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Abstract

The unequal spatial distribution of ambient nitrogen dioxide (NO2), an air pollutant related to traffic, leads to higher exposure

for minority and low socioeconomic status communities. We exploit the unprecedented drop in urban activity during the

COVID-19 pandemic and use high-resolution, remotely-sensed NO2 observations to investigate disparities in NO2 levels across

different demographic subgroups in the United States. We show that COVID-19 lockdowns reduced, but did not eliminate,

the overall racial, ethnic, and socioeconomic NO2 disparities. Prior to the pandemic, satellite-observed NO2 levels in the least

white census tracts of the United States were double NO2 levels in the most white tracts. During the pandemic, the largest

lockdown-related NO2 reductions occurred in urban neighborhoods that have 30% fewer white residents and 111% more Hispanic

residents than neighborhoods with the smallest reductions, likely driven by the greater density of highways and interstates in

these racially and ethnically diverse areas. However, the least white tracts still experienced 50% higher NO2 levels during

the lockdowns than the most white tracts experienced prior to the pandemic. Future policies aimed at eliminating pollution

disparities will need to look beyond reducing emissions from only passenger traffic and also consider other collocated sources of

emissions such as heavy-duty trucks, power plants, and industrial facilities.
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1. Abstract9

The unequal spatial distribution of ambient nitrogen dioxide (NO2), an air pol-10

lutant related to tra�c, leads to higher exposure for minority and low socioeco-11

nomic status communities. We exploit the unprecedented drop in urban activity12

during the COVID-19 pandemic and use high-resolution, remotely-sensed NO213

observations to investigate disparities in NO2 levels across di↵erent demographic14

subgroups in the United States. We show that prior to the pandemic, satellite-15

observed NO2 levels in the least white census tracts of the United States were16

nearly triple NO2 levels in the most white tracts. During the pandemic, the largest17

lockdown-related NO2 reductions occurred in urban neighborhoods that have 2.018

times more non-white residents and 2.1 times more Hispanic residents than neigh-19

borhoods with the smallest reductions. NO2 reductions were likely driven by the20

greater density of highways and interstates in these racially and ethnically diverse21

areas. Although the largest reductions occurred in marginalized areas, the e↵ect of22

lockdowns on racial, ethnic, and socioeconomic NO2 disparities was mixed and, for23

many cities, non-significant. For example, the least white tracts still experienced24

⇠ 1.5 times higher NO2 levels during the lockdowns than the most white tracts25

experienced prior to the pandemic. Future policies aimed at eliminating pollution26

disparities will need to look beyond reducing emissions from only passenger tra�c27

and also consider other collocated sources of emissions such as heavy-duty trucks,28

power plants, and industrial facilities.29

E-mail address: gaigekerr@gwu.edu.
1



2 COVID-19 REVEALS PERSISTENT DISPARITIES IN NO2

2. Significance Statement30

We leverage the unparalleled changes in human activity during COVID-19 and31

the unmatched capabilities of the TROPOspheric Monitoring Instrument to under-32

stand how lockdowns impact ambient nitrogen dioxide (NO2) pollution disparities33

in the United States. The least white communities experienced the largest NO2 re-34

ductions during lockdowns; however, disparities between the least and most white35

communities are so large that the least white communities still faced higher NO236

levels during lockdowns than the most white communities experienced prior to37

lockdowns despite a ⇠ 50% reduction in passenger vehicle tra�c. Similar findings38

hold for ethnic, income, and educational attainment subgroups. Future strategies39

to reduce NO2 disparities will need to target emissions from not only passenger40

vehicles but other collocated on-road and stationary sources.41

3. Introduction42

Adverse air quality is an environmental justice issue as it disproportionately43

a↵ects marginalized and disenfranchised populations around the world [Bell and44

Ebisu, 2012, Landrigan et al., 2018, Schell et al., 2020, Demetillo et al., 2020].45

Growing evidence suggests that these populations experience more air pollution46

than is caused by their consumption [Nguyen and Marshall, 2018, Tessum et al.,47

2019, Sergi et al., 2020]. Within the United States (U.S.), disparities in exposure48

are persistent, despite successful regulatory measures that have reduced pollution49

[Clark et al., 2017, Colmer et al., 2020]. Nitrogen dioxide (NO2) is a short-lived50

trace gas formed shortly after fossil fuel combustion and regulated by the National51

Ambient Air Quality Standards under the Clean Air Act. Exposure to NO2 is52

associated with a range of respiratory diseases and premature mortality [Jerrett53

et al., 2013, Anenberg et al., 2018, Achakulwisut et al., 2019]. NO2 is also a pre-54

cursor to other pollutants such as ozone and particulate matter [Stohl et al., 2015].55

Major sources of anthropogenic NO2, such as roadways and industrial facilities,56

are often located within or nearby marginalized and disenfranchised communities57

[Mohai et al., 2009, Rowangould, 2013], and disparities in NO2 exposure across58

demographic subgroups have been the focus of several recent studies [Hajat et al.,59

2013, Clark et al., 2014, Clark et al., 2017, Demetillo et al., 2020].60

In early 2020, governments around the world imposed lockdowns and shelter-in-61

place orders in response to the spread of the coronavirus disease 2019 (COVID-19).62

The earliest government-mandated lockdowns in the U.S. began in California on63

19 March 2020, and many states followed suit in the following days. Changes64

in mobility patterns indicate that self-imposed social distancing practices were65

underway days to weeks before the formal announcement of lockdowns [Badr et al.,66

2020]. Lockdowns led to sharp reductions in surface-level NO2 [He et al., 2020,67

Parker et al., 2020, Shi and Brasseur, 2020, Venter et al., 2020] and tropospheric68

column NO2 measured from satellite instruments [Bauwens et al., 2020, Ding et al.,69
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2020, Goldberg et al., 2020, Miyazaki et al., 2020, Parker et al., 2020] over the U.S.,70

China, and Europe. According to government-reported inventories, roughly 60% of71

anthropogenic emissions of nitrogen oxides (NOx ⌘ NO + NO2) in the U.S. in 201072

were emitted by on-road vehicles [US Environmental Protection Agency, 2015], and73

up to 80% of ambient NO2 in urban areas can be linked to tra�c emissions [Levy74

et al., 2014, Sundvor et al., 2013]. As such, NO2 is often used as a marker for75

road tra�c in urban areas. Multiple lines of evidence such as seismic quieting76

and reduced mobility via location-based services point to changes in tra�c-related77

emissions as the main driver of reductions in NO2 pollution during lockdowns due78

to the large proportion of the population working from home [Di↵enbaugh et al.,79

2020, Lecocq et al., 2020, Venter et al., 2020].80

Here we exploit the unprecedented changes in human activity unique to the81

COVID-19 lockdowns and remotely-sensed NO2 columns with unprecedented spa-82

tial resolution and coverage to understand inequalities in the distribution of NO283

pollution for di↵erent racial, ethnic, and socioeconomic subgroups in the U.S.84

Specifically, we address the following: Which demographic subgroups received the85

largest NO2 reductions? Did the lockdowns grow or shrink the perennial dis-86

parities in NO2 pollution across di↵erent demographic subgroups? Although the87

lockdowns are economically unsustainable, how can they advance environmental88

justice and equity by informing long-term policies to reduce NO2 disparities and89

the associated public health damages?90

4. Results91

Previous studies examining satellite-derived NO2 found the highest levels in ur-92

ban areas [Krotkov et al., 2016, Cooper et al., 2020, Goldberg et al., 2021], and93

we find that these areas clearly stand out as NO2 hotspots during our baseline94

period (Figure 1a). NO2 column densities averaged over all urban areas are ⇠ 295

times higher than over rural areas during the baseline period. Absolute di↵er-96

ences in NO2 between the baseline and lockdown periods (“drops”) show sharp97

decreases over virtually all major metropolitan regions (Figure 1b). The use of98

only spring 2019 for our baseline period stems from the short data record o↵ered99

by TROPOMI, and the slight increases in NO2 in parts of the Great Plains and100

Midwest during lockdowns (< 0.5⇥ 1015 molecules cm�2) could reflect di↵erences101

in natural (e.g., soil, lightning, stratospheric NOx) or anthropogenic sources of102

NO2 between the baseline and lockdown periods. We use 3 month periods for our103

baseline and lockdown periods in lieu of a shorter timeframe in order to account104

of daily, weekly, and monthly fluctuations in meteorology. Given that the largest105

lockdown-related changes in NO2 occur in urban areas and to avoid urban-rural106

demographic gradients, we primarily focus on urban NO2 changes and how these107

changes impact di↵erent demographic subgroups in urban areas.108

The largest urban NO2 drops occur in census tracts that are more non-white and109

Hispanic, have lower median household income, and have a higher proportion of110
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Figure 1. Spatial distribution of NO2 columns during the

baseline and COVID-19 lockdown periods and apportion-

ment of drops among di↵erent demographic subgroups. (a)
Census-tract average baseline NO2 (13 March-13 June 2019). (b)
Absolute di↵erence between lockdown (13 March - 13 June 2020)
and baseline NO2 (� NO2), where � NO2 < 0 corresponds to NO2

drops during lockdowns. (c-h) Demographic data averaged over ur-
ban tracts with the largest drops (� NO2 in first decile), all urban
tracts, and urban tracts with the smallest drops (� NO2 in the tenth
decile). “Other” in (g) includes American Indian or Alaska Native,
Asian, Native Hawaiian or other Pacific Islander, two or more races,
and some other race. The census-designated concept of race di↵ers
from ethnicity, and the percentage of white residents in (g) includes
individuals with Hispanic origin or descent.

their population without a vehicle or a post-secondary education compared with111

tracts with the smallest drops (Figure 1d-h). In tracts with the largest drops,112

there are ⇠ 2.0 times more non-white residents and ⇠ 2.1 times more Hispanic113

residents than in tracts with the smallest drops (Figure 1d, g). The di↵erences114

in the “Other” category between tracts with largest and smallest drops (Figure115

1g) reflects di↵erences in the Asian population (5% in tracts with the smallest116
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drops; 14% in tracts with the largest drops) and the proportion of the population117

who does not identify as one of the census-designed racial categories (4% in tracts118

with smallest drops; 19% in tracts with the largest drops). These results for urban119

tracts also hold in all (urban and rural) tracts and rural tracts, despite the di↵erent120

demographic composition of the population for these conglomerations (compare121

Figures 1 and S1). Di↵erences in distributions of demographic variables between122

tracts with the largest versus smallest drops in Figure 1c-h are all statistically123

significant.124

Communities with lower income and educational attainment and a large propor-125

tion of racial and ethnic minorities have faced higher levels of NO2 and other pollu-126

tants for decades [Hajat et al., 2013, Hajat et al., 2015, Clark et al., 2017, Colmer127

et al., 2020, Schell et al., 2020], and we find that these communities experienced the128

largest drops in NO2 pollution during COVID-19 lockdowns. However, Figure 1129

does not indicate how lockdown-related NO2 drops grew or shrunk disparities, and130

we next examine disparities in baseline and lockdown NO2 in the most marginal-131

ized versus least marginalized census tracts in the U.S.132

In the baseline and lockdown periods, neighborhoods with lower income and133

educational attainment and those with a higher proportion of minority residents134

consistently face higher levels of NO2 among all urban tracts across the U.S. and135

in nearly all of the 15 largest metropolitan statistical areas (MSAs) in the U.S.136

(Figures 2, S2). Rural tracts with the highest income and educational attainment,137

however, have higher NO2 levels than tracts with the lowest income or educa-138

tional attainment (Figure 2b-c), and similar findings hold for specific MSAs (e.g.,139

Riverside in Figure 2b, Atlanta in Figure 2c). Moreover, there are no significant140

di↵erences in NO2 distributions for tracts with the highest versus lowest income141

during the baseline period (Figure 2a).142

When considering all census tracts (both urban and rural), the most pronounced143

disparities, defined as the ratio of mean NO2 for the marginalized subgroup to the144

non-marginalized subgroup, are on the basis of race and ethnicity. The least white145

tracts and most Hispanic tracts have 2.6 and 2.2 times greater baseline NO2 levels146

than the most white and least Hispanic tracts, respectively (Figures 2a, S2a, S3g).147

These disparities persist when examining the individual MSAs in the U.S. For148

example, baseline NO2 in tracts with the lowest median household income in New149

York and Los Angeles is 1.4 and 1.8 times higher, respectively, than tracts with150

the highest income (Figures 2b, S2b).151

The unprecedented change in human activity during COVID-19 lockdowns led152

to mixed impacts on relative NO2 disparities across di↵erent population subgroups,153

depending on the demographic variable and MSA considered (Figures 2, S2).154

Racial NO2 disparities for all census tracts significantly decreased from 2.6 to155

2.0 during lockdowns, and a majority of the featured MSAs experienced signifi-156

cant reductions in their racial disparities (Figures 2a, S2a). Disparities for other157

demographic variables, however, were less a↵ected by lockdowns. For example, a158
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majority of MSAs had no significant reduction in disparities for di↵erent levels of159

income and educational attainment (Figures 2b-c, S2b-c).160

Although urban areas experienced broad drops in NO2 during lockdowns with161

the largest drops occurring in marginalized neighborhoods (Figure 1c-h), NO2 dis-162

parities in the baseline period were so large that even significant reductions in163

disparities did not generally bring lockdown NO2 levels for marginalized neigh-164

borhoods to the levels experienced by non-marginalized neighborhoods during the165

baseline period (Figures 2, S2). As an example: despite the unprecedented drop166

in human activity during the COVID-19 pandemic, NO2 levels in the least white167

neighborhoods in New York and Chicago were ⇠ 1⇥1015 and ⇠ 2⇥1015 molecules168

cm�2 higher, respectively, during lockdowns than levels in the most white neigh-169

borhoods during the baseline period. Houston, Washington, Philadelphia, and San170

Francisco are notable exceptions to this result, and NO2 levels for the least white171

tracts during lockdowns fell below NO2 levels for the most white tracts during the172

baseline period in these cities. We observe similar results for population subgroups173

based on ethnicity, income, and educational attainment (Figures 2, S2).174

Within urban areas, we find that the magnitude of NO2 drops is tightly coupled175

to the density of nearby primary roads (highways and interstates). The density176

of primary roads in urban tracts with the largest NO2 drops (i.e., tracts in the177

first decile) is ⇠ 9.5 times greater than in urban tracts with the smallest NO2178

drops (i.e., tenth decile) (Figure 3). The racial, ethnic, income, and educational179

composition of tracts are also closely related to primary road density; urban tracts180

with lower income and vehicle ownership and a larger percentage of racial and181

ethnic minorities are located near a higher density of primary roads (Figure 3). The182

di↵erence in primary road density on the basis of vehicle ownership is especially183

stark: tracts with the lowest vehicle ownership have a ⇠ 9.5 times higher primary184

road density than tracts with the highest ownership. Similarly, the least white185

tracts have a primary road density ⇠ 4.5 times higher than the most white tracts.186

Educational attainment is the only demographic variable considered in this study187

that exhibits a di↵erent relationship with primary road density, and we observe a188

U-shaped relationship between these variables (Figure 3).189

To better understand the impact of the lockdowns on NO2 exposure disparities,190

we consider case studies of individual cities: New York, Detroit, and Atlanta (Fig-191

ure 4). Among individual neighborhoods in each of these cities, the magnitude of192

NO2 drops vary up to 50% above and below the citywide average (Figure 4a-c).193

The portions of New York, Atlanta, and Detroit that received the largest drops194

tend to have lower median household income and a high percentage of non-white195

residents (Figure 4d-i). In New York the largest drops are concentrated in Harlem196

and The South Bronx (Figure 4a), where the high concentration of major high-197

ways and industrial facilities has been linked to disproportionate exposure to air198

pollution [Patel et al., 2009]. The largest drops in Atlanta occur in the southwest-199

ern part of the city where median household income generally is < $30000 and200
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Figure 2. Disparities in baseline and lockdown NO2

columns across di↵erent demographic subgroups. Dispari-
ties are shown for three conglomerations (all, urban, and rural census
tracts), and urban tracts are further separated into the fifteen largest
MSAs in the U.S. For each conglomeration or MSA, demographic
subgroups are determined using the 10th and 90th percentiles as
thresholds. NO2 levels are thereafter averaged over tracts within
these subgroups. If the di↵erence in subgroup NO2 distributions for
a particular demographic variable and time period is not statistically
significant, mean NO2 levels are denoted with an “X” and no con-
nector lines. Conglomerations or MSAs with no significant change
in NO2 disparities between the baseline and lockdown periods are
shaded in grey.

the percentage of Black residents in each tract is nearly 100. Although large-scale201

drops in NO2 are primarily driven by reductions in on-road emissions [Quéré et al.,202

2020, Venter et al., 2020], examining drops on smaller spatial scales, such as in203

Atlanta (Figure 4b), suggests that emissions from other sectors may be at play. In204

Atlanta, the largest drops occur southwest of downtown, near Hartsfield-Jackson205

International Airport and several major highways (Figure 4b). The airport re-206

ported a ⇠ 50% decrease in the daily number of flights during lockdowns [Shah,207

2020]. Therefore, both on-road and aviation emissions may be responsible for the208

disparities in NO2 levels in Atlanta. The largest drops in Detroit are concentrated209

on the west shores of the Detroit River; Interstates 75 and 94 and the Ambassador210
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Bridge, one of the busiest U.S.-Canada border crossing, transect this part of De-211

troit (Figure 4c) [Martenies et al., 2017]. Although these Detroit neighborhoods212

are not predominantly non-white (Figure 4f), they are home to a large Hispanic213

population (not shown) with low median household income (Figure 4i).214

5. Discussion215

Neighborhoods with a large population of racial and ethnic minorities, lower216

income, and lower educational attainment saw improvements in NO2 pollution217

during the COVID-19 lockdowns. Although lockdowns were lauded as a tem-218

porary glimpse of the potential for cleaner urban air, NO2 disparities persisted219

during this global natural experiment. For many cities, there were no significant220

changes in NO2 disparities during the lockdowns, and marginalized communities221

faced higher NO2 levels during the lockdowns than non-marginalized communities222

experienced prior to the lockdowns. Overall, these findings are consistent with223

contemporaneous studies that have analyzed long-term trends in NO2 and other224

air pollutants and found that, despite widespread decreases in pollution, the most225

exposed demographic subgroups in the 1980s and 1990s remain the most exposed226

in the present-day [Clark et al., 2017, Colmer et al., 2020].227

Tracts’ proximities to roadways may be responsible for both the lockdown-228

related drops and the persistent disparities of NO2 pollution among demographic229

subgroups (Figures 1-3). The collocation of primary roads with poor, minority230

communities is not happenstance but a consequence of the Eisenhower-era federal231

highway program, which often deliberately routed highways through these poor,232

minority neighborhoods [Rose and Mohl, 2012, Boehmer et al., 2013, Rowangould,233

2013, Clark et al., 2017]. Additionally, other potent sources of pollution such as234

power plants, manufacturing facilities, and heavy-duty trucking operations are also235

collocated with primary roads due to these industries’ needs for highway access236

[Mohai et al., 2009, Demetillo et al., 2020].237

Interestingly, urban tracts with the lowest vehicle ownership have both the high-238

est density of nearby primary roads and the largest drops in NO2 (Figures 1h, 3).239

This result suggests that these communities may breathe more tra�c-related NO2240

pollution than they produce. This is indeed the case for particulate matter pol-241

lution: recent work found that particulate matter exposure is disproportionately242

caused by rich, non-Hispanic white communities, while poor, Black and Hispanic243

communities face higher exposure than is caused by their own consumption [Tes-244

sum et al., 2019, Sergi et al., 2020].245

Preliminary research suggests that high levels of NO2 pollution contribute to un-246

derlying health conditions that lead to increased COVID-19 fatality rates [Liang247

et al., 2020]. Therefore, the decrease in NO2 in diverse communities with low248

income or educational attainment (Figure 2) could decrease population suscepti-249

bility to COVID-19. This result is especially important as these communities have250
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Figure 3. The relationship of road density with urban

lockdown-related drops in NO2 columns and demographic

variables. Road density is calculated as the number of primary
road segments within a 1 km radius of tracts’ centroids for each
decile of demographic variables. The colored legend indicates the
directionality of each demographic variable. As an example, the
density corresponding to the lowest decile of the “White” curve rep-
resents the road density in urban tracts that are the least white (i.e.
in the first decile of the percentage of their population that is white).
Shading for the �NO2 curve illustrate the 90% confidence interval.

increased risk to COVID-19 and higher hospitalization rates [Raifman and Raif-251

man, 2020]. Since short-term NO2 exposure is associated with respiratory disease252

[Chauhan et al., 2003, Hansel et al., 2015], the temporary NO2 drops may have253

also reduced acute respiratory health outcomes, but the actual health e↵ects of254

NO2 drops during the pandemic are di�cult to tease out since the degree to which255

people sought health care was also a↵ected by the pandemic. These findings are256

especially relevant for marginalized neighborhoods in cities (e.g., New York, At-257

lanta, and Detroit; Figure 4) that have been long-plagued by high rates of asthma258

and other respiratory diseases due, in part, to their proximity to on-road and point259

source NOx emissions [Patel et al., 2009, Martenies et al., 2017].260

We have considered singular demographic variables and their relationship with261

baseline and lockdown NO2. The case studies in Figure 4 hint that the intersec-262

tionality between race and poverty may be associated with even more pronounced263
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lockdown-related drops in NO2 pollution. Although the vast majority of tracts in264

the southern half of Atlanta have a majority non-white population (Figure 4h),265

the largest drops occur in tracts that are both majority non-white and low income266

(Figure 4b, e, h). Clark et al. [Clark et al., 2014] and Demetillo et al. [Demetillo267

et al., 2020] examined NO2 exposure in neighborhoods where poverty and racial268

and ethnic identities intersect and found a disproportionate share of NO2 pollu-269

tion for neighborhoods with these intersecting identities. Assessing other forms of270

intersectionality and their relationship with air pollution exposure is a key area271

for future research.272

Recent work demonstrates that satellite-observed NO2 is a powerful proxy for273

ground-level NO2 gradients [Bechle et al., 2013], and TROPOMI, in particular,274

provides significant advances over predecessor instruments on account of its un-275

precedented spatial resolution [Goldberg et al., 2019]. We tested whether TROPOMI276

has consistent spatial patterns with surface-level observations during the base-277

line period and found good agreement (Supporting Information Text, Figure S4a).278

TROPOMI’s correlation with surface-level monitors (Figure S4a) is a dramatic im-279

provement over the correlation of predecessor instruments [Goldberg et al., 2017].280

Moreover, the ratios of 24-hour average NO2 to NO2 near the time of satellite281

overpass are also similar between least- and most-polluted sites (Figure S4b). We282

note, however, that satellite-derived NO2 tends to underestimate NO2 in highly283

polluted urban regions on account of satellite footprint resolution [Judd et al.,284

2019]. This underestimation coupled with the fact that marginalized communities285

tend to live closer to potent NO2 sources such as highways (Figure 3) that cannot286

be resolved given TROPOMI’s resolution suggests that our current methodology287

may underestimate the magnitude of disparities and lockdown-related changes.288

Our results are neither an artifact of how we defined demographic subgroups289

or the time period over which we characterize disparities, although the precise290

absolute NO2 levels and magnitude of disparities change with the start dates and291

length of the periods (Figure S5) and how population subgroups are defined (Figure292

S3). With that said, the length of our baseline and lockdown periods allows spatial293

heterogeneities to be properly captured when oversampling as well as averages over294

meteorological variations associated with favorable or unfavorable conditions for295

NO2 pollution [Goldberg et al., 2020]. We acknowledge that while meteorological296

and seasonal factors are important factors that could impact our results, they are297

unlikely to vary in such a way as to be skewed towards certain demographic groups298

or over the spatial scales of the MSAs focused on throughout this study.299

We encourage future work using surface-level NO2 concentrations to better300

understand exposure across demographic subgroups during lockdowns. Current301

surface-level observational networks are inadequate for doing so due to their sparse302

and uneven distribution [Lamsal et al., 2015], but surface concentrations of NO2303

inferred using land-use regression models [Novotny et al., 2011] or chemical trans-304

port models [Geddes et al., 2016, Cooper et al., 2020] may prove useful. Future305
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Figure 4. Case studies of lockdown NO2 drops, income,

and race for (left column) New York, (middle) Atlanta,

and (right) Detroit. (a-c) � NO2, local is calculated from oversam-
pled TROPOMI data as the di↵erence between � NO2 and the city
average � NO2 to highlight neighborhoods with larger drops (i.e.,
negative values) and smaller drops (i.e., positive values) compared
with the city-averaged drops. Primary roads are shown in thick
black lines. (d-f) Median household income and (g-i) percentage of
the population that is white. Tracts in (d-i) that are employment
centers, airports, parks, or forests and therefore report no demo-
graphic data are denoted with hatching.

work might also examine how lockdown-related changes in other air pollutants306

such as ozone and particulate matter, whose changes during lockdowns do not307

exhibit the same spatial patterns as NO2 [Chang et al., 2020, Shi and Brasseur,308

2020, Venter et al., 2020], impact disparities.309
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6. Conclusions310

This study provides a unique, nationwide look at air pollution disparities in the311

U.S., leveraging the extraordinary confluence of unparalleled changes in human ac-312

tivity during COVID-19 lockdowns and unmatched spatial coverage and resolution313

of air quality surveillance from the TROPOMI satellite instrument. Lockdowns314

decreased tropospheric column abundances of NO2 across the vast majority of ur-315

ban areas. However, drops in NO2 pollution were uneven within these urban areas316

and largely benefitted communities with a high proportion of racial and ethnic317

minorities and lower educational attainment and income. Our results reveal that,318

despite the improvements in NO2 pollution during lockdowns, racial, ethnic, and319

socioeconomic NO2 disparities persisted, and marginalized communities continued320

to face higher levels of NO2 during the lockdowns than marginalized communities321

experienced prior to the pandemic. As tra�c emissions represent a major source322

of NO2 variability, the proximity of marginalized neighborhoods to a high density323

of major roadways is likely the key determinant in explaining lockdown-related324

drops in NO2 pollution.325

While emissions from passenger vehicle tra�c precipitously declined during326

COVID-19 lockdowns [Parker et al., 2020], there are other potent air pollution327

sources, such as power generation, heavy-duty trucking, and industry, that were328

less a↵ected by the COVID-19 pandemic [Kroll et al., 2020]. These other sources329

are predominately located in marginalized areas [Demetillo et al., 2020, Shah et al.,330

2020] and likely contribute to the NO2 disparities detailed herein. Nevertheless,331

our finding that even the ⇠ 50% drop in passenger vehicle emissions [Quéré et al.,332

2020] did not reduce NO2 levels among the most marginalized urban census tracts333

to the levels experienced by the least marginalized tracts before the pandemic indi-334

cates that profound changes are needed to address disparities in NO2 pollution in335

the U.S. Policies aimed at reducing emissions from passenger vehicle tra�c (e.g.,336

mode shifting to public transportation and active transportation, widespread use337

of electric vehicles) would broadly reduce NO2 levels, but the COVID-19 pandemic338

lockdowns demonstrated that targeting the passenger vehicle sector alone is un-339

likely to eliminate NO2 disparities. For this reason, policy strategies that reduce340

inequality in exposure while maximizing health benefits [Levy et al., 2007] and341

target a variety of sectors are urgently needed.342

7. Materials and Methods343

7.1. Remotely-sensed NO2. We obtain retrievals of the tropospheric NO2 col-344

umn from the Tropospheric Monitoring Instrument (TROPOMI) aboard the Sentinel-345

5 Precursor (S5P) satellite. S5P is a nadir-viewing satellite in a sun-synchronous,346

low-earth orbit that achieves near-global daily coverage with a local overpass time347

of ⇠ 1330 hours [Veefkind et al., 2012]. TROPOMI provides NO2 measurements at348

an unprecedented spatial resolution of 5⇥ 3.5 km2 (7⇥ 3.5 km2 prior to 6 August349



COVID-19 REVEALS PERSISTENT DISPARITIES IN NO2 13

2019) [van Ge↵en et al., 2020]. We use Level 2 data and only consider pixels with350

a quality assurance value > 0.75. The change in satellite resolution occurring in351

August 2019 as well as intrinsic limitations stemming from the retrieval process352

and satellite footprint likely lead to an underestimation of NO2 levels in urban ar-353

eas and the NO2 change during lockdowns [Bechle et al., 2013, Judd et al., 2019].354

TROPOMI data are thereafter oversampled by regridding to a standard grid with355

a resolution of 0.01� latitude ⇥ 0.01� longitude (⇠ 1 km ⇥1 km) and averaged356

over two time periods: a baseline period (13 March-13 June 2019) and a lockdown357

period (13 March-13 June 2020). Regridded data are publicly available at Figshare358

(www.figshare.com/s/75a00608f3faedc4bca7).359

Comparing the same time period across di↵erent years is commonplace in satel-360

lite studies investigating changes in NOx and other trace gases, and averaging over361

three month timeframes smooths natural NO2 variations that arise from di↵er-362

ences in meteorology and sun angle, which are especially relevant during boreal363

spring [Goldberg et al., 2020]. This temporal averaging also removes part of the364

random error in the TROPOMI single-pixel uncertainties, which can be 40-60% of365

the tropospheric column abundances [Bauwens et al., 2020].366

7.2. Socio-demographic Data. Demographic information is derived from the367

American Community Survey (ACS) conducted by the U.S. Census Bureau and368

maintained by the National Historical Geographic Information System [Manson369

et al., 2019]. Data are publicly available at www.nhgis.org. We extract 2014-370

2018 5-year estimates on race, Hispanic or Latino origin (henceforth “ethnicity”),371

educational attainment, median household income, and vehicle availability for the372

72,538 census tracts in the contiguous U.S. To minimize the number of di↵er-373

ent categorical variables presented in this study, we combine racial groups into374

three categories: white, Black (includes Black and African American), and Other375

(includes American Indian or Alaska Native, Asian, Native Hawaiian or Other Pa-376

cific Islander, two or more races, and some other race). Similarly, we form three377

di↵erent levels for educational attainment: high school (includes no high school378

diploma, regular high school diploma, and GED or alternative credentials), col-379

lege (includes some college without a degree, Associate’s degree, and Bachelor’s380

degree), and graduate (includes Master’s degree, Professional school degree, and381

Doctorate degree).382

7.3. Methods. We harmonize the regridded TROPOMI NO2 measurements with383

tract-level ACS demographics by determining the geographic boundaries of each384

tract and thereafter calculating a simple arithmetic average over all TROPOMI385

grid cells within the tract for the baseline and lockdown periods. Approximately386

8% of tracts lack a co-located TROPOMI grid cell due to their small size or387

irregular geometry, and we employ inverse distance weighting interpolation to cal-388

culate the NO2 levels at the centroid of these small tracts using the 8 neighboring389
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grid cells. Tracts are classified as either rural or urban based on the census-390

designed rurality level from the last decadal census in 2010. Urban census tracts391

lie within the boundaries of an incorporated or census-designed place with > 2500392

residents, and rural tracts are located outside these boundaries. Therefore, sub-393

urban areas on the periphery of cities with > 2500 residents are classified as394

“urban” in this study. We further stratify the tracts into metropolitan-level sub-395

sets for the 15 largest MSAs in the U.S.: New York City-Newark-Jersey City,396

NY-NJ-PA; Los Angeles-Long Beach-Anaheim, CA; Chicago-Naperville-Elgin, IL-397

IN-WI; Dallas-Fort Worth-Arlington, TX; Houston-The Woodlands-Sugar Land,398

TX; Washington-Arlington-Alexandria, DC-VA-MD-WV; Miami-Fort Lauderdale-399

Pompano Beach, FL; Philadelphia-Camden-Wilmington, PA-NJ-DE-MD; Atlanta-400

Sandy Springs-Alpharetta, GA; Phoenix-Mesa-Chandler, AZ; Boston-Cambridge-401

Newton, MA-NH; San Francisco-Oakland-Berkeley, CA; Riverside-San Bernardino-402

Ontario, CA; Detroit-Warren-Dearborn, MI; and Seattle-Tacoma-Bellevue, WA.403

For brevity we refer to these MSAs by their colloquial names (e.g., Los Angeles,404

rather than Los Angeles-Long Beach-Anaheim, CA) when discussing them.405

We calculate the density of nearby primary roadways for each census tract as a406

proxy for exposure to tra�c-related NO2 pollution. Primary roads are generally407

divided, limited-access highways within the Interstate Highway System or under408

state management, and their locations are determined from the U.S. Census Bu-409

reau’s TIGER/Line geospatial database. Specifically, we determine density as the410

number of primary road segments within 1 km of a tract’s centroid. We choose411

1 km as our threshold for what constitutes as “nearby,” as NO2 concentrations412

decrease up to ⇠ 50% within 0.5 � 2 km from major roadways [Novotny et al.,413

2011, Demetillo et al., 2020], and we note that our findings are robust when con-414

sidering all primary roads within 2 km (not shown). Other means of quantifying415

tra�c exist (e.g., length of roadway within a specified distance, tra�c within bu↵er416

zones, sum of distance traveled) [Pratt et al., 2013], but our approach allows for417

consistent use of geospatial data from the U.S. Census Bureau.418

We partition census tracts by extreme values of their change in NO2 (� NO2)419

or demographic variables using the first decile (0-10th percentile) and tenth decile420

(90-100th percentile). This partitioning is done individually for di↵erent con-421

glomerations or MSAs rather than defining nationwide percentiles to account for422

urban-rural gradients or di↵erences among MSAs. As examples, tracts classified423

as “Most white” or “Highest income” have a white population fraction or median424

household income which falls in the tenth decile. Likewise, � NO2 in tracts with425

the “Largest drops” (i.e., the largest decrease in NO2 during lockdowns) falls in426

the first decile. Our results are not sensitive to the use of the first and tenth427

deciles, and we have tested the upper and lower vigintiles, quintiles, and quartiles428

and obtain similar results (Figure S3). The use of percentiles rather than absolute429

thresholds yields a consistent sample size for the upper and lower extrema and430

also avoids defining absolute thresholds for di↵erent variables.431
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We applied the two-sample Kolmogorov-Smirnov (KS) test to determine whether432

distributions of demographic variables for the largest and smallest NO2 drops (Fig-433

ure 1c-h) and tract-averaged NO2 for the upper and lower extrema of demographic434

variables (Figure 2) are drawn from the same distribution (Figure S6). If the p-435

value corresponding to the KS test statistic is less than ↵ = 0.05, we declare436

that there are significant di↵erences in the distributions. We also assess whether437

the NO2 disparities shown in Figure 2 undergo significant changes between the438

baseline and lockdown periods using a two-sample z-test. To meet the normality439

assumption of the z-test, we log-transform the skewed NO2 distributions prior to440

computing the test statistic. Changes in baseline versus lockdown disparities are441

classified as significant when the absolute value of the test statistic is larger than442

1.96, the critical value for a 95% level of confidence (p < 0.05). We note that443

this approach to assess the significance of changes in disparities agrees well with444

other methods, such as examining whether 95% confidence levels of the baseline445

and lockdown disparities overlap (compare Figures 2 and S2)446

The start date of the baseline and lockdowns periods used in this study (13447

March) corresponds to the date of national emergency declaration in the U.S.448

and the beginning of a pronounced decrease in mobility patterns in 2020 [Badr449

et al., 2020]. We test whether the overall racial, ethnic, income, and educational450

disparities hold for other periods and find that the disparities among di↵erent de-451

mographic subgroups persist regardless of the start date or length of the baseline452

period (Figure S5). We are inherently limited by the short TROPOMI data record,453

and interannual variability could play a role in modulating the magnitude of dis-454

parities in NO2 levels. Testing this possibility is important as more TROPOMI455

data become available.456
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1. Remotely-sensed versus surface-level NO210

We compare tropospheric column NO2 from TROPOMI with ground-based ob-11

servations from the Environmental Protection Agency’s Air Quality System (AQS)12

[US Environmental Protection Agency, nda] to test whether TROPOMI can pro-13

vide an accurate characterization of di↵erences in surface-level NO2 during the14

baseline period (13 March - 13 June 2019). There are 439 AQS monitors in15

the contiguous U.S. with observations during the baseline period, and we aver-16

age hourly observations over the entire baseline period at each of these sites and17

compare them with TROPOMI retrievals at the collocated grid cell to each site.18

We find that 71 of the 439 monitors are located near (< 20 meters) roads [US En-19

vironmental Protection Agency, ndb]. These sites generally have observed surface-20

level NO2 > 10 ppbv despite relatively low columnar amounts from TROPOMI21

(Figure S4). We do not expect TROPOMI to capture the large, sharp gradients22

of NO2 near roadways on account of the di↵erences in scale between the foot-23

print of the satellite and point-based observations. When we consider only AQS24

monitors that are not located near roads, we find good agreement between these25

surface-level observations and TROPOMI (Figure 4a). We also find a similar ratio26

of NO2 averaged over the 24-hour diurnal cycle to NO2 near the time of satellite27

overpass at sites that are classified as the most and least polluted (Figure 4b). Ad-28

ditional factors such as instrument error (for both TROPOMI and AQS) and clear29

sky biases may contribute to deviations from a perfect linear relationship between30

the space-based and surface-level observations [Geddes et al., 2012, Bechle et al.,31

2013, Judd et al., 2019]; however, the findings of this analysis lend credibility to32

our reliance on TROPOMI to characterize disparities in NO2 at earth’s surface.33
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Figure 1. Same as Figure 1c-h in the main text but drops and
averages are derived from (a-f) all tracts and (g-l) rural tracts.
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Figure 2. Following Figure 2 in the main text, we calculate the
ratio of mean NO2 in the (a) least white to most white, (b) lowest
income to highest income, and (c) least educated to most educated
census tracts. Horizontal bars indicate the 95% confidence inter-
vals for the mean ratios. Spatial conglomerations or MSAs with
confidence intervals that overlap between the baseline and lockdown
periods are shaded in grey.
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Figure 3. Sensitivity of NO2 disparities to percentiles cho-

sen to constitute extreme values for each demographic vari-

able. Interpretation follows Figure 2 in the main text, but each pair
of bars in individual subplots represents di↵erent percentile thresh-
olds, indicated in the subplots’ vertical axes. The boldface 10/90
row corresponds to the first and tenth deciles used in the main text.
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Figure 4. (a) Observed NO2 from AQS monitors versus
TROPOMI tropospheric NO2 columns averaged over the baseline
period (13 March - 13 June 2019). TROPOMI data correspond to
the nearest 0.01� latitude ⇥ 0.01� longitude grid cell to each AQS
monitor. The orange line represents the linear regression fitted only
through AQS data not flagged as “near-road” (< 20 meters). The
orange text gives the slope (m) and intercept (b) of this linear fit.
(b) Observed diurnal cycles of NO2 averaged over the most polluted
(AQS monitors where the collocated TROPOMI grid cell > 90th
percentile) and least polluted sites (AQS monitors where the col-
located TROPOMI grid cell < 10th percentile) during the baseline
period. Only sites that are not near-road are considered for these
averages. The ratios of 24-hour average NO2 to NO2 at the approxi-
mate time of satellite overpass (dashed grey line; ⇠ 13:00 hours local
time) are indicated in the colored text.
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Figure 5. Sensitivity of urban NO2 disparities to the base-

line period. Extreme values of each demographic variable (using
the first and tenth deciles) for three di↵erent baseline periods: 1
April - 30 June 2019, 13 March - 13 June 2019 (the period used
in the main text), and 1 May 2018 - 31 December 2019 (the en-
tire TROPOMI data record). Boxes extend to the lower and upper
quartiles of the data, and the median value is indicated with the
horizontal white lines. The lower and upper whiskers extend to the
10th and 90th percentiles, respectively.
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Figure 6. Illustration of the two-sample Kolmogorov-

Smirnov (KS) test used to compare whether NO2 or demo-

graphic distributions from di↵erent population subgroups

are drawn from the same distribution. NO2 distributions are
shown for (a) the most and least white census tracts and (b) the
highest and lowest income census tracts (for both urban and rural
tracts) during the baseline period. Inset axes in (a)-(b) illustrate
the empirical cumulative distribution functions (ECDFs) for each
population subgroups’ NO2 distribution. The KS test statistic, D,
representing the absolute maximum distance between the ECDFs of
the two distributions and the associated p values are also indicated
in the inset axes. Ticks on the x-axis of the insets are identical to
the parent axes. The p-value in (a) indicates that the two popula-
tion subgroups with statistically di↵erent NO2 distributions, while
the large p-value in (b) indicates the di↵erence between the two dis-
tributions is not significant at the 95% confidence level.


