Statistical Relationship between Interplanetary Magnetic Field Conditions and the Helicity Sign of Flux Transfer Event Flux Ropes

Rungployphan Kieokaew¹, B Lavraud¹, N Fargette¹, A Marchaudon¹, V Génot¹, C Jacquey¹, D Gershman², B Giles², R Torbert³, and J Burch⁴

¹Institut de Recherche en Astrophysique et Planétologie ²NASA Goddard Space Flight Center ³Space Science Center ⁴Southwest Research Institute

November 22, 2022

Abstract

Flux Transfer Events (FTEs) are transient phenomena produced by magnetic reconnection at the dayside magnetopause typically under southward interplanetary magnetic field (IMF) conditions. They are usually thought of as magnetic flux ropes with helical structures forming through patchy, unsteady, or multiple X-line reconnection. While the IMF often has a non-zero B_Y component, its impacts on the FTE flux rope helicity remain unknown. We survey Magnetospheric Multiscale (MMS) observations of FTE flux ropes during the years 2015 - 2017 and investigate the solar wind conditions prior to the events. By fitting a force-free flux rope model, we select 84 events with good fits and obtain the helicity sign (i.e., handedness) of the flux ropes. We find that positive (negative) helicity flux ropes are mainly preceded by a positive (negative) B_Y component. This finding is compatible with flux ropes formed through a multiple X-line mechanism.

Statistical Relationship between Interplanetary Magnetic Field Conditions and the Helicity Sign of Flux Transfer Event Flux Ropes

R. Kieokaew¹, B. Lavraud^{1,2}, N. Fargette¹, A. Marchaudon¹, V. Génot¹, C. Jacquey¹, D. Gershman³, B. Giles³, R. Torbert⁴, and J. Burch⁵

¹Institut de Recherche en Astrophysique et Planétologie, CNRS, UPS, CNES, Université de Toulouse, Toulouse, France ²Laboratoire d'Astrophysique de Bordeaux, Univ. Bordeaux, CNRS, B18N, allée Geoffroy Saint-Hilaire, 33615 Pessac, France ³NASA Goddard Space Flight Center, Greenbelt, MD, USA ⁴Space Science Center, University of New Hampshire, Durham, NH, USA ⁵Southwest Research Institute, San Antonio, TX, USA

¹³ Key Points:

1

2

3

4

5

6

7

8

14	•	The helicity sign of 84 Flux Transfer Events is studied using force-free flux rope
15		model fitting
16	•	Right-handed (left-handed) FTE flux ropes are mostly preceded by positive (neg-
17		ative) IMF B_Y
18	•	This IMF B_Y control of the helicity sign is compatible with a multiple X-line for-
19		mation mechanism

 $Corresponding \ author: \ Rungployphan \ Kieokaew, \ \texttt{rkieokaew@irap.omp.eu}$

20 Abstract

- Flux Transfer Events (FTEs) are transient phenomena produced by magnetic reconnec-
- ²² tion at the dayside magnetopause typically under southward interplanetrary magnetic
- field (IMF) conditions. They are usually thought of as magnetic flux ropes with helical
- structures forming through patchy, unsteady or multiple X-line reconnection. While the
- IMF often has a non-zero B_Y component, its impacts on the FTE flux rope helicity re-
- $_{26}$ \qquad main unknown. We survey Magnetospheric Multiscale (MMS) observations of FTE flux
- $_{27}$ ropes during years 2015 2017 and investigate the solar wind conditions prior to the events.
- ²⁸ By fitting a force-free flux rope model, we select 84 events with good fits and obtain the
- helicity sign (i.e., handedness) of the flux ropes. We find that positive (negative) helic-
- ³⁰ ity flux ropes are mainly preceded by positive (negative) B_Y component. This finding
- is compatible with flux ropes formed through a multiple X-lines mechanism.

32 Plain Language Summary

The Earth's near-space environment is very dynamic, with transient phenomena 33 triggered by interaction between the solar wind, a wind of accelerated ions and electrons 34 flowing outward from the Sun, and the Earth's magnetopause, the magnetospheric bound-35 ary that shields us from the solar wind by deflecting it around. The solar wind carries 36 along an Interplanetary Magnetic Field (IMF) whose orientation determines the dynam-37 ics of the interaction. When the IMF is southward, magnetic reconnection, a phenomenon 38 that allows sheared magnetic fields to rearrange and release magnetic field energy into 39 particle energy, can be triggered at the Earth's magnetopause on the dayside. A Flux 40 Transfer Event (FTE) is a transient portal that allows the bursty transfer of solar wind 41 into the Earth's magnetosphere. FTEs are believed to form due to patchy, transient re-42 connection or in between multiple reconnection sites. An FTE is envisaged as a twisted 43 magnetic field structure with helical field that looks like a rope. For the first time in space, 44 we study the relationship between the IMF orientations and the twist direction of an en-45 semble of FTEs observed by NASA's Magnetospheric Multiscale mission, by modelling 46 FTEs as magnetic flux ropes. We found that the flux rope twist direction is controlled 47 by the IMF orientation, such that the rope is twisted in the left-handed or right-handed 48 sense depending on the east-west component of the IMF. This result supports the for-49 mation of FTEs by a multiple reconnection mechanism. 50

51 **1** Introduction

A Flux Transfer Event (FTE) is a transient phenomenon generated at magneto-52 spheric magnetopauses, and has been most studied at the Earth. It is recognised in space-53 craft data as a bipolar magnetic field variation in the direction normal to the magnetopause 54 (B_N) , with enhanced core field (C. Russell & Elphic, 1978). This magnetic field profile 55 suggests a magnetic flux rope structure with helicoidal field. Various formation mech-56 anisms have been proposed for FTEs, such as transient and patchy dayside reconnec-57 tion (C. Russell & Elphic, 1978), single X-line with unsteady reconnection rate (Scholer, 58 1988; D. J. Southwood et al., 1988), and multiple X-line reconnection (Lee & Fu, 1985; 59 Raeder, 2006). In recent years, there are growing evidence supporting multiple X-line 60 reconnection mechanisms (e.g., Hasegawa et al., 2010; Øieroset et al., 2011). In the Lee 61 & Fu's model, three reconnection X-lines are assumed to simultaneously exist in the pres-62 ence of non-zero B_Y , leading to production of two helical flux tubes (with the same he-63 lical sense). In the Raeder's model, FTEs only develop when the dipole tilt is large; they 64 are formed as a result of non-stationary, sequential generation of new X-lines. 65

Since solar wind conditions control magnetic reconnection at the Earth's magne topause, they should control the nature and properties of FTEs. Early spacecraft surveys revealed that FTEs are strongly associated with southward IMF conditions (Berchem & Russell, 1984; C. Russell et al., 1996) consistent with generation from reconnection

at low latitudes (e.g., Paschmann et al., 1982). There is no strong control from other solar wind parameters such as plasma beta, dynamic pressure, and Mach number on the FTE occurrence (Kuo et al., 1995; Wang et al., 2006). The occurrence of FTEs is found dependent on the IMF orientation but not on its magnitude (Wang et al., 2006). The effect of the IMF B_Y component was studied in relation to the spatial distribution and motion of FTEs (e.g., Fear et al., 2012; Karlson et al., 1996). However, direct studies on relationships between the IMF B_Y and FTE topologies themselves are still limited.

FTEs are known to have twisted interior field (e.g., Cowley, 1982; Saunders et al., 77 78 1984) with a field-aligned core field and an azimuthal field increasing away from the core. Twisting features of FTEs have been theoretically evaluated in terms of magnetic he-79 licity (Song & Lysak, 1989; Wright & Berger, 1989, 1990). Magnetic helicity is a mea-80 sure that can quantify magnetic field topology into twist, shear, linking, and kinking of 81 magnetic fields. It is defined as $H = \int_{V} \mathbf{A} \cdot \mathbf{B} d^{3}r$, where H is the total helicity of the 82 entire magnetic field in a volume V, \mathbf{B} is the magnetic field, \mathbf{A} is the vector potential 83 of **B** (i.e., $\mathbf{B} = \nabla \times \mathbf{A}$), and $d^3\mathbf{r}$ is the differential volume element. Here we use the 84 definition of magnetic helicity to describe the twist of an FTE flux rope and we will only 85 consider its sign. The twist direction around the core field can be characterized as the 86 "handedness" or "sense/sign of the helicity" of the flux rope. The sign of flux rope he-87 licity was studied mostly in magnetic clouds (e.g., Bothmer & Schwenn, 1998) and in flux 88 ropes at Venus, Mars, and Titan (e.g. Martin et al., 2020; C. Russell, 1990; Wei et al., 89 2010) to understand their formation mechanisms. At Earth, magnetic helicity was stud-90 ied in magnetotail flux ropes (Zhang et al., 2010). A few FTE flux ropes were observed 91 in the magnetotail flank with the positive sign of helicity under southward and duskward 92 IMF conditions, indicating that they originated on the dayside and survived far down-93 stream (Eastwood et al., 2012). Here we present a first dedicated study of the sign of 94 helicity of FTEs at the Earth's dayside magnetopause. 95

Based on topological consideration, the helicity sign of FTEs should be controlled 96 by the IMF. Fig 1 shows a schematic illustration of FTE formation by the multiple X-97 line reconnection mechanism under southward IMF with a non-zero B_Y component. In 98 2-D (Figs 1a,1c), as viewed from the dusk side, multiple reconnection between the mag-99 netospheric and magnetosheath fields would produce a magnetic island (shown in pur-100 ple) with an anti-clockwise field rotation. In 3-D, depending on the B_Y (out-of-plane) 101 component, the magnetic island becomes a magnetic flux rope with an axial component 102 pointing outward (Fig 1a) or inward (Fig 1c) from the plane. The magnetic field rota-103 tion (tangential component) with respect to the axial direction of the flux rope deter-104 mines its handedness or helicity sign. In this picture, the southward IMF with positive 105 B_Y would produce right-handed (RH) flux ropes (Figs 1a,1b) while the southward IMF 106 with negative B_Y would produce left-handed (LH) flux ropes (Figs 1c,1d). Such topo-107 logical consideration has yet to be statistically tested. 108

We present a statistical study of FTEs observed by NASA's Magnetospheric Multiscale mission (MMS, Burch et al. (2015)) and characterize the twist profiles of FTEs by fitting into a flux-rope model with systematic effort. We first introduce selections of FTEs, instrumentations, and illustration of events. We then present statistical analyses of the solar wind conditions. Finally, discussion and conclusions are presented.

¹¹⁴ 2 Data and Methods

115

2.1 Event selections and instrumentations

We first obtain a list of FTEs as observed by MMS. Fargette et al. (2020) published
a list of MMS1 observations of 229 FTEs consisting of 186 flux-rope-type structures and
43 flux-rope-type with reconnection at a central current sheet (e.g., interlinked flux tubes).
An FTE is selected based on visual inspection of data plots in the Geocentric Solar Eclip-

Figure 1. Schematic illustration of the generation of an FTE flux rope through the multiple X-line reconnection mechanism at the dayside magnetopause when the southward IMF has a significant (a, b) positive B_Y component and (c, d) negative B_Y component. The flux rope is shown in purple with arrows indicating the sense of twist when viewed from the dusk (a, c) and the Sun (b, d). When the flux rope is generated under southward IMF with positive B_Y , it has a right-handed sense of twist corresponding to a positive helicity. In contrast, when the flux rope is generated under southward IMF with negative B_Y , it has a left-handed sense of twist corresponding to a negative helicity.

tic (GSE) coordinates characterised by (1) a bipolar signature in one of the magnetic field 120 components, and (2) an increase in the total (plasma and magnetic) pressure. We use 121 Flux Gate Magnetometer (C. T. Russell et al., 2016) and Fast Plasma Instrument (Pollock 122 et al., 2016) data in burst mode for the FTE intervals, and we only focus on events with-123 out reconnection (at a central current sheet) for our analyses (events with such sharp 124 central current sheets typically do not fit a coherent flux rope structure). To analyse so-125 lar wind conditions preceding the FTEs, we obtain magnetic and velocity fields in GSE 126 coordinates, IMF clock and cone angles in Geocentric Solar Magnetospheric (GSM) co-127 ordinates, plasma number density, dynamic pressure, Mach number, and plasma beta 128 from the High-Resolution OMNI database (King & Papitashvili, 2005). The IMF clock 129 and cone angles are defined as $\arctan(B_u/B_z) \in [0^o, \pm 180^o]$ and $\arccos(B_x/|\mathbf{B}|) \in [0^o, 180^o]$, 130 respectively. 131

132 2.2 Flux rope fitting

We perform a model fitting onto the data using a model first introduced by Burlaga 133 (1988) to describe the magnetic flux rope structure of magnetic clouds in the solar wind 134 (see also Lepping et al. (1990)). The model assumes a cylindrically symmetric and force-135 free $(\nabla \times \mathbf{B} = \alpha \mathbf{B})$ configuration with a constant α in which the solution satisfying 136 $\nabla^2 B = -\alpha^2 B$ was found by Lundquist (1950). The solution is in terms of the zeroth-137 and first-order Bessel functions; the axial component is modelled as $B_A = B_0 J_0(\alpha R)$, 138 the tangential (azimuthal) component as $B_T = B_0 H J_1(\alpha R)$, and the radial component 139 as $B_R = 0$, where $H = \pm 1$ is the helicity sign, B_0 is the maximum field strength within 140

the flux rope interval, and R is the radial distance from the axis. From this model, we 141 obtain a set of fit parameters $(\theta_0, \phi_0, Y_0, H)$ for each flux rope in the local observation 142 frame $(\mathbf{x}_{\mathbf{v}}, \mathbf{y}_{\mathbf{v}}, \mathbf{z}_{\mathbf{v}})$ coordinates (i.e., the flux rope's frame). To aid understanding, we re-143 produced an illustration from Burlaga (1988) in Fig S1. The x_v is defined to be oppo-144 site to the flux rope motion direction such that $\mathbf{x}_{\mathbf{v}} = -\mathbf{V}_{AV}/|\mathbf{V}_{AV}|$, where \mathbf{V}_{AV} is the 145 average velocity vector across the flux rope. The $\mathbf{z_v}$ is calculated from $\pm \mathbf{x_v} \times \mathbf{n}$, where 146 \mathbf{n} is the normal to the model magnetopause obtained from Shue et al. (1997), the pos-147 itive (negative) sign is applied when the Y-component of \mathbf{V}_{AV} is positive (negative) to 148 keep the $\mathbf{z}_{\mathbf{v}}$ pointing northward (see Fig S1). Finally, $\mathbf{y}_{\mathbf{v}} = \mathbf{z}_{\mathbf{v}} \times \mathbf{x}_{\mathbf{v}}$ completes the or-149 thonormal system. The angle $\theta_0 \in [-90^\circ, 90^\circ]$ is the angle of the flux rope axis from 150 the ecliptic plane where $\theta_0 = -90^\circ$ is southward and $\theta_0 = 90^\circ$ is northward. The an-151 gle $\phi_0 \in [0, \pm 180^\circ]$ is the angle of the flux rope axis from the Sun-Earth line where the 152 positive angle is duskward and negative angle is dawnward, and Y_0 is the impact param-153 eter, which is set to range from $-2R_E$ to $2R_E$. The sense of helicity H is +1 for right-154 handed (RH) or -1 for left-handed (LH) flux ropes. This handedness corresponds to the 155 sense of rotation of the azimuthal (tangential) field around the flux rope axis: the ro-156 tation is anti-clockwise for RH flux ropes and it is clockwise for LH flux ropes when viewed 157 from above (i.e. the axial field is pointing towards you). The four parameters are fitted 158 onto the data by trial and error. An optimised set of parameters yield the minimum value 159 of χ^2 defined as $\chi^2 = \sum_i (|\mathbf{B}_{data,i} - \mathbf{B}_{model,i}|^2)/N$ where N is the number of vectors 160 of magnetic field measurements. Examples of the model fitting results are shown in Fig 2. 161

Each flux rope is fitted for both helicity signs. The sign of helicity is then manu-162 ally chosen based on visual inspection and comparison of the χ^2 values of the two cases. 163 Among the 186 flux ropes, we found that not all of them can be fitted well to the model, 164 plausibly due to the fact that those flux ropes are not totally force-free. Also, since we 165 will investigate the solar wind conditions preceding these events, we exclude events for 166 which OMNI data are missing. We select 84 flux ropes that are well fitted to the model 167 based on visual inspection (i.e., low χ^2 value). Note that all events are in the northern 168 winter hemisphere (September - February) due to the MMS orbit that samples data near 169 the subsolar region during this time of year. Table S1 lists the time intervals of these flux 170 ropes along with their fit parameters $(\theta_0, \phi_0, Y_0, H)$ and χ^2 . 171

¹⁷² 3 Event illustrations and Statistical Analyses

3.1 Event illustrations

173

Fig 2 shows examples of LH (left) and RH (right) flux ropes, observed by MMS1 174 on 23 January 2016 at 23:45 UT and 29 January 2017 at 1:57 UT, respectively. MMS1 175 was located at $[7.3, -9.4, -1.1]_{GSE}$ R_E for the first event and $[9.9, -5.5, 1.2]_{GSE}$ R_E for 176 the second event. The average 15 minutes of IMF clock angles preceding the first and 177 second events are $-162^{\circ} \pm 3$ and $114^{\circ} \pm 4$, respectively (i.e. southward). The bipolar 178 magnetic variations are seen in the B_X component (as expected for a magnetopause nor-179 mal orientation) while the enhanced core field is seen in B_Y component for both events 180 (Figs 1a, 1a') in the GSE coordinates. However, the senses of rotation of B_X are oppo-181 site in each case. To move to the flux rope's frame, we obtain the $(\mathbf{x}_{\mathbf{y}}, \mathbf{y}_{\mathbf{y}}, \mathbf{z}_{\mathbf{y}})$ coordi-182 nates as described in Section 2.2 (see also Fig S1) from the average ion bulk velocity dur-183 ing the flux rope intervals in Figs 2b, 2b', bounded by the vertical dotted lines. The mag-184 netic fields are then transformed to this local observation frame and normalised with the 185 maximum magnetic field strength, called (B_{xv}, B_{yv}, B_{zv}) , in Figs 1c, 1c' for the purpose 186 of fitting into the model. The fitting results to the Burlaga model are plotted as dashed 187 lines in Figs 1c, 1c', along with the fit parameters in text in the same panels. The model 188 fitting in Fig 2c shows that it has a negative helicity (LH) while in Fig 1c' it has a pos-189 itive helicity (RH); the opposite sense of twist is seen in $B_{\mu\nu}$ component. Figs 2d (2d'), 190 2e (2e'), and 2f (2f') show variations in ion number density, ion temperature, and plasma, 191 magnetic, and total pressure across the two flux rope intervals, respectively. 192

Figure 2. Overview of FTEs with (a-f) LH and (a'-f') RH flux rope structures. (a,a') Magnetic fields in GSE coordinates; (b, b') ion velocity in GSE coordinates with the transformations in text for the local frame coordinates; (c, c') magnetic fields in the local frame coordinates with the model parameters (θ_0, ϕ_0, Y_0, H) and flux rope model; (d, d') ion number density; (e, e') ion temperature; and (f, f') magnetic pressure, plasma pressure, and the total pressure.

¹⁹³ 3.2 Spatial distribution of FTEs

Among the 84 FTE flux ropes, we found that there are 59 (70%) RH flux ropes and 194 25 (30%) LH flux ropes. Fig 3 shows the spatial distribution of FTE locations in the X-195 Z and X-Y planes in the GSE coordinates for the RH (blue cross) and LH (orange cross) 196 flux ropes. As seen in Fig 3, the positive (RH) and negative (LH) helicity flux ropes uni-197 formly distribute on the dayside magnetopause with their positions being at low-latitudes. 198 In other words, there is no spatial preference for FTE flux ropes' handedness. This sug-199 gests that the sense of twist is not related to these local properties but should be asso-200 ciated with remote or upstream parameters. 201

It is important to note that the handedness is different from the sequence of po-202 larity of the bipolar variation of FTEs that is observed dependent on the hemisphere (e.g., 203 Rijnbeek et al., 1984; D. Southwood et al., 1986). The bipolar variation is observed to 204 be outward followed by inward to the magnetopause for spacecraft located in the north-205 ern hemisphere; this order is reversed for spacecraft located in the southern hemisphere. 206 Both sequences can have the same helicity sign as the order of sequence depends on the 207 spacecraft trajectory; the direction of the core field with respect to the bipolar variation 208 is what determines the helicity sign of the flux rope. 209

3.3 Solar wind IMF conditions

210

We studied solar wind conditions using averages over interval 15 minutes prior to the events, for all FTE flux ropes. Figs 4a and 4b show histograms of the averaged IMF clock angle 15 minutes before the two types of events (RH and LH). It is found that the RH flux ropes are mainly preceded by IMF clock angles from 90° to 180°, which is the

Figure 3. Spatial distribution of the FTE flux ropes in the (a) Y-Z and (b) X-Y planes with data points color-coded by the helicity signs H = 1 (RH) in blue and H = -1 (LH) in orange. Both types of flux rope uniformly distribute on the dayside magnetopause.

duskward and southward direction. In contrast, the LH flux ropes are mainly preceded 215 by IMF clock angles of -90° to -180° , which is dawnward and southward. Note that 216 the averages over 10, 20, and 25 minutes give similar results. We do not find any clear 217 correlation between other solar wind parameters and the helicity sign of flux ropes (see 218 Fig S2). This suggests that the helicity sign of FTE flux ropes is mainly controlled by 219 the IMF clock angle (e.g., the IMF B_Y component). Nevertheless, there are clearly some 220 LH flux ropes (9 out of 25 cases) that are preceded by duskward IMF (IMF $B_Y > 0$) 221 and some RH flux ropes (5 out of 59 cases) that are preceded by dawnward IMF (IMF 222 $B_Y < 0$). The smaller outlier population for the RH flux ropes may relate to the sea-223 sonal (i.e., the dipole tilt) effects because all events are observed during September - Febru-224 ary which are near the winter solstice (December). Note that not all of the outlier events 225 are preceded by southward IMF; a significant population of the outlier RH (4 out of 5) 226 and LH (3 out of 9) flux ropes are preceded by northward IMF. Excluding the north-227 ward IMF events, it is still unclear whether this outlier group is due to statistical un-228 certainties, such as IMF propagation errors, or to some unknown physical mechanism 229 controlling the helicity in addition to the IMF B_Y . 230

For the purpose of discussion and further analyses, we define two groups of LH flux 231 ropes to be (1) "regular" for LH flux ropes that are preceded by dawnward IMF and (2) 232 "outlier" for LH flux ropes that are preceded by duskward IMF. Note that we study only 233 the LH flux group due to the significant outlier population. Comparing the solar wind 234 conditions between the two groups, we found that they have different IMF cone angle 235 as shown in Figs 4c, 4d. The regular group is mostly preceded by IMF cone angle $< 90^{\circ}$ 236 (sunward) while the outlier group is mainly preceded by IMF cone angle $> 90^{\circ}$ (anti-237 sunward). The magnitudes of IMF $B_x/|\mathbf{B}|$ are also different (see panel (c) of Fig S3). 238 The outlier group has mostly negative IMF $B_x/|\mathbf{B}|$ values and large magnitude. How-239

Figure 4. (top) Distribution of the averaged IMF clock angle 15 minutes before the FTE observations obtained from the OMNI database for (a) RH and (b) LH flux ropes. The IMF clock angle is mainly in the 90° to 180° clock angle range (duskward-southward) before the RH flux ropes and in the -90° to -180° range (dawnward-southward) before the LH flux ropes. (bottom) Distribution of the averaged IMF cone angle 15 minutes before LH flux ropes for (c) regular group and (d) outlier group. The regular LH flux ropes are mostly preceded by sunward-tilted IMF B_x while the outlier LH flux ropes are mainly preceded by antisunward-tilted IMF B_x .

ever, the regular group has a weak, positive IMF $B_x/|\mathbf{B}|$. There is no significant difference in other solar wind parameters between these groups.

242 **4** Discussion

We have analysed the helicity sign of 84 FTE flux ropes observed by MMS1 (from a list by Fargette et al. (2020)) at the dayside magnetopause through model fitting. We found that there are 59 RH (70%) and 25 (30%) LH flux ropes. We also analysed the solar wind conditions preceding the events. We found a correlation between the IMF B_Y sign and the helicity sign: RH flux ropes (H = 1) are mainly preceded by IMF $B_Y >$ 0 while LH flux ropes (H = -1) are mostly preceded by IMF $B_Y < 0$. This shows that the twist direction of the FTE flux ropes is controlled by the IMF B_Y component.

Our main results place constraints on the FTE generation mechanism. Indeed, as 250 we illustrate in Fig 1, the helicity sign of an FTE can be predicted as a function of the 251 IMF B_Y in the context of a multiple, sequential X-line formation mechanism. The sense 252 of rotation of the azimuthal field of the flux ropes from our statistical analyses can be 253 explained by this picture where the FTEs are generated by multiple component recon-254 nection X-lines on the dayside magnetopause as predicted by Lee and Fu (1985). Ad-255 ditionally, most events are observed near the winter solstice, i.e., when the dipole tilt is 256 large, consistent with the FTE production due to sequential, multiple X-line mechanism 257 proposed by Raeder (2006). Indeed, the Maximum Magnetic Shear Model (Trattner et 258 al., 2007) predicted that the component reconnection should be dominant on the day-259 side when the southward IMF has a significant B_Y component because the draped IMF 260 in the magnetosheath region makes a first contact with the subsolar region. The FTEs 261 should be generated from this region through multiple X-line reconnection where the sign 262 of IMF B_Y across the neutral line controls the sense of twist and core field as depicted 263 in Fig 1. Even though our finding does not rule out other FTE formation mechanisms, 264 it is consistent and compatible with the multiple X-line mechanism. 265

Statistical analyses on the solar wind conditions prior to the LH flux ropes preceded 266 by IMF $B_Y > 0$ (outlier) and those preceded by IMF $B_Y < 0$ (regular) show that the 267 outlier group has a strong, negative IMF B_X while the regular group has a small, pos-268 itive IMF B_X . It is unclear whether why the magnitude and polarity of IMF B_X should 269 control the helicity sign of FTE flux ropes. When the IMF is due south and B_X is neg-270 ative, the magnetic merging line is found to shift southward at the dayside (Peng et al., 271 2010). In addition, with all our events being in the winter hemisphere, there plausibly 272 be a combined effect between the IMF B_X and the dipole tilt (e.g., Palmroth et al., 2012; 273 Hoilijoki et al., 2014) that can complicate reconnection at the dayside and thus the FTE 274 formation. The IMF B_X component was found to impact the north-south hemispheric 275 asymmetry of FTE occurrence, properties, sizes, and motions (Hoilijoki et al., 2019) as 276 a result of a reduction of the reconnection rate at the dayside due to the smaller tan-277 gential magnetic field to the magnetopause. The FTE generation may also be compli-278 cated by processes downstream of bow shock when the IMF cone angle is small. We leave 279 this as an open question that should be addressed in future work. 280

²⁸¹ 5 Conclusions

We have surveyed the helicity sign of 84 FTE flux ropes observed by MMS near 282 the winter solution of 2015 - 2017 that can be fitted well to a cylindrically force-283 free flux rope model with a constant α (Burlaga, 1988). We found that 59 (70%) flux 284 ropes are RH and 25 (30%) of them are LH. Investigations of the IMF conditions show 285 that the RH flux ropes are mainly preceded by southward IMF with positive B_Y while 286 the LH flux ropes are mostly preceded by southward IMF with negative B_Y . This con-287 trol of FTE flux rope helicity sign by the IMF B_Y component is consistent with its for-288 mation through sequential, multiple X-line reconnection. We also found an outlier group 289

of flux ropes whose helicity sign is inconsistent with the IMF B_Y sign. There are 14 out of 84 flux ropes that are preceded by unexpected IMF B_Y polarity. Investigation of the solar wind conditions preceding LH flux ropes show that the outlier group is associated with strong and negative IMF B_X . This shows that the presence of IMF B_X further complicates the formation of FTE flux ropes at the dayside magnetopause. Future work would be desirable for a fuller understanding of FTE helicity generation of this outlier group.

296 Acknowledgments

²⁹⁷ Work at IRAP was supported by CNRS, CNES, and UPS. MMS data are available on-

line (from https://lasp.colorado.edu/mms/sdc/public/). We thank E. Penou for devel-

oping the CL software that was used to visualize and obtain the data (available at https://

clweb.irap.omp.eu/cl/clweb.php). Data are handled using SpacePy (Morley et al.,

2011) and Pandas (McKinney, 2010) packages and plotted using Matplotlib (Hunter, 2007)
 and Seaborn (Waskom et al., 2017) packages with Python 3.

303 References

304	Berchem, J., & Russell, C. T.	(1984, aug).	Flux transf	er events on	the magne-
305	topause: Spatial distrib	ution and controllin	g factors.	Journal of	Geophysical
306	Research, $89(A8)$, 6689	. Retrieved from	n http://do	i.wiley.com	n/10.1029/
307	JA089iA08p06689 doi:	10.1029/JA089iA0	8p06689		
		(1000 .)			<i>c</i>

- Bothmer, V., & Schwenn, R. (1998, jan). The structure and origin of magnetic
 clouds in the solar wind. Annales Geophysicae, 16(1), 1-24. Retrieved from
 http://www.ann-geophys.net/16/1/1998/ doi: 10.1007/s00585-997-0001-x
- Burch, J., Moore, T. E., Torbert, R., & Giles, B. L. (2015). Magnetospheric Multiscale Overview and Science Objectives. *Space Sci Rev*, 199, 5–21. Retrieved from http://dx.doi.org/10.1007/s11214-015-0164-9 doi: 10.1007/s11214 -015-0164-9
- Burlaga, L. F. (1988). Magnetic clouds and force-free fields with constant alpha. Journal of Geophysical Research, 93(A7), 7217. Retrieved from http://doi .wiley.com/10.1029/JA093iA07p07217 doi: 10.1029/JA093iA07p07217
- Cowley, S. W. H. (1982). The causes of convection in the Earth's magnetosphere: A review of developments during the IMS. *Reviews of Geophysics*, 20(3), 531.
 Retrieved from http://doi.wiley.com/10.1029/RG020i003p00531 doi: 10 .1029/RG020i003p00531
- Eastwood, J. P., Phan, T. D., Fear, R. C., Sibeck, D. G., Angelopoulos, V., Øieroset,
 M., & Shay, M. A. (2012, aug). Survival of flux transfer event (FTE) flux
 ropes far along the tail magnetopause. Journal of Geophysical Research: Space
 Physics, 117(A8), n/a-n/a. Retrieved from http://doi.wiley.com/10.1029/
 2012JA017722 doi: 10.1029/2012JA017722
- Fargette, N., Lavraud, B., Øieroset, M., Phan, T. D., Toledo-Redondo, S., Kieokaew,
 R., ... Smith, S. E. (2020, mar). On the Ubiquity of Magnetic Reconnection Inside Flux Transfer Event-Like Structures at the Earth's Mag-
- 330
 netopause.
 Geophysical Research Letters, 47(6), 1–9.
 Retrieved from

 331
 https://onlinelibrary.wiley.com/doi/abs/10.1029/2019GL086726
 doi:

 332
 10.1029/2019GL086726
 doi:
- Fear, R. C., Milan, S. E., & Oksavik, K. (2012). Determining the axial direction of high-shear flux transfer events: Implications for models of FTE structure. Journal of Geophysical Research: Space Physics, 117(9), 1–19. doi: 10.1029/2012JA017831
- Hasegawa, H., Wang, J., Dunlop, M., Pu, Z., Zhang, Q. H., Lavraud, B., ... Bog danova, Y. (2010, aug). Evidence for a flux transfer event generated by
 multiple X-line reconnection at the magnetopause. *Geophys. Res. Lett.*, 37,
 L16101. doi: 10.1029/2010GL044219

Hoilijoki, S., Ganse, U., Sibeck, D. G., Cassak, P. A., Turc, L., Battarbee, M., ... 341 Palmroth, M. (2019, jun). Properties of Magnetic Reconnection and FTEs on 342 the Dayside Magnetopause With and Without Positive IMF B x Component 343 During Southward IMF. Journal of Geophysical Research: Space Physics, 344 124(6), 4037-4048. Retrieved from https://onlinelibrary.wiley.com/doi/ 345 abs/10.1029/2019JA026821 doi: 10.1029/2019JA026821 346 Hoilijoki, S., Souza, V. M., Walsh, B. M., Janhunen, P., & Palmroth, M. (2014).347 Magnetopause reconnection and energy conversion as influenced by the dipole 348 tilt and the IMF Bx. Journal of Geophysical Research: Space Physics, 119(6), 349 4484-4494. doi: 10.1002/2013JA019693 350 Hunter, J. D. (2007). Matplotlib: A 2d graphics environment. Computing in science 351 \mathcal{E} engineering, 9(3), 90-95. 352 Karlson, K. A., Øieroset, M., Moen, J., & Sandholt, P. E. (1996, jan). A statistical 353 study of flux transfer event signatures in the dayside aurora: The IMF B y 354 -related prenoon-postnoon symmetry. Journal of Geophysical Research: Space 355 Physics, 101(A1), 59–68. Retrieved from http://doi.wiley.com/10.1029/ 356 357 95JA02590 doi: 10.1029/95JA02590 King, J. H., & Papitashvili, N. E. (2005). Solar wind spatial scales in and compar-358 isons of hourly wind and ace plasma and magnetic field data. Journal of Geo-359 physical Research: Space Physics, 110(A2). Retrieved from https://agupubs 360 .onlinelibrary.wiley.com/doi/abs/10.1029/2004JA010649 doi: 10.1029/ 361 2004JA010649 362 Kuo, H., Russell, C. T., & Le, G. (1995, mar).Statistical studies of flux transfer 363 events. Journal of Geophysical Research: Space Physics, 100(A3), 3513–3519. 364 Retrieved from http://doi.wiley.com/10.1029/94JA02498 doi: 10.1029/ 365 94JA02498 366 Lee, L., & Fu, Z. (1985, feb). A theory of magnetic flux transfer at the Earth's mag-367 netopause. Geophys. Res. Lett., 12, 105-108. doi: 10.1029/GL012i002p00105 368 Lepping, R. P., Jones, J. A., & Burlaga, L. F. (1990).Magnetic field structure 369 of interplanetary magnetic clouds at 1 AU. Journal of Geophysical Research, 370 95(A8), 11957. doi: 10.1029/ja095ia08p11957 371 Lundquist, S. (1950). Magnetohydrostatic fields. Ark. Fys. 372 Martin, C. J., Arridge, C. S., Badman, S. V., Russell, C. T., & Wei, H. (2020).373 Distribution and Properties of Magnetic Flux Ropes in Titan's Iono-374 Journal of Geophysical Research: Space Physics, 125(4), 1–14. doi: sphere. 375 10.1029/2019JA027570 376 McKinney, W. (2010).Data structures for statistical computing in python. In 377 S. van der Walt & J. Millman (Eds.), Proceedings of the 9th python in science 378 *conference* (p. 51 - 56). 379 Morley, S. K., Koller, J., Welling, D. T., Larsen, B. A., Henderson, M. G., & Niehof, 380 J. T. (2011). Spacepy - A Python-based library of tools for the space sciences. 381 In Proceedings of the 9th Python in science conference (SciPy 2010). Austin, 382 TX. 383 Øieroset, M., Phan, T. D., Eastwood, J. P., Fujimoto, M., Daughton, W., Shav, 384 M. A., ... Glassmeier, K.-H. (2011, Oct). Direct evidence for a three-385 dimensional magnetic flux rope flanked by two active magnetic reconnection 386 x lines at earth's magnetopause. Phys. Rev. Lett., 107, 165007. Retrieved 387 from https://link.aps.org/doi/10.1103/PhysRevLett.107.165007 doi: 388 10.1103/PhysRevLett.107.165007 389 Palmroth, M., Fear, R. C., & Honkonen, I. (2012).Magnetopause energy trans-390 fer dependence on the interplanetary magnetic field and the Earth's mag-391 netic dipole axis orientation. Annales Geophysicae, 30(3), 515-526. doi: 392 10.5194/angeo-30-515-2012393 Paschmann, G., Haerendel, G., Papamastorakis, I., Sckopke, N., Bame, S. J., 394 Gosling, J. T., & Russell, C. T. (1982).Plasma and magnetic field char-395

396	acteristics of magnetic flux transfer events. Journal of Geophysical Re-
397	search: Space Physics, 87(A4), 2159-2168. Retrieved from https://
398	agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/JA087iA04p02159
399	doi: 10.1029/JA087iA04p02159
400	Peng, Z., Wang, C., & Hu, Y. Q. (2010). Role of IMF Bx in the solar wind-
401	magnetosphere-ionosphere coupling. Journal of Geophysical Research: Space
402	<i>Physics</i> , 115(8), 1–7. doi: 10.1029/2010JA015454
403	Pollock, C., Moore, T., Jacques, A., Burch, J., Gliese, U., Saito, Y., Zeuch, M.
404	(2016). Fast Plasma Investigation for Magnetospheric Multiscale. Space
405	Sci Rev, 199, 331–406. Retrieved from http://dx.doi.org/10.1007/
406	s11214-016-0245-4 doi: 10.1007/s11214-016-0245-4
407	Raeder, J. (2006, mar). Flux Transfer Events: 1. generation mechanism for
408	strong southward IMF. Annales Geophysicae, 24(1), 381–392. Retrieved
409	from https://angeo.copernicus.org/articles/24/381/2006/ doi:
410	10.5194/angeo-24-381-2006
411	Rijnbeek, R. P., Cowley, S. W. H., Southwood, D. J., & Russell, C. T. (1984).
412	A survey of dayside flux transfer events observed by ISEE 1 and 2 mag-
413	netometers. Journal of Geophysical Research, 89(A2), 786. Retrieved
414	from https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/
415	JA0891A02p00786http://doi.wiley.com/10.1029/JA0891A02p00786 doi:
416	10.1029/JA089IA02p00780
417	Russen, C. (1990, jan). Magnetic nux ropes in the ionosphere of venus. <i>Wasnington</i>
418	doi: 10.1020/CM058p0412
419	C is Elabia D (1078). Initial ISEE Magnetameters Deculta: Magnetanauga
420	Observations, Space Sci Rev. 00, 681, 715
421	Descrivations. Space Sci Rev, 22, 081–715. Puscell C. Le C. & Kue H. (1006 ion) The economous rate of flux transfer.
422	ovents Advances in Space Research 18(8) 107-205 Betrieved from http://
423	www.sciencedirect.com/science/article/nii/0273117795009655https://
424	linkinghub elsevier com/retrieve/nii/0273117795009655
426	10.1016/0273-1177(95)00965-5
427	Russell C T Anderson B J Baumiohann W Bromund K B Dearborn D
428	Fischer, D Richter, I (2016. mar). The Magnetospheric Multiscale
429	Magnetometers. Space Science Reviews, 199(1-4), 189–256. Retrieved
430	from http://link.springer.com/10.1007/s11214-014-0057-3 doi:
431	10.1007/s11214-014-0057-3
432	Saunders, M. A., Russell, C. T., & Sckopke, N. (1984, feb). Flux transfer events:
433	Scale size and interior structure. Geophysical Research Letters, 11(2), 131–134.
434	Retrieved from http://doi.wiley.com/10.1029/GL011i002p00131 doi: 10
435	.1029/GL011i002p00131
436	Scholer, M. (1988, apr). Magnetic flux transfer at the magnetopause based on sin-
437	gle X line bursty reconnection. Geophysical Research Letters, 15(4), 291–294.
438	Retrieved from http://doi.wiley.com/10.1029/GL015i004p00291 doi: 10
439	.1029/GL015i004p00291
440	Song, Y., & Lysak, R. L. (1989). Evaluation of twist helicity of flux transfer
441	event flux tubes. Journal of Geophysical Research, 94 (A5), 5273. Re-
442	trieved from http://doi.wiley.com/10.1029/JA094iA05p05273 doi:
443	10.1029/JA094iA05p05273
444	Southwood, D., Saunders, M., Dunlop, M., Mier-Jedrzejowicz, W., & Rijnbeek, R.
445	(1986, dec). A survey of flux transfer events recorded by the UKS spacecraft
446	magnetometer. Planetary and Space Science, $34(12)$, $1349-1359$. Retrieved
447	from https://linkinghub.elsevier.com/retrieve/pii/0032063386900711
448	doi: 10.1016/0032-0633(86)90071-1
449	Southwood, D. J., Farrugia, C. J., & Saunders, M. A. (1988). What are flux trans-
450	ter events? Planetary and Space Science, $36(5)$, $503-508$. doi: $10.1016/0032$

451	-0633(88)90109-2
452	Trattner, K. J., Mulcock, J. S., Petrinec, S. M., & Fuselier, S. A. (2007). Prob-
453	ing the boundary between antiparallel and component reconnection during
454	southward interplanetary magnetic field conditions. Journal of Geophysical
455	Research: Space Physics, 112(8), 1–16. doi: 10.1029/2007JA012270
456	Wang, Y. L., Elphic, R. C., Lavraud, B., Taylor, M. G., Birn, J., Russell, C. T.,
457	Zhang, X. X. (2006). Dependence of flux transfer events on solar wind condi-
458	tions from 3 years of Cluster observations. Journal of Geophysical Research:
459	Space Physics, 111(4), 1–13. doi: 10.1029/2005JA011342
460	Waskom, M., Botvinnik, O., O'Kane, D., Hobson, P., Lukauskas, S., Gemperline,
461	D. C., Qalieh, A. (2017, September). mwaskom/seaborn: v0.8.1 (september
462	2017). Zenodo. Retrieved from https://doi.org/10.5281/zenodo.883859
463	doi: 10.5281/zenodo.883859
464	Wei, H. Y., Russell, C. T., Zhang, T. L., & Dougherty, M. K. (2010). Comparison
465	study of magnetic flux ropes in the ionospheres of Venus, Mars and Titan.
466	<i>Icarus</i> , 206(1), 174–181. Retrieved from http://dx.doi.org/10.1016/
467	j.icarus.2009.03.014 doi: 10.1016/j.icarus.2009.03.014
468	Wright, A. N., & Berger, M. A. (1989). The effect of reconnection upon the link-
469	age and interior structure of magnetic flux tubes. Journal of Geophysical
470	Research, 94 (A2), 1295. Retrieved from http://doi.wiley.com/10.1029/
471	JA094iA02p01295 doi: 10.1029/JA094iA02p01295
472	Wright, A. N., & Berger, M. A. (1990). The interior structure of reconnected flux
473	tubes in a sheared plasma flow. Journal of Geophysical Research, 95 (A6),
474	8029. Retrieved from http://doi.wiley.com/10.1029/JA095iA06p08029
475	doi: $10.1029/JA0951A06p08029$
476	Zhang, Y. C., Shen, C., Liu, Z. X., & Narita, Y. (2010, sep). Magnetic helicity of a
477	nux rope in the magnetotali: THEMIS results. Annales Geophysicae, 28(9),
478	1087-1095. Retrieved from http://www.ann-geophys.net/28/168//2010/
479	doi: 10.5194/angeo-28-1087-2010

@AGUPUBLICATIONS

Geophysical Research Letters

Supporting Information for

Statistical Relationship between Interplanetary Magnetic Field conditions and the Helicity of Flux Transfer Event Flux Ropes

R. Kieokaew¹, B. Lavraud^{1,2}, N. Fargette¹, A. Marchaudon¹, V. Génot¹, C. Jacquey¹, D. Gershman³, B. Giles³, R. Torbert⁴, and J. Burch⁵

¹ Institut de Recherche en Astrophysique et Planétologie, CNRS, UPS, CNES, Université de Toulouse, Toulouse, France

² Laboratoire d'Astrophysique de Bordeaux, Univ. Bordeaux, CNRS, B18N, allée Geoffroy Saint-Hilaire, 33615 Pessac, France

³NASA Goddard Space Flight Center, Greenbelt, MD, USA

⁴Space Science Center, University of New Hampshire, Durham, NH, USA

⁵Southwest Research Institute, San Antonio, TX, USA

Corresponding author: Rungployphan Kieokaew (rkieokaew@irap.omp.eu)

Contents of this file

Table S1 Figures S1 to S2

Introduction

This supplementary information includes details of the FTE flux rope fit parameters and detailed analyses of the solar wind conditions preceding the events. The FTEs are listed in Table S1 with their beginning and end time. Table S1 includes the flux rope model fit parameters as introduced in Section 2.2 in the main text. The fit parameters are obtained from the cylindrically symmetric force-free flux rope model with a constant α as in Burlaga (1988). The model fit parameters consist of two angles (θ_0 , ϕ_0) for characterizing the orientation of the flux rope axis, the impact parameter y_0 , and the helicity sign $H = \pm 1$, where H=1 is right-handed (RH) and H=-1 is a left-handed (LH) flux ropes. We illustrate the geometry of magnetic flux rope for the purpose of fitting into the model in Fig S1, adapted from Burlaga (1988). The quality of the model fit to the data is indicated by the deviation of the observed data from the model and

defined as $\chi^2 = \sum_i (|\boldsymbol{B}_{data,i} - \boldsymbol{B}_{model,i}|)^2 / N$ where N is the number of vectors of magnetic field measurements.

The analyses of the solar wind conditions preceding all of the FTEs are shown in Fig S2. Using the model fitting, the FTEs are categorized into RH and LH flux ropes. There are 59 RH and 25 LH flux ropes. Fig S2 shows the normalized distributions of the averaged solar wind conditions 15 minutes before the FTEs. It is clearly seen that the IMF clock angle is negative (e.g., IMF $B_Y < 0$) for LH flux ropes while the IMF clock angle is positive (e.g., IMF $B_Y > 0$) for RH flux ropes. The distributions of other solar wind parameters do not show significant difference between the two.

For the LH flux ropes, we found that there are 9 out of 25 events that are preceded by duskward IMF. As per the scenario, described in the paper, wherein the sign of helicity is controlled by the IMF B_{γ} sign which fixes the topology of the magnetic field in-between the sequential X-lines forming FTEs, such cases constitute outliers. In search for a controlling factor, we analyze the solar wind conditions preceding the events specifically for LH flux ropes only. Fig S3 shows normalized distributions of the average solar wind conditions 15 minutes before the LH flux ropes. The LH flux ropes are divided into the regular group (16 events) that are preceded by IMF $B_{\gamma} < 0$ and the outlier group (9 events) that are preceded by IMF $B_{\gamma} > 0$. It can be seen that the IMF cone angle (panel (c)) between two groups are different. The ratio of IMF $B_{x}/|\mathbf{B}|$ for the outlier group is mainly negative while the IMF B_{x} of the normal group is mostly positive. The magnitude of the IMF $B_{x}/|\mathbf{B}|$ for the outlier group is also stronger. The distributions of other solar wind parameters show slight differences between the two groups, which may be enhanced for a larger data set.

Fig S1. The geometry of magnetic flux rope passing a spacecraft in which we model following Burlaga (1988), adapted from Figure 2 of Burlaga (1988).

Normalized Distributions of Average Solar Wind Conditions (15 min) before RH and LH Flux Ropes

Fig S2. Normalized distributions of the average solar wind conditions 15 minutes before the right-handed (RH) and left-handed (LH) flux ropes. The solar wind parameters are shown as the following. (a) IMF clock angle in the GSM coordinate system. (b) IMF cone angle in the GSE coordinate system. (c,d,e) IMF B_X , B_Y , and B_Z in the GSE coordinates normalized by the IMF magnitude. (f,g,h) Ion bulk flow velocity V_X , V_Y , and V_Z components in the GSE system. (i) Ion number density. (j) Ion temperature. (k) Plasma beta. (I) Alfvén Mach Number.

Normalized Distributions of Average Solar Wind Conditions (15 min) before LH Flux Ropes

Fig S3. Normalised distributions of the average solar wind conditions 15 minutes for the LH flux ropes that are preceded by IMF $B_Y < 0$ (regular group) and IMF $B_Y > 0$ (outlier group). The panel format is the same as in Figure S1 except for (b,c,d) that are the IMF B_X , B_Y , and B_Z components in the GSE coordinates normalized by the total IMF magnitude. (f,g,h) Ion bulk flow velocity V_X , V_Y , and V_Z components in the GSE system. (i) Ion number density. (j) Ion temperature. (k) Plasma beta. (I) Alfvén Mach Number.

Table S1. List of FTE flux ropes observed by MMS1 with their model fit parameters. The start and end times delineate the FTE intervals based on the bipolar component variation and enhanced core field signatures. The fit parameters (θ_0 , ϕ_0 , Y_0 , H) are obtained from optimization of Burlaga (1988)'s cylindrically symmetric force-free flux rope model with a constant α . The χ^2 is the deviation of the observational data from the most optimized modeled flux rope data, normalized by the number of data points in each event.

Event	Start time	End time	$ heta_0$ (deg)	$\phi_0(deg)$	$Y_0 (R_E)$	Н	χ^2
1	2015-09-14	2015-09-14	38.0	-175.0	1.0	1	0.0033
	16:06:51.000	16:07:33.000					
2	2015-09-23	2015-09-23	18.0	171.0	-0.6	1	0.0038
	08:15:03.000	08:15:36.000					
3	2015-09-23	2015-09-23	-26.0	14.0	-0.1	-1	0.0033
	10:56:28.000	10:56:58.000					
4	2015-09-25	2015-09-25	41.0	147.0	-0.5	1	0.0053
	09:24:22.793	09:24:52.977					
5	2015-09-25	2015-09-25	-20.0	-38.0	1.0	-1	0.0037
	09:57:43.000	09:58:28.000					
6	2015-10-03	2015-10-03	17.0	179.0	1.0	1	0.0037
	10:45:51.000	10:46:34.000					
7	2015-10-03	2015-10-03	14.0	177.0	0.7	1	0.0034
	13:27:12.396	13:27:42.044					
8	2015-10-06	2015-10-06	50.0	8.0	-1.0	1	0.0081
	17:28:07.567	17:28:17.015					
9	2015-10-08	2015-10-08	20.0	174.0	1.0	1	0.0046
	07:41:32.693	07:41:59.549					
10	2015-10-11	2015-10-11	29.0	173.0	1.0	1	0.0046
	11:05:13.000	11:05:57.000					
11	2015-10-20	2015-10-20	41.0	180.0	-0.5	1	0.0029
	06:16:03.000	06:17:26.000					
12	2015-10-22	2015-10-22	-17.0	-6.0	-0.8	-1	0.0034
	13:40:19.000	13:40:48.000					
13	2015-10-31	2015-10-31	19.0	173.0	0.9	1	0.0037
	05:45:52.000	05:46:27.000					
14	2015-11-05	2015-11-05	-37.0	-19.0	-1.0	-1	0.0079
	04:58:41.290	04:58:51.487	-				
15	2015-11-05	2015-11-05	-45.0	16.0	-1.0	-1	0.0048
	14:07:07.131	14:07:44.639				-	
16	2015-11-05	2015-11-05	35.0	-180.0	1.0	1	0.0093
	14:36:39.263	14:36:44.695					
17	2015-11-06	2015-11-06	-21.0	-4.0	-1.0	-1	0.0033
10	06:57:42.000	06:58:26.000		474.0		-	
18	2015-11-06	2015-11-06	33.0	1/1.0	-0.3	1	0.0055
10	13:23:48.000	13:24:29.000	21.0	6.0	1.0		0.0000
19	2015-11-06	2015-11-06	31.0	6.0	-1.0		0.0066
20	13:26:17.915	13:26:32.64/	20.0	170.0	1.0	-	0.0024
20	2015-11-08	2015-11-08	20.0	-1/0.0	1.0	1	0.0034
21	14:02:51.000	14:03:23.000	20.0	112.0	0.1	1	0.0128
21	2015-11-09	2015-11-09	36.0	112.0	0.1	1	0.0128
	10:06:54.162	10:07:02.160					

				1	1		
22	2015-11-10	2015-11-10	30.0	152.0	-0.8	1	0.0061
	02:43:43.908	02:44:10.768					
23	2015-11-11	2015-11-11	20.0	-176.0	0.4	1	0.0028
	03:56:21.000	03:57:18.000					
24	2015-11-12	2015-11-12	-60.0	-180.0	-0.9	-1	0.013
	07:06:01.695	07:06:06.617					
25	2015-11-12	2015-11-12	-46.0	-21.0	-1.0	-1	0.0055
	07:20:20.201	07:20:35.685					
26	2015-12-02	2015-12-02	-15.0	-10.0	0.9	-1	0.0036
	10:00:42.427	10:01:26.951					
27	2015-12-02	2015-12-02	-12.0	-7.0	1.0	-1	0.003
	10:21:35.000	10:21:59.000					
28	2015-12-05	2015-12-05	54.0	38.0	0.7	1	0.0113
	00:40:35.058	00:40:43.465					
29	2015-12-05	2015-12-05	24.0	7.0	-1.0	1	0.0078
	00:40:50.216	00:41:04.843					
30	2015-12-08	2015-12-08	40.0	-154.0	0.1	1	0.0096
	10:30:06.246	10:30:17.494					
31	2015-12-11	2015-12-11	32.0	-175.0	1.0	1	0.0098
	12:23:27.054	12:23:35.626					
32	2015-12-19	2015-12-19	45.0	-180.0	0.1	1	0.006
	09:27:02.581	09:27:18.115					
33	2016-01-23	2016-01-23	-13.0	-75.0	-1.0	-1	0.0068
	23:26:20.490	23:26:37.970				_	
34	2016-01-23	2016-01-23	-48.0	62.0	0.1	-1	0.0055
	23:45:12.961	23:45:25.871					
35	2016-01-27	2016-01-27	-24.0	3.0	0.8	1	0.0023
	22:17:19.000	22:18:02.000					
36	2016-01-27	2016-01-27	-30.0	-38.0	0.4	1	0.01
	22:49:42.164	22:49:48.419					
37	2016-01-29	2016-01-29	-37.0	77.0	-1.0	-1	0.0142
	22:38:50.825	22:38:59.880				-	
38	2016-01-31	2016-01-31	-30.0	4.0	1.0	1	0.0046
	05:54:46.000	05:55:47.000				-	
39	2016-02-01	2016-02-01	54.0	-175.0	0.1	1	0.008
	22:26:45.004	22:26:51.898					
40	2016-02-07	2016-02-07	-11.0	3.0	1.0	-1	0.0027
	03:06:51.154	03:07:33.233			1.0		
41	2016-02-11	2016-02-11	-34.0	-7.0	1.0	-1	0.0088
12	01:56:07.266	01:56:26.135	14.0	45.0			0.0076
42	2016-02-11	2016-02-11	14.0	-45.0	-0.4	1	0.0076
12	01:56:30.049	01:56:39.605	25.0	00.0	1.0		0.0100
43	2016-02-11	2016-02-11	25.0	-96.0	-1.0	1	0.0108
	01:57:06.171	01:57:16.309		1010		-	0.0000
44	2016-02-11	2016-02-11	-20.0	134.0	-0.7		0.0063
45	02:00:20.668	02:00:44.815	20.0	22.0	1.0	-	0.0046
45	2016-02-11	2016-02-11	-30.0	33.0	1.0		0.0046
40	02:39:04.000	02:40:45.000	24.0	25.0	0.7	4	0.004
46	2016-02-11	2016-02-11	-34.0	25.0	-0.7		0.004
	02:46:21.943	02:46:53.569					

47	2016-02-14	2016-02-14	-60.0	70.0	-1.0	-1	0.0092
	01:25:36.846	01:25:50.260					
48	2016-02-15	2016-02-15	-31.0	-5.0	-0.1	1	0.003
	01:28:58.000	01:29:49.000					
49	2016-02-19	2016-02-19	27.0	-125.0	1.0	1	0.0115
	22:55:42.433	22:55:53.393					
50	2016-02-19	2016-02-19	-26.0	-51.0	0.8	1	0.0047
	23:53:43.419	23:54:06.796					
51	2016-02-19	2016-02-19	-35.0	-48.0	-1.0	1	0.0082
	23:54:35.258	23:54:58.486					
52	2016-02-28	2016-02-28	24.0	-10.0	-1.0	1	0.0058
	00:58:54.553	00:59:16.930					
53	2016-10-10	2016-10-10	18.0	172.0	0.0	1	0.003
	15:43:20.000	15:43:54.000					
54	2016-10-27	2016-10-27	61.0	-172.0	-0.1	1	0.0056
	12:00:43.000	12:01:09.000					
55	2016-11-06	2016-11-06	32.0	5.0	-1.0	1	0.006
	16:52:52.000	16:53:30.000					
56	2016-11-08	2016-11-08	70.0	3.0	-1.0	1	0.0045
	10:49:25.000	10:50:24.000					
57	2016-11-08	2016-11-08	-34.0	-1.0	-1.0	-1	0.004
	11:19:54.000	11:20:42.000					
58	2016-11-08	2016-11-08	-18.0	-10.0	-0.4	1	0.0012
50	13:55:34.000	14:01:03.000	16.0	470.0	1.0		
59	2016-11-12	2016-11-12	16.0	1/8.0	-1.0	-1	0.0044
60	18:19:44.000	18:20:11.000	21.0	174.0	1.0	1	0.0104
60	2016-11-15	2016-11-15	31.0	174.0	1.0	T	0.0104
61	2016 11 15	2016 11 15	10.0	174.0	1.0	1	0.0040
01	15.49.46 000	15.50.07.000	19.0	174.0	-1.0	-1	0.0049
62	2016 11 22	2016 11 22	1.0	164.0	0.6	1	0.0052
02	09.03.15 000	09.03.45 000	1.0	104.0	0.0	1	0.0055
63	2016-11-27	2016-11-27	28.0	-174 0	1.0	1	0.004
05	08.39.08.000	08.40.05.000	20.0	-174.0	1.0	1	0.004
64	2016-12-02	2016-12-02	33.0	-177.0	-0.8	1	0.0082
01	09:30:09.603	09:30:19.524	55.0	1//10	0.0	-	0.0002
65	2016-12-14	2016-12-14	9.0	1.0	0.9	-1	0.0025
	05:30:40.000	05:31:07.000	5.0		0.0	_	0.0010
66	2016-12-19	2016-12-19	13.0	-180.0	-0.1	1	0.0026
	07:42:04.000	07:43:34.000					
67	2016-12-19	2016-12-19	6.0	-180.0	-1.0	1	0.0013
	09:15:40.000	09:17:46.000					
68	2016-12-19	2016-12-19	36.0	175.0	1.0	1	0.004
	13:54:51.000	13:56:05.000					
69	2016-12-23	2016-12-23	51.0	-128.0	0.9	-1	0.0093
	03:16:48.000	03:17:08.000					
70	2016-12-26	2016-12-26	16.0	-171.0	-0.8	1	0.002
	14:50:36.000	14:52:36.000					
71	2016-12-27	2016-12-27	29.0	-180.0	0.1	-1	0.0135
	08:02:30.190	08:02:35.208					

72	2016-12-28	2016-12-28	32.0	-180.0	1.0	1	0.0135
	06:32:50.089	06:32:57.921					
73	2016-12-29	2016-12-29	26.0	1.0	-0.8	1	0.0058
	11:12:00.000	11:12:26.000					
74	2016-12-29	2016-12-29	-20.0	-1.0	-0.9	-1	0.0036
	12:18:11.000	12:19:03.000					
75	2017-01-01	2017-01-01	-33.0	-32.0	-0.6	1	0.0061
	03:01:02.993	03:01:13.648					
76	2017-01-01	2017-01-01	30.0	-162.0	-0.1	1	0.0186
	06:27:39.512	06:27:41.575					
77	2017-01-11	2017-01-11	20.0	155.0	0.5	1	0.0094
	04:22:47.969	04:22:59.126					
78	2017-01-13	2017-01-13	22.0	-175.0	-1.0	-1	0.0033
	00:58:21.296	00:58:47.966					
79	2017-01-15	2017-01-15	-25.0	1.0	1.0	1	0.0032
	01:11:04.000	01:11:57.000					
80	2017-01-29	2017-01-29	-32.0	3.0	0.3	1	0.0055
	01:52:19.844	01:52:32.496					
81	2017-01-29	2017-01-29	-31.0	-32.0	-0.1	1	0.0084
	01:52:32.578	01:52:46.879					
82	2017-01-29	2017-01-29	-29.0	23.0	0.7	1	0.0055
	01:57:08.049	01:57:21.139					
83	2017-02-04	2017-02-04	-15.0	14.0	0.6	1	0.0071
	00:14:40.907	00:14:56.063					
84	2017-02-04	2017-02-04	38.0	154.0	1.0	-1	0.0148
	07:49:16.574	07:49:21.439					