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Abstract

The growing amounts of seismic data necessitates efficient and effective methods to monitor earthquakes. Current methods are

computationally expensive, ineffective under noisy environments, or labor-intensive. We leverage advances in machine learning

to propose an improved solution - a convolutional neural network that uses array data to seamlessly detect and localize events.

When testing this methodology with events at Hawai‘i, we achieve 99.4% accuracy and predict hypocenter locations within

a few kilometers of the U.S. Geological Survey catalog. We demonstrate that training with relocated earthquakes reduces

localization errors significantly. We outline several ways to improve the model, including enhanced data augmentation and use

of relocated offshore earthquakes recorded by ocean bottom seismometers. Application to continuous records shows that our

algorithm detects 6 times as many earthquakes as the published catalog. Due to the enhanced detection sensitivity, localization

granularity, and minimal computation costs, our solution is valuable, particularly for real-time earthquake monitoring.
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Key Points:5

• Convolutional neural network models based on seismic arrays automatically and6
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catalog from the continuous data of a seismic network.11
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Abstract12

The growing amounts of seismic data necessitates efficient and effective methods13

to monitor earthquakes. Current methods are computationally expensive, ineffective un-14

der noisy environments, or labor-intensive. We leverage advances in machine learning15

to propose an improved solution – a convolutional neural network that uses array data16

to seamlessly detect and localize events. When testing this methodology with events at17

Hawai‘i, we achieve 99.4% accuracy and predict hypocenter locations within a few kilo-18

meters of the U.S. Geological Survey catalog. We demonstrate that training with relo-19

cated earthquakes reduces localization errors significantly. We outline several ways to20

improve the model, including enhanced data augmentation and use of relocated offshore21

earthquakes recorded by ocean bottom seismometers. Application to continuous records22

shows that our algorithm detects 6 times as many earthquakes as the published cata-23

log. Due to the enhanced detection sensitivity, localization granularity, and minimal com-24

putation costs, our solution is valuable, particularly for real-time earthquake monitor-25

ing.26

Plain Language Summary27

Earthquake catalogs provide baseline information about the movement of the crust28

and related geological hazards. Yet, catalogs are usually incomplete and fail to log smaller29

earthquakes undetected by seismic networks. Here, we present a new deep learning model30

that is computationally efficient and can seamlessly detect and locate earthquakes from31

continuous seismic records. When the new model is applied to Hawai‘i, it yields 6 times32

as many earthquakes as the published catalog, promising a more complete catalog that33

will help improve understanding of seismic and volcanic processes.34

1 Introduction35

Recent advances in instrumentation have provided an exponential increase in seis-36

mic data. Yet, detecting and localizing earthquakes at scale remains expensive and in-37

efficient. Traditional earthquake detection methods used by many seismic network op-38

erators (e.g. Allen, 1982; Withers et al., 1998) do not perform well for small earthquakes39

in noisy environments. In addition, network operations often involve human review of40

earthquake arrivals and time picks as well as iterative tuning of hypocenter estimates.41

To improve detection, methods based on waveform similarity (matched filter or template42

matching) have been developed and widely applied (e.g. Caffagni et al., 2016; Gibbons43

& Ringdal, 2006). Such efforts have led to a great increase in the detection of small earth-44
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quakes, yielding rich details that enable the next generation of analyses of earthuquakes45

and faults (e.g. Ross et al., 2019). These methods are, however, computationally expen-46

sive and limited; detection only works for earthquakes that share similar waveforms and47

thus likely have the same source regions and mechanisms of the template events.48

In the past few years, convolutional neural networks (CNNs) have been adapted49

for earthquake detection and location. One common feature shared by CNN approaches50

is that once the model is trained, it is far more computationally efficient than the waveform-51

similarity-based approach (Gibbons & Ringdal, 2006; Yoon et al., 2015) when it is ap-52

plied to new data, an advantage important for seismic network operations, particularly53

during periods of intense seismic activities. Perol et al. (2018) introduced a CNN model54

for earthquake detection and localization based on waveforms at individual stations. The55

localization was limited to a few subregions. Lomax et al. (2019) and Mousavi and Beroza56

(2020) developed CNN models for rapid earthquake characterization using single-station57

waveforms. Dokht et al. (2019) extended the CNN earthquake detection in the time-frequency58

domain. Other studies (e.g. Ross et al., 2018; W. Zhu & Beroza, 2018; L. Zhu et al., 2019;59

J. Wang et al., 2019) focused on seismic phase detection and picking of arrival times, which60

were then used in traditional travel time-based localization. Kriegerowski et al. (2019)61

and Zhang et al. (2020) showed it is possible to use CNNs to locate earthquakes with-62

out the intermediate step of phase picking; however, the former depended on manually63

chosen arrival times at a reference station and the latter assumed that seismic events had64

already been detected. Taking a different approach, Van den Ende and Ampuero (2020)65

used Graph Neural Networks with multi-station waveforms to locate earthquakes and66

estimate magnitude. Though they too applied it only to existing catalog events. Here67

we present a framework based on recent advances in deep learning for seamless, auto-68

matic detection and 4D localization of earthquakes without the intermediate steps of phase69

detection and picking, phase association, travel time calculation, and inversion. Our ap-70

proach builds upon previous work by using a network of seismic stations to first iden-71

tify if an earthquake has occurred, and if so, estimate the latitude, longitude, depth, and72

origin time of the event.73

Specifically, we propose a two-stage seismic-array-based, convolutional neural net-74

work (ArrayConvNet) model where 1) earthquake detection becomes a supervised clas-75

sification problem and 2) earthquake localization becomes a supervised regression prob-76

lem. We train and test on data from 55 seismic stations on the Island of Hawai‘i – our77

solution not only detects earthquakes in the United States Geological Survey (USGS)78

catalog, but also uncovers 6 times more earthquakes missing from the catalog. Once an79

earthquake is detected, our model can locate an earthquake’s hypocenter to within 3-80
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4 km of the catalog. To the best of our knowledge, this is the first deep learning model81

that can automatically provide an earthquake catalog from the continuous data of a seis-82

mic network. Finally, we outline several steps that can be taken to greatly reduce the83

model localization errors, making it a viable solution to improve the efficiency and ac-84

curacy of seismic monitoring at much lower computational and human costs.85

2 Data86

The Hawai‘i Island, USA is one of the most seismically and volcanically active re-87

gions in the world, a fact that was heightened by the 2018 eruption of Kı̄lauea Volcano88

(Neal et al., 2019). The Hawaiian Volcano Observatory (HVO), USGS operates a per-89

manent seismic network (HV) on the island, providing the earthquake information and90

waveform data needed for this study. We use 55 seismic stations on Hawai‘i Island (Fig-91

ure S1). Among them, 33 have three-component (north, east, and vertical) seismome-92

ters while the rest have single, vertical-component seismometers.93

Both the earthquake waveforms and noise segments are downloaded from the In-94

corporated Research Institutions for Seismology (IRIS) Data Management Center (DMC).95

For each earthquake, we select a 50-second window so that the event origin time is ran-96

domly between 1 - 10 seconds from the trace start time. The time difference between the97

trace start time and the event origin time, along with the catalog hypocentral location98

(latitude, longitude and depth), is used to train the localization part of the model (see99

Method). The noise segments are chosen between the USGS reported earthquakes and100

are 10 to 50 seconds before the origin time of an earthquake. We visually inspect the noise101

windows to minimize the possible presence of unreported earthquakes in the noise seg-102

ments. Because the Hawaiian seismic networks have a variety of sensors, we remove in-103

strument response from the traces and transfer them to velocity seismograms to min-104

imize the effects of different instrument sensitivities to ground motion. The earthquake105

waveforms and noise are filtered between 3 to 20 Hz and downsampled to an uniform sam-106

pling rate of 50 samples per second on all channels. The frequency range is chosen for107

optimum earthquake signal-to-noise ratios based on visual inspection of earthquake wave-108

forms over a wide range of frequencies as well as previous studies of the Hawaiian earth-109

quake characteristics (e.g. Matoza et al., 2014). All traces are normalized individually110

before they are used as the inputs for the CNN model. For stations with missing records111

or that do not have three channels, we zero-fill the missing channels.112

Our ArrayConvNet model has two stages: one for event detection and one for event113

localization (see Method). Each stage is trained on distinct training and test data sets.114
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2.1 Detection115

We use 1843 analyst-reviewed earthquakes with magnitude (ml or md) ranging from116

0.1 to 5.28 in the 2017 USGS catalog and 1905 noise segments. The number of earth-117

quakes is comparable to that in Perol et al. (2018).118

We explored several ways of arranging the input trace data for the detection model119

and chose the following approach based on the robustness of the results when the model120

is applied on unseen, continuous data: for both earthquakes and noise segments, we sort121

the 55 station traces in order of the time of the vertical component’s largest amplitude122

and take the absolute of the traces so all values are between 0 and 1. Therefore, for an123

earthquake, we see a clear propagation of earthquake arrivals through the seismic net-124

work in a visually easily recognizable pattern (Figure S2). The general pattern is con-125

sistent from earthquake to earthquake, regardless of the earthquake location and mag-126

nitude (and thus signal-to-noise ratio), as the wave always propagates from the lower left127

to the upper right in the maximum-amplitude-sorted waveform images (Figure S2). For128

each sorted station, the cross-station features – the information learned by the convo-129

lutional kernel, which often has a small size – are local in the time-and-trace-number space130

in a well-defined trend. In contrast, the unsorted waveforms, arranged alphabetically by131

station names, do not have an easy-to-follow pattern from event to event. Depending on132

the source-receiver geometry, a station that has an early earthquake arrival for one event133

may have a late arrival for the next event. The cross-station features are highly variable134

and may span the entire time-and-trace-number space, thus requiring a deep and large135

network to capture. While the sorted and unsorted waveforms do not show substantial136

differences in terms of model precision, recall, and the receiver operating characteristic137

(ROC) curve (Figure S3), they yield significantly different numbers of detections when138

the resulting model is applied to continuous data, indicating differences in the robust-139

ness of detection of small earthquakes in noisy data; the unsorted waveforms result in140

higher number of false detection from visual inspection of the corresponding seismic traces.141

Intuitively, the sorted waveforms have simpler, lower-order features, which require less142

complicated neural networks and thus less training data to achieve robust models.143

Each input event is labeled with a “0” or an “1” to indicate whether it is a noise144

or an earthquake event, respectively. This now transforms detection into a well-understood145

classification problem.146
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2.2 Localization147

For the localization part of the model, we use the earthquake locations and origin148

times from the same 1843 earthquakes in the 2017 USGS catalog. We augment these orig-149

inal waveforms by performing 7 cuts of 50-s-long waveforms for the same earthquake,150

with each cut starting at a random time between 1-10 s before the event origin time. The151

seven cuts of each earthquake have the same hypocenter (latitude, longitude, depth) but152

different offsets between the trace start time and the origin time. The total number of153

earthquakes used to train and test the localization part is thus 12,901. Such data aug-154

mentation is commonly used in deep learning (J. Wang & Perez, 2017) and, in our case,155

helps to train the model to better localize the event origin time (see more in Discussion),156

which is crucial when the model is applied to continuous data.157

Given the different units and scales for the hypocenter and origin time, we normal-158

ize the latitude, longitude, depth, and time values so that they are all comparable in mag-159

nitude (within -1 to 1). For the hypocenter, we subtract a reference location (latitude160

19.5◦ , longitude -155.5◦ , depth 0 km) from the catalog location and then divide the depth161

by 50; for the time difference between the trace start time and the origin time, we di-162

vide by 10. Therefore, we avoid the situation where one variable (e.g., depth) dominates163

the loss function.164

Unlike the inputs for the detection part of the model, the input traces for local-165

ization are arranged alphabetically by station names. This is necessary as localization166

requires that the station geometry remains a constant. We now may treat localization167

as a supervised regression problem.168

3 Method169

3.1 Network Architecture170

Traces for each event are arranged as a three-dimensional (3D) tensor Z(c, s, t). The171

depths of Z for c ∈ {1, 2, 3} correspond to three channels of seismic records, the rows172

for s ∈ {1, ..., 55} represent various stations, and t ∈ {1, . . . , 2500} represents the time173

index of trace values. Inputs are then processed in a feed-forward stack of three convo-174

lutional layers, followed by two fully connected layers that in the detection model, out-175

put class scores and in the localization model, output latitude, longitude, depth, and time176

offset between the trace start time and earthquake origin time (Figure 1).177

After each convolutional layer, we use a rectified linear unit (ReLU) layer to ap-178

ply an element-wise activation function and then a max pooling layer to perform a down-179
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Input Conv1 + ReLu
Conv1 + ReLu

Conv1 + ReLu
Conv1 + ReLu

Input
Input

Pool1
Pool1

Pool1
Pool1

Pool1
Pool1

Pool1
Conv2 + ReLu

Pool2
Pool2

Pool2
Pool2

Pool2
Pool2

Pool2Conv3 +
ReLU Pool3 FC1 FC2

Dimensions (3,55,2500) (4,55,500) (4,55,250) (8,55,125) (128)
(2) for

detection
(4) for

prediction

Figure 1. Architecture of array-based CNN model. Conv and ReLu stand for the convolu-

tional layer and rectified linear unit layer, while Pool represents max pooling. FC1 and FC2 are

the two fully connected layers. Numbers within the parenthesis represent the dimensions of the

input or output data at the various stages.

sampling operation and decrease the number of parameters. Convolutions are also zero-180

padded to maintain input shape.181

The kernel of the first convolutional layer has a dimension of width of 9 and height182

of 1. The kernels in the second and third layers have the same dimension of width of 3183

and height of 5. The motivation behind the 1D filter in the first layer is to isolate learn-184

ing of temporal features among the three input channels of each station, as in Kriegerowski185

et al. (2019), while the 2D filters in later layers are designed to extract cross-station in-186

formation. Pooling after the first convolutional layer has a size of (1,5) with a stride of187

(1,5), while pooling after the second and third convolutional layers has a size of (1,2) with188

a stride of (1,2). Thus pooling in our model is designed primarily to downsample in the189

time dimension.190

We note that our number of convolutional layers (3) and the number of channels191

in each layer (4, 4, and 8) are substantially smaller than in previous studies (e.g., 8 con-192

volutional layers with 32 channels each in Perol et al., 2018). To determine the optimal193

network architecture, we explored a range of the number of convolutional layers (2-5),194

number of channels (2-32), and number of features/neurons of the first fully connected195

layer (64-1024). Our guiding principle in selecting the optimum models is to find the small-196

est network that yields better or comparable results in detection precision. Fewer than197

3 convolutional layers and smaller than 4 channels per convolutional layer yield lower198

precision, as the model may be too simple to capture the full complexity of the data. Greater199

than or equal to 4 convolutional layers, larger than 8 channels, and larger than 128 neu-200

rons in the first fully connected layer yield detection precision comparable to that of our201

preferred network, with the training loss far below (in most cases more than an order202

of magnitude smaller than) the test loss, which suggests overfitting.203
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3.2 Training the Network204

The two parts of the CNN model can be trained separately and then connected for205

examining continuous data. For detection, we optimize the network parameters by min-206

imizing a cross-entropy loss function. This measures the average discrepancy between207

our predicted distribution and the true class probability distribution in the training set208

and is proven for standard classification problems (e.g. Perol et al., 2018). For localiza-209

tion, we optimize the parameters by minimizing a mean-squared error loss between our210

predicted and given location and time values.211

Given our training data set, we are able to minimize our loss functions using a batch212

approach. We use a typical 75-25% split for the training and test data sets, respectively.213

At each training step, we feed a batch of 32 inputs to the network, evaluate the expected214

loss on the batch, and update the network parameters accordingly using backpropaga-215

tion. We cycle through all training data in batches as an epoch, and after each epoch,216

we calculate the loss for both the training and test data sets. This is repeated until the217

loss stops decreasing significantly (80 epochs for both detection and localization, Fig-218

ure 2).219

For optimization, we used the AdamW algorithm (Loshchilov & Hutter, 2017), which220

builds on the well-known Adam algorithm (Kingma & Ba, 2014) but separates the weight221

decay from the learning rate. The result of this distinction is that the weight decay and222

learning rate can be optimized separately, and has been proven to substantially improve223

generalization performance. For detection, we use the default learning rate, 2e−5; for224

localization, given the increase in training data due to augmentation, we use a larger learn-225

ing rate of 5e−5.226

3.3 Computational Implementation227

We implemented our ArrayConvNet model in Pytorch (Paszke et al., 2019) and per-228

formed all model training, testing, and application to continuous data on an iMac with229

a 3.8 GHz 8-core Intel Core i7 CPU and 128 GB memory. Model training and testing230

in 80 epochs took about 1.3 and 5.7 hours for the detection and localization parts of the231

model, respectively. Application of the model to 31-day continuous seismic data took about232

5.5 hours.233
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Figure 2. Training (blue line) and test (red line) losses as the function of epochs for the

detection and localization parts of the model. It takes less than 20 epochs for both detection

and localization for the loss to decrease rapidly and for the test loss to approach a small and

relatively stable value. The dashed line marks the zero loss.
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4 Results234

4.1 Detection235

Within 20 epochs, both the training and test losses decrease rapidly and the test236

loss remains small and relatively stable as the number of epochs increases (Figure 2). For237

comparison, Perol et al. (2018) used 32,000 epochs to train their model. In Dokht et al.238

(2019), it took over 10,000 epochs for the earthquake detection learning to approach an239

asymptotic and stable flat line. We attribute the rapid learning of our model to, at least240

partially, the relative simplicity of the network architecture.241

Our detection accuracy on the test data, defined as the percentage of events that242

are correctly classified as an earthquake or noise, is 99.4% at 0.5 classification (proba-243

bility) threshold. Between 0.5 and 0.7 classification threshold for earthquakes, the pre-244

cision is 99.6% while recall is 99.2-99.0% (Figure S3). Above 0.7 classification thresh-245

old, the precision is 100% while recall is 99-98%, suggesting that above this detection246

threshold ArrayConvNet does not label any noise as earthquakes, at least in the test data,247

and rarely mis-classifies earthquakes as noise. For comparison, the precision and recall248

reported by Perol et al. (2018) are 94.8% and 100%, respectively, and those by Dokht249

et al. (2019) are 99.6% and 99.9%, respectively.250

4.2 Localization251

Similar to the detection part of the model, the training and test losses of the lo-252

calization part of the model decrease rapidly within 20 epochs. While the training loss253

continues to decrease towards zero with increasing epochs, the test loss remains flatlined254

(Figure 2), suggesting that the network has enough neurons or complexity to fit the train-255

ing data nearly completely, but uncertainty or random noise in the data keeps the test256

loss at a certain level; more epochs or a larger network likely would not improve the fit257

of the test data.258

Overall, our model is able to predict the location of an earthquake in the test data259

within -0.08 ± 4.5 km in the north-south direction, 0.07 ± 4.1 km in the east-west di-260

rection and -0.02 ± 3.5 km in depth (Figure 3 and Figure S4). The values following the261

± sign (and hereinafter) represent one standard deviation. The difference between the262

predicted and catalog origin times is -0.06 ± 0.81 s.263

Some of the location and origin time differences may be attributed to errors in the264

USGS catalog. Synthetic tests by Zhang et al. (2020) show that adding a location er-265

ror to the catalog location results in their CNN model prediction error of a similar size.266

Lin et al. (2014) relocated earthquakes with magnitude greater than 1.0 between 1992267
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Figure 3. Hypocenter locations of earthquakes from the USGS catalog (circles) and model

predictions (red crosses) in a three-dimensional view looking from the southwest direction. Clus-

ters of earthquakes in the catalog and model predictions are clearly visible. The topography and

bathymetry of the Island are shown as a semi-transparent surface.
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and 2009, using their 3D velocity model and source-specific station term corrections. Their268

resulting catalog thus represents a subset of the HVO events with the best location qual-269

ity (Lin et al., 2014). Comparing the earthquake locations in Lin et al. (2014) with the270

USGS catalog locations, we find a lateral location offset of 1.1 ± 1.8 km and a depth off-271

set of 1.0 ± 2.1 km. So a significant portion of the hypocenter location differences be-272

tween our model predictions and the USGS catalog may stem from errors in the data273

used to train the model (see more in Discussion).274

5 Application to Continuous Hawaiian Seismic Data275

Earthquake catalogs usually represent a subset of earthquakes that occurred, with276

detection and localization limited by signal-to-noise ratios in seismic records, number of277

detected stations, and other factors. The USGS catalog for Hawai‘i is no exception. So278

while our ArrayConvNet performs well for the test data set (Figure S3), further tests on279

continuous data, combined with expert reviews of the results, are required to evaluate280

its true efficacy.281

For seismic network operators generating earthquake catalogs, one may wish to min-282

imize false detection by using a higher confidence threshold (Ross et al., 2018). Here we283

follow this approach, using a probability threshold of 0.95 (95% confidence) in the fol-284

lowing discussion unless otherwise stated. Based on the precision and recall character-285

istics (Figure S3), the model should rarely mis-classify earthquakes as noise, and almost286

never identify noise as an earthquake at this confidence level.287

We input continuous seismic data from the same 55 seismic stations in Hawai‘i, which288

are unseen in the development of our CNN model and preprocessed in the same way as289

the data used to train the models. The model runs through the data in 50-s-long mov-290

ing windows at 3-s increments. When the detection stage of the model finds that the prob-291

ability of an earthquake is above a specified confidence threshold, we determine the ex-292

act 50-s window by choosing the one that has the highest detection probability. We then293

feed the window to the localization stage and calculate the event location. To be con-294

sistent with the localization training data, where traces start 1-10 s before the origin time,295

the declared event must also have a predicted origin time within 1-10 s after the start296

of the traces (Figure S5).297

Using a continuous data stream from January 2018, our model detects and locates298

1603 earthquakes, which is approximately 6.1 times the number reported in the USGS299

catalog. Figure S6 presents the number of earthquakes reported by USGS and our model300

detection, showing a weak correlation between the daily event numbers. Comparing the301
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USGS catalog and our model outputs on selected days, we find that most but not all of302

the catalog events are recovered by our model, consistent with the precision and recall303

characteristics at the 0.95 threshold (Figure S3). The missing ones are low magnitudes304

(<0.7) and have low numbers of reporting stations (<10) in the catalog. The events de-305

tected and localized by our model have a similar epicentral distribution as those of the306

USGS catalog events for January 2018 (Figure S7). As a measure of the sensitivity to307

the detection probability threshold, the model detects and locates 1915 and 1542 earth-308

quakes with the probability thresholds of 0.68 and 0.997, respectively, or 7.3 and 5.9309

times the number in the published USGS catalog.310

6 Discussions311

As with any supervised machine learning, the more accurate and greater the train-312

ing data, the better the resulting model. In our case, the training data can be improved313

in several ways:314

The first is to include the USGS catalog earthquakes from the many years of mon-315

itoring by HVO. A greater number of earthquakes plus a correspondingly large number316

of noise (visually inspected or automatically screened to minimize the presence of earth-317

quakes in the noise segments) should further improve the accuracy and robustness of the318

model.319

The second is to use relocated earthquakes with more accurate locations (e.g. Got320

& Okubo, 2003; Wolfe et al., 2004; Matoza et al., 2013; Lin et al., 2014; Shelly & The-321

len, 2019). Lin and Okubo (2020) relocated over 48,000 earthquakes between July 2015322

and August 2018. With the caveat that all the relocated events in Lin and Okubo (2020)323

are onshore, we found that using 1806 earthquakes in the year 2017 relocated by Lin and324

Okubo (2020) to train localization in the same way as we discussed above for the USGS325

catalog reduces the location difference between the model prediction and the catalog by326

25-45% (from ± 4.5 to ± 2.4 km in the north-south direction, from ± 4.1 to ± 2.5 km327

in the east-west direction, and from ± 3.5 to ± 2.6 km in depth) and the origin time dif-328

ference by 13% (from ± 0.8 to ± 0.7 s), demonstrating the effects of relocated catalogs329

with lower location errors. For offshore earthquakes, those located with additional ocean-330

bottom seismometer records (Anchieta et al., 2011; Merz et al., 2019) may see large im-331

provements as the catalog based on the onshore HVO networks may contain higher er-332

rors. Relocation of earthquakes recorded by the ocean bottom seismic array deployed333

shortly after the 2018 Kı̄lauea eruption is currently underway (Wei et al., 2019). The re-334

sults, together with relocated earthquakes onshore (Shelly & Thelen, 2019; Lin & Okubo,335

2020), will be used to update our ArrayConvNet model.336
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The third is to use enhanced data augmentation. Due to limited computing resources,337

we have not explored the asymptotic limit of the number of cuts per earthquake in im-338

proving localization. Our tests show that using 7 cuts of the same earthquake with ran-339

dom offsets between the trace start time and event origin time improves the hypocen-340

ter depth from the case with no data augmentation by more than a factor of 2 (from341

± 7.8 km to ± 3.5 km), and from the case with 3 cuts per earthquake (± 4.7 km) by 26%.342

This form of data augmentation is clearly effective in improving localization of (origin)343

time and reducing its tradeoff with the location and the event depth in particular. An-344

other computationally more expensive form of data augmentation is to generate realis-345

tic synthetic earthquake waveforms that may account for topography, 3D velocity het-346

erogeneities, and attenuation (e.g. N. Wang et al., 2018). Such synthetic waveforms are347

Earth-model dependent, but have the advantage that the sources can be placed anywhere,348

filling the gaps of the catalog earthquake distribution.349

Our model focuses on typical catalog earthquakes with short-period and high-frequency350

energy. However, there are volcanic and magmatic activities that generate long-period351

(LP) and very-long-period (VLP) seismicity with frequencies below the frequencies used352

in this study (e.g. Battaglia et al., 2003; Dawson & Chouet, 2014; Matoza et al., 2014;353

Wech et al., 2020). Because the frequencies of LP and VLP events overlap with micro-354

seism, broadening the frequency range to the LP and VLP frequencies may cause an over-355

all decrease of trace signal-to-noise ratios. We suggest that LP and VLP events should356

be processed differently and modeled separately from the typical catalog earthquakes.357

Beyond these improvements to the model, we suggest that this approach can be358

generalized for other areas. Although the limitation of this methodology is the size of359

the training set and number of stations, transfer learning may be applicable in this con-360

text. Starting from an existing, well-performing model, it is common to only retrain the361

last layers of the model and apply it to a different application. Utilizing transfer learn-362

ing decreases the requirement of having thousands to millions of labeled earthquake events363

to orders of magnitude less, making our suggested methodology much more accessible.364

On the other hand, as we demonstrated with the Hawaiian data, training of ArrayCon-365

vNet with more or less stations and events requires only moderate computational resources366

that are accessible to nearly everyone. Thus, ArrayConvNet may be useful in other seis-367

mically active locations, where earthquake catalogs already exist. The unique potential368

values of ArrayConvNet are 1) its computational efficiency, which facilitates real-time369

seismic monitoring; 2) its sensitivity and robustness in detecting and localizing small earth-370

quakes under noisy conditions, which may enable next generation of analyses of earth-371

quakes and faults (Ross et al., 2019); and 3) its independence from template earthquakes372

–14–
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(as opposed to waveform similarity based methods), which allows it to uncover events373

with source locations and mechanisms that have not been cataloged before.374
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X - 2 SHEN AND SHEN: CNN FOR EARTHQUAKE DETECTION AND LOCALIZATION

Figure S1. Map of the seismic stations (red triangles) and earthquakes (small circles) used

in the study. The coast of Hawai‘i Island is outlined by the grey contour, while topography and

bathymetry are contoured in 1000-m intervals. Blue lines represent the major Quaternary faults

and fault systems. ML, K and MK stand for Mauna Loa, Kı̄lauea and Mauna Kea Volcanoes,

respectively.
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Figure S2. An example of earthquake waveforms sorted by (a) the time of the maximum

amplitude and (b) the unsorted waveforms arranged by station names alphabetically. The earth-

quake occurred at time 2017-01-06T01:28:50 according to the USGS catalog. Only the vertical-

component traces are shown. Each trace is normalized by its maximum amplitude and the sorted

traces are taken as absolute values. The missing channels are zero-filled and placed towards the

high-trace-number end in the sorted version. The traces have been bandpass filtered between 3

to 20 Hz.
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Figure S3. Precision (red) and recall (blue) as a function of the classification threshold for

the CNN model using the maximum-amplitude-sorted waveforms (a) and that with unsorted,

alphabetically arranged waveforms (b). Receiver operating characteristics (ROC) curve (red

line) for the model with the sorted (c) and unsorted (d) waveforms. The dashed line is for a

model with no predicting skill. The precision, recall, and ROC curves of the resulting models of

the two waveform inputs are nearly identical and almost completely overlap if they are plotted

together.
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Figure S4. Epicenter locations of earthquakes from the USGS catalog (circles) and ArrayCon-

vNet model predictions (red crosses) for the test data.
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X - 6 SHEN AND SHEN: CNN FOR EARTHQUAKE DETECTION AND LOCALIZATION

Figure S5. Two examples of uncovered earthquakes in the first hour of 2018, which are

not in the published USGS catalog. The maximum-amplitude-sorted (a) and unsorted vertical-

component waveforms (b) for an event occurred a few seconds after 2018-01-01T00:17:03 (the

trace start time). The sorted traces are arranged from the top to bottom and taken as absolute

values. The total window length is 50 seconds. (c) and (d) are the same as (a) and (b) for an

event shortly after 2018-01-01T00:35:40.
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Figure S6. Comparison of daily number of earthquakes reported by USGS (black line) and

that detected and located by our model (red line).
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Figure S7. Hypocenter locations of 261 earthquakes from the USGS catalog during January

2018 (circles) and 1605 events detected and localized by our ArrayConvNet model (red crosses) in

a three-dimensional view looking from the southwest direction. The topography and bathymetry

of the Island are shown as a semi-transparent surface.
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