which, taken together, foster collaboration and system co-design63

within the oceanographic community. First, it gives insights into the physical mecha-64
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nisms that govern optimal design strategies; and second, it quantitatively assesses redun-65

dancy and optimality of an (existing or future) observing system.66

To place our technique into context, we briefly recall existing formal approaches67

to observing system design. Observing System [Simulation] Experiments (OS[S]Es, Fu-68

jii et al., 2019) are the most common computational tools in oceanography to support69

observing system design (e.g., Balmaseda et al., 2007; Gasparin et al., 2019; Griffa et al.,70

2006; Halliwell et al., 2017). OSEs are limited to evaluate existing observing systems,71

whereas OSSEs can test the skill of proposed future observing systems. The design strat-72

egy to be tested in an OSSE has to be specified by the investigator. Once a region is tar-73

geted for monitoring, the proposed observing system design (to be tested in the OSSE)74

is typically guided by best available knowledge of both local hydrographic properties and75

local dynamical balances (Hirschi et al., 2003; Li et al., 2017; Perez et al., 2011). An ex-76

ample are the Atlantic trans-basin mooring arrays OSNAP (Li et al., 2017), RAPID (Hirschi77

et al., 2003), and SAMBA (Perez et al., 2011), which target monitoring of the meridional78

overturning circulation. Key components of each design are western and eastern bound-79

ary moorings, which allow geostrophic transport estimates across each trans-basin sec-80

tion. Although these local considerations support practical local monitoring, it is pos-81

sible that similar constraints could be obtained elsewhere, perhaps with an instrument82

configuration more easily sustained, at reduced cost, or less susceptible to noise. This83

opportunity arises from the appreciation that observed variability at any given location84

is rarely a purely instantaneous response to local forcing. Instead, it is the superposi-85

tion of phenomena originating in distant regions and at distinct times, communicated86

through the ocean by advection, diffusion and wave propagation (Heimbach et al., 2011).87

Exploring the possibility of remote constraint is essential for truly optimal observ-88

ing system design. Adjoint models have proven valuable for fully mapping the local and89

remote origins and pathways of variability in targeted quantities, e.g., meridional over-90

turning at given latitudes (Heimbach et al., 2011; Köhl, 2005; Pillar et al., 2016; Smith91

& Heimbach, 2019). Exploiting the rich information exposed by an adjoint model, a num-92

ber of adjoint modeling techniques have previously been used to inform ocean observ-93

ing system design, for example adjoint sensitivity (Heimbach et al., 2011; Masuda et al.,94

2010), observation sensitivity (Köhl & Stammer, 2004; Moore et al., 2011), and singu-95

lar vectors (Fujii et al., 2008; Zanna et al., 2012). Despite giving valuable insight into96

where observations may be useful, none of these latter techniques provide a measure of97

redundancy versus complementarity, nor of optimality of an observing system. These ob-98

stacles are overcome by Hessian UQ: an adjoint-based technique embedded in a varia-99

tional data assimilation system. The Hessian matrix (composed of second derivatives)100

of the cost function J captures the curvature of J with respect to the control variables,101

and allows one to calculate how much uncertainty is reduced with any changes applied102

to the observing system (Thacker, 1989). In contrast to the previous adjoint modeling103

techniques named above, Hessian UQ accounts for data redundancy. It also provides a104

measure of optimality: the more uncertainty an observing system reduces in a defined105

target quantity (on a scale of 0% to 100%), the closer it is considered to being optimal106

for the defined target.107

Hessian UQ has been routinely applied in numerical weather prediction (NWP, Leut-108

becher, 2003) and, more broadly, in computational science and engineering (CSE, Bui-109

Thanh et al., 2012), but it has only seen limited use in the oceanographic community.110

Previous studies have applied Hessian UQ after severely reducing the dimension of the111

space of uncertain parameters in an ad-hoc manner (Kaminski et al., 2015, 2018), or in112

the dual form of ‘representers’ (Bennett, 1985; Moore et al., 2017; Zhang et al., 2010).113

These examples have focused on regional ocean settings and on daily to monthly time114

scales. In this study, we take a step toward fully exploiting Hessian UQ to design ocean115

observing systems that are targeted at climate monitoring in a global context. To this116

aim, we apply Hessian UQ within the global ocean state estimation framework of the Es-117
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timating the Circulation and Climate of the Ocean (ECCO) consortium (Heimbach et118

al., 2019), and elucidate oceanic teleconnections that communicate observational con-119

straints over basin-scale distances and monthly to interannual time scales.120

In ocean climate research, the goal of an observing system is usually to accurately121

estimate certain quantities of interest (QoIs): forecasts or climate indices that are dif-122

ficult or impossible to observe directly. Examples of QoIs include transports across cer-123

tain oceanographic passages, ocean heat content near the polar ice sheets, regional sea124

level anomalies, or future sea-ice extent. We therefore focus on the information that an125

observing system contains about a given QoI, here referred to as the observing system’s126

‘proxy potential’ for the QoI on a scale of 0% to 100% (Loose et al., 2020). Proxy po-127

tential is defined by way of Hessian UQ, as the reduction in QoI uncertainty that would128

be achieved if the observing system was added to the ocean state estimate. Importantly,129

proxy potential can be assessed not only for existing but also for future observing sys-130

tems, because it does not require the actual measurement values of the observations (only131

their locations, times, types, and uncertainties).132

Loose et al. (2020) provided interpretations of Hessian UQ and proxy potential for133

idealized cases, in which an observing ‘system’ consists of only a single and noise-free ob-134

servation. Then, the observation’s proxy potential for a QoI reflects the degree to which135

adjustment mechanisms are shared between the observation and QoI. In this simple case,136

proxy potential can be understood as the dynamical analogue of statistical correlation137

(squared) between observation and QoI, with the important distinction that proxy po-138

tential accounts only for covariability that has dynamical underpinnings. The goal of this139

study is to leverage Hessian UQ to generalize the notion of proxy potential introduced140

by Loose et al. (2020) in three important ways (section 2): first, by extending this con-141

cept from a single observational asset to full observing systems; second, by quantifying142

observational redundancy versus complementarity; and third, by accounting for obser-143

vational noise.144

We illustrate the concepts of Hessian UQ and proxy potential in a North Atlantic145

case study (section 3). To provide a clear understanding of Hessian UQ, our case study146

focuses on observing systems that are comprised of only a few observations. We then dis-147

cuss how our approach and the dynamical insights obtained generalize to the design of148

full-fledged observing systems, including thousands to millions of observations (section 4).149

2 Uncertainty Quantification and Proxy Potential150

2.1 Ocean state estimation151

Ocean state estimation optimally fits an ocean general circulation model (GCM)152

to the available observations in a dynamically and kinematically consistent way. For this,153

one solves an inverse problem: given an observing system (gray box, Fig. 1), one adjusts154

the control vector u = (u1, . . . , uN )T (green box, Fig. 1), such as to minimize the scalar155

cost function156

J(u) =
1

2
(y −Obs(u))T R−1 (y −Obs(u))
︸ ︷︷ ︸

Jmisfit(u)

+
1

2
(u− u0)T B−1 (u− u0)
︸ ︷︷ ︸

Jprior(u)

. (1)157

The control variables u1, . . . , uN (i.e., the elements of the control vector u) are the un-158

certain input variables of the model, and consist not only of initial conditions (as com-159

mon in NWP), but also of atmospheric forcing variables and uncertain model param-160

eters (green box, Fig. 1). The function Jmisfit(u) measures the misfit between the vec-161

tor of actual observations, y = (y1, . . . , yM )T (gray box, Fig. 1), and the vector of sim-162

ulated observations, Obs(u) = (Obs1(u), . . . ,ObsM (u))T (pink box, Fig. 1), given the163

input variables u. The function Jprior(u) penalizes deviations from a first-guess u0 of un-164

certain inputs. The M × M matrix R and N × N matrix B are chosen error covari-165

–4–
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control variables u, prior covariance B
initial conditions atmospheric forcing model parameters

u1 u2 uN

ocean general circulation model

Obs1(u) ObsM (u)

simulated observations Obs(u)

J(u) = Jmisfit(u) + Jprior(u)

y1 yM

QoI(u)

observations y, noise covariance R

observing
system

(UQ1)

(UQ2)

Figure 1. Workflow for Hessian uncertainty quantification (UQ) in ocean state estimation.

Starting from an observing system (gray box), inverse uncertainty propagation along path (UQ1)

reduces the uncertainty in the control variables (green box), see section 2.2. A subsequent for-

ward uncertainty propagation along path (UQ2) reduces the uncertainty in a chosen quantity

of interest (QoI, purple box), see section 2.3. Green and black arrows indicate propagation of

prior and posterior uncertainty, respectively. The degree to which the observing system reduces

uncertainty in the QoI, via a composite uncertainty propagation along paths (UQ1) and (UQ2),

is referred to as the observing system’s proxy potential for the QoI (section 2.4).
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ances, spelling out the assumption that observational noise and prior uncertainties fol-166

low the Gaussian distributions N (0,R) and N (u0,B), respectively (Tarantola, 2005).167

The solution of the inverse problem is the minimizer of the cost function, umin =168

minu J ; that is, a choice of control variables. The ocean state estimate itself is obtained169

by running the GCM with inputs umin.170

2.2 Inverse uncertainty propagation171

To quantify uncertainties in the solution umin of the inverse problem, one propa-172

gates observational information and uncertainty along path (UQ1) (Fig. 1). This inverse173

uncertainty propagation results in the posterior probability distribution of the control174

variables, given the observations. In practice, it is not feasible to compute the full pos-175

terior probability distribution, nor to map this distribution onto the full ocean state space.176

We therefore need to appeal to approximation methods.177

The posterior probability distribution of the control variables can be approximated178

by the Gaussian N (umin,P), with N ×N covariance matrix P equal to179

P = B −
M ′∑

i=1

λi
λi + 1

(
B1/2 vi

)(
B1/2 vi

)T
. (2)180

Here, {vi, λi}M
′

i=1 is the set of orthonormal eigenvectors vi with associated non-zero eigen-181

values λ1 ≥ . . . ≥ λM ′ > 0 of the misfit Hessian:182

Hmisfit = BT/2 AT R−1 A B1/2 =

M ′∑

i=1

λiviv
T
i . (3)183

In eq. (3), the entries of the M ×N matrix A are the sensitivities184

Ai,j =
∂(Obsi)

∂uj
, (4)185

evaluated at umin. Furthermore, B1/2 denotes an N×N matrix which has an inverse,186

B−1/2, and satisfies B1/2 BT/2 = B (where BT/2 is the transpose of B1/2). The N ×187

N matrix Hmisfit is the linearized Hessian (or Gauss-Newton Hessian, Chen, 2011) of the188

rescaled model-data misfit term, Jmisfit(ũ) (eq. (1)). The rescaling is performed through189

the change of variables ũ = B−1/2 u, and can be thought of as a nondimensionaliza-190

tion if B is diagonal. In summary, eq. (2) phrases the posterior uncertainty P as the prior191

uncertainty B, reduced by any information {vi, λi} obtained from the observations. Ex-192

pression (2) has been known and used in the NWP and CSE communities for many years193

(see, e.g., Bui-Thanh et al., 2012; Leutbecher, 2003). A self-contained derivation is rel-194

egated to the supporting information (Text S1).195

Next, we inspect the set {vi, λi} in more detail as it fully characterizes the infor-196

mation obtained from the observations. The eigenvectors {vi}M
′

i=1 of the misfit Hessian197

(eq. (3)) are the data-informed directions within the control space. Along a data-informed198

direction vi, the function Jmisfit(ũ) has curvature λi > 0 (Fig. 2(a)). The eigenvalue199

λi captures the strength of the data constraint imposed on the control direction vi, with200

large λi corresponding to a strong observational constraint. The control directions along201

which Jmisfit(ũ) is not curved are not informed by the observations (Fig. 2(b)). Note that202

M ′ ≤ min(M,N); that is, the number of independent data-informed directions, M ′,203

is less than or equal to the number of observations, M , and the number of control vari-204

ables, N .205

If an observing system consists of only a single observation (M = 1) with simu-206

lated counterpart Obs1(u) = Obs(u) and observational noise variance R = ε2 > 0,207

–6–
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(a) (b)

data-informed
direction vi

control space

Jmisfit(ũ)

�i

curvature

ũmin non-informed
direction

control space

Jmisfit(ũ)

ũmin

curvature = 0

(c)

data-informed subspace

1

control space

nullspace

qobs

qnull

q

Figure 2. (a),(b) Curvature of the nondimensionalized model-data misfit function, Jmisfit(u),

at the cost function minimizer umin, along two directions in the control space: (a) the data-

informed direction vi (eq. (3)) and (b) a non-informed direction. (c) The direction of interest, q

(eq. (10)), decomposed into q = qobs + qnull. The data-informed component, qobs, is the pro-

jection of q onto the data-informed subspace. Parts of the unit sphere of the control space are

displayed in black. The larger the radius of the orange dashed circle, defined by the length of

qobs, the higher the dynamical proxy potential of the considered observing system for the QoI.
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Figure 2. (a),(b) Curvature of the rescaled model-data misfit function, Jmisfit(ũ), at the cost

function minimizer ũmin, along two directions in the control space: (a) the data-informed di-

rection vi (eq. (3)) and (b) a non-informed direction. (c) The direction of interest, q (eq. (10)),

orthogonally decomposed into q = qobs + qnull. The data-informed component, qobs, is the pro-

jection of q onto the data-informed subspace. The component qnull lies in the nullspace, i.e.,

the subspace that is not informed by the data. Parts of the unit sphere of the control space are

displayed in black, and q has unit length. The larger the radius of the orange dashed circle, de-

fined by the length of qobs, the higher the dynamical proxy potential of the considered observing

system for the QoI.
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the misfit Hessian (eq. (3)) simplifies to Hmisfit = λ1 v1v
T
1 , with208

v1 = (σB
Obs)

−1
[
BT/2∇uObs

]
∈ RN , λ1 =

(σB
Obs)

2

ε2
> 0. (5)209

Here, RN refers to the N-dimensional vector space of real numbers, and we denote ∇uObs =210

(∂(Obs)/∂u1 , . . . , ∂(Obs)/∂uN )T , evaluated at umin, and211

σB
Obs =

∥∥∥BT/2∇uObs
∥∥∥ > 0. (6)212

Put differently, the only data-informed direction is spanned by the prior-weighted sen-213

sitivity vector BT/2∇uObs (eq. (5)), where ‘prior-weighting’ is through multiplication214

by BT/2. Similarly, for an observing system with more than one observation (M > 1),215

the data-informed subspace of the control space is spanned by the M prior-weighted sen-216

sitivity vectors BT/2∇uObs1 , . . . , BT/2∇uObsM . To obtain the eigenvectors of the mis-217

fit Hessian, one has to orthonormalize and rotate these M vectors within the data-informed218

subspace (Appendix A). In particular, the eigenvectors of our misfit Hessian – which con-219

tains the second derivatives of Jmisfit – are fully determined by first (rather than second)220

derivatives of the observed quantities, i.e., by ∇uObsi.221

For M = 1, the observational noise, ε2, appears in the denominator of λ1 (eq. (5)).222

In particular, for vanishing ε2, the eigenvalue λ1 tends to infinity. This fact generalizes223

to the case M > 1: in the limit of vanishing observational noise (R ↘ 0), the eigen-224

values λi of the misfit Hessian (eq. (3)) tend to infinity,225

λi ↗∞. (7)226

That is, Jmisfit(ũ) becomes increasingly curved (Fig. 2(a)) and the constraint by the ob-227

servations increasingly strong.228

2.3 Forward uncertainty propagation229

To assess the observational constraints on a QoI, the inverse uncertainty propaga-230

tion along path (UQ1) has to be followed by a forward uncertainty propagation along231

path (UQ2) (Fig. 1). In other words, we quantify how the uncertainty reduction in the232

controls, due to the new observational information, reduces uncertainty in the QoI, a di-233

agnostic of the model evaluated at umin. Forward propagation of prior uncertainties (B,234

dotted green arrow) and posterior uncertainties (P, dotted black arrow) along path (UQ2)235

results in the prior and posterior QoI variances (see Isaac et al., 2015, or Text S2 in sup-236

porting information):237

(σC
QoI)

2 = (∇uQoI)
T

C (∇uQoI) =
∥∥∥C1/2∇uQoI

∥∥∥
2

, C ∈ {B,P}. (8)238

We infer the prior-to-posterior reduction in QoI uncertainty, relative to the prior uncer-239

tainty:240

∆σ2
QoI =

(σB
QoI)

2 − (σP
QoI)

2

(σB
QoI)

2
=

M ′∑

i=1

λi
λi + 1

(q • vi)
2 ∈ [0, 1). (9)241

The second equality in eq. (9) holds by virtue of eqs. (8) and (2). Here, {(vi, λi)}M
′

i=1 are242

the eigenvectors and eigenvalues of the misfit Hessian (eq. (3)), • denotes the ‘dot’ (or243

Euclidean inner) product between two vectors in RN , and244

q = (σB
QoI)

−1
[
BT/2∇uQoI

]
∈ RN . (10)245

The unit vector q is of key interest: it is the direction within the control space to be con-246

strained in order to inform the QoI. It can be written as the orthogonal decomposition247

q = qobs +qnull (Fig. 2(c)). qobs is the component that lies in the data-informed sub-248

space, given by the projection qobs =
∑M ′

i=1(q•vi) vi. The component qnull lies in the249

orthogonal complement of the data-informed subspace: the null space, i.e., the subspace250

that is not informed by the data. Uncertainty is only reduced along the data-informed251

component, qobs, not along the nullspace component, qnull.252

–8–
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2.4 Dynamical and effective proxy potential253

Relative reduction in QoI uncertainty, ∆σ2
QoI (eq. (9)), rigorously quantifies the dy-254

namical constraints of an observing system (gray box, Fig. 1) on a QoI (purple box, Fig. 1),255

as the result of the composite uncertainty propagation along paths (UQ1) and (UQ2).256

We refer to ∆σ2
QoI as the proxy potential of the observing system for the QoI (Loose et257

al., 2020). Building on eq. (9), we distinguish between dynamical proxy potential258

DPP(Obs1, . . . ,ObsM ; QoI) =

M ′∑

i=1

(q • vi)
2 ∈ [0, 1] (11)259

and effective proxy potential260

EPP(Obs1, . . . ,ObsM ; QoI) =

M ′∑

i=1

λi
λi + 1

(q • vi)
2 ∈ [0, 1) (12)261

of the examined observing system for the QoI. Recall that M ′ ≤ M is the number of262

independent data constraints, characterized by the eigenvectors and eigenvalues {vi, λi}M
′

i=1263

of the misfit Hessian (eq. (3)). Geometrically, DPP is equal to the squared length of qobs,264

the data-informed component of q in control space (Fig. 2(c)). Note that EPP is smaller265

than DPP, because all factors ηi = λi/(λi + 1) are smaller than 1. For vanishing ob-266

servational noise, EPP approaches DPP, since all eigenvalues λi tend to infinity (eq. (7)),267

and consequently all factors ηi = λi/(λi+1) tend to 1 (see also Appendix B and Fig. 7).268

The bounds for DPP and EPP correspond to the cases for which the observing system269

provides no constraint (EPP = DPP = 0), and for which it serves as a perfect proxy for270

the QoI, in the case of noise-free observations (DPP = 1) and noisy observations (EPP271

↗ 1).272

If the observing system under consideration consists of only a single observation273

(M = 1), eq. (11) simplifies to DPP(Obs1; QoI) = (q • v1)2, which coincides with the274

definition of dynamical proxy potential in Loose et al. (2020, eq. (4) therein).275

3 Application to the North Atlantic276

We illustrate the concepts of Hessian UQ and proxy potential in a North Atlantic277

case study. Section 3.1 describes our experimental setup, including our choice of QoI and278

observations. We then assess proxy potential of the observations for the QoI, for the cases279

of noise-free observations (DPP, section 3.2) and noisy observations (EPP, section 3.3).280

3.1 Experimental Setup281

Our experimental setup coincides with the one described in section 3.1 of Loose282

et al. (2020) and is embedded in the ECCO version 4, release 2 (ECCOv4r2, Forget et283

al., 2015) state estimation framework. We use the Massachusetts Institute of Technol-284

ogy general circulation model (Marshall et al., 1997; Adcroft et al., 2018), in a global con-285

figuration, at a nominal horizontal resolution of 1◦, and with 50 vertical levels. The lin-286

ear sensitivities of the QoI and observed quantities to all control variables (eqs. (5),(10),287

and Appendix A) are computed using the respective adjoint models generated through288

algorithmic differentiation with the commercial tool Transformation of Algorithms in For-289

tran (TAF, Giering & Kaminski, 2003).290

Our QoI is heat transport across the Iceland-Scotland ridge (black line, Fig. 3), de-291

noted by HTISR. We study four different hypothetical temperature observations in the292

North Atlantic, located inside the yellow dots in Fig. 3, and labeled by θA, θB , θC , θD.293

Observations θA and θC are in the Irminger Sea at (40 ◦W, 60 ◦N), observation θB off294

the Portuguese coast at (12 ◦W, 41 ◦N), and θD in Denmark Strait at (28 ◦W, 66 ◦N). θA,295
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Figure 3. Overview map of the case study in this work (modi�ed from Fig. 2 in Loose et

al., 2020). The QoI is heat transport across the Iceland-Scotland ridge (black line), denoted by

HT ISR . The temperature observations � A , � B , � C , � D are located inside the yellow dots. � A ,

� B , � D are subsurface (at 300 m depth), � C at the sea surface. The arrows show approximate

pathways of near-surface currents carrying warm Atlantic waters (orange) and cold Arctic waters

(purple): NAC = North Atlantic Current; NwAC = Norwegian Atlantic Current; IC = Irminger

Current.

{10{
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Table 2. Observational noise ε?, prior uncertainty σB
? (eq. (6)), sensitivity-to-noise ratio λ?

(eq. (18)), and effectiveness η? = λ?/(λ? + 1), for each observation θ?, ? = A,B,C,D.

Obs Location ε? σB
? λ? λ?/(λ? + 1)

θA Irminger Sea (subsurface) 0.1 ◦C 0.048 ◦C 0.23 19%
θB Portuguese Coast (subsurface) 0.1 ◦C 0.059 ◦C 0.35 26%
θC Irminger Sea (surface) 0.1 ◦C 0.230 ◦C 5.29 84%

0.2 ◦C 0.230 ◦C 1.32 57%
0.3 ◦C 0.230 ◦C 0.59 37%

θD Denmark Strait (subsurface) 0.1 ◦C 0.071 ◦C 0.50 33%

surface observation θA (Fig. 6(l)). Thus, θC does not lead to a gain in DPP when added430

to θA (Fig. 6(d)).431

Finally, we are interested in the maximum achievable DPP for HTISR, obtained by432

combining all four observations in our case study. Viewed within the three-dimensional433

subspace that is informed by the observing system {θA, θB , θD} (Fig. 5(f)), the {θA, θD}-434

informed yellow plane is almost orthogonal to the {θA, θB}-informed green plane (where435

the black plane would be exactly orthogonal to the green plane). Hence, when adding436

θD to the observing system {θA, θB}, the gain in DPP (green-yellow hatched, Fig. 6(e))437

almost coincides with (q•(vD)⊥)2 (yellow hatched, Fig. 6(c)), leading to a total DPP438

of 35% (Fig. 6(e)). Completing the observing system by θC does not increase the DPP439

any further (Fig. 6(f)).440

3.3 Noisy Observations441

So far, our analysis has assumed noise-free observations. Next, we study the EPP442

of our observations θ?; this notion does account for observational noise, as encoded in443

the Gaussian noise matrix R (eq. (1)). Recall that the EPP of θ? for HTISR is equal to444

the relative uncertainty reduction in HTISR that is achieved when adding θ? to the un-445

derlying state estimation framework (eq. (12)). Following the common assumption of un-446

correlated observation errors (e.g., Forget et al., 2015), we only need to specify the di-447

agonal entries of R, i.e., the error variance ε2
? of each observation θ?. We assign ε? =448

0.1 ◦C for all observations (Table 2). We also consider the impact of varying εC , by test-449

ing for εC = 0.2 ◦C and εC = 0.3 ◦C. The rationale for this addition is that climato-450

logical surface temperature, measured by θC , is more variable than climatological sub-451

surface temperature (Locarnini et al., 2013), and can therefore be expected to be more452

noisy.453

3.3.1 Sensitivity-To-Noise Ratio454

The strength of the constraint provided by each individual observation θ? is quan-
tified by the eigenvalue λ? (eq. (5)) corresponding to the θ?-informed direction v? (Fig. 2(a)).
It is given by

λ? =
(σB
? )2

ε2
?

=
1

ε2
?

4∑

m=1

∑

i,j

(
∂θ?

∂Fm(i, j)
∆Fm

)2

. (18)

λ? describes the sensitivity-to-noise ratio (SensNR): it is large if either θ? has high over-455

all prior-weighted sensitivity, (σB
? )2, or if the observational noise ε2

? is small. Since sur-456

face temperature is much more sensitive to atmospheric forcing than subsurface temper-457

ature (σB
C � σB

? , ? = A,B,D, Table 2), the SensNR of θC is higher than that of θA, θB , θD458

(Fig. 7). This remains true if the noise variance for θC (i.e., ε2
C) is assumed four – or even459

nine – times as large as that of the subsurface observations (Fig. 7).460
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Table 1. Observational noise "?, prior uncertainty �B
? , sensitivity-to-noise ratio �?, and e↵ec-

tiveness �?/(�? + 1), for each observation ✓?, ? = A, B, C, D.

Obs Location "? �B
? �? �?/(�? + 1)

✓A Irminger Sea (subsurface) 0.1 �C 0.048 �C 0.23 19%
✓B Portuguese Coast (subsurface) 0.1 �C 0.059 �C 0.35 26%
✓C Irminger Sea (surface) 0.1 �C 0.230 �C 5.29 84%

0.2 �C 0.230 �C 1.32 57%
0.3 �C 0.230 �C 0.59 37%

✓D Denmark Strait (subsurface) 0.1 �C 0.071 �C 0.50 33%

0 1 2 3 4 5
0%

50%

100%

�

�
/
(�

+
1)

E↵ectiveness of observation

"? = 0.1 �C: ✓A ✓B ✓C ✓D

"? = 0.2 �C: ✓C

"? = 0.3 �C: ✓C

noise-free observations

Figure 1. Black curve: the function � 7! �/(� + 1), mapping the sensitivity-to-noise ratio, �

(Eq. (1)), onto the e↵ectiveness, �/(� + 1), of an observation. The e↵ectiveness of an observation

indicates what fraction of the dynamical proxy potential can be retrieved. The colored lines show

the pairs {�?,�?/(�? + 1)} for the four observations ✓?, cf. Table 1. An observation that falls into

the light gray rectangle has � < 1.
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Figure 7. The black curve is the function λ 7→ λ/(λ + 1). The colored lines map the SensNR

of θ? (λ?, eq. (18), circles) to the effectiveness of θ? (η? = λ?/(λ? + 1), diamonds), cf. the values

in Table 2. An observation that falls into the light gray rectangle has SensNR smaller than 1.

Note that (σB
? )2 is equal to the prior uncertainty in the observed quantity θ? (cf.461

eq (8)), i.e. the uncertainty given the prior knowledge in the ocean state estimate, be-462

fore taking the actual measurement. Thus, observations with SensNR smaller than 1 (here:463

θA, θB , θD, gray rectangle in Fig. 7) are characterized by a prior uncertainty, (σB
? )2, that464

is smaller than their assumed observational uncertainty, ε2
?.465

The EPP of θ? for HTISR is given by EPP? = η? ·DPP? (eq. (12)), with factor466

η? =
λ?

λ? + 1
< 1.467

The factor η? indicates what fraction of DPP? can be retrieved and will therefore be re-468

ferred to as the ‘effectiveness’ of the observation θ?. Note that, in contrast to DPP?, the469

observation’s effectiveness, η?, is independent of the QoI under consideration. Instead,470

it is solely determined by the observation’s SensNR λ?. Since the function λ 7→ λ/(λ+471

1) increases monotonically with λ (Fig. 7), observations with higher SensNRs are more472

effective. Therefore, the effectiveness of the surface observation θC is higher than that473

of the subsurface observations θA, θB , θD (Fig. 7). In fact, the effectiveness of θA, θB , θD474

is less than 50%, due to their SensNR being less than 1 (gray rectangle, Fig. 7).475

In this section, we studied the SensNR, λ?, and associated effectiveness, η?, of each476

individual observation θ?. In the next section, we will establish a connection between477

the λ? and the set of eigenvalues {λi}4i=1, where the latter set characterizes the observ-478

ing system that is jointly formed by {θA, θB , θC , θD}.479

3.3.2 Combining Noisy Observations480

We now combine all four temperature observations of our case study, while tak-481

ing into account their observational noise. In eq. (1), the resulting observing system is482

–18–
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(b)

�1: 1.41

⌘1: 58%

v1

(c)

�2: 0.65

⌘2: 39%

v2

(d)

�3: 0.32

⌘3: 24%

v3

(e)

�4: 0.04

⌘4: 4%

v4

(f)

Figure 8. Eigen-decomposition {vi,�i}4
i=1 of Hmisfit (eq. (3)) for the observing system in

eq. (19), with "? = 0.1 �C for ? = A, B, D and "C = 0.2 �C. (a),(b): Orientation of the eigen-

vectors v1,v2,v3,v4 (purple vectors/dots) within the (a) {✓A, ✓C}-informed, (b) {✓A, ✓B , ✓D}-

informed subspace of the control space (cf. Fig. 6(l), Fig. 5(f)). The ellipses in (a) show the

contour lines of Jmisfit(u). (c)-(f): ⌧y component of the four eigenvectors. Each inlet reports the

eigenvalue �i, and the associated e↵ectiveness �i/(�i + 1) (diamonds).
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Figure 8. Eigen-decomposition {vi, λi}4i=1 of Hmisfit (eq. (3)) for the observing system in

eq. (19), with ε? = 0.1 ◦C for ? = A,B,D and εC = 0.2 ◦C. (a),(b): Orientation of the eigen-

vectors v1,v2,v3,v4 (purple vectors/dots) within the (a) {θA, θC}-informed, (b) {θA, θB , θD}-
informed subspace of the control space (cf. Fig. 6(l), Fig. 5(f)). The ellipses in (a) show the

contour lines of Jmisfit(ũ). (c)-(f): τy component of the four eigenvectors. Each inset reports the

eigenvalue λi, and the associated effectiveness ηi = λi/(λi + 1).
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represented by483

Obs =
(
θA, θB , θC , θD

)T
, R = diag(ε2

A, ε
2
B , ε

2
C , ε

2
D), (19)484

where the latter denotes a diagonal 4×4 matrix, with diagonal entries equal to the noise485

variances ε2
?, chosen as in Table 2. For the sake of brevity, we focus on the case εC =486

0.2 ◦C (cases with alternative choices for εC are presented in the supporting information,487

Fig. S.1). We compute the eigenvectors and eigenvalues, {vi, λi}4i=1, of the misfit Hes-488

sian Hmisfit (eq. (3)) as described in Appendix A.489

By definition, the first eigenvector v1 points in the direction of maximal curvature490

of Jmisfit(ũ). This direction is almost aligned with the θC-informed direction, spanned491

by vC (Fig. 8(a)), because the surface observation θC has a much higher SensNR than492

the remaining observations (Fig. 7). The remaining eigenvectors, v2,v3,v4, have little493

contribution from θC (purple dots, Fig. 8(a)), and are instead a linear combination of494

v?, ? = A,B,D (Fig. 8(b)). The τy component of v2 (Fig. 8(d)) extracts the dominant495

sensitivity patterns along the eastern boundary of the North Atlantic (region (I)), shared496

by θA, θB , and θD, and in the northeast Atlantic and the Nordic Seas (region (II)), shared497

by θA and θD (Figs. 5(a)-(c)). The τy component of v3 (Fig. 8(e)) is governed by sen-498

sitivities in region (I), as set by θB . Meanwhile, the τy component of v4 (Fig. 8(f)) is499

dominated by sensitivity dipoles local to the three observing sites (yellow dots), which500

emerge due to the effect of Ekman pumping.501

The eigenvalues λi (inserted in Figs. 8(c)-(f)) are closely linked to the SensNRs λ?502

(Table 2) of all observations θ? involved, via the following relations (Bunch et al., 1978):503

4∑

i=1

λi = λA + λB + λC + λD and λ1 ≥ max{λA, λB , λC , λD}. (20)504

Each eigenvalue λi determines the effectiveness, ηi = λi/(λi + 1), of the eigenvector505

vi (insets in Figs. 8(c)-(f) and diamonds in Fig. 9(b)). We consider how the effective-506

ness of the observing system components changes with observational noise, and inflate507

the observational noise covariance by a factor α, to αR. As α varies from 0 (no noise)508

to 1 (full noise), effectiveness decays as λ/(λ+α), from 100% to λ/(λ+1) (eq. (B1)).509

Here, λ is a placeholder for either a SensNR λ? (Fig. 9(a)) or an eigenvalue λi (Fig. 9(b)).510

The decay in effectiveness of the surface observation θC (Fig. 9(a)) as well as v1 (Fig. 9(b))511

is slower than that of the remaining observations and eigenvectors.512

Decay in effectiveness causes decay in proxy potential. When considering individ-513

ual observations θ?, inflating observational noise leads to a decay in proxy potential ac-514

cording to λ?/(λ? + α) · (q • v?)2 (Fig. 9(c)). If instead, the full observing system is515

considered jointly, the decay in proxy potential is given by516

4∑

i=1

λi
λi + α

(q • vi)
2, (21)517

see Fig. 9(d) (and Appendix B). The expression in equation (21) involves the eigenvec-518

tors and eigenvalues of the misfit Hessian. For noise-free observations, proxy potential519

is equal to DPP (α = 0, pentagons in Figs. 9(c),(d), eq. (11)). It decays to EPP for fully520

inflated noise (α = 1, squares in Figs. 9(c),(d), eq. (12)). Even though the surface ob-521

servation θC has highest SensNR and, thus, slowest decay in effectiveness (Fig. 9(a)), its522

proxy potential for HTISR is lower than that of the subsurface observations θA and θD,523

due to its almost negligible DPP at the very outset α = 0 (Fig. 9(c)). Through a sim-524

ilar argument, v1 contributes less to proxy potential than v2 and v3 (Fig. 9(d)), despite525

its relatively highest effectiveness (Fig. 9(b)). The insignificance of θC implies that proxy526

potential of the observing system {θA, θB , θC , θD} for HTISR is essentially insensitive to527

the choice of the observation error εC (Figs. S1(g)-(i)).528
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Figure 9. (a),(b) Decay in e�ectiveness of (a) each individual observation � ? and (b) the

eigenvectorsv i of the combined observing system (eq. (19)), as a function of � . Incresasing the

parameter � inates the observational noise ( � R ) from no noise (� = 0) to full noise ( � =1).

Without noise, all observations have an equal e�ectiveness of 100%. The colored diamonds re-

peat the values for � /( � + 1) from Fig. 7 and Figs. 8(c)-(f). (c),(d) Decay in proxy potential

for the QoI, HT ISR , again as a function of � . Without noise, proxy potential is equal to DPP

(pentagons, cf. Figs. 4(b)-(e), Fig. 6(f), eq. (11)); but decays to EPP (squares, eq. (12)) for fully

inated noise. The black dashed curve in (c) coincides with the one in (d), and shows proxy

potential for all observations combined.
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The success of Hessian UQ relies on approaches that are more computationally ef-600

ficient, two of which we consider: first, an a-priori reduction, and second, a data-informed601

reduction of the control space dimension. In this paper we have pursued the second ap-602

proach, as further discussed in the next paragraph. In contrast, Kaminski et al. (2015,603

2018) follow the first approach, by aggregating and adjusting their control variables uni-604

formly over large regions (e.g., Fig. 2 in Kaminski et al., 2015), rather than on a model605

grid point basis. This ‘large region approach’ reduces their control space to a total of606

about 150 control variables, and it is then feasible to explicitly compute the full Hessian607

(1502 entries). In practice, the large region approach requires to spatially accumulate608

sensitivities of QoIs and observed quantities over the pre-defined large regions, as exem-609

plified in Fig. 10. The eight regions defined in Fig. 10(c) reduce the dimension of our con-610

trol space from O(106) (Table 1) to 8 · 4 = 32. However, the spatial accumulation of611

sensitivities implies that proxy origins and adjustment mechanisms, e.g., along the basin612

boundaries, are no longer resolved (Figs. 10(d),(e)) and proxy potential is artificially lost613

(right yellow label). Note that for other QoIs, this approach could overestimate (rather614

than underestimate) proxy potential and uncertainty reduction.615

Because of the ad-hoc nature of a-priori control space reductions, and the difficul-616

ties it incurs (Fig. 10), we advocate the approach of data-informed reductions of the con-617

trol space for the following reason. Even though the Hessian in our North Atlantic case618

study consists of O(1012) entries (section 3.1), the misfit Hessian is only of rank 4, equal619

to the number of observations involved. The four Hessian misfit eigenvectors with non-620

zero eigenvalues capture the Hessian’s full information. They were extracted efficiently621

while preserving the physical mechanism that led to uncertainty reduction. The concept622

of data-informed control space reduction generalizes to large, complex observing systems,623

e.g., mixed mooring arrays and autonomous instruments, which include thousands to mil-624

lions of observations in time and space. While it becomes intractable to compute all (thou-625

sands to millions of) misfit Hessian eigenvectors, randomized numerical linear algebra626

for low-rank approximations can be used to extract the leading eigenvectors with high-627

est eigenvalues (M ′ � M in eq. (3), Bui-Thanh et al., 2012; Kalmikov & Heimbach,628

2014; Liberty et al., 2007).629

Moore et al. (2017) used a related technique in a regional ocean setting. They de-630

rived data-informed reduced-rank approximations of the Hessian, but with reductions631

sought in the observation space, rather than the control space. The two approaches are632

equivalent (or ‘dual’ to each other), and the implementation of the underlying variational633

data assimilation scheme may determine which of the two approaches is more convenient634

to employ. We argue that an eigen-decomposition in the control space, as suggested here,635

has the appeal of a straightforward dynamical attribution of proxy origins.636

4.4 Limitations637

Some shortcomings of the method presented should be acknowledged. Hessian UQ638

relies on an accurate specification of the prior and noise covariance matrices, B and R639

(eq. (1)). This is emphasized, for instance, by the fact that the relative weight of sur-640

face vs. subsurface observational noise determines the observations’ relative effectiveness,641

and thus the patterns that dominate the leading eigenvectors of the misfit Hessian (Fig. S.1).642

A second shortcoming is that the results may suffer from model dependency, a problem643

common to all methods for model-informed observing system design. A third limitation644

is that Hessian UQ makes a Gaussian approximation of the posterior probability func-645

tion for the uncertain control space and the estimated ocean state space. This approx-646

imation is accurate if the linearized model provides a good representation of the ocean647

dynamics on the time scales investigated. The results by Loose et al. (2020) indicate that648

on the five-year time scale considered, nonlinearity is not a major obstacle, at least not649

in the non-eddy resolving model under consideration. In situations where strong non-650

linearities are barriers to Gaussian approximations, Hessian UQ in combination with non-651
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Gaussian sampling methods have shown promise (Petra et al., 2014), but are yet to be652

explored in ocean and climate modeling. For instance, Stochastic Newton MCMC em-653

ploys a local Gaussian approximation (given by the local inverse Hessian), which is then654

used as a proposal distribution for the posterior probability distribution (Petra et al.,655

2014).656

4.5 Outlook657

In our case study, we made simplifying assumptions regarding the control variables658

and the prior error covariance matrix (Table 1) to enable a clearer understanding of the659

methodology. These simplifications are readily relaxed in future work. Based on the in-660

sights gained here, we aim to compute reduced-rank approximations of the Hessian for661

large observing systems within the ECCO framework. Our case study highlights that662

the stopping criterion for truncating the eigenvalue spectrum has to be chosen carefully,663

because the leading Hessian eigenvectors are not always the most important ones for in-664

forming a given QoI. Indeed, eigenvectors lower down in the spectrum captured impor-665

tant dynamical teleconnections originating from the sensitivity of subsurface (rather than666

surface) observations. Future work should address the interesting question whether the667

abundance of surface observations (available from satellite altimetry) and their mutual668

complementarity (due to their local sensitivity) may be able to cover for the large-scale669

sensitivities of subsurface observations.670

The technique presented in this paper is complementary to the more widely used671

OSSEs. Hessian UQ elucidates dynamical teleconnections that communicate observa-672

tional constraints – via ocean currents, wave dynamics, Ekman dynamics, and geostro-673

phy – over basin-scale distances and on monthly to interannual time scales. It provides674

an approach for guiding the design of observing systems that (1) maximize the informa-675

tion about (possibly remote) QoIs that are difficult or impossible to observe directly, and676

(2) are complementary to the existing observational database. We hope that Hessian UQ,677

in combination with OSSEs and other tools, will be more widely used for tackling the678

grand community challenge of co-designing a cost-effective and long-term Atlantic ob-679

serving system in the coming years.680

Appendix A Eigen-Decomposition of the Misfit Hessian681

For an observing system with M observations, the eigen-decomposition of the mis-682

fit Hessian (eq. (3)) can be computed from the prior-weighted sensitivity vectors ci =683

BT/2∇uObsi via the following two steps: (M.1) a QR decomposition of BT/2 AT in RN684

and (M.2) and an eigen-decomposition in RM .685

In step (M.1), the QR decomposition of BT/2 AT =
(

c1 · · · cM
)

is computed686

via the Gram-Schmidt process:687

• w̃1 := c1, w1 = ‖w̃1‖−1 w̃1688

• For j = 2, . . . ,M : w̃j = cj −
∑j−1
i=1 (cj •wi) wi, wj = ‖w̃j‖−1 w̃j689

Then the N ×M matrix Q :=
(

w1 . . . wM

)
and the M ×M matrix690

R̃ =




‖w̃1‖ w1 • c2 w1 • c3 · · ·
0 ‖w̃2‖ w2 • c3 · · ·
0 0 ‖w̃3‖ · · ·
...

...
...

. . .


691

provide the desired QR decomposition, i.e., they satisfy BT/2 AT = QR̃. In step (M.2),692

one finds an orthogonal M ×M matrix O and λ1 ≥ . . . ≥ λM ≥ 0 such that693

R̃ R−1 R̃T = O diag(λ1, . . . , λM ) OT ,694

–25–



manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

by means of dense matrix algebra. Combining steps (M.1) and (M.2) gives695

Hmisfit = BT/2 AT R−1 A B1/2 = Q R̃ R−1 R̃T QT = QO diag(λ1, . . . , λM ) OTQT ,696

and the ith column of QO contains the ith eigenvector of Hmisfit, with corresponding eigen-697

value λi ≥ 0. The eigenvectors corresponding to non-zero eigenvalues are the data-informed698

directions v1, . . . ,vM ′ .699

Step (M.2) is feasible, as long as the number of observations, M , is small enough700

to allow for dense matrix algebra in RM . For large M , one has to resort to randomized701

numerical linear algebra for low-rank approximations of the misfit Hessian. Such ran-702

domized algorithms continue to follow the outlined steps (M.1) and (M.2), except that703

the decomposition in (M.1) is substituted by an approximate, low-rank QR factoriza-704

tion (Halko et al., 2011; Liberty et al., 2007).705

Appendix B Inflating Noise and Prior Covariances706

Modifying the noise covariance matrix via R → αR reflects a uniform deflation707

(0 < α < 1) or inflation (α > 1) of observational noise. This modification results in a708

reciprocal scaling of the misfit Hessian, Hmisfit → Hmisfit/α. Here, we substituted αR709

for R in eq. (3), and assume the sensitivity matrix A unchanged (even though its eval-710

uation point may change). The scaled misfit Hessian, Hmisfit/α, has unchanged eigen-711

vectors vi, and new eigenvalues λi/α. Therefore, effectiveness scales as712

λ

λ+ 1
→ (λ/α)

λ/α+ 1
=

λ

λ+ α
(B1)713

and effective proxy potential (eq. (12)) as in eq. (21).714

We note that the same scaling of the misfit Hessian, Hmisfit → Hmisfit/α, can be715

achieved by modifying the prior covariance matrix via B→ B/α, while keeping the noise716

covariance matrix unchanged. The value α = 0 in Fig. 9 corresponds therefore either717

to the limit of vanishing observational noise or inifinite prior uncertainty. Similarly, α =718

1 represents not only the case of unchanged R and B, but also the case of γR and B/γ,719

for any γ > 0.720
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Text S1. Inverse Uncertainty Propagation. The Bayesian approach states the

deterministic inverse problem (eq. (1)) as one of Bayesian inference over the space of

unknown control variables, which are to be inferred from the observations and the ocean

GCM dynamics. The solution is given by the posterior probability density function

πpost(u|y) ∝ e−J(u). Hence, the deterministic and Bayesian formulation of the inverse

problem are interconnected by the fact that the deterministic least squares cost function

J is the negative log-posterior in the Bayesian interpretation. Furthermore, the deter-

ministic solution umin is the Maximum a Posteriori (MAP) point, i.e., the most likely
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solution, in the Bayesian framework. For more details, the reader is referred to the books

by Tarantola (2005); Law, Stuart, and Zygalakis (2015).

To make the computation of the posterior probability density function πpost(u|y) com-

putationally tractable, a linearization of the observation operator about the MAP Point,

umin, is necessary (e.g., Bui-Thanh et al., 2012). This yields

Obs(u) ≈ Obs(umin) + A(u− umin), (S.1)

where A = ∂(Obs)
∂u |umin

is the Jacobian matrix of the observation operator u 7→ Obs(u),

evaluated at umin. The posterior distribution πpost(u|y) ∝ e−J(u) then becomes

πpost(u|y) ∝ C · exp

(
−1

2

[
(u− umin)T (AT R−1 A + B−1 )−1(u− umin)

])
, (S.2)

where C is a constant factor, given by

C = exp

(
−1

2

[
(y −Obs(umin))T R−1 (y −Obs(umin)) + (umin − u0)T B−1 (umin − u0)

])
,

and can therefore be absorbed by the proportionality ∝. The right hand side of eq. (S.2)

describes a Gaussian N (umin,P) with mean umin and covariance matrix

P = (AT R−1 A + B−1)−1. (S.3)

The covariance matrix P (eq. (S.3)) is equal to H−1
J , the inverse of the linearized Hessian

matrix of the cost function J (eq. (1)) at umin (see also Thacker, 1989).

The linearized Hessian HJ , in turn, is the sum of two matrices: AT R−1 A, which is

the linearized Hessian of the model-data misfit term Jmisfit (eq. (1)), and B−1, which is

the Hessian of the regularization term Jprior (eq. (1)). It is the first matrix, AT R−1 A,

January 12, 2021, 8:52am
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that characterizes the observational constraints on the control variables. Therefore, as a

next step, we perform an eigen-decomposition of the misfit Hessian. This will give fur-

ther insights into the model input components that are best determined by the observing

system under consideration.

As a preparatory step, we rescale the model-data misfit term, Jmisfit, through a change

of variables ũ = B−1/2 u. Here, B1/2 is an invertible square root of B, i.e., satisfies

B1/2 BT/2 = B. The rescaling can be thought of as nondimensionalization if B was

diagonal. The rescaling is necessary in order to treat all control variables equally, since

they represent different physical variables, characteristic of different orders of magnitudes.

In the new coordinates, the Hessian of Jmisfit(ũ) is given by the rescaled misfit Hessian

(also referred to as the prior-preconditioned misfit Hessian, e.g., Bui-Thanh et al., 2012),

equal to the N ×N matrix

Hmisfit = BT/2 AT R−1 A B1/2. (S.4)

For simpicity, we will hereafter drop the term ’rescaled’, and refer to Hmisfit solely as the

misfit Hessian. The misfit Hessian can be rewritten in terms of its eigen-decomposition:

Hmisfit =
M ′∑

i=1

λiviv
T
i , (S.5)

with an orthonormal set of eigenvectors {vi}M ′
i=1 and corresponsing eigenvalues λi > 0. M ′

is defined as the number of strictly positive eigenvalues, while all remaining eigenvalues

λi, i > M ′, are equal to zero.
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The Woodbury Formula (e.g., Section 2.7.3 in Press et al., 2007) states that, given any

N ×N matrix M and any N ×M ′ matrix V, the following identity holds true:

(M + VVT )−1 = M−1 −M−1V (1M ′×M ′ + VTM−1V)−1 VTM−1. (S.6)

Here, 1M ′×M ′ is the M ′ × M ′ identity matrix. Assuming M−1 is already known, the

formula provides an efficient way to compute the inverse of the sum of M and a low-rank

matrix VVT (if M ′ � N). Using eqs. (S.3), (S.4), and (S.5), we have

P = B1/2 (Hmisfit + 1N×N)−1 BT/2

= B1/2

(
M ′∑

i=1

λiviv
T
i + 1N×N

)−1

BT/2. (S.7)

The Woodbury Formula (eq. (S.6)) can now be applied to the inner piece in eq. (S.7),

with M = 1N×N and V defined as the matrix formed by columns of
√
λi · vi:

V =

[
√
λ1 · v1

∣∣∣ · · ·
∣∣∣
√
λM ′ · vM ′

]
.

This yields

P = B1/2

(
1N×N −

M ′∑

i=1

λi
λi + 1

viv
T
i

)
BT/2 = B−

M ′∑

i=1

λi
λi + 1

(
B1/2 vi

) (
B1/2 vi

)T
,

using the fact that {vi}M ′
i=1 is a set of orthonormal vectors.

Text S2. Forward Uncertainty Propagation. Consistent with the linearization of

the observation operator (eq. (S.1)), the function u 7→ QoI(u) is linearized about umin:

QoI(u) ≈ QoI(umin) +
∂(QoI)

∂u |umin

(u− umin). (S.8)

The posterior distribution of the Bayesian solution of the inverse problem, πpost(u|y),

is approximately Gaussian, given by N (umin,P), with P given by eq. (2). A forward
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propagation of the posterior uncertainty (dotted black arrow, (UQ2), Fig. 1) leads to a

posterior Gaussian distribution for QoI(u), since eq. (S.8) describes an affine transfor-

mation. The distribution is given by N (QoI(umin), (σP
QoI)

2), where (σP
QoI)

2 is the (scalar)

variance, given by the projection

(σP
QoI)

2 = (∇uQoI)T P (∇uQoI) .

Similarly, the prior distribution of QoI(u) is obtained by a forward uncertainty propaga-

tion of the Gaussian prior N (u0,B) (dotted green arrow, (UQ2), Fig. 1). This leads to a

prior Gaussian distribution for QoI(u), given by N (QoI(u0), (σB
QoI)

2) with

(σB
QoI)

2 = (∇uQoI)T B (∇uQoI) .
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We now combine all four temperature observations of our case study, while tak-470

ing into account their observational noise. In eq. (1), the resulting observing system is471

represented by472

Obs =
�
✓A, ✓B , ✓C , ✓D

�
, R = diag("2

A, "2
B , "2

C , "2
D). (19)473

Here, the noise variances "2
? are chosen as in Table 2. For the sake of brevity, we focus474

on the case "C = 0.2 �C (cases with alternative choices for "C are presented in the sup-475

porting information, Fig. S.1). We compute the eigenvectors and eigenvalues, {vi,�i}4
i=1,476

of the misfit Hessian Hmisfit (eq. (3)), as described in Figs. 2(c)-(e) and Appendix A.477

–19–

Figure S1. Figure caption on following page.
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Figure S1. The panels in the middle column, i.e., (b),(e),(h), coincide with

Figs. 8(a),(c), and Fig. 9(d). The left and the right column are as the middle column, but

for different choices of εC . (a)-(c): Orientation of the first eigenvector, v1 (black vector)

within the {θA, θC}-informed subspace of the control space. The ellipses show the contour

lines of Jmisfit(ũ). The larger εC , the more v1 deviates from vC , from v1 = vC in (a) to

v1 being almost orthogonal to vC in (c). (d)-(f): τy component of v1. The inlets show

the corresponding eigenvalue λ1, as well as the associated effectiveness η1 = λ1/(λ1 + 1).

The larger εC , the more v1 reflects the characteristic sensitivity patterns of the subsurface

observations, concentrated along the eastern and northern boundary of the North Atlantic

(cf. Fig. 4), but the lower λ1 and η1. (g)-(i): Decay in proxy potential for the QoI, HTISR,

as a function of α. For all three cases, the DPP (α = 0) is equal to 35.0%. From left to

right, the EPP (α = 1) decreases slightly (although almost negligibly) from 12.6% in (g)

to 12.2% in (i). From left to right, the main contribution to proxy potential shifts from

the second to the first eigenvector.

January 12, 2021, 8:52am


