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Abstract

This is a test-case study assessing the ability of deep learning methods to generalize to a future climate (end of 21st century)

when trained to classify thunderstorms in model output representative of the present-day climate. A convolutional neural

network (CNN) was trained to classify strongly-rotating thunderstorms from a current climate created using the Weather

Research and Forecasting (WRF) model at high-resolution, then evaluated against thunderstorms from a future climate, and

found to perform with skill and comparatively in both climates. Despite training with labels derived from a threshold value

of a severe thunderstorm diagnostic (updraft helicity), which was not used as an input attribute, the CNN learned physical

characteristics of organized convection and environments that are not captured by the diagnostic heuristic. Physical features

were not prescribed but rather learned from the data, such as the importance of dry air at mid-levels for intense thunderstorm

development when low-level moisture is present (i.e., convective available potential energy). Explanation techniques also revealed

that thunderstorms classified as strongly rotating are associated with learned rotation signatures. Results show that the creation

of synthetic data with ground truth is a viable alternative to human-labeled data and that a CNN is able to generalize a target

using learned features that would be difficult to encode due to spatial complexity. Most importantly, results from this study

show that deep learning is capable of generalizing to future climate extremes and can exhibit out-of-sample robustness with

hyperparameter tuning in certain applications.
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learning methods to classify severe convective storms in2

a changing climate3
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Key Points:6

• A convolutional neural network can robustly classify convection in current and fu-7

ture climates.8

• Skillful classifications are based on learned thermodynamic and kinematic char-9

acteristics of thunderstorms.10

• Creating synthetic data with ground truth is demonstrated to be a good alterna-11

tive to creation of human labeled data.12
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Abstract13

This is a test-case study assessing the ability of deep learning methods to generalize to14

a future climate (end of 21st century) when trained to classify thunderstorms in model15

output representative of the present-day climate. A convolutional neural network (CNN)16

was trained to classify strongly-rotating thunderstorms from a current climate created17

using the Weather Research and Forecasting (WRF) model at high-resolution, then eval-18

uated against thunderstorms from a future climate, and found to perform with skill and19

comparatively in both climates. Despite training with labels derived from a threshold20

value of a severe thunderstorm diagnostic (updraft helicity), which was not used as an21

input attribute, the CNN learned physical characteristics of organized convection and22

environments that are not captured by the diagnostic heuristic. Physical features were23

not prescribed but rather learned from the data, such as the importance of dry air at24

mid-levels for intense thunderstorm development when low-level moisture is present (i.e.,25

convective available potential energy). Explanation techniques also revealed that thun-26

derstorms classified as strongly rotating are associated with learned rotation signatures.27

Results show that the creation of synthetic data with ground truth is a viable alterna-28

tive to human-labeled data and that a CNN is able to generalize a target using learned29

features that would be difficult to encode due to spatial complexity. Most importantly,30

results from this study show that deep learning is capable of generalizing to future cli-31

mate extremes and can exhibit out-of-sample robustness with hyperparameter tuning32

in certain applications.33

Plain Language Summary34

As temperatures and water vapor continue increasing due to climate change, mod-35

els that were trained using past data may no longer perform with skill. Here we explored36

whether the performance of a machine learning model was sensitive to a changing cli-37

mate. The purpose of the machine learning model was to classify thunderstorms that38

were created using a high-resolution numerical model into two groups: potentially se-39

vere thunderstorms and potentially non-severe thunderstorms. Potentially severe thun-40

derstorms were of interest because they have a greater likelihood of producing tornadoes41

and large hail, which cause billions of losses and dozens of fatalities every year. Results42

show that the machine learning model was able to classify thunderstorms with skill in43

both the present day and future climates partly due to the architecture of the machine44

learning model. We also explored the reasons behind the machine learning model’s skill45

and found that it was able to learn thunderstorm characteristics and weather informa-46

tion from data. These results provide us with added confidence that machine learning47

models can learn physical relationships from weather and climate data and perform with48

skill in a changing climate in certain applications.49

1 Introduction50

The recent success of convolutional neural networks (CNNs; Fukushima & Miyake,51

1982) in Earth science applications is largely due to their ability to capture nonlinear52

and translation invariant details among input variables. This class of deep learning mod-53

els (LeCun et al., 2015) has proven skillful in various atmospheric science tasks, includ-54

ing detection of weather and climate features (Y. Liu et al., 2016; Lagerquist et al., 2019;55

Biard & Kunkel, 2019; Toms et al., 2019), emulation of complex model processes (Rasp56

et al., 2018), and prediction of extreme weather and climate phenomena (Gagne II et57

al., 2019; Zhou et al., 2019; Ham et al., 2019; Jergensen et al., 2020; Sobash et al., 2020;58

Lagerquist et al., 2020). This study focuses on convection over the central and eastern59

contiguous United States (CONUS), which at extremes can produce severe hazards (e.g.,60

hail and tornadoes) that pose societal danger. CNNs have already shown skill in clas-61

sification and prediction of convective storms in the present climate (Gagne II et al., 2019),62
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modeled using the Weather Research and Forecasting model (WRF; Skamarock & Klemp,63

2008) at high-resolution (4 km). However, as the climate continues to warm, some fu-64

ture thunderstorms may be outliers in the baseline climate used for training (Trapp &65

Hoogewind, 2016), and these extreme events may be more difficult for CNNs to iden-66

tify. This article explores the ability of CNNs to classify convection of a future climate67

modeled with WRF, along with the physical reasons for the resultant performance.68

Climate change is altering the large-scale atmospheric landscape over North Amer-69

ica, resulting in changes to the frequency and intensity of organized convection (K. L. Ras-70

mussen et al., 2017; Prein et al., 2017). Future changes to thermodynamic and kinematic71

fields can impact climatological distributions of convection morphology and associated72

severe hazards (e.g., tornadoes and large hail; Trapp et al., 2007, 2009; Diffenbaugh et73

al., 2013). Studies have shown a climate change imprint on various aspects of severe thun-74

derstorms and associated environments (Allen, 2018), including increases in thermody-75

namic buoyancy and thunderstorm frequency (Brooks, 2013; Hoogewind et al., 2017),76

increases in convective inhibition (Taszarek et al., 2020), more societal exposure (Ashley77

& Strader, 2016), and an eastward geographic shift of environments over the U.S. favor-78

able for severe hazards (Gensini & Brooks, 2018). However, discerning the interplay be-79

tween thermodynamic and kinematic components on future convection has been more80

challenging (Brooks, 2013), given that subtle changes to either field can alter the poten-81

tial of a thunderstorm to produce severe hazards (Doswell et al., 1996). This complex82

interplay, and varying seasonal and geographical trends, limit the broader conclusions83

that can be derived from climate studies of severe convective storms.84

In current forecasting applications, advancements in delineating thunderstorms ca-85

pable of producing specific hazards have included the development of environmental prox-86

ies and composite indices that take kinematic and thermodynamic factors into account87

(E. N. Rasmussen, 2003; R. L. Thompson et al., 2003, 2007, 2012; Gropp & Davenport,88

2018). Updraft helicity (UH) is an example of a diagnostic parameter, which estimates89

the magnitude of rotation within a thunderstorm’s updraft using vertical wind speeds90

and vorticity (Kain et al., 2008). Strongly-rotating thunderstorms with high magnitudes91

of UH (e.g., ≥ 75 m2 s−2) have a greater likelihood to be of supercell morphology (Clark92

et al., 2013; Sobash et al., 2016), a type of thunderstorm that observations have shown93

to be more likely to produce severe hazards (Bunkers et al., 2006; Duda & Gallus Jr, 2010).94

Scalar thresholds for UH have been used to classify model simulated convection, with95

thunderstorms that exceed the predetermined threshold classified as severe (Sobash et96

al., 2011; Molina, Allen, & Prein, 2020). These dichotomous assignments derived from97

UH have been used in kilometer-scale climate simulations to estimate changes to severe98

hazards in a future climate (Trapp et al., 2011; Gensini & Mote, 2015). However, the99

use of a heuristic to delineate non-severe and severe convection can result in incorrect100

categorizations of thunderstorms that fall near the predetermined threshold. UH values101

representative of severe convection also vary seasonally and regionally, based on the cli-102

matological environments that drive severe convection activity (Sobash & Kain, 2017;103

Molina, Allen, & Prein, 2020). Recently, Sobash et al. (2020) trained a CNN to forecast104

severe hazard potential using severe thunderstorm parameters derived from WRF, show-105

ing that a CNN can learn from diagnostics. The focus herein lies on evaluating a CNN’s106

ability to classify convection and its out-of-sample robustness to a future climate.107

CNNs are a class of deep learning models canonically used for computer vision tasks108

because of the capability of processing multiple layers of information to detect nonlin-109

earities and translation invariant details of features (LeCun et al., 1998; Krizhevsky et110

al., 2012). Various techniques have been developed to prevent deep learning models from111

overfitting and to improve training stability, such as dropout and batch normalization112

(Srivastava et al., 2014; Ioffe & Szegedy, 2015), which help CNNs generalize relationships113

among input features and increase prediction accuracy. However, explaining the reasons114

for model skill has been challenging, due to the complex architecture of CNNs that in-115
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clude many trained weights and biases within hidden layers and feature maps. Various116

CNN techniques have been recently developed to create and improve explanations of ma-117

chine learning predictions and classifications (Barnes et al., 2019; McGovern et al., 2019).118

These explanation techniques include saliency maps (Simonyan et al., 2013) and permu-119

tation feature importance (Breiman, 2001; Lakshmanan et al., 2015), which have been120

shown to help explain skillful CNN predictions of convective hazards (Gagne II et al.,121

2019). Identifying reliable reasons for model performance can increase the trust of at-122

mospheric scientists in machine learning and foster further discovery of the physical pro-123

cesses driving societally impactful weather and climate extremes.124

Using deep learning and explanation techniques, the following questions will be an-125

alyzed in this paper:126

1. Are future strongly-rotating thunderstorms classified skillfully by a CNN that was127

trained under current climate conditions?128

2. Which input features and spatial patterns are identified to be most important by129

the deep CNN for classification?130

3. What are the reasons (explanations) for incorrect classifications?131

2 Data and Methods132

2.1 Thunderstorm Identification in Climate Simulations133

A set of two convection-permitting model simulations created by the Water Sys-134

tem Program of the National Center for Atmospheric Research were used to extract thun-135

derstorm objects for this study (C. Liu et al., 2017). The two simulations were created136

using WRF at 4 km grid spacing over the CONUS. The WRF simulations cover 13 years137

each and represent a retrospective climate period (October 2000–September 2013) and138

a future climate period (end of the 21st century). Initial and boundary conditions for139

both simulations were driven by the 6-hourly and 0.7◦ ERA-Interim (Dee et al., 2011),140

which is a global climate reanalysis data set produced by the European Centre for Medium-141

Range Weather Forecasts. A pseudo-global warming (PGW) perturbation signal (Schär142

et al., 1996), representative of an end of the 21st century business as usual climate sce-143

nario, was added to state variables of the future climate simulation. The PGW signal144

was derived from a set of 19 Coupled Model Intercomparison Project Phase 5 (CMIP5)145

models (Taylor et al., 2012) generated with a Representative Concentration Pathway of146

8.5 W m−2 (RCP8.5) radiative forcing, which is a very high greenhouse gas concentra-147

tion pathway (Moss et al., 2010). To prevent drifting of the 4 km regional simulation from148

the reanalysis boundary conditions, large-scale spectral nudging of moderate strength149

was applied above the planetary boundary layer (von Storch et al., 2000), which provided150

synoptic-scale fidelity to past weather events yet allowed the mesoscale to evolve with151

some freedom. These model simulations allow us to isolate thermodynamic signals from152

kinematic influences on the future climate. Simulation details are available in Table 1153

and additional specifications can be found in C. Liu et al. (2017).154

The watershed transform (Lakshmanan et al., 2009) was used to identify high-intensity155

updrafts that constitute thunderstorms from the convection-permitting climate simula-156

tions. The watershed transform, as employed herein, identified thunderstorms using a157

simulated radar reflectivity minimum threshold of 40 dBZ, which is a quantity propor-158

tional to the number of drops per unit volume and provides an estimate of convective159

precipitation (Trapp et al., 2011). Grid cells adjacent to the detected local maxima that160

also exceeded a minimum threshold of 20 dBZ were then treated as a part of the thun-161

derstorm object. This process was repeated iteratively and surrounding grid cells were162

continually associated with a thunderstorm until values were either below a minimum163

threshold of 20 dBZ or exceeded a predetermined thunderstorm object spatial extent of164

128 km (32 grid cells x 4 km grid spacing). Each thunderstorm was saved as a object165
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Table 1. WRF simulation parameterization schemesa and settings, as detailed in C. Liu et al.

(2017).

Model specifications

Domain grid points 1,360 x 1,016 grid points
Domain size (East-West, North-South) 5,440-km, 4,064-km
Vertical levels 51 stretched vertical levels, topped at 50-hPa
Microphysics scheme Thompson aerosol-aware (G. Thompson & Eidhammer, 2014)
Planetary boundary layer scheme Yonsei University (Hong et al., 2006)
Shortwave and longwave radiation scheme RRTMG (Iacono et al., 2008)
Land surface scheme Improved Noah-MP land-surface model (Niu et al., 2011)

aNo sub-grid cloud cover, shallow, or deep cumulus parameterizations were employed.

Thunderstorm Object

0 20 40 60 80
Reflectivity

State Variables

  qw

T

P

u

v

Study Domain for Extraction of Thunderstorm Objects and 
Corresponding State Variables

Figure 1. Thunderstorm objects for this study were extracted from areas east of the Rocky

Mountains (over land) within the dashed-line polygon. An example thunderstorm object is shown

over the CONUS for scale, with the inset displaying a larger version, and corresponding state

variables are shown on the right. State variables listed from top-to-bottom are water vapor mix-

ing ratio (qw; g kg−1), temperature (T; K), pressure (P; hPa), and zonal (u) and meridional (v)

winds (m s−1). The four layers for each state variable indicate the four levels (1, 3, 5, and 7 km

above ground) at which variables were derived.

spanning 128 x 128 km containing the thunderstorm and the adjacent environment, which166

influences thunderstorm characteristics (R. L. Thompson et al., 2012). Thunderstorms167

were extracted over land and east of the Rocky Mountains (Fig. 1), where severe thun-168

derstorms have a greater climatological likelihood of occurrence (Brooks et al., 2003).169

The temporal focus of this study was limited to winter (December, January, and Febru-170

ary; DJF) and spring months (March, April, May; MAM). Other seasons were omitted171

due to a simulated dry bias during summer months across the central CONUS, which172

was partly associated with land-surface feedbacks (Barlage et al., 2018).173

Similar to Gagne II et al. (2019), meteorological state variables were extracted from174

the WRF simulations to train a CNN after creating the thunderstorm objects. Five vari-175

ables were extracted and interpolated onto four different vertical levels, resulting in a176

total of 20 input attributes used for training the CNN (Fig. 2). The five variables are177

pressure (P; hPa), temperature (T; K), water vapor mixing ratio (qw; g kg−1), and zonal178
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(u) and meridional (v) winds (m s−1). Variables were then interpolated onto the follow-179

ing heights above ground level (AGL): 1, 3, 5, and 7 km. AGL heights were preferred180

over constant pressure surfaces because pressure surfaces might be below ground across181

portions of the High Plains and AGL heights are more likely to sample similar parts of182

a thunderstorm updraft. UH (m2 s−2) was also extracted and is quantified as183

UH =

∫ 5km

2km

w ζ dz ,

where the integral of the product of vertical velocity (w) and vertical vorticity (ζ) is com-184

puted from 2 km to 5 km AGL (Kain et al., 2008). UH was used as ground truth to cre-185

ate the training labels, but was not used as an input attribute (i.e., variable) for the CNN.186

A high-magnitude UH threshold (e.g., 75 m2 s−2) was used to delineate convection more187

likely to be of supercell morphology (Sobash et al., 2011). The 1D vector containing la-188

bels for CNN training and testing was created using binary assignment (i.e., integer en-189

coding) derived from UH and encoded as 0 or 1. Values exceeding the UH threshold (the190

potentially severe category) were assigned a label of 1, whereas values below the thresh-191

old were assigned a label of 0. Thunderstorm objects were then split into two subsets192

prior to CNN training: 60% for training and 40% for testing. Stratified sampling of thun-193

derstorm objects that exceeded or did not exceed the delineated UH threshold was con-194

ducted to ensure that training and testing data contained the same percentage of ma-195

jority and minority classes. Since the meteorological variables contain different dynamic196

ranges, the training data was standardized by subtracting the training set variable’s mean197

and then dividing by its standard deviation. The testing data was also standardized for198

model evaluation using the mean and standard deviation values extracted from the cur-199

rent climate training data.200

2.2 CNN Architecture and Explanations201

The deep learning model used in this study was a CNN (LeCun et al., 1990) that202

consisted of three convolutional layers (similar to Gagne II et al., 2019). The 20 input203

attributes described in the previous sub-section were fed into the first convolutional layer204

(Fig. 2). A stride length of 1 was used for the filter windows, which consisted of 5 x 5205

grid cells, with zero padding also applied to the edges of each feature map. The recti-206

fied linear unit (ReLU; max(0, x )) activation function was used for each feature map (ex-207

cept for the last dense layer), which preserved the magnitude of positive signals and negated208

negative signals when propagated forward through the network (LeCun et al., 2015). Max209

pooling was performed after each convolutional layer by extracting maximum values of210

the feature maps within a sliding 2 x 2 filter window with stride length of 1. Max pool-211

ing added translation invariance and allowed the model to learn higher-level features (i.e.,212

increase in kilometers) in deeper layers. After the three convolution and pooling oper-213

ations, the resultant data was flattened into a 1D vector, passed through a dense layer214

(Fig. 2), and a ReLU activation function was applied to its output. The 1D vector was215

then passed through a final dense layer, with a sigmoid activation function applied to216

produce the model’s output as a value between 0 and 1, which was interpreted as the217

probability that the input attributes contained a strongly rotating thunderstorm.218

The weights of the CNN were trained to minimize mean squared error (MSE) us-219

ing the Adam optimization algorithm (Kingma & Ba, 2014) via backpropagation with220

a learning rate of 0.0001. Glorot uniform was used as the layer weight initializer (Glorot221

& Bengio, 2010). Sensitivity to random weight initialization was assessed by training sev-222

eral models using different random initializations and skill was comparable across mod-223

els, potentially due to the large training sample size or the large number of input attributes224

used during training. During training, a batch size of 128 was used, randomly pulled from225

the training data population and passed forward through the CNN. To prevent overfit-226
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Figure 2. The architecture of the CNN. The model consists of three 2D convolutional layers

and max pooling layers. The dimensions of the feature maps are shown in parentheses. 2D filter

windows are depicted in pink, of dimension 5 x 5 for each convolutional layer and 2 x 2 for each

max pooling layer. The km range of learned features grows in deeper layers of the CNN because

of max pooling layers; the spatial extent learned is 20x20 km for the first convolutional layer (fil-

ter containing 5 filter pixels x 4 km per pixel), 40x40 km for the second convolutional layer, and

80x80 km for the third convolutional layer.

ting of weights during training, Ridge (L2 norm; 0.001) regularization was added as a227

penalty term to reduce the magnitude of the weights at each convolutional layer. Batch228

normalization was also applied after each convolutional layer and the first dense layer229

(i.e., before each pooling layer), which involved standardizing layer outputs by subtract-230

ing the batch mean and dividing by the batch standard deviation, in effect reducing co-231

variance shift (Ioffe & Szegedy, 2015). 2D spatial dropout (30% in this study; Srivas-232

tava et al., 2014) was also employed after batch normalization, which increased the ro-233

bustness of learned features. We note that numerous training iterations were run with234

the order of batch normalization and spatial dropout reversed, but results were more skill-235

ful with batch normalization preceding spatial dropout in this application. A validation236

data set was used during training, consisting of 10% of the available training data, which237

provided insight into the skill of the model during training. Cross-validation on 5 folds238

was also performed to assess result sensitivity to the underlying test data distribution239

and differences were minimal. The final model settings were selected based on the low-240

est resultant test data MSE from a hyperparameter grid search that resulted in over 128241

independently trained CNNs trained using 20 epochs. The classification output of the242

lowest MSE was evaluated using probabilistic and nonprobabilistic skill metrics that will243

be further detailed within the results. For more details about CNNs, see Goodfellow et244

al. (2016).245

To explore the relative importance of specific meteorological variables on CNN clas-246

sification performance, we used the permutation feature importance (PFI; Breiman, 2001)247

analysis, specifically the single-pass forward test variant. PFI ranks variables based on248

how much randomizing them impacts error during testing, with larger magnitude decreases249

in skill associated with greater importance. Higher relative importance suggests that the250

respective variables have greater relevance to the classification due to the larger mag-251

nitude weights associated with them within the CNN architecture. 500 permutations were252

completed for each of the 20 variables to capture uncertainty associated with shuffling253

order in PFI. Permuted fields for a set of examples were also visualized to further ex-254

plain variable importance results. The chosen examples consist of cases that were orig-255

inally classified as one class by the CNN, but switched to another class due to PFI. Cer-256

tain classified thunderstorms that were switched to incorrect classifications (according257

to the ground truth label) also consistently appeared in larger skill reductions, and these258
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were used to narrow down the subset of thunderstorms for visualization. To explain model259

reasoning within a spatial context, image-specific saliency maps (Simonyan et al., 2013)260

and input*gradient (Shrikumar et al., 2016) were used. Input*gradients is computed as261

the product of the local gradient and input (Mamalakis et al., 2021), which provides the262

variable relevance.263

3 Results264

3.1 Thunderstorm Classification in a Future Climate265

Thunderstorms identified within the future climate model simulation contain warmer266

temperatures and higher moisture content than thunderstorms identified within the cur-267

rent climate model simulation at all vertical levels (1, 3, 5 and 7 km; Table 2), which is268

consistent with the applied PGW signal (C. Liu et al., 2017). Table 2 shows that future269

thunderstorms contain about 1.3 g kg−1 more low-level (at 1 km) water vapor mixing270

ratio and are about 2.4 K warmer at low levels (at 1 km) than thunderstorms of the cur-271

rent climate (both statistically significant at the 95th percentile confidence level). These272

results are also consistent with the Clausius-Clapeyron equation that estimates a 7% in-273

crease in saturation vapor pressure per +1◦C. Using the Clausius-Clapeyron equation,274

water vapor mixing ratio of future thunderstorms should be about 8.76 g kg−1 at 1 km,275

which is comparable to the 8.9 g kg−1 contained in thunderstorms extracted from the276

future climate model simulation (Table 2). Extremes within the future climate were also277

of interest. These extremes were classified as “outlier cases” and were selected as thun-278

derstorms containing 1 km water vapor mixing ratio exceeding the 99th-percentile of thun-279

derstorms from the future climate. The focus of outlier cases lies on 1 km water vapor280

mixing ratio because increased low-level moisture and thermodynamic buoyancy can re-281

sult in more intense vertical winds related to stronger thunderstorm updrafts. Added282

low-level moisture and warmth provide additional thermodynamic buoyancy and verti-283

cal instability that could lead to more intense convection in the future (K. L. Rasmussen284

et al., 2017; Prein et al., 2017). The increased moisture and warmth could also pose the285

CNN with added difficulty in performing the thunderstorm classification task. Table 2286

shows little change in zonal (u) and meridional (v) thunderstorm winds between the cur-287

rent and future climate model simulations. Since the classification task being performed288

by the CNN is related to winds, the relative consistency in wind magnitude may result289

in little change in classification skill between the current and future climate model sim-290

ulations.291

Here we evaluate probabilistic forecasts generated by the CNN, which are prob-292

abilities that the thunderstorm objects contain a strongly rotating or non-strongly ro-293

tating thunderstorm. Strongly rotating thunderstorms are associated with a higher prob-294

ability magnitude and non-strongly rotating thunderstorms are associated with a lower295

probability magnitude. The large imbalance between the majority and minority classes296

was important to consider during evaluation of the CNN classification skill (Table 3).297

Therefore, the performance diagram and metrics that are more useful for evaluating fore-298

casts of rare events were used (Roebber, 2009). The minority class in this case consists299

of strongly rotating thunderstorms, which are rare events that comprise approximately300

3% of all thunderstorms in the convection-permitting model simulations. Performance301

diagrams summarize the probability of detection (POD; ratio of hits to the total of hits302

and false alarms), critical success index (CSI; ratio of hits to the total of hits, false alarms,303

and misses), and bias (ratio of false alarms to misses). Success ratio (SR) is also sum-304

marized, which is 1−false alarm ratio (FAR; ratio of false alarms to the total of hits and305

false alarms). The curves shown on the performance diagrams were created by varying306

the probability threshold between 0 and 1 to convert probabilistic forecasts into binary307

forecasts and show how skill changes based on the probability threshold used (Fig. 3a,c,e).308
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Table 2. Median of thunderstorm variables extracted from the current and future climate

simulations. Environments surrounding the thunderstorms were omitted for these statistics. Fu-

ture thunderstorms with higher low-level moisture content than most cases in the future climate

(i.e., outlier cases with ≥99th percentile of 1 km water vapor mixing ratio in the future climate),

are also shown. Statistically significant values of the future climate and future outliers are in-

dicated in boldface and computed using confidence intervals of 2.5th and 97.5th percentile of a

1,000-member bootstrap from a total sample of 454,242 thunderstorm objects extracted from the

current climate simulation.

Current Climate 1-km 3-km 5-km 7-km

Temperature (K) 283.7 272.7 261.0 247.4
v-winds (m s−1) 5.3 7.8 9.7 11.2
u-winds (m s−1) 3.1 9.9 14.1 17.2
Water vapor mixing ratio (g kg−1) 7.6 4.8 2.1 0.7
Pressure (hPa) 868.7 679.9 526.4 402.3

Future Climate 1-km 3-km 5-km 7-km

Temperature (K) 286.2 275.6 264.6 251.9
v-winds (m s−1) 5.1 7.4 9.5 11.3
u-winds (m s−1) 2.8 10.0 14.4 17.8
Water vapor mixing ratio (g kg−1) 8.9 5.7 2.8 1.0
Pressure (hPa) 869.0 681.7 529.5 406.3

Future Outliers 1-km 3-km 5-km 7-km

Temperature (K) 295.7 284.7 272.5 260.5
v-winds (m s−1) 4.8 4.0 3.8 4.2
u-winds (m s−1) 2.6 7.0 9.8 12.0
Water vapor mixing ratio (g kg−1) 17.2 8.0 3.5 1.4
Pressure (hPa) 889.2 704.1 551.5 427.0
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Model Skill Evaluation

Figure 3. Performance diagrams (a,c,e) show curves that represent CNN skill as a function

of the probability of detection (POD) and success ratio (1-FAR [false alarm ratio]) across various

probability thresholds. The grayscale filled contours show the critical success index (CSI), the

dashed lines display the bias, and circles along the curves display probability thresholds (a,c,e).

Attributes diagrams are also displayed, which show forecast probabilities against observed rela-

tive frequency, using a forecast probability bin size of 0.05 (b,d) and 0.1 (f). Inset panels in the

top left show the frequency of forecast probabilities and the grey-shading shows regions where

resolution exceeds reliability (b,d,f). 95th percentile confidence intervals (two-tailed) computed

from a 1,000-member bootstrap shown with shading (a-f).–10–
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Table 3. Table contains various skill metrics used for evaluation of CNN performance during

the current and future climate. Also shown are the total number of true positive (i.e., hits), false

positive (i.e., false alarms), false negative (i.e., misses), and true negative predictions made by the

CNN. Future thunderstorms that have higher low-level moisture content than most cases in the

future climate (i.e., outlier cases with ≥99th percentile of 1 km water vapor mixing ratio in the

future climate), are also shown. Metrics were computed using a 0.5 forecast probability threshold

for the current, future, and outlier thunderstorms.

Climate Current Future Outlier

True positives 9,089 10,984 601
False positives 1,633 3,420 280
False negatives 2,250 1,954 34
True negatives 441,270 440,109 3,652

AUC 0.90 0.92 0.94
CSI 0.70 0.67 0.66
Hit Rate 0.80 0.85 0.95
Bias 0.95 1.11 1.39

BSS 0.74 0.70 0.59
Resolution 0.02 0.02 0.08
Uncertainty 0.02 0.03 0.11

The performance diagrams (Fig. 3a,c,e) show that despite being trained with thun-309

derstorm objects extracted from the current climate model simulation, CNN skill remains310

consistent and high (0.69 max CSI) when classifying thunderstorms of the future climate311

model simulation (Fig. 3c). These results suggest that a CNN is capable of learning spa-312

tial representations and variable relationships that are transferable to a warmer and more313

moist climate. Figure 4a shows that correctly classified strongly-rotating thunderstorms314

(according to the ground truth label) of the future climate contained approximately 4315

g kg−1 more low-level moisture (at 1 km) than correctly classified strongly-rotating thun-316

derstorms of the current climate. The consistency in CNN skill could be partly related317

to bulk wind shear (1-5 km) distributions that remained relatively stationary between318

both climate model simulations (Fig. 4a). Despite the imbalance between the majority319

and minority classes, the CNN was able to perform the classification task skillfully, sug-320

gesting that techniques to augment minority classes may not always be necessary (e.g.,321

Chawla et al., 2002). However, model bias exhibits some sensitivity to the forecast thresh-322

old used. We note that the same forecast threshold values were evaluated for current,323

future, and outlier thunderstorms (10,000 values evenly spaced between 0 and 1) in Fig-324

ure 3 and only a threshold of 0.5 was used for all thunderstorm classes in Table 3. Max325

CSI and lower bias were achieved when evaluating model skill using a probability thresh-326

old of approximately 0.6 in the future climate and 0.5 in the current climate (Fig. 3c).327

A probability threshold of 0.5 results in a small over forecasting bias (>1) of strongly328

rotating thunderstorms of the future (Table 3), which shows that the CNN generally has329

lower confidence in classifying strongly rotating thunderstorms of the warmer and more330

moist climate.331

Performance metrics were also computed for the outlier future thunderstorms, which332

were characterized by higher low-level moisture content than the 99th-percentile of the333

future climate, in order to further quantify the out-of-sample robustness of the CNN (Ta-334

ble 2). Results show that CNN classification skill with outlier thunderstorms of the fu-335

ture climate remains high, with a max CSI of 0.73 (Fig. 3e) which is comparable to the336
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Figure 4. Scatter plots showing water vapor mixing ratio (1 km AGL) against bulk wind

shear (1-5 km AGL) for thunderstorm objects of the current and future climate evaluated as (a)

hits, (b) false alarms, (c) misses, and (d) correct negatives. The dots represent individual thun-

derstorm objects of the current (black) and future (red) climates, while the stars show the mean

of the respective climate thunderstorm objects. Bivariate density distributions are also shown

with marginal plots created using Gaussian kernels. Random subsets of thunderstorm objects are

shown for easier visualization.
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Table 4. Same as Table 3, but using a model trained with class imbalance addressed (equal

sample sizes of potentially severe and non-severe thunderstorms). All other CNN hyperparame-

ters were kept consistent.

Climate Current Future Outlier

True positives 10,987 12,422 593
False positives 14,275 13,659 483
False negatives 434 713 26
True negatives 429,055 429,910 3,468

AUC 0.96 0.96 0.92
CSI 0.43 0.46 0.54
Hit Rate 0.96 0.95 0.96
Bias 2.21 1.99 1.74

BSS 0.11 0.25 0.39
Resolution 0.02 0.02 0.07
Uncertainty 0.02 0.03 0.12

current and future climate subsets (Fig. 3a,c). These results further substantiate that337

a CNN can exhibit out-of-sample robustness in climate applications. Results also sug-338

gest that deep learning can sufficiently generalize relationships among input variables339

and remain skillful with extreme events. However, over forecasting of strongly rotating340

outlier thunderstorms was identified (bias >1) with a probability threshold of 0.5 (Fig.341

3e; Table 3), which implies overconfidence in classifying thunderstorms with extreme low-342

level moisture. Like thunderstorms of the future climate, the consistency in CNN skill343

could be partly related to bulk wind shear (1-5 km) distributions that remained relatively344

stationary between current climate and future outlier thunderstorms (Fig. 5a). However,345

in addition to high-end low level moisture content, future outlier thunderstorms also con-346

tained substantially higher moisture content in mid-to-upper levels, as shown in figure347

5 for 5 km maximum water vapor mixing ratio. This result suggests that the spatial ar-348

rangement of meteorological fields likely also plays an important role in CNN prediction349

skill in addition to variable relative magnitudes. We note that a model consisting of the350

same architecture was trained with class imbalance addressed (i.e., equal sized poten-351

tially severe and non-severe classes) and resulted in more substantial bias (Table 4) than352

the model trained with large class imbalance (Table 3).353

The Brier skill score (BSS) was used as an additional evaluation metric and can354

be visualized with the attributes diagram (Fig. 3b,d,f), which shows forecast probabil-355

ities against observed relative frequencies (Hsu & Murphy, 1986; Wilks, 2011). An at-356

tributes diagram provides a measure of forecast reliability, where the dashed 45-degree357

line represents perfect reliability. Attributes diagrams show forecast probabilities (be-358

tween 0 and 1), which are plotted against the observed relative frequency for that fore-359

cast probability (Wandishin et al., 2005). An example of “perfect reliability” for a 0.6360

forecast probability (e.g., x-axis in Fig. 3b,d,f) is when that forecast probability corre-361

sponds to a similar observed relative frequency (e.g., y-axis in Fig. 3b,d,f). The solid hor-362

izontal line in figure 3b,d,f shows the climatological probability of strongly rotating thun-363

derstorms occurring within the respective climate sample, which is higher in outlier cases364

than in the current and future climates. Since attributes diagrams consider climatolog-365

ical and forecast probability frequency, they also show how different forecasts are from366

climatology (i.e., resolution). The gray shading in figure 3b,d,f show areas contributing367

to positive BSS, which are areas where BSS resolution exceeds reliability (Gagne II et368

al., 2019). Inset plots (Fig. 3b,d,f) show the frequency of forecast probabilities for each369
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Figure 5. Same as 4, but for outlier thunderstorms and water vapor mixing ratio at 5 km

AGL.
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climate subset, which in this case features a bi-modal distribution, with peaks at low (≤0.05)370

and high (≥0.95) forecast probabilities. This bimodal distribution is most pronounced371

for outlier cases (Fig. 3f). The attributes diagram curve closely parallels the dashed 45-372

degree diagonal line across all forecast probabilities for the current climate (Fig. 3b), which373

conveys high forecast reliability. However, future and outlier cases have lower reliabil-374

ity between the 0.2-0.7 forecast probabilities and higher reliability at low (<0.2) and high375

(>0.7) forecast probabilities (Fig. 3d,f). These results corroborate the performance di-376

agram results, which show that the CNN has an over-forecasting bias for future and out-377

lier thunderstorms.378

3.2 CNN Interpretation379

Permutation feature importance (PFI) was conducted to determine the relative im-380

portance of input variables on CNN prediction skill. The area under the receiver oper-381

ating characteristic curve (AUC; Mason, 1982) was used, which is a scalar that repre-382

sents model performance encompassing the probability of detection and false detection.383

Using AUC, PFI reveals that zonal (u) and meridional (v) winds at 3 km have the high-384

est relative importance for CNN prediction (Fig. 6a,d). PFI is consistent for predictions385

generated using the current climate and future climate thunderstorms (Fig. 6a,d), which386

shows that mid-level kinematic fields play an important role in the proper classification387

of rotating convective storms. This result is physically reasonable given that UH (com-388

puted from 2 km to 5 km AGL) was used to create the thunderstorm labels that were389

subsequently used to train the CNN. The climatological homogeneity between current390

and future climate mid-level winds (Table 2) also likely contributed to the consistency391

in variable importance across climate subsets. Zonal and meridional winds at 1 km and392

5 km were also identified as relatively important (Fig. 6a,d). Several thermodynamic vari-393

ables also ranked in the top 50th percentile in importance, suggesting that the CNN also394

relies on characteristics of physical variables that were not included in the UH compu-395

tation. These relatively higher ranking thermodynamic variables include, temperature396

at 5 km and water vapor mixing ratio at 1 km and 7 km (Fig. 6a,d).397

Additional skill metrics were used for PFI in order to explore the sensitivity of the398

analysis to the respective evaluation method. PFI using CSI, which is a skill evaluation399

metric that neglects true negative events (as described earlier), further emphasizes the400

relative importance of mid-level kinematic fields (Fig. 6b,e). BSS was also used for PFI401

(Fig. 6c,f) and results generally align with AUC and CSI results in regards to the rel-402

ative importance of mid-level kinematic fields. Interestingly however, moisture at 5 km403

ranked most important when evaluating the CNN classification skill for current and fu-404

ture climate (Fig. 6c) thunderstorms. This result suggests that mid-level moisture is an405

important variable for classification of strongly-rotating thunderstorms, given the lower406

ranking found using AUC, which also takes into account correct classification of non-strongly407

rotating thunderstorms (according to the ground truth label).408

PFI offers insight into the relative importance of variables based on modulations409

to the CNN prediction skill, but the method does not provide reasons for the rankings.410

For instance, it is not immediately clear why water vapor mixing ratio at 5 km has greater411

relative importance than at 1 km. To explore the reasons for PFI rankings, visualiza-412

tions were created of thunderstorms that were initially classified as strongly rotating but413

switched to a non-strongly rotating classification as a result of the permuted variable (Fig.414

7). Figure 7c shows an example strongly rotating thunderstorm. Its associated water va-415

por mixing ratio at 5 km (Fig. 7a) was permuted to a field that had a greater overall416

magnitude of moisture (Fig. 7b) and peak moisture values that were offset from the thun-417

derstorm locations (Fig. 7c), which resulted in the non-strongly rotating classification.418

Various other thunderstorms also had a similar pattern; higher overall moisture content419

and shifted peak value locations in the permuted field resulted in non-strongly rotating420

classifications (not shown). Supercells generally form in environments characterized by421
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Figure 6. Permutation feature importance (PFI) analysis for the current climate (a-c) and

future climate (d-f) thunderstorms shown using box and whisker plots. The median of 500 per-

mutations is represented by the vertical line within the box and the whiskers represent all 500

measured changes in skill. PFI was conducted using various skill metrics, including area under

the receiver operating characteristic curve (AUC; a,d), critical success index (CSI; b,e), and Brier

skill score (BSS; c,f). Changes in skill were normalized by the maximum change in the respective

climate subset and skill metric.
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moist low-levels and drier mid-to-upper levels, while stratiform precipitation or less or-422

ganized convection could be characterized by higher and more homogeneous moisture423

profiles (Bunkers et al., 2006; R. L. Thompson et al., 2012). These examples show that424

moisture characteristics of vertical atmospheric profiles are likely a learned feature by425

the CNN. In regards to the high importance of zonal and meridional winds, thunderstorms426

that were classified as non-strongly rotating during PFI were generally due to the uni-427

formity of zonal or meridional winds in the permuted fields (Fig. 7e,h), as opposed to428

the overall magnitude of the horizontal winds. These results show that the CNN learned429

that wind directional shifts over a small region located near the thunderstorm core were430

indicative of strong rotation.431

Visualizations were also created for thunderstorms that were initially classified as432

non-strongly rotating, but switched to a strongly rotating classification during PFI (Fig.433

8). The permuted moisture fields for these examples (e.g., Fig. 8b) were generally drier434

and contained large magnitude gradients in space that represented isolated and intense435

convection. Regarding kinematic fields, the original zonal (Fig. 8d) and meridional (Fig.436

8g) winds lacked rotational characteristics for the respective thunderstorms (Fig. 8f,i).437

However, the permuted fields contained strong rotational features (Fig. 8e,h) which likely438

resulted in the changed classification.439

Individual thunderstorms from the future climate model simulation were chosen440

to visualize areas of saliency for predictions made by the CNN. Simulated radar reflec-441

tivity of the respective examples are shown in figure 9, which contains a true positive,442

false positive, false negative, and true negative case. High values of simulated radar re-443

flectivity (>65) are evident near the thunderstorm core of the true positive case (Fig.444

9a), which represents a region of high precipitation intensity. The false positive and false445

negative examples also contain thunderstorms with high reflectivity (>65; Fig. 9b,c), but446

the most intense region for the false negative case is located near the southern edge of447

the image. The true negative case (Fig. 9d) contains lower maximum reflectivity mag-448

nitudes than the other examples (<65), and convection that is smaller in size and less449

organized, which possibly contributed to the true negative classification by the CNN.450

Saliency maps highlight the thunderstorm object areas of input features that con-451

tributed to the CNN prediction. For water vapor mixing ratio (right two columns in Fig.452

10), positive gradients demarcate the respective pixels that contributed positively to the453

model prediction. Moisture at low and mid level heights for the true positive case located454

near the thunderstorm core contributed positively to the prediction of strongly rotat-455

ing thunderstorms (Fig. 10c,d). While high moisture content may not be related to thun-456

derstorm rotation and horizontal kinematics, it does show that the CNN identified the457

thunderstorm core (region of high precipitation intensity, and thus moisture content) as458

relevant for the strongly rotating prediction. Non-salient regions of respective variables459

are zero gradients and therefore correspond to pixels that did not contribute to the model460

prediction. In the case of zonal and meridional winds at 3 km (left two columns in Fig.461

10), winds of higher absolute magnitude with opposing signs in close proximity to each462

other represent regions of rotational winds within the region of the thunderstorm’s up-463

draft. These features are evident at the thunderstorm core location, suggesting that the464

rotation signature contributed to the strongly rotating prediction. Similar gradient pat-465

terns are present in the maps of the false positive and false negative examples at thun-466

derstorm core locations (Fig. 10e-l). Saliency maps for true negative cases are substan-467

tially different (Fig. 10m-p)–gradients are no longer present across a small and focused468

region near the thunderstorm core, but rather across broad areas of the thunderstorm469

object. Additionally, gradients from zonal and meridional winds generally no longer align470

to form an organized circulation (Fig. 10m,n).471

Another local and post hoc ML explanation method is input*gradient, which high-472

lights areas of relevance to the prediction, computed as the product of the local gradi-473

ent with the input itself (Shrikumar et al., 2016). Mamalakis et al. (2021) conducted an474
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Figure 7. Three example cases (c, f, i) that were classified as non-strongly rotating thun-

derstorms during the permutation feature importance (PFI) analysis. The CNN classified these

future climate thunderstorms as strongly rotating prior to PFI. The top row shows the original

water vapor mixing ratio (qw) field (a) for a pair of strongly-rotating thunderstorms (c), and

the qw field that replaced the original during PFI (b). The center and bottom rows show fields

for other example thunderstorms, but for perturbed meridional (v) and zonal (u) winds respec-

tively. Updraft helicity exceeding 75 m2s−2 is indicated with black contours (c, f, i). Vectors

show winds at 3 km corresponding to the respective thunderstorm image (c, f, i). The qw fields

were normalized by the maximum value of both plots (a, b).
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Figure 8. Same as figure 7, but for a subset of thunderstorms that were classified as strongly

rotating. The CNN classified these thunderstorms as non-strongly rotating prior to PFI. No black

contours are included in the thunderstorm plots (c, f, i) because updraft helicity did not exceed

75 m2s−2 for the shown examples.
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Figure 9. Simulated radar reflectivity for example thunderstorms extracted from the future

climate simulation, evaluated as a hit (a), false alarm (b), miss (c), and correct negative (d).
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attribution benchmark using attribution known a priori (i.e., ground truth) for regres-475

sion problems, and found the input*gradient method to produce more skillful explana-476

tions than saliency maps. While the benchmark used global sea surface temperatures477

and consisted of a very different spatial scale as compared to our application, we decided478

to also use the input*gradient method for further exploration of our model’s explana-479

tions. Explanations were generally consistent between the saliency maps and input*gradient480

methods, with a few minor exceptions (Fig. 11). For instance, the wind rotational sig-481

nature was mostly of one sign (positive) near the thunderstorm core using the input*gradients482

method for hits, false alarms, and misses (Fig. 11a,b,e,f,i,j). The spatial extent of the483

contour explanations were reduced for true negative cases and primarily of negative mag-484

nitude for all variables shown (Fig. 11m-p). The moisture fields at 1 and 5 km for the485

miss (false negative) example contain mixed signals (positive and negative) that were486

displaced away from the thunderstorm core, potentially explaining why the CNN failed487

to classify the supercell as strongly rotating (Fig. 11k,l). A challenge with comparing488

ML explanation methods without attribution ground truth is that we cannot quantify489

explanation skill and rely heavily on our domain knowledge to assess skill subjectively.490

It is also possible that certain explanation methods are more useful for certain spatial491

and temporal scales yet not others. These questions are beyond the scope of this study,492

but should be explored in future work.493

Results generated using saliency maps and input*gradients can be corroborated494

by visualizing the frequency of maximum UH for all thunderstorms. Figure 12a shows495

that the CNN is able to identify strongly rotating thunderstorms across a broad range496

of UH values that exceed 75 m2s−2 and is therefore able to capture a variety of thun-497

derstorm rotation intensities. Thunderstorms that were classified as strongly rotating,498

but evaluated as false alarms because the corresponding UH did not exceed 75 m2s−2,499

are heavily skewed towards high UH values (mostly contained UH values that exceeded500

40 m2s−2; Fig. 12b), which past studies have found to also be representative of super-501

cellular convection (Trapp et al., 2011). Missed classifications of strongly rotating thun-502

derstorms generally do not consist of large UH magnitudes (<100 m2s−2), with most thun-503

derstorms characterized by UH values close to 75 m2s−2 (Fig. 12c). Most true negative504

cases consist of UH values below 40 m2s−2, which is characteristic of less organized con-505

vective storms (Fig. 12d). These results further demonstrate that a CNN is able to gen-506

eralize a target derived from a heuristic using learned features in the data that would507

be difficult to encode due to spatial complexity. There is sensitivity, however, to the thun-508

derstorm location within the thunderstorm object, which can be visualized with 2D his-509

tograms that contain the frequency of UH exceeding 75 m2s−2, typically located near510

the thunderstorm core (Fig. 13). Correctly classified strongly-rotating thunderstorms511

(according to the ground truth label) contained regions of high rotation (UH>75 m2s−2)512

near the center of the thunderstorm object (Fig. 13a,c), while missed classifications are513

located near the edges of the thunderstorm object (Fig. 13b,d) for thunderstorms dur-514

ing both the current and future climate. This comparison shows that CNNs can strug-515

gle with classifications of features located near the edges of a spatial region of interest,516

resulting in missed events.517

4 Conclusions518

A CNN was trained to learn relationships and identify features among meteoro-519

logical state variables in order to classify convection types, with a focus on rotation within520

the updraft core of a thunderstorm. Strong rotation and associated storm morphology521

could result in a higher likelihood of convection producing severe hazards, such as tor-522

nadoes and large hail, which are a dangerous threat to the public. We hypothesized that523

due to climate change, a trained CNN may fail to classify and identify convection that524

lies outside of the climatological distribution of data used for training. We conducted525

a test-case study to address our hypothesis. Using a thermodynamically driven future526
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Figure 10. Saliency maps for representative examples of future climate thunderstorms, in-

cluding true positive (a-d), false positive (e-h), false negative (i-l), and true negative (m-p) cases.

Variables shown include several denoted as important by the PFI analysis, such 3 km zonal

(a,e,i,m) and meridional (b,f,j,n) winds, and water vapor mixing ratio (qw) at 5 km (d,h,l,p).

Mixing ratio (qw) at 1 km is also shown (c,g,k,o).
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Figure 11. The same as figure 10, but input*gradient values are displayed instead of saliency

maps.
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Figure 12. Histograms show the frequency of maximum updraft helicity (UH) for future cli-

mate thunderstorms separated into four subsets: hits (a), false alarms (b), misses (c), and true

negatives (d). Frequency of true negatives (d) are x103 magnitude. For comparison, the frequen-

cies of the maximum UH for current climate thunderstorms are shown with blue lines and for

future outlier thunderstorms in the inset plots.
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Figure 13. Spatial histograms show the frequency of updraft helicity (UH) exceeding 75

m2s−2 normalized by maximum frequency for thunderstorm objects classified as hits (a,c) and

misses (b,d) during the current (a,b) and future climates (c,d).
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climate model simulation, our results show that a CNN can remain skillful in classify-527

ing convective storms via learned representations of physical variables.528

The key results that provide answers to the questions posed in the introduction follow:529

1. A CNN trained using a current climate model simulation can skillfully classify out-530

of-sample (with regards to moisture content) thunderstorms in a thermodynam-531

ically driven future climate. This is possibly partly due to the use of batch nor-532

malization and spatial dropout; an equivalent model trained without batch nor-533

malization and spatial dropout results in an under-forecasting bias (about 0.84)534

in the current and future climate.535

2. Kinematic fields and mid-level moisture were identified as important variables for536

skillful classification by the CNN. Spatially, wind rotation signatures with concur-537

rently overlaid sharp mid-level moisture gradients were also important.538

3. Thunderstorm classifications that were incorrect according to the associated ground539

truth label included cases that were near the thunderstorm object edge or had a540

UH value that was near but on the opposite side of the predefined threshold.541

Key result 1 shows that a CNN is robust to out-of-sample cases during convection542

classification, which is a promising result given the changes already occurring to large-543

scale environments and moisture advection patterns associated with severe thunderstorms544

(Gensini & Brooks, 2018; Molina & Allen, 2020). Key results 2 and 3 also show that a545

CNN can learn complex relationships among input features using labels derived from heuris-546

tics. Physical features were not prescribed but rather learned from the data, such as the547

importance of dry air at mid-levels for intense thunderstorm development when low-level548

moisture is present (i.e., convective available potential energy). We emphasize that UH549

was only used to create the labels and was not used as an input attribute into the CNN550

during training. Unlike computer vision classification tasks (Russakovsky et al., 2015),551

humans can bypass generating a large number of hand labeled data for training mod-552

els to perform atmospheric feature classifications, which would also pose challenges given553

conflicting definitions of atmospheric phenomena in the scientific literature. Addition-554

ally, results show that large imbalances in labeled data may be overcome with sufficient555

hyperparameter tuning. Overall, results show that the CNN can classify thunderstorms556

as strongly rotating that were near the UH threshold and appeared supercellular, learn-557

ing to generalize prescribed UH labels.558

There are several limitations that are important to acknowledge, however. The fo-559

cus in this study lies on a future climate that was thermodynamically driven in order560

to isolate competing thermodynamic and kinematic signals, but it is possible that a CNN561

may not generalize well with a future climate that accounts for both changes in the ther-562

modynamic and large-scale dynamics. We do note that there is a 14% increase in future563

strongly rotating thunderstorms as compared to the current climate, which is a substan-564

tial increase and an indication that changes in large-scale dynamics may not pose a sig-565

nificant issue to the CNN. An additional limitation is that physical interpretation meth-566

ods require substantial human interpretation, making it possible to miss important fea-567

tures or fail to discover new physical relationships. However, this is a broader issue within568

machine learning explanations (i.e., interpretability), as it introduces the potential for569

confirmation bias from human scientists attempting to explain results. Future work should570

explore incorporating feature uncertainty or physics within the CNN model architecture571

to explore the differences to results contained herein. Additionally, methods to amelio-572

rate missed classifications near the edges of study domains should be explored. As so-573

cietal exposure to severe hazards continues to increase (e.g., Ashley & Strader, 2016),574

it is important to continue better identifying and understanding severe hazards within575

climate model simulations. The use of deep learning methods that do not impose rigid576

thresholds or expert systems decisions should continue to be explored, since meteoro-577
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logical phenomena generally do not neatly fit into predefined classes. Deep learning of-578

fers a viable avenue to continue to better understand weather and climate extremes.579
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