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Abstract

Despite global warming, SSTs in the Southern Ocean (SO) have cooled in recent decades largely as a result of internal variability.

The global impact of this cooling is assessed by nudging evolving SO SST anomalies to observations in an ensemble of coupled

climate model simulations under historical radiative forcing, and comparing against a control ensemble. The most significant

remote response to observed SO cooling is found in the tropical South Atlantic, where increased clouds and strengthened trade

winds cool the sea surface, partially offsetting the radiatively-forced warming trend. The SO ensemble produces a more realistic

tropical South Atlantic SST trend, and exhibits a higher pattern correlation with observed SST trends in the greater Atlantic

basin, compared to the control ensemble. SO cooling also produces a significant increase in Antarctic sea ice, but not enough

to offset radiatively-induced ice loss; thus, the SO ensemble remains biased in its sea ice trends.
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Key Points:6

• The global impact of recent observed Southern Ocean surface cooling is studied7
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Abstract13

Despite global warming, SSTs in the Southern Ocean (SO) have cooled in recent decades14

largely as a result of internal variability. The global impact of this cooling is assessed15

by nudging evolving SO SST anomalies to observations in an ensemble of coupled cli-16

mate model simulations under historical radiative forcing, and comparing against a con-17

trol ensemble. The most significant remote response to observed SO cooling is found in18

the tropical South Atlantic, where increased clouds and strengthened trade winds cool19

the sea surface, partially offsetting the radiatively-forced warming trend. The SO ensem-20

ble produces a more realistic tropical South Atlantic SST trend, and exhibits a higher21

pattern correlation with observed SST trends in the greater Atlantic basin, compared22

to the control ensemble. SO cooling also produces a significant increase in Antarctic sea23

ice, but not enough to offset radiatively-induced ice loss; thus, the SO ensemble remains24

biased in its sea ice trends.25

Plain Language Summary26

Understanding how the observed pattern of global sea surface temperatures (SST)27

changes come about remains a key objective in climate science. SSTs are expected to28

rise as greenhouse gas concentrations increase. However, from 1979 to 2013, SSTs in the29

Southern Ocean cooled because of natural climate variability, accompanied by Antarc-30

tic sea ice expansion. Yet this cooling and sea ice expansion are not generally captured31

by climate models. In this study, we artificially incorporate the observed Southern Ocean32

cooling in a climate model to see how it affects SSTs in other regions. We found that33

in response to Southern Ocean cooling, the tropical South Atlantic SST cools and Antarc-34

tic sea ice expands, similar to observations. However, in simulations without the South-35

ern Ocean cooling, the Atlantic SST response look distinctly different, and Antarctic sea36

ice retreats significantly. Our study suggests that realistic simulation of internal decadal37

SO SST variability may be important for credible decadal SST projections in the trop-38

ical South Atlantic.39
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1 Introduction40

Observed global sea surface temperature (SST) trends in recent decades show a dis-41

tinctive spatial pattern, with warming in the western Pacific, Indian Ocean, and North42

Atlantic, and cooling in the eastern Pacific, South Atlantic, and Southern Ocean (SO,43

Figure 1a). This pattern is reminiscent of both the Pacific Decadal Oscillation/Interdecadal44

Pacific Oscillation (PDO/IPO) (Mantua et al., 1997; Power et al., 1999) and the Atlantic45

Multidecadal Oscillation (AMO) (Kerr, 2000; Enfield et al., 2001), the dominant modes46

of internal low frequency variability over the Pacific and Atlantic sectors, respectively.47

The cooling over the SO has been partially attributed to internal variability associated48

with changes in deep water formation (Latif et al., 2013; Cabré et al., 2017; Kostov et49

al., 2018; L. Zhang et al., 2019), in addition to contributions from ozone depletion (Ferreira50

et al., 2014) and melting of the Antarctic ice sheet (Bintanja et al., 2013; Bronselaer et51

al., 2018).52

While the role of the tropics in extra-tropical climate variability is well established53

(Alexander et al., 2002; Deser et al., 2004; Kosaka & Xie, 2013; Newman et al., 2016),54

the extra-tropics may also influence the tropics via coupled air-sea interactions. For ex-55

ample, midlatitude atmospheric variability can effectively provide stochastic forcing for56

ENSO via the “seasonal footprinting mechanism” (Vimont et al., 2003; Alexander et al.,57

2010) and via the “meridional mode” (H. Zhang et al., 2014; Amaya et al., 2019); the58

latter may also play a role in tropical Pacific decadal variability (Sun & Okumura, 2019;59

Liguori & Di Lorenzo, 2019).60

At high latitudes, projected sea ice loss in both hemispheres has been shown to im-61

pact the tropical Pacific via dynamical and thermodynamic air-sea interaction processes,62

although the detailed mechanisms are not yet fully understood (Deser et al., 2015; K. Wang63

et al., 2018; England et al., 2020). SO SST variability resulting from open-ocean con-64

vection in Weddell Sea has a significant impact on global energy balance redistribution,65

affecting tropical SSTs and precipitation (Cabré et al., 2017). Idealized studies have ex-66

plored the effects of SO SST cooling, which often extends into the tropical southeast-67

ern Pacific and Atlantic (Hwang et al., 2017; Kang et al., 2019), reducing the warm SST68

biases in those regions (Mechoso et al., 2016). Hwang et al. (2017) attributed the zonal69

asymmetry in the tropical South Pacific SST response to wind-evaporation-SST (WES)70

and shortwave cloud feedbacks, while ocean dynamics play an additional role in coupled71
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models (Kang et al., 2019). Here we show that the same processes contribute to the SST72

response in the tropical South Atlantic to the observed SO cooling.73

Unlike the idealized SO studies cited above, which examined the equilibrium re-74

sponse to large amplitude perturbations, we investigate the transient response to a much75

smaller and realistic perturbation, namely the observed cooling of SO SSTs in recent decades.76

In particular, we address the following questions. Does observed SO cooling produce a77

robust, remote climate response that extends into the tropics? If so, what is the nature78

of the response pattern and its underlying mechanisms? To what extent is the observed79

expansion of Antarctic sea ice controlled by SO SST cooling? To probe these questions,80

we apply a “pacemaker” experimental protocol (Kosaka & Xie, 2013) by nudging SO SST81

anomalies in a fully coupled global climate model to follow the observed evolution over82

the period 1979–2013. This protocol has previously been applied to the tropical Pacific83

to study the origins of the global surface warming hiatus (e.g., Kosaka & Xie, 2013; Deser,84

Guo, & Lehner, 2017), as well as teleconnections from ENSO and the tropical lobe of85

the PDO (i.e., Schneider & Deser, 2018; Deser, Simpson, et al., 2017), and to the North86

Atlantic for assessing the global impact of observed Atlantic multidecadal variability (i.e.,87

Ruprich-Robert et al., 2016). To the best of our knowledge, we are the first to apply the88

“pacemaker” protocol to investigate the influence of observed SO SST evolution on the89

the global coupled climate system. The effects of observed SO cooling are compared with90

those from observed tropical Pacific SST changes based on the Pacific Pacemaker sim-91

ulations (TPACE, Deser, Guo, & Lehner, 2017), as well as the radiatively-forced response92

derived from the Community Earth System Model version 1 (CESM1) Large Ensemble93

Project (LENS, Kay et al., 2015); note that all three sets of simulations employ the iden-94

tical model version for direct comparison. We describe our experimental design and data95

in section 2, followed by results in section 3. We end with summary and discussion in96

section 4.97

2 Model and Experimental Design98

We conduct a 20-member ensemble of SO “Pacemaker” Experiments (SOPACE)99

with CESM1.1.2 at 1◦ horizontal resolution, the same version used for LENS (Kay et100

al., 2015). The methodology follows Kosaka and Xie (2013) (also detailed in Deser, Guo,101

and Lehner (2017)). Briefly, SST anomalies (as opposed to absolute SSTs to avoid the102

model’s mean state warm biases in the SO, C. Wang et al., 2014) at each grid box over103
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the SO are nudged to the observed evolution of SST anomalies from 1975 to 2016 taken104

from the NOAA Extended Reconstruction Sea Surface Temperature version 3b (ERSSTv3b)105

data set (Smith et al., 2008). The nudging region covers ocean grids south of 40◦S, with106

a linearly tapering buffer zone from 35◦S to 40◦S. In regions with LENS climatological107

sea ice cover, SST is nudged to the melting temperature of -1.8◦C. The nudging timescale108

is 2 days for the model’s 10-m deep ocean surface layer, which is equivalent to the 10-109

day timescale for a 50-m deep mixed layer used in Kosaka and Xie (2013). Outside of110

the nudging region, the model’s coupled climate system evolves freely. All simulations111

are subject to historical radiative forcing before 2005 and the RCP8.5 scenario thereafter,112

following the CMIP5 protocols (Taylor et al., 2011). All SOPACE members are initial-113

ized from the first member of LENS on 1 Jan 1975, with a random initial atmospheric114

temperature perturbation of O(10−14) K to create ensemble spread. The surface heat115

flux forcing used to nudge the model’s SST anomalies shows significant spatial and tem-116

poral variations over the SO (not shown). The total energy perturbation in SOPACE117

is approximately -0.1 PW, which is much less than that used in idealized experiments118

cited earlier, for example, -0.8 PW in Kang et al. (2019).119

We also analyze the LENS and a 20-member ensemble of the TPACE, also conducted120

with CESM1.1.2 (Deser, Guo, & Lehner, 2017; Schneider & Deser, 2018). TPACE shares121

the same experimental design as SOPACE, but with nudging in the tropical eastern Pa-122

cific (15◦N–15◦S; 80◦–180◦W) over the period 1920–2013. LENS consists of 40 members123

that extend from 1920 to 2100, and shares the same historical and RCP8.5 forcing with124

SOPACE and TPACE, but has no nudging toward observations. The LENS ensemble125

mean (EM) is used to define the model’s response to external forcing, and the spread126

about the EM defines the model’s internal variability. Observational data sets are de-127

scribed in supporting information.128

3 Results129

3.1 SST Trends130

We examine trends over the period 1979–2013 when the SO surface cooled, con-131

sistent with Schneider and Deser (2018). Figure 1a–d show the observed and EM SST132

trends from LENS, TPACE, and SOPACE. Over the Pacific, observations show a large-133

scale pattern reminiscent of the negative phase of the PDO and IPO, with warming in134
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the west and cooling in the east. In the Atlantic, positive SST trends in the sub-polar135

gyre and the tropical North Atlantic resemble the positive phase of the AMO. The In-136

dian Ocean shows near-uniform surface warming. The SO cools overall, except for the137

Indian sector, with the strongest cooling in the Pacific sector north of the Amundsen and138

Bellingshausen Sea (Figure 1a).139

The LENS-EM SST trend pattern, which represents the model’s radiatively-forced140

response, differs considerably from observations (Figure 1b). LENS-EM shows warming141

around 0.1–0.2 K/decade over most of the global ocean, with the notable exception of142

the subpolar North Atlantic, which cools as a result of a slowdown of the Atlantic Merid-143

ional Overturning Circulation (AMOC, Drijfhout et al., 2012). Enhanced equatorial warm-144

ing occurs in the Pacific and Atlantic, while muted warming is found in southeast and145

northeast subtropical Pacific. Unlike observations, positive SST trends are evident through-146

out the SO (except along the Antarctic coastline), with enhanced warming in the At-147

lantic sector. This leads to the interpretation based on LENS that the recent observed148

SO cooling is internally generated; however, potential biases in the model’s forced response149

and/or the lack of an interactive Antarctic ice sheet in CESM1 may affect this interpre-150

tation (e.g., Bronselaer et al., 2018). Unlike LENS-EM, TPACE-EM shows a negative151

PDO/IPO pattern that bears a close resemblance to observations (Figure 1c). However,152

the observed cooling over the SO is generally not simulated in TPACE-EM, except in153

the eastern Pacific sector where weak cooling occurs. This indicates that while the trop-154

ical Pacific has some influence on the SO, it is not large enough to overwhelm the radiatively-155

forced response (see also Schneider & Deser, 2018). In the tropical Atlantic, SST trends156

in TPACE-EM are generally of opposite sign compared to observations. Unlike TPACE-157

EM, SOPACE-EM shows a realistic pattern of SST trends in the tropical Atlantic, with158

greater warming in the north compared to the south, although the amplitude of this dipole159

is weaker than observed (Figure 1d). More importantly, the pattern of SST trends in the160

tropical Atlantic in SOPACE-EM differs from the radiatively-forced response (LENS-161

EM), indicating a significant influence of SO SSTs in this region. SOPACE-EM also shows162

greater cooling in the southeast subtropical Pacific compared to LENS-EM.163

To isolate the non-radiatively-forced responses in TPACE-EM and SOPACE-EM,164

we subtract the LENS-EM trends. We term this residual trend the internally-forced re-165

sponse (denoted “TPACE-internal” and “SOPACE-internal”, Figure 1e and 1f), as it refers166

to the model’s response to an imposed “forcing” that is internally-generated, as opposed167
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to the externally-generated radiative forcing. In both TPACE-internal and SOPACE-168

internal, the SST trends are negative over much of the globe. In TPACE-internal, the169

negative PDO/IPO pattern is generally preserved, and we see significant cooling in the170

tropical North Atlantic, leading to a north-south tropical Atlantic SST gradient that is171

opposite to observations. On the other hand, in SOPACE-internal, significant cooling172

is found in the tropical South Atlantic with maximum amplitude along the west coast173

of Africa.174

In the North Atlantic, SOPACE-internal shows cooling in the subpolar gyre, co-175

located with the radiatively-forced “warming hole” in LENS-EM. Because of the con-176

nection between AMOC and the subpolar gyre SST (Rahmstorf et al., 2015), this cool-177

ing suggests that the observed SO cooling may also contribute to AMOC slowdown. Al-178

though the median of the SOPACE ensemble AMOC trend is lower than that of the LENS179

ensemble (Figure S2), but not significantly so (p value = 0.3). Furthermore, caution180

is needed in interpreting the deep ocean circulation response in SOPACE due to the ex-181

perimental protocol: SOPACE-internal exhibits significant subsurface cooling in the SO182

down to ∼300 m depth (not shown), contrary to the observed subsurface warming and183

positive trend in SO heat uptake (Armour et al., 2016; Tung & Chen, 2018).184

3.2 Tropical South Atlantic Response185

The most significant remote response in SOPACE-internal is the SST cooling in186

the tropical South Atlantic (Figure 1f and 2a). This cooling extends all the way to the187

equator, with maximum amplitude in the tropical southeastern Atlantic. As mentioned188

earlier, this SO-induced cooling of the tropical South Atlantic brings the pattern of SST189

trends over the entire tropical Atlantic in SOPACE-EM into closer alignment with ob-190

servations. In particular, there is a positive north-south gradient in both observations191

and SOPACE-EM, opposite to that in TPACE-EM and distinct from LENS-EM (Fig-192

ure 1). To explore the robustness of this feature, we show the ensemble distribution of193

SST trends averaged over the tropical South Atlantic (TSA: 10–30◦S, 20◦W–10◦E; gray194

box in Figure 1f) in LENS, TPACE, and SOPACE (Figure 1g). The observed TSA trend195

is weakly positive at 0.053 K/decade (horizontal gray line in Figure 1g), and lies within196

the middle 50% of the SOPACE distribution, but only within the bottom 10% of LENS197

and bottom 25% of TPACE. In addition, the TSA trend spread is half as large in SOPACE198

compared to LENS and TPACE. In summary, it is more likely for SOPACE members199

–7–
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to have a TSA trend that is consistent with observations than it is for LENS or TPACE200

members, and the distribution of TSA trend in SOPACE is more constrained than those201

in either LENS or TPACE.202

We have also compared the basin-wide patterns of Atlantic SST trends between203

observations and the model ensembles over the domain 20◦N–40◦S, 70◦W–15◦E (gray204

box in Figure 1a). The pattern correlation (r) with observations is considerably higher205

for SOPACE (r(obs,EM)SOPACE = 0.64) than for either LENS (r(obs,EM)LENS = 0.20)206

or TPACE (r(obs,EM)TPACE = −0.28), consistent with visual impression from Fig-207

ure 1 (green stars in Figure 1h). This suggests that the internally-forced response to ob-208

served SO cooling makes a substantial contribution to the spatial pattern of observed209

SST trends over the broad Atlantic region (and that the radiatively-forced response can-210

not sufficiently explain the observed SST trend pattern over the Atlantic).211

In order to better quantify the spread due to internal variability, we also computed212

the pattern correlation between each ensemble member i and the EM of each experiment213

(denoted r(i,EM)). The range of r(i,EM)SOPACE spans from 0.41-0.81, with r(obs,EM)SOPACE214

lying in the center of the distribution. This indicates that the inclusion of observed in-215

ternal SO cooling results in a more realistic pattern of simulated SST trends over the216

broad (20◦N–40◦S) Atlantic domain. Moreover, the observed SST trend pattern in this217

region resembles the simulated response to SO cooling. The distribution of r(i,EM)TPACE,218

on the other hand, does not encompass the negative r(obs,EM)TPACE, further empha-219

sizing the inability of the observed tropical eastern Pacific cooling to produce the observed220

pattern of Atlantic SST trends (Figure 1h). While the distribution of r(i,EM)LENS also221

encompasses the observed pattern correlation, r(obs,EM)LENS is much lower than r(obs,EM)SOPACE.222

Furthermore, in the LENS ensemble, the influence of the model’s internal SO SST trends223

on the Atlantic pattern correlations cannot be isolated.224

3.3 Ocean Mixed Layer Heat Budget Analysis225

What processes contribute to the remote Atlantic SST response in SOPACE? To226

answer this question, we analyze the heat budget of the upper ocean mixed layer follow-227

ing Xie et al. (2010),228

ρcpH
∂Ts
∂t

= FSW + FLW + SH + LH +O, (1)
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where ρ is the density of ocean, cp is the specific heat of ocean, H is the ocean mixed-229

layer depth, Ts is the mixed-layer temperature. Hence the left-hand side (LHS) repre-230

sents the mixed-layer heat storage term. The right-hand side (RHS) consists of net sur-231

face shortwave (FSW) and longwave (FLW) fluxes, sensible (SH) and latent (LH) heat232

fluxes, and heat flux due to ocean dynamics (O). Our convention is that positive val-233

ues on the RHS warm Ts and vice versa. We compute the ensemble-mean trend (1979-234

2013) of each term in Equation 1 for SOPACE-internal in order to isolate the forced re-235

sponse to the internal component of observed SO SST trends. Maps of the trends in each236

quantity (denoted by the superscript t, e.g., F t
SW) are shown in Figure S4 for the trop-237

ical eastern Pacific and Atlantic domain. Heat storage trends are negligible (Figure S4b),238

indicating that the trends of the RHS terms of Equation 1 are in quasi-equilibrium. A239

similar result was shown by Cook et al. (2018) based on ocean reanalysis products. This240

allows us to compute Ot as a residual term (Equation S2).241

The dependency of latent heat flux on SST allows us to rewrite Equation 1 as a242

diagnostic equation of the SST trend T t
s , following Jia and Wu (2013) and Hwang et al.243

(2017) (see derivation in supporting information):244

T t
s = T t

SW + T t
LW + T t

SH + T t
O + T t

LH,w + T t
LH,RH + T t

LH,∆T. (2)

The RHS in Equation 2 represents the contributions to SST trend from FSW, FSW, SH,245

O, and LH. The latent heat term can be further broken down into contributions from246

trends in near-surface wind T t
LH,w, near-surface relative humidity T t

LH,RH, and air-sea tem-247

perature gradient T t
LH,∆T. The sum of the terms on the RHS of Equation 2 (Figure 2a)248

closely approximates the actual T t
s (Figure 1f), validating our methodology. The major249

terms contributing to cooling trends in both basins include T t
SW (due to increased cloud250

liquid water, Figure 2b), T t
O (largely due to Ekman advection, Figure 2e), and T t

LH,w (due251

to strengthened trade winds, Figure 2f).252

In the Atlantic, the contribution from FSW is centered at the coastal stratocumu-253

lus region between 10–15◦S. A positive trend in liquid water path is expected as the SST254

cools and strengthens the cloud top temperature inversion. The equatorial Atlantic cool-255

ing is dominated by the WES feedback, where there is a strengthening of the southeast-256

erly trade winds, which enhances evaporative cooling. At 25◦S, the strengthened winds257

not only cool the SST via WES feedback, but also via Ekman advection (Figure S6). In258

the Eastern Pacific, FSW plays a more dominant role in cooling the SST than in the At-259
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lantic, due to a weaker near-surface wind response and associated LH. To summarize,260

the pattern of the negative T t
s is caused by the sum of contributing terms instead of dom-261

inated by a single heat flux trend.262

3.4 Antarctic Sea Ice Trends263

Observational evidence suggests that multidecadal SST and wind variability over264

the SO plays an essential role in governing the pattern of Antarctic sea ice trends (Fan265

et al., 2014; Armour & Bitz, 2015). Can SOPACE reproduce the observed trends in Antarc-266

tic sea ice? The observed Antarctic sea ice extent (SIE) trend during this period is 0.23×267

106 km2 per decade, which is drastically different from the radiatively-forced SIE trend268

of −0.36×106 km2 per decade in LENS-EM and −0.30×106 km2 per decade in TPACE-269

EM (Figure 3a). In contrast, SOPACE-EM shows an Antarctic SIE trend of −0.040×270

106 km2 per decade, a rate that is an order of magnitude slower than in LENS-EM and271

TPACE-EM. Furthermore, 40% of SOPACE ensemble members show a positive SIE trend,272

although none is as large as observed (the largest trend in SOPACE is 0.084×106 km2
273

per decade; Figure 3a). The significant differences between Antarctic SIE trends in SOPACE-274

EM, LENS-EM, and TPACE-EM indicate that observed SO SST cooling plays an im-275

port role in influencing Antarctic SIE, though it is not the only factor.276

In addition to differences in the total SIE trend, there are significant differences277

in the patterns of sea ice concentration (SIC) trends among observations and the model278

ensembles. The observed SIC shows positive trends over most of the SO, except for the279

West Antarctic coastline and north of the Weddell Sea (Figure 3c). LENS-EM shows a280

nearly zonally-symmetric negative SIC trend pattern (Figure 3d), similar to that in TPACE-281

EM although with weaker magnitude in the Atlantic and Pacific sectors (Figure 3e; see282

also Figure 3g). On the other hand, SIC trends in SOPACE-EM show a mixture of pos-283

itive and negative values, with ice gain in the Bellingshausen Sea and ice loss in the Wed-284

dell Sea (Figure 3f). Indeed, the imposed SST cooling in the SO leads to a marked Antarctic-285

wide expansion of sea ice relative to the radiatively-forced response (Figure 3h).286

Although observed SO cooling produces an Antarctic-wide increase in SIC, when287

combined with the radiatively-forced response, the SIC trend pattern in SOPACE-EM288

differs from observations. For example, SOPACE-EM produces sea ice gain in the Belling-289

shausen Sea and Drake Passage but ice loss in the Weddell Sea and Ross Sea, opposite290

–10–
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to observations (Figure 3f and 3c). At first glance, this seems to contradict the obser-291

vational evidence that positive SIC trends are associated with SST cooling, and vice versa.292

However, observations also suggest that near-surface winds can drive thermodynamic sea293

ice changes via temperature advection. In general, anomalous northerly winds contribute294

to SST increase and sea ice loss via warm air advection, while anomalous southerlies cor-295

respond to opposite conditions (Fan et al., 2014). Indeed, north of the Weddell Sea and296

Antarctic Peninsula, ERA-5 shows northerly near-surface winds that are generally as-297

sociated with warm-air advection and sea ice loss. In the Ross Sea, southerly winds are298

co-located with positive SIC trends (Figure 3c). In the Amundsen Sea, southerly wind299

trends are associated with negative sea ice trends along the coast, consistent with the300

finding that ice advection driven by local winds dominates the sea ice loss there (Holland301

& Kwok, 2012). The near-surface wind trends in SOPACE-EM display significant pat-302

tern differences from observations, especially in the Amundsen Sea and the Ross Sea (Fig-303

ure 3f), which partially explain the differences in regional SIC trends between SOPACE-304

EM and observations. We note, however, that the highest pattern correlation between305

SIC trends in any single member of SOPACE and observations is only 0.16. Furthermore,306

the range of r(i,EM)SOPACE (0.38–0.91) does not encompass r(obs,EM)SOPACE = −0.11307

(Figure 3b). Thus, our results suggest that specifying the observed SO SST trends in308

CESM1 does not guarantee a match between the observed and simulated response of Antarc-309

tic SIC trends, and exposes model biases in both the radiatively-forced component as310

well as patterns of internally-generated SIC trends in SOPACE. Processes such as ocean-311

ice shelf interaction are absent in CESM1, potentailly contributing to biases, e.g., in the312

Weddell Sea (Park & Latif, 2019).313

4 Summary and Discussion314

We have examined the remote impact of observed SO SST cooling during 1979–315

2013 in CESM1 using a 20-member initial-condition ensemble in which SST anomalies316

over the SO are nudged to the observed monthly evolution (SOPACE). The results are317

compared to the 20-member TPACE, where the same protocol was applied to SSTs in318

the tropical eastern Pacific, as well as the freely evolving 40-member LENS. The forced319

response in each experiment is estimated by the EM.320

The most significant influence of the observed SO cooling is found in the tropical321

South Atlantic. In this region, the observed SO cooling leads to a significant reduction322
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in the radiatively-forced warming trend, enhancing the north-south gradient in tropical323

Atlantic SST trends. The muted tropical Atlantic warming south of the equator com-324

pared to the north in SOPACE-EM resembles the observed SST trend pattern, which325

neither TPACE-EM nor LENS-EM captures. Indeed, TPACE-EM shows an opposite trend326

in the tropical Atlantic SST gradient. Furthermore, it is more likely for SOPACE mem-327

bers to have realistic tropical South Atlantic SST trends than either LENS or TPACE328

members. The SOPACE ensemble also has a realistic depiction of the SO cooling’s in-329

fluence on the broader tropical Atlantic SST trend pattern, unlike TPACE. The trop-330

ical South Atlantic response suggests an important role the SO SST plays on decadal331

time scales, consistent with previous findings (Cabré et al., 2017).332

A mixed layer heat budget analysis of the tropical South Atlantic region shows that333

increased low-level cloud amount and enhanced trade winds contribute to reducing SSTs334

via shortwave radiative flux and the WES-feedback mechanism, respectively. Ekman ad-335

vection also contributes to SST cooling along the African coast where strong climato-336

logical SST gradients exist. The observed trends of low-level cloud amount are signif-337

icantly positive over the southeastern Atlantic and Pacific during 1984–2009, consistent338

with our findings based on SOPACE-internal (Seethala et al., 2015). Multilinear regres-339

sion analysis suggests that strengthened inversion stability is the dominant cloud-controlling340

factor for the observed positive low-cloud amount trends. The processes that contribute341

to the SO induced cooling are consistent with the idealized studies (Hwang et al., 2017;342

Kang et al., 2019), although the WES feedback is much weaker in the tropical eastern343

Pacific in SOPACE-internal.344

Antarctic SIE has increased during 1979–2013, opposite to the radiatively-forced345

decrease in LENS-EM. While the SIE trend in TPACE-EM is similar to that in LENS-346

EM, SIE trend in SOPACE-EM is near zero, and 40% of SOPACE ensemble members347

show positive SIE trends although none as large as observed. Furthermore, the observed348

SO cooling leads to Antarctic-wide positive SIC trends in SOPACE-internal, but because349

of differences in near-surface wind trends, the spatial pattern of the simulated SIC trends350

differs from observations. The low pattern correlations between observed SIC trends and351

those in the individual members of SOPACE, and the negative pattern correlation be-352

tween observed SIC trends and those in SOPACE-EM (which lies outside the distribu-353

tion of pattern correlations between individual members of SOPACE and SOPACE-EM),354

–12–
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indicates a likely bias in the amplitude and pattern of the model’s radiatively-forced SIC355

trends.356

Our results may have implications for understanding the future trajectory of Antarc-357

tic sea ice and tropical South Atlantic SSTs. Indeed, SSTs have recently warmed in the358

SO while Antarctic SIE reached record low values in 2017 (Parkinson, 2019; Meehl et359

al., 2019). If this SO SST warming trend continues, the tropical South Atlantic may ex-360

perience accelerated warming due to the combined influence from SO SSTs and increas-361

ing greenhouse gas concentrations. Future work is needed to investigate the predictabil-362

ity of these impacts relative to other sources of internal variability in the coming decades.363
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Figure 1. Monthly SST trends over 1979–2013 for (a) ERSSTv3b, (b) LENS-EM, (c)

TPACE-EM, (d) SOPACE-EM, (e) TPACE-internal, and (f) SOPACE-internal. Stippling in-

dicates local trend that is significant at or above 95% level. Black lines outline the SST nudging

domain. (g) Box-and-whisker plot of SST trends averaged over the tropical South Atlantic (gray

box in (f)) for each model ensemble. Green stars show the EM values. Orange lines show the

median values. Gray horizontal line shows the observed value. (h) Same as (g) but for pattern

correlations of SST trends with EM r(i,EM) over the broader Atlantic region (gray box in (a)).

Green triangles show r(obs,EM).
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Figure 2. SST trend decomposition based on Equation 2 using monthly trends during 1979–

2013 from SOPACE-internal over the tropical eastern Pacific and Atlantic: (a) net T t
s , (b) T t

SW,

(c) T t
LW, (d) T t

SH, (e) T t
O, (f) T t

LH,W with near-surface wind trends overlaid (vectors), (g) T t
LH,RH,

and (h) T t
LH,∆T.
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Figure 3. (a) Box-and-whisker plot of Antarctic SIE trends for each model ensemble. Green

stars show the EM values. Orange lines show the median values. Gray horizontal line shows the

observed value. (b) Same as (a) but for pattern correlations of SIC trends with EM r(i,EM)

over 50–80◦S. Green triangles show r(obs,EM). Monthly SST (colors), SIC (contours), and

near-surface wind (vectors, m/s/decade) trends over 1979–2013 for (a) ERSSTv3b, (b) LENS-

EM, (c) TPACE-EM, (d) SOPACE-EM, (e) TPACE-internal, and (f) SOPACE-internal. Blue

(positive) and red (negative) contours outline regions with SIC trend magnitudes greater than

0.5%/decade.
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Introduction  

This supporting information provides description of our observational data sets, analysis 
methods, mixed layer budget equations and figures that are complementary to the main 
article. 

Text S1. 

Observational Data Sets 

We use a suite of data sets to capture the observed trends during 1979-2013. SSTs are 
taken from the NOAA ERSSTv3b data set with 2° global resolution (Smith et al., 2008), 
for compatibility with those used in TPACE and SOPACE. We also show the SO SST 
anomaly timeseries from ERSSTv5 data set for comparison (Huang et al., 2017). The two 
data sets don’t show significant differences in their SO SST trends (Figure S1). Surface 
wind data are taken from ERA-5 Reanalysis at 0.25°	global resolution (Hersbach et al., 
2019). Sea ice concentration data are from the passive-microwave-derived NASA 
Goddard Bootstrap version 2 dataset on a 25 km x 25 km grid (Peng et al., 2013). 
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Analysis Methods 

We calculate monthly anomalies of all fields by subtracting the climatological monthly 
means of the 1981-2010 base period. Linear least-square regression is used to compute 
monthly trends during 1979-2013. We use stippling to indicate regions of statistical 
significance at 95% confidence level, based on a two-sided t-test method adjusted for 
autocorrelation (Santer et al., 2000; Schneider & Deser, 2018). 

 

Ocean Mixed Layer Budget Equations 

We focus on the ensemble-mean ocean mixed layer budget in SOPACE-internal, in order 
to isolate the forced response to the internal component of observed SO SST trends. The 
surface mixed-layer budget equation is: 

𝜌𝑐!𝐻
"#!
"$
= 𝐹%& + 𝐹'& + 𝑆𝐻 + 𝐿𝐻 + 𝑂.      (S1) 

We can take the linear trend of Equation S1, the left-hand side which represents the 
trend of heat storage is negligible (Cook et al. 2018, also see Figure S3b), we will have 

0 = 𝐹$%& + 𝐹$'& + 𝑆𝐻$ + 𝐿𝐻$ + 𝑂$,      (S2) 

where the superscript t denotes linear trends during 1979-2013. 

Figure S3 shows all terms in Equation S3. The sensible heat flux trend is the smallest 
term. The rest of the terms can be considered forcing on SST trend 𝑇$( due to clouds 
(𝐹$%&), ocean dynamics (𝑂$), and atmospheric temperature and humidity (𝐹'&$ ). The 
latent heat flux term directly depends on 𝑇( via saturation vapor pressure: 

𝐿𝐻 = −𝐿)𝑐*𝜌+𝑊[𝑞,(𝑇𝐬) − 𝑞+].       (S3) 

And 𝑞+ is the specific humidity of air above the sea surface, thus can be written as 

𝑞+ = 𝑅𝐻.𝑞,(𝑇( + Δ𝑇),         (S4) 

where 𝑅𝐻. is the relative humidity at the sea surface, and Δ𝑇 = 𝑇+ − 𝑇( is the 
temperature gradient near the sea surface. Using the Clausius-Clapeyron equation, 
Equation S4 can be written as 

𝑞+ = 𝑅𝐻.𝑞((𝑇()𝑒/0#,         (S5) 

Where 𝛼 = 1"
2"##

≈ 0.06	K34.	We can plug Equation S5 into S3 and get 

𝐿𝐻 = −𝐿)𝑐*𝜌+𝑊(1 − 𝑅𝐻.𝑒/0#)𝑞,(𝑇𝐬) 
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Following Hwang et al. (2017) and Jia & Wu (2013),  the linear trend of latent heat flux 
can therefore be linearized as 

𝐿𝐻$ = "15
"#$

𝑇($ +
"15
"6

𝑊$ + "15
"25%

𝑅𝐻.$ +
"15
"0#

Δ𝑇$     (S6) 

On the right-hand side (RHS), the last three terms can also be considered as forcing from 
the atmosphere due to changes in near-surface wind speed, near-surface relative 
humidity, and air-sea temperature gradient: 

𝐿𝐻&$ = "15
"6

𝑊$ = 𝐿𝐻6&

6
,        (S7) 

𝐿𝐻78$ = "15
"25%

𝑅𝐻.$ = − 1525%&

9'()325%
,       (S8) 

𝐿𝐻0:$ = "15
"0#

Δ𝑇$ = /15	25%0#&

9'()325%
,       (S9) 

while the first term on RHS of Equation S6 becomes the SST damping term: 

"15
"#$

𝑇($ = 𝛼𝐿𝐻	𝑇($,         (S10) 

where 𝐿𝐻 is the climatological mean latent heat flux, and it is negative when 
evaporation happens. This term in Equation S10 means that higher SST evaporates more 
to cool, therefore damps the temperature change. Equation S10 allows us to rewrite 
Equation S2 as a diagnostic equation of the SST trend: 

𝑇($ = − <&*+=<&,+=>5&=?&=15-& =15./
& =15(0

&

/15
.       (S11) 

We can rewrite Equation S11 to show how different forcing terms contribute to the SST 
trends: 

𝑇($ = 𝑇%&$ + 𝑇'&$ + 𝑇%8$ + 𝑇@$ + 𝑇'8,B$ + 𝑇'8,78$ + 𝑇'8,0:$ ,     (S12) 

where the RHS terms can be defined using Equation S7–S9. 

𝑇%&$ = − <&*+
/15

,          (S13) 

𝑇'&$ = − <&,+
/15

,          (S14) 

𝑇%8$ = − <&*/
/15

,           (S15) 

𝑇@$ = − <&1
/15

,           (S16) 
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𝑇'8,B$ = − 15-&

/15
= − 6&

/6
,         (S17) 

𝑇'8,78$ = − 15./
&

/15
= 25%&

/(9'()325%)
,        (S18) 

𝑇'8,0:$ = − 15(0
&

/15
= − 25%

9'()325%
Δ𝑇$.       (S19) 

Equation S12–S19 are shown in Figure 2, while the heat flux trend terms used to 
calculate Equation S12–S19 are shown in Figure S3. 
  



 
 

5 
 

 

Figure S1. Southern Ocean (40-65S) averaged monthly SST anomaly from SOPACE 
(orange shading), LENS (blue shading), ERSSTv3b dataset (black), and ERSSTv5 (green). 
The 1975-2016 climatology is used to calculate the monthly anomaly.  
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Figure S2. (a) Annual mean AMOC anomaly timeseries (defined as the maximum 
streamfunction value in the latitude band 20–60N and below 500 m in the Atlantic 
Ocean following Zhang et al. 2017). The black line shows the CESM forced ocean (FO) 
simulation (Yeager et al. 2018), approximating the observed AMOC timeseries. Blue 
solid curve shows the ensemble mean of LENS, with blue shading showing the range of 
the ensemble spread. Orange solid curve shows the ensemble mean of SOPACE, with 
orange shading showing the range of the ensemble spread. The dashed blue curve 
shows the first ensemble member of LENS, which was used to initialize all 20 members 
of SOPACE. The 1975-2016 climatology is used to calculate the monthly anomaly. (b) 

(a) 

(b) 
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Box and whisker plot of AMOC trend (1979-2013) from LENS and SOPACE ensemble 
members. Orange lines show the median values, boxes show the middle 50% members, 
whiskers show the 5 to 95% members, and circles show the outliers. 

 
 

 

Figure S3. Box-and-whisker plot of SST trends averaged over (a) tropical South Atlantic 
(gray box in Figure 1f) and (b) the Southern Ocean (40S-65S) for each model ensemble. 
Green stars show the EM values. Orange lines show the median values. Gray horizontal 
lines show the observed values from various data sets: NOAA Extended Reconstruction 
SSTs version 3b and 5 (ERSSTv3b & ERSSTv5, Huang et al. 2017), Centennial in situ 
Observation-Based Estimates (COBE, Ishii et al. 2005), and the Hadley Centre Global Sea 
Ice and Sea Surface Temperature (HadISST, Rayner et al. 2003). 
 
  

(a) 

(b) 
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Figure S4. Terms in the ocean mixed layer heat budget based on monthly trends during 
1979–2013 from SOPACE-internal over the tropical eastern Pacific and Atlantic. (a) SST 
trend, (b) trend in mixed layer heat storage (left hand side of equation (1)), (c) net 
longwave flux trend, (d) net shortwave flux trend, (e) sensible heat flux trend, (f) latent 
heat flux trend, (g) trend due to ocean dynamics, and (h) trend in liquid water path 
(contours show the climatological LWP). Positive flux is downward and warms the SST. 
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Figure S5. Latent heat budget based on monthly trends during 1979—2013 from 
SOPACE-internal over the tropical eastern Pacific and Atlantic due to (a) SST damping, 
(b) near-surface wind speed changes, (c) near-surface relative humidity changes, and (d) 
air-sea temperature difference changes. See Equation S6 for details. 
 

 

Figure S6. Ekman advection based on monthly trends during 1979—2013 from SOPACE-
internal over the tropical eastern Pacific and Atlantic, expressed as an equivalent 
surface heat flux trend. Area near the equator (5°S–5°N) is masked out. 
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