Carbon Dioxide and Methane Emissions from a Temperate Salt Marsh Tidal Creek

Branimir Trifunovic¹, Alma Vázquez-Lule¹, Margaret Capooci², Angelia Lyn Seyfferth¹, Carlos Moffat¹, and Rodrigo Vargas¹

¹University of Delaware ²University of Delawarere

November 23, 2022

Abstract

Coastal salt marshes store large amounts of carbon but the magnitude and patterns of greenhouse gas (GHG; i.e., carbon dioxide (CO) and methane (CH)) fluxes are unclear. Information about GHG fluxes from these ecosystems comes from studies of sediments or at the ecosystem-scale (eddy covariance) but fluxes from tidal creeks are unknown. We measured GHG concentrations in water, water quality, meteorology, sediment CO efflux, ecosystem-scale GHG fluxes, and plant phenology; all at half-hour time-steps over one year. Manual creek GHG flux measurements were used to calculate gas transfer velocity () and parameterize a model of water-to-atmosphere GHG fluxes. The creek was a source of GHGs to the atmosphere where tidal patterns controlled diel variability. Dissolved oxygen and wind speed were negatively correlated with creek CH efflux. Despite lacking a seasonal pattern, creek CO efflux was correlated with drivers such as turbidity across phenological phases. Overall, night-time creek CO efflux ($3.6 \pm 0.63 \mu mol/m/s$) was over two times higher than night-time marsh sediment CO efflux ($1.5 \pm 1.23 \mu mol/m/s$). Creek CH efflux ($17.5 \pm 6.9 nmol/m/s$) was four times lower than ecosystem-scale CH fluxes ($68.1 \pm 52.3 nmol/m/s$) across the year. These results suggest that tidal creeks are potential hotspots for CO emissions and could contribute to lateral transport of CH to the coastal ocean due to supersaturation of CH (>6000 \mu mol/mol) in water This study provides insights for modelling GHG efflux from tidal creeks and suggests that changes in tide stage overshadow water temperature in determining magnitudes of fluxes.

1	Carbon Dioxide and Methane Emissions from a Temperate Salt Marsh
2	Tidal Creek
3	
4	Authors:
5	Branimir Trifunovic ¹ , Alma Vázquez-Lule ¹ , Margaret Capooci ¹ , Angelia L. Seyfferth ¹ , Carlos
6	Moffat ² , Rodrigo Vargas ^{1*}
7	
8	Affiliations:
9	¹ Department of Plant and Soil Sciences, College of Agriculture & Natural Resources, University
10	of Delaware, Newark, Delaware, USA
11	² School of Marine Science and Policy, College of Earth, Ocean, & Environment, University of
12	Delaware, Newark, Delaware, USA
13	
14	*Corresponding author: Rodrigo Vargas (<u>rvargas@udel.edu)</u>
15	
16	

18 Key Points:

- A creek was a hotspot for CO₂ efflux compared to the surrounding landscape
- Changes in tide stage, not water temperature variability, regulated diel creek CO₂ and
- 21 CH₄ efflux
- The relative influence of non-tidal drivers of creek CO₂ and CH₄ efflux varied by plant
 phenological phases

24 Abstract

Coastal salt marshes store large amounts of carbon but the magnitude and patterns of greenhouse 25 gas (GHG; i.e., carbon dioxide (CO₂) and methane (CH₄)) fluxes are unclear. Information about 26 GHG fluxes from these ecosystems comes from studies of sediments or at the ecosystem-scale 27 (eddy covariance) but fluxes from tidal creeks are unknown. We measured GHG concentrations 28 in water, water quality, meteorology, sediment CO₂ efflux, ecosystem-scale GHG fluxes, and 29 30 plant phenology; all at half-hour time-steps over one year. Manual creek GHG flux measurements were used to calculate gas transfer velocity (k) and parameterize a model of water-31 to-atmosphere GHG fluxes. The creek was a source of GHGs to the atmosphere where tidal 32 patterns controlled diel variability. Dissolved oxygen and wind speed were negatively correlated 33 with creek CH_4 efflux. Despite lacking a seasonal pattern, creek CO_2 efflux was correlated with 34 drivers such as turbidity across phenological phases. Overall, night-time creek CO₂ efflux $(3.6 \pm$ 35 0.63 μ mol/m²/s) was over two times higher than night-time marsh sediment CO₂ efflux (1.5 ± 36 1.23 μ mol/m²/s). Creek CH₄ efflux (17.5 ± 6.9 nmol/m²/s) was four times lower than ecosystem-37 scale CH₄ fluxes (68.1 \pm 52.3 nmol/m²/s) across the year. These results suggest that tidal creeks 38 are potential hotspots for CO_2 emissions and could contribute to lateral transport of CH_4 to the 39 40 coastal ocean due to supersaturation of CH_4 (>6000 μ mol/mol) in water. This study provides 41 insights for modelling GHG efflux from tidal creeks and suggests that changes in tide stage 42 overshadow water temperature in determining magnitudes of fluxes.

- 44 Keywords: Carbon dioxide, methane, automated measurements, estuary, tidal channel, air-water
- 45 efflux
- 46
- 47 Index Terms: 0428 Carbon cycling (4806), 0438 Diel, seasonal, and annual cycles (4227), 0442
- 48 Estuarine and nearshore processes (4235), 0497 Wetlands (1890), 3322 Land/atmosphere
- 49 interactions (1218, 1631, 1843, 4301)
- 50

51 **1 Introduction**

Coastal salt marshes are becoming increasingly of interest to carbon cycle science due to 52 the large amounts of carbon sequestered in their sediments (Howard et al., 2017). These systems 53 are disproportionately important to the global carbon cycle relative to their small global area 54 (22,000-400,000 km²); on average they store 10 times more carbon per unit area than terrestrial 55 56 forests (McLeod et al., 2011). However, stored carbon is vulnerable to increased erosion and decomposition due to sea level rise (Jones et al., 2018; Ruiz-Fernández et al., 2018), habitat 57 disturbance from land cover change and seagrass accumulation, (Macreadie et al., 2013; 58 59 Pendleton et al., 2012), and increased heterotrophic respiration due to rising temperatures (Bond-Lamberty et al., 2018; Kirwan et al., 2014). The vulnerability of these large carbon stocks 60 requires detailed research into the magnitudes, patterns, and drivers of carbon exchange across 61 different landscape features in salt marshes. 62

Coastal salt marshes are hotspots for carbon storage because they are sub-to-anoxic, 63 which decreases the rate of heterotrophic decomposition of soil organic carbon (SOC). In wet 64 sediments, limited oxygen supply drives anaerobic metabolism by soil microbes, which lowers 65 CO₂ emissions compared to upland terrestrial environments where aerobic metabolism 66 67 dominates (Greenwood, 1961; Raich & Schlesinger, 1992). Moreover, sulfate-reducing bacteria compete with methanogens for substrate, thereby lowering CH₄ production (Tobias & Neubauer, 68 2009). The slow rate of carbon oxidation in marsh sediments thus results in large accumulations 69 70 of SOC within these ecosystems (Chmura et al., 2003). However, there is a delicate balance between anaerobic and aerobic conditions in these tidal systems due to the tidal ebb and flood, 71 which changes the redox conditions of the sediments near tidal channels (Baumann et al., 2015). 72 73 These dynamic conditions could promote emissions of CO₂ and CH₄ from the land surface and

74	water-to-atmosphere via changes in oxygen concentrations and redox oscillations (Moseman-
75	Valtierra 2012). Therefore, understanding the patterns and drivers of salt marsh greenhouse gas
76	(GHG; i.e., CO ₂ and CH ₄) efflux is important to understand how SOC in salt marshes will
77	respond to weather variability and global environmental change.
78	The majority of salt marsh GHG efflux studies have focused on soils/sediment (Chmura
79	et al., 2011, 2016; Tong et al., 2010, 2013; Capooci et al., 2019) or used eddy covariance towers
80	at ecosystem-scale (Forbrich et al., 2015, 2018; Moffett et al., 2010), but the dynamics of GHG
81	efflux from tidal creeks are currently unknown. Past studies on soil GHG fluxes revealed that
82	tidal patterns play an important role in GHG dynamics in these ecosystems. These tidal patterns
83	affect both CO ₂ (Huertas et al., 2017) and CH ₄ emissions (Tong et al., 2010) by increasing the
84	aerobic zone in the sediment profile near tidal creeks with the ebbing tide and decreasing the
85	aerobic zone with the flooding tide. Tides also affect the conditions for GHG efflux by moving
86	sediments, organic matter, and nutrients into and out of the marsh (Fagherazzi et al., 2013).
87	Despite the knowledge of tides as an important GHG efflux control, to our knowledge there have
88	been no studies of GHG efflux directly from marsh tidal channels or creeks. These landscape
89	features have been shown to be important sources of dissolved inorganic carbon to estuaries
90	(Neubauer & Anderson, 2003; Wang & Cai, 2004; Wang et al., 2016), and may be important
91	contributors of CH ₄ and CO ₂ efflux in marsh ecosystems.
92	Previous studies on GHG efflux from terrestrial streams, mangrove tidal creeks, and
93	coastal rivers found that flowing waters have high GHG efflux and suggest that GHG efflux

from salt marsh creeks could be higher per unit area than the surrounding landscape (Call et al.,

95 2015; Lauerwald et al. 2015; Linto et al., 2014; Raymond et al., 2013; Yang et al., 2017).

94

96 Therefore, our overarching goal was to characterize the temporal dynamics and magnitudes of

97 CO_2 and CH_4 efflux from a temperate salt marsh tidal creek. In particular, we aimed to a) 98 measure the temporal patterns and magnitudes of CO_2 and CH_4 efflux from a salt marsh creek; b) 99 identify the biophysical drivers for CO_2 and CH_4 efflux throughout the year; and c) determine 100 how the magnitudes of CO_2 and CH_4 efflux compare to those from sediments and at the 101 ecosystem-scale.

102 We explored four interrelated hypotheses: First, we hypothesized that creek GHG emissions would be higher in the summer due to the temperature dependence of heterotrophic 103 104 respiration (Zhong et al., 2013) and methanogenesis (Yvon-Durocher et al., 2014). Second, 105 water-to-atmosphere GHG efflux would be highest during ebb and flood tides as the water is moving faster than compared to the low flows at high and low tides. This hypothesis is supported 106 by the fact that faster water velocity usually has a higher gas transfer velocity (Raymond et al., 107 2012). Third, dissolved oxygen and salinity are likely negative controls on CH_4 emissions due to 108 their inhibiting effect on methanogenesis (Poffenbarger et al., 2011; Tobias & Neubauer, 2009). 109 Fourth, the creek's CO₂ emissions (per unit area) could be higher than the surrounding soil 110 emissions because of the high GHG efflux potential of flowing waters (Lauerwald et al., 2015; 111 Linto et al., 2014). We addressed this research by taking advantage of automated measurements 112 113 of CO₂ and CH₄ concentrations (alongside a wide array of ancillary information) which provided unprecedented information about temporal patterns of GHG emissions in tidal salt marshes. 114

115

116 2 Materials and Methods

117 2.1 Study Site

This study was carried out in the St. Jones Reserve, a component of the Delaware
National Estuarine Research Reserve in Dover, Delaware, U.S.A. The study site is part of the

120	AmeriFlux (site ID: US-StJ) and Phenocam (site ID: stjones) networks. The GHG concentration
121	and efflux sampling location was located at Aspen Landing within a microtidal (mean tide range
122	of 1.5 m), mesohaline (typical salinity of 5-18 ppt) salt marsh (Delaware Department of Natural
123	Resources and Environmental Control, 2006) tidal creek. The creek makes up 6.9% of the area of
124	the study site (Supplementary Figure 1). Spartina alterniflora is the dominant plant species,
125	making up 62.2% of the marsh's land cover with the invasive Phragmites australis representing
126	13.4% (Delaware Department of Natural Resources and Environmental Control, 2006). The
127	reserve is located on the Atlantic Coastal Plain geologic unit (DNREC, 2006) and made up of
128	40% Transquaking and 40% Mispillon soils consisting of layers of mucky peat, muck, mucky silt
129	loam, and silt loam (Soil Survey Staff, 2019). The climate is temperate with four distinct seasons
130	and an average maximum July temperature of 31.7 °C and an average minimum January
131	temperature of 4.4 °C (Delaware Department of Natural Resources and Environmental Control,
132	2006). Average precipitation is 117 cm/yr with an average snowfall of 40 cm/year (Delaware
133	Department of Natural Resources and Environmental Control, 2006).
134	
135	2.2 Plant Phenological Stages
136	The phenological stages were identified using the greenness index (GI), a vegetation
137	index derived from a time lapse of Red, Green and Blue (i.e., RGB) photographs of vegetation
138	cover that quantifies the number of green pixels relative to the overall brightness (Gillespie et al.,

139 1987). Data were divided by phenophase as plant phenology determines primary productivity of

140 terrestrial ecosystems (Flanagan, 2009; Richardson et al., 2010; Wu et al., 2013), and influences

141 fluxes of dissolved organic carbon between salt marsh sediments and the water column (Dausse

142 et al., 2011). The study site follows the PhenoCam network's protocol for data collection, storage

143	and processing (Seyednasrollah et al., 2019). A NetCam SC camera (StarDot Technologies,
144	Buena Vista, CA, USA) took RGB photographs every half hour, and we identified a region of
145	interest (ROI) adjacent to the creek. The ROI was represented mainly by S. cynosuroides with
146	some <i>S. alterniflora</i> . Phenocam data were analyzed from March 3 rd , 2017 to December 13 th ,
147	2017. Phenology data were revised, analyzed, and divided into phenophases using the Phenopix
148	R package (Filippa et al., 2016). Data revision consisted of calculating the daily averages of the
149	greenness index and filtering out images that were too dark. Four distinct phenophases were
150	identified based on the greenness index: a) Dormant for when the plants were inactive during
151	winter; b) Greenup for when the plants were initially growing following the Dormant
152	phenophase; c) Maturity for when the plants reached a peak in greenness; and d) Senescence for
153	when the plants started losing greenness as they moved into the Dormant phenophase.
154	
154 155	2.3 Creek CO ₂ and CH ₄ Fluxes
	2.3 Creek CO_2 and CH_4 Fluxes The concentrations of CO_2 (p CO_2) and CH_4 (p CH_4) within the water of the creek were
155	
155 156	The concentrations of CO_2 (p CO_2) and CH_4 (p CH_4) within the water of the creek were
155 156 157	The concentrations of CO_2 (p CO_2) and CH_4 (p CH_4) within the water of the creek were measured from March 3 rd , 2017 to December 13 th , 2017. We used an eosGP CO ₂ Concentration
155 156 157 158	The concentrations of CO_2 (p CO_2) and CH_4 (p CH_4) within the water of the creek were measured from March 3 rd , 2017 to December 13 th , 2017. We used an eosGP CO ₂ Concentration Probe (Eosense, Dartmouth, NS, Canada) with a calibration range of 0-20,000 µmol/mol, an
155 156 157 158 159	The concentrations of CO ₂ (pCO ₂) and CH ₄ (pCH ₄) within the water of the creek were measured from March 3 rd , 2017 to December 13 th , 2017. We used an eosGP CO ₂ Concentration Probe (Eosense, Dartmouth, NS, Canada) with a calibration range of 0-20,000 μ mol/mol, an equilibration time of < 90 seconds, and an accuracy of +/- 200 μ mol/mol, and a Mini-Pro CH ₄
155 156 157 158 159 160	The concentrations of CO ₂ (pCO ₂) and CH ₄ (pCH ₄) within the water of the creek were measured from March 3 rd , 2017 to December 13 th , 2017. We used an eosGP CO ₂ Concentration Probe (Eosense, Dartmouth, NS, Canada) with a calibration range of 0-20,000 μ mol/mol, an equilibration time of < 90 seconds, and an accuracy of +/- 200 μ mol/mol, and a Mini-Pro CH ₄ Probe (Pro Oceanus, Bridgewater, NS, Canada) with a calibration range of 0-10,000 μ mol/mol,
155 156 157 158 159 160 161	The concentrations of CO ₂ (pCO ₂) and CH ₄ (pCH ₄) within the water of the creek were measured from March 3^{rd} , 2017 to December 13^{th} , 2017. We used an eosGP CO ₂ Concentration Probe (Eosense, Dartmouth, NS, Canada) with a calibration range of 0-20,000 µmol/mol, an equilibration time of < 90 seconds, and an accuracy of +/- 200 µmol/mol, and a Mini-Pro CH ₄ Probe (Pro Oceanus, Bridgewater, NS, Canada) with a calibration range of 0-10,000 µmol/mol, an equilibration time of four minutes, and an accuracy of +/- 200 µmol/mol. Data were collected

165	Manual measurements of CO_2 and CH_4 efflux from the creek were taken every two
166	weeks from September 2017 to December 2017 along with four 24-hour sampling campaigns
167	(two neap tides; 9/1/17, 11/9/17, two spring tides; 9/18/17, 11/3/17) to capture tidal diel patterns.
168	Each campaign sampled over the course of two tidal cycles, with measurements at low, flood,
169	high, and ebb tide, for a total of eight measurements. Low tide was defined as the half-hour
170	before and after the local minima of the water level, while high tide used the local maxima. Each
171	local minima and maxima were calculated using the Tides package in R (Cox & Schepers, 2017).
172	Flood tide was assigned to all measurements taken after low tide but before high tide, and ebb
173	tide was assigned to all measurements taken after high tide but before low tide. Low tide ranged
174	from -0.26 to -0.16 meters above sea level, flood and ebb tide ranged from -0.16 to 0.665 meters
175	above sea level, and high tide ranged from 0.665 to 1.16 meters above sea level.
176	A closed-system floating flux chamber (20 cm in diameter; Rawitch, 2016) was coupled
177	with an Ultraportable Greenhouse Gas Analyzer (Los Gatos Research, Santa Clara, CA, USA)
178	with a range and error of 1–20,000 \pm 0.3 ppm for CO ₂ and 0.01–100 \pm 0.002 ppm for CH ₄ for
179	flux measurements. Each manual measurement lasted 3 minutes to allow the gases to accumulate
180	and the change in concentration within the chamber was recorded every two seconds. Creek
181	GHG effluxes were calculated with a linear equation using the change in gas concentration over
182	time, chamber volume and area, atmospheric pressure, water temperature, and the ideal gas law
183	constant as described in previous studies (Pearson et al., 2016; Warner et al., 2017). Three
184	consecutive manual measurements were taken and averaged to represent one measurement in
185	time for subsequent analyses. A total of 38 averaged measurements were recorded and included
186	in the final model calibration.

188	2.4 Water-to-Atmosphere Flux Model
189	Automatic concentrations and manual flux measurements of each GHG were used with
190	Equations 1 and 2 (Van Dam et al., 2019; Wanninkhof 2014) to build a model of water-to-
191	atmosphere GHG efflux from the tidal creek. First, the gas transfer velocity was calculated as:
192	$\boldsymbol{k} = \frac{fGas(measured)}{\Delta pGas \ast k_0} $ (Equation 1)
193	
194	where k is the gas transfer velocity (m/s), $\Delta pGas$ is the difference between the concentrations of
195	the GHG of interest in the water and the atmosphere (μ mol/mol), k_0 is the solubility coefficient
196	of the GHG of interest (mol/L/atm), and fGas(measured) is the measured flux (from manual
197	measurements) of the GHG of interest (μ mol/m ² /s). For each GHG, a <i>k</i> was calculated for each
198	of the four tide stages using the mean of all measurements taken at each tide stage. Then
199	<i>fGas(modelled)</i> , representing the predicted GHG efflux (μ mol/m ² /s), was calculated as:
200	
201	
	$fGas(modelled) = k * k_0 * \Delta pGas $ (Equation 2)
	$fGas(modelled) = k * k_0 * \Delta pGas $ (Equation 2)
202	
	$fGas(modelled) = k * k_0 * \Delta pGas $ (Equation 2) where k is the gas transfer velocity for a specific tidal stage, and $\Delta pGas$ is the difference between
202	
202 203	where k is the gas transfer velocity for a specific tidal stage, and $\Delta pGas$ is the difference between
202 203 204	where <i>k</i> is the gas transfer velocity for a specific tidal stage, and $\Delta pGas$ is the difference between the concentrations of the GHG of interest in the water and the concentration of the GHG in the
202 203 204 205	where <i>k</i> is the gas transfer velocity for a specific tidal stage, and $\Delta pGas$ is the difference between the concentrations of the GHG of interest in the water and the concentration of the GHG in the atmosphere for a specific tidal stage (associated with the respective <i>k</i>). Site-specific <i>k</i> values
 202 203 204 205 206 	where <i>k</i> is the gas transfer velocity for a specific tidal stage, and $\Delta pGas$ is the difference between the concentrations of the GHG of interest in the water and the concentration of the GHG in the atmosphere for a specific tidal stage (associated with the respective <i>k</i>). Site-specific <i>k</i> values were used for the gas flux model calculation but standardized k_{600} values were calculated for
202 203 204 205 206 207	where k is the gas transfer velocity for a specific tidal stage, and $\Delta pGas$ is the difference between the concentrations of the GHG of interest in the water and the concentration of the GHG in the atmosphere for a specific tidal stage (associated with the respective k). Site-specific k values were used for the gas flux model calculation but standardized k_{600} values were calculated for easier comparison with other gas transfer studies using Equation 3 with n as 0.5 (Lorke et al.,

211 2.5 Ancillary Measurements

212	Ecosystem-scale CO ₂ and CH ₄ fluxes were measured by the Eddy Covariance (EC)
213	technique. The EC tower is equipped with a WindMaster Pro anemometer, model 160724 (Gill
214	Instruments, Lymington, Hamisphere, UK), a LI-7200RS enclosed path CO ₂ /H ₂ O Analyzer and
215	a LI-7700 open path CH ₄ analyzer, both sensors from LI-COR (LI-COR Environmental, Lincoln,
216	NE, USA). All data were collected at 10 Hz, processed in EddyPro 6.2.0 Software from LI-COR
217	(LI-COR Environmental, Lincoln, NE, USA) and corrected for potential misalignments of the
218	anemometer, turbulence fluctuations, and air density fluctuations following AmeriFlux protocols.
219	For this study we used nighttime net ecosystem exchange (NEE) as a representation of
220	ecosystem respiration (Barba et al., 2018; Mahecha et al., 2010) and compared it solely to
221	nighttime soil and creek CO ₂ efflux. All available data, both nighttime and daytime, were used
222	for comparing ecosystem-scale CH ₄ fluxes to creek CH4 fluxes.
223	Soil CO ₂ fluxes (representing total soil respiration) were measured from bare sediments
223 224	Soil CO_2 fluxes (representing total soil respiration) were measured from bare sediments within a vegetated plot every 5 minutes with the eosFD Soil CO_2 Flux Sensor (Eosense,
224	within a vegetated plot every 5 minutes with the eosFD Soil CO ₂ Flux Sensor (Eosense,
224 225	within a vegetated plot every 5 minutes with the eosFD Soil CO_2 Flux Sensor (Eosense, Dartmouth, NS, Canada) at two different locations – approximately 13 and 51 m from the creek
224 225 226	within a vegetated plot every 5 minutes with the eosFD Soil CO_2 Flux Sensor (Eosense, Dartmouth, NS, Canada) at two different locations – approximately 13 and 51 m from the creek bank. The chamber footprint measured 10.2 cm in diameter and measurements from both
224225226227	within a vegetated plot every 5 minutes with the $eosFD$ Soil CO ₂ Flux Sensor (Eosense, Dartmouth, NS, Canada) at two different locations – approximately 13 and 51 m from the creek bank. The chamber footprint measured 10.2 cm in diameter and measurements from both chambers were averaged together for all analyses. The eosFD uses forced diffusion to regulate
 224 225 226 227 228 	within a vegetated plot every 5 minutes with the eosFD Soil CO_2 Flux Sensor (Eosense, Dartmouth, NS, Canada) at two different locations – approximately 13 and 51 m from the creek bank. The chamber footprint measured 10.2 cm in diameter and measurements from both chambers were averaged together for all analyses. The eosFD uses forced diffusion to regulate gas flow through a diffusive membrane rather than a more traditional mechanical pump, as seen
 224 225 226 227 228 229 	within a vegetated plot every 5 minutes with the $eosFD$ Soil CO ₂ Flux Sensor (Eosense, Dartmouth, NS, Canada) at two different locations – approximately 13 and 51 m from the creek bank. The chamber footprint measured 10.2 cm in diameter and measurements from both chambers were averaged together for all analyses. The $eosFD$ uses forced diffusion to regulate gas flow through a diffusive membrane rather than a more traditional mechanical pump, as seen in other closed chamber set-ups (Risk et al., 2011). The water quality parameters (measured in 15
 224 225 226 227 228 229 230 	within a vegetated plot every 5 minutes with the eosFD Soil CO_2 Flux Sensor (Eosense, Dartmouth, NS, Canada) at two different locations – approximately 13 and 51 m from the creek bank. The chamber footprint measured 10.2 cm in diameter and measurements from both chambers were averaged together for all analyses. The eosFD uses forced diffusion to regulate gas flow through a diffusive membrane rather than a more traditional mechanical pump, as seen in other closed chamber set-ups (Risk et al., 2011). The water quality parameters (measured in 15 min intervals) of temperature, salinity, water level, turbidity, and dissolved oxygen were

234	Monitoring Station (Campbell Scientific, Logan, UT, USA). Both the water quality and weather
235	parameters followed the Centralized Data Management Protocol from the National Estuarine
236	Research Reserve System (NERRS) (NERRS, 2015). All measurements underwent QA/QC (e.g.,
237	check for outliers, data inconsistencies) and were averaged into 30 minute and daily averages for
238	further data analysis.
239	
240	2.6 Data Analysis
241	All data was processed and analyzed using R 3.4.3 (R Foundation for Statistical
242	Computing, Vienna, Austria). Nonparametric Kruskal-Wallis tests followed by Dunn post-hoc
243	tests were used for all analyses involving manual GHG flux data. Parametric ANOVA tests
244	followed by Tukey HSD post-hoc tests were used for all other analyses.
245	A canonical correlation analysis (CCA) using the R CCA package (González & Déjean,
246	2012) was performed on daily averages to test the influence of various independent variables on
247	the dependent variables of creek CO_2 and CH_4 efflux. One CCA was performed using all
248	available data and one was carried out for each phenophase, making for a total of 5 separate
249	analyses. A p-value < 0.05 was used to determine if each CCA found a statistically significant
250	relationship between the independent and dependent variables. The CCA method was chosen as
251	the correlation between CO_2 and CH_4 effluxes can be examined, unlike with two separate
252	multiple linear regressions (Thomas, 1984). This was intended to determine how the selected
253	drivers may affect only one or both GHGs considering potential intercorrelations.
254	The independent variables consisted of temperature, salinity, water level, turbidity,
255	dissolved oxygen, barometric pressure, wind speed, total photosynthetically active radiation, and
256	total precipitation. The CCA reduced all the independent variables to one independent canonical

variate, and all the dependent variables to one dependent canonical variate (Thomas, 1984). The relationship between all the independent and dependent variables was represented by a linear correlation coefficient calculated between the independent canonical variate and the dependent canonical variate. The contribution of each variable to that overall correlation was represented by the linear correlation coefficient calculated between that variable and its' respective variate.

262

263 **3 Results**

Daily averages of ancillary measurements from March to December were typical of a 264 Mid-Atlantic tidal salt marsh (Figure 1). The greenness index (GI, unitless; 0.34 ± 0.02) peaked 265 on DOY 219 (0.40; 08/07/17) with an initial *Dormant* phase of 116 days, a *Greenup* phenophase 266 of 74 days, a short Maturity phenophase of 32 days, a Senescence phenophase of 78 days, and a 267 second *Dormant* phenophase of 65 days (Figure 1a). Water temperature (Figure 1b; 17.6 ± 6.87 268 °C) and GI roughly followed the same seasonal pattern while dissolved oxygen (Figure 1c; 4.62 269 \pm 1.71 mg/l) showed an inverse pattern of being lowest in July (0.36 mg/l) when temperature 270 (29.52 °C) and GI (0.40) were highest. Other measured variables did not show a seasonal pattern, 271 despite having differences among phenophases. Water level (Figure 1e; $0.28 \text{ m} \pm 0.12$ above sea 272 273 level), wind speed (Figure 1d; 1.9 ± 0.89 m/s), and salinity (Figure 1f; 10.0 ± 3.54 ppt) were dominated by shorter period variability (days to weeks) pattern. Salinity did tend to increase 274 slowly during the first half of the record, but no clear seasonal cycle was discernible. 275

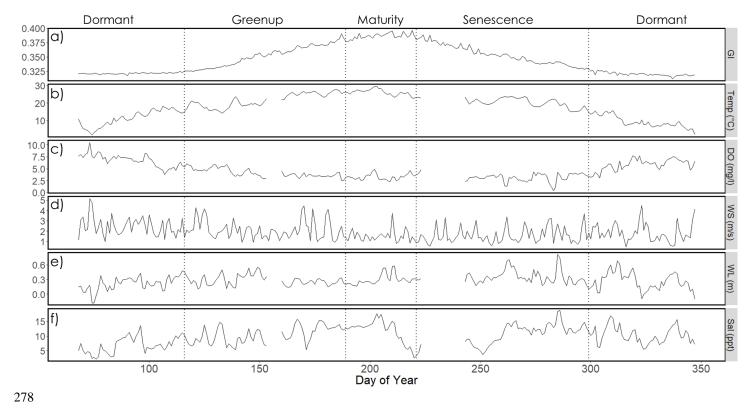


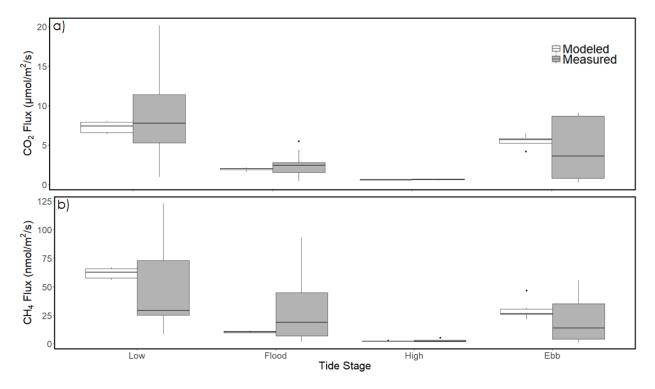
Figure 1. Time series of daily averages of greenness index (a), water temperature (b), dissolved oxygen (c), wind speed (d), water level above sea level (e), and salinity (f) during 2017. The time series are divided into Dormant, Greenup, Maturity, and Senescence phenophases marked by vertical dotted lines.

284

285 Modelled creek GHG efflux was tested against the corresponding manual measurements.

There were no statistically significant differences between means of modelled (CO₂; 3.88 ± 2.52

 μ mol/m²/s , CH₄; 25.4 ± 21.6 nmol/m²/s) and manual measurements (CO₂; 4.11 ± 4.51


 μ mol/m²/s, CH₄; 28.71 ± 31.93 nmol/m²/s) overall (i.e., all available measurements) and when

analyzed for each tide stage (Kruskal-Wallis test; p > 0.05; Figure 2), but manual measurements

had a larger range (CO₂; 0.26 - 20.1 μ mol/m²/s , CH₄; 1.3-123 nmol/m2/s) than modelled values (CO₂; 0.53-8.0 μ mol/m²/s , CH₄; 2.05-66.9 nmol/m²/s). The magnitude of both manual and modelled GHG fluxes decreased in the order low tide > ebb tide > flood tide > high tide (Kruskal-Wallis test; p< 0.05; Figure 2). Gas transfer velocities, standardized to k₆₀₀ values, followed the same tidal pattern and were generally two orders of magnitude smaller for CH₄ (Table 1).

296

Figure 2. Boxplots comparing modeled and measured efflux of CO_2 (a) and CH_4 (b) divided by tide stage. All box plots by tide stage were significantly different from each other (p < 0.05) while there were no statistically significant differences between modelled and measured efflux within each tidal stage (p > 0.05).

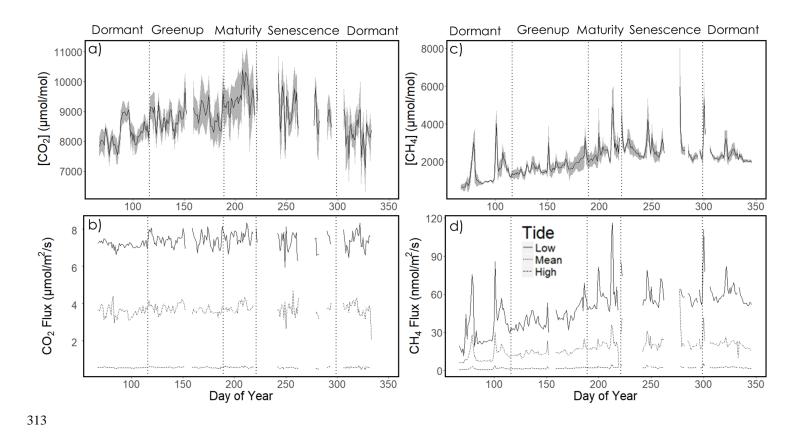
Table 1. Gas Transfer Velocities (k_{600}) of CO₂ and CH₄ by Tide Stage

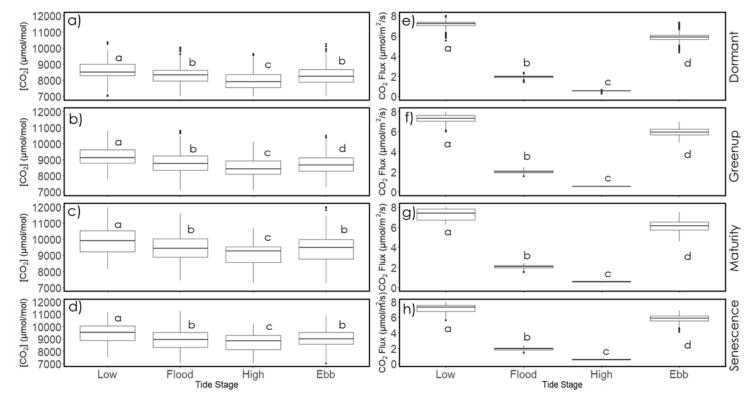
Confidential manuscript submitted to JGR: Biogeosciences

	GHG	High Tide <i>k</i> 600	Low Tide k_{600}	Ebb Tide <i>k</i> ₆₀₀	Flood Tide k_{600}
_		(m/d)	(m/d)	(m/d)	(m/d)
	CO ₂	113.2 +/- 17.8	1330.7 +/- 626.5	1223.9 +/- 328.65	363.2 +/- 98.1
	CH ₄	2.48 +/- 0.59	61.59 +/- 14.2	29.2 +/- 9.95	10.32 +/- 4.52

303

Daily averages of pCO_2 in the creek (8729 \pm 622.2 μ mol/mol) exhibited a seasonal trend 304 with a peak in the *Maturity* phenophase (Figure 3a). Half-hourly averages of creek pCO₂ were 305 highest at low tide (9110 \pm 810 μ mol/mol), lowest at high tide (8410 \pm 776 μ mol/mol), and 306 roughly equal between flood (8730 ± 805) and ebb tides ($8690 \pm 780 \mu mol/mol$) (Figure 4a-d). 307 Daily averages of modelled creek CO₂ efflux ($3.7 \pm 0.63 \mu mol/m^2/s$), however, did not show a 308 clear seasonal trend (Fig 3b). Half-hourly averages of modelled creek CO₂ efflux consistently 309 showed higher variability at low tide $(7.32 \pm 0.52 \,\mu\text{mol/m}^2/\text{s})$ than at high tide $(0.56 \pm 0.04 \,\mu\text{m}^2/\text{s})$ 310 μ mol/m²/s) (Figure 4e-h). 311 312




Figure 3. Time series of daily averages of creek pCO₂ (a) and pCH₄ (c). Time series of modelled CO₂ efflux (b) and modelled CH₄ efflux (d) divided into daily averages for high and low tide values, and a daily mean calculated with all available data. The shaded grey area (in a and c) represents the 95% confidence intervals for the daily average. The time series are divided by phenophase into *Dormant*, *Greenup*, *Maturity*, and *Senescence* phenophases marked by vertical dotted lines.

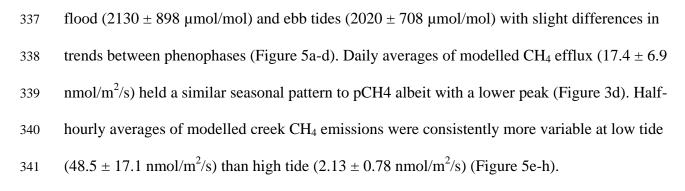
321

322

323

Figure 4. Box plots comparing CO₂ concentration (a-d) or CO₂ flux (e-h) between tide stages for

each phenophase: *Dormant* (a, e), *Greenup* (b, f), *Maturity* (c, g), and *Senescence* (d, h).


Different letters located above or below each box plot represent statistical significance (p < 0.05)

among values in that panel.

331

332

³³³ Daily averages of pCH₄ in the creek ($2100 \pm 782.9 \mu$ mol/mol) exhibited a seasonal trend ³³⁴ with a peak in the *Maturity* phenophase and then declined at a slower rate than it peaked (Figure ³³⁵ 3c). Half-hourly averages of pCH₄ also demonstrated a slight trend of being highest at high tide ³³⁶ ($2180 \pm 840 \mu$ mol/mol), lowest at low tide ($1900 \pm 7.4 \mu$ mol/mol), and roughly equal between

- 342
- 343

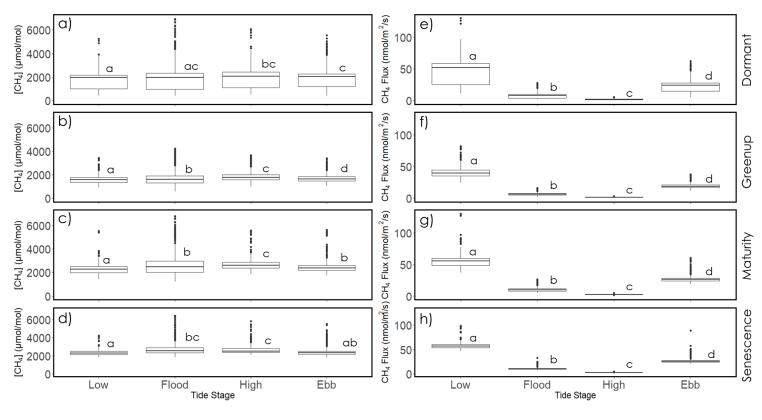
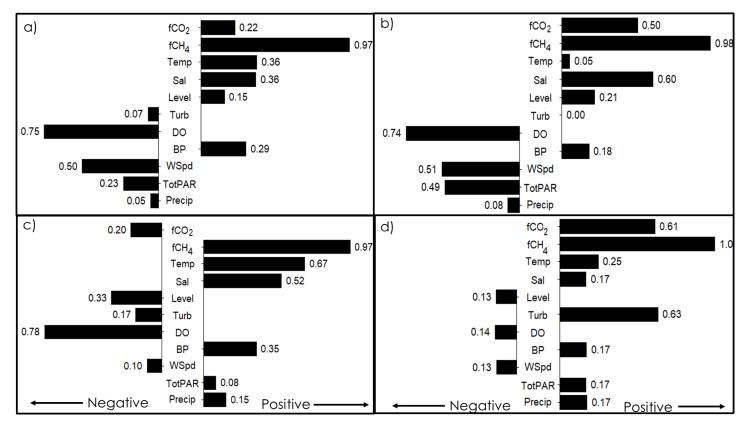
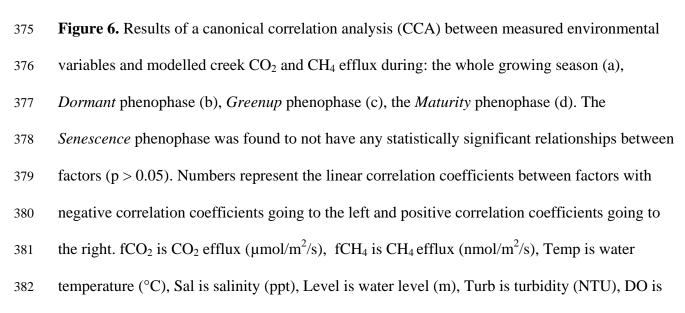




Figure 5. Box plots comparing pCH₄ (a-d) or CH₄ efflux (e-h) between tide stages for each phenophase: Dormant (a, e), Greenup (b, f), Maturity (c, g), and Senescence (d, h). Different letters above each box plot represent statistical significance (p < 0.05) among values in that panel.

350	Statistically significant relationships (CCA; $p < 0.05$) were found between the daily
351	averages of independent variables and modelled GHG efflux during the whole growing season
352	and within each phenophase save for Senescence (due to data gaps). During the whole growing
353	season, the CCA showed that dissolved oxygen and wind speed held notable, hereby defined as a
354	statistically significant correlation coefficient $> 0.4 $, negative correlations with creek CH ₄ efflux
355	(Figure 6a). Across phenophases, dissolved oxygen remained a notable factor for creek CH_4
356	efflux except during the Maturity phenophase (Figure 6b-d), and wind speed remained a notable
357	factor for CH ₄ efflux only during the <i>Dormant</i> phenophase (Figure 6b). Salinity emerged as a
358	notable factor for CH ₄ efflux during the <i>Dormant</i> and <i>Greenup</i> phenophases, solar radiation only
359	during the Dormant phenophase, and temperature only during the Greenup phenophase (Figure
360	6b-c). During the Dormant phenophase, dissolved oxygen, wind speed, solar radiation, and
361	salinity were also notable factors for CO ₂ efflux (Figure 6b). During the Maturity phenophase,
362	turbidity was the only variable notably associated with either GHG (Figure 6d). No notable
363	correlations between any independent variables and creek CO ₂ efflux for the whole growing
364	season were found as CO ₂ efflux's linear correlation coefficient with the dependent variate was
365	only 0.22 (Figure 6a).
366	

383	dissolved oxygen (mg/l), BP is barometric pressure (mb), WSpd is wind speed (m/s), TotPAR is
384	total photosynthetically active radiation (mmol/m ²), and Precip is precipitation (mm).

Statistically significant differences were found between ecosystem-scale, creek, and 386 sediment efflux within each phenophase for CO₂ and between ecosystem and creek efflux within 387 each phenophase for CH₄ (Figure 7, ANOVA; p<0.05). Only CO₂ efflux measurements (for 388 sediment and creek) taken at night-time were considered for comparison with nighttime 389 ecosystem-scale CO₂ efflux measurements (NEE). During the whole year, night-time creek CO₂ 390 efflux $(3.6 \pm 0.63 \,\mu\text{mol/m}^2/\text{s})$ was significantly higher than nighttime sediment efflux $(1.5 \pm 1.23 \,\mu\text{mol/m}^2/\text{s})$ 391 μ mol/m²/s) but lower than nighttime NEE (5.4 ± 3.9 μ mol/m²/s). However, during the *Dormant* 392 period, night-time creek CO₂ efflux $(3.7 \pm 0.45 \,\mu \text{mol/m}^2/\text{s})$ was higher than both night-time 393 sediment efflux (0.95 \pm 0.81 μ mol/m²/s) and NEE (2.1 \pm 1.1 μ mol/m²/s). Creek CH₄ efflux (17.5 394 \pm 6.9 nmol/m²/s) was consistently lower than ecosystem-scale CH₄ efflux (68.1 \pm 52.3 395 nmol/m²/s) across the whole growing season, with the gap between the two widening as the 396 season progressed. 397 398

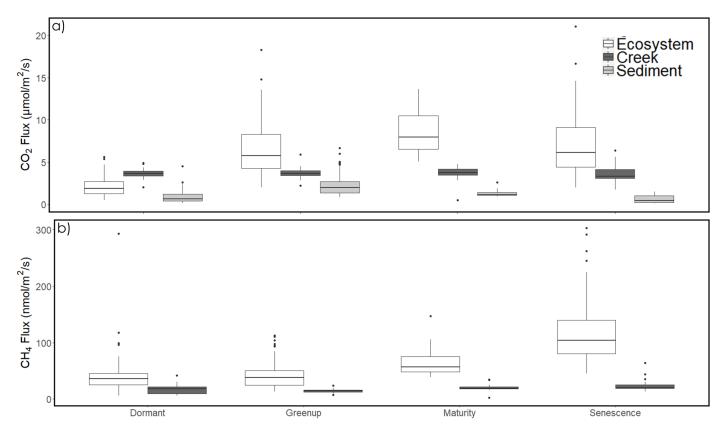


Figure 7. Box plots comparing ecosystem-scale CO₂ efflux (nighttime NEE), creek nighttime CO₂ efflux, and nighttime sediment CO₂ efflux (a). Box plots comparing ecosystem-scale and creek CH₄ fluxes (b). Box plots are arranged based on each phenophase. All box plots within each phenophase were significantly different from each other (p < 0.05). Sediment CH₄ efflux was not measured.

405

406 4 Discussion

407 The first hypothesis, that GHG efflux from the creek would peak in the summer, was 408 supported for CH_4 but not for CO_2 as the creek lacked significant seasonal variability for CO_2 409 efflux but showed some seasonal variability for CH_4 efflux (Figure 3). This differs from 410 observations in temperate terrestrial environments such as forests where both CO_2 and CH_4

411	emissions exhibited strong seasonal trends driven by changing temperatures (Yvon-Durocher et
412	al., 2012, 2014). Inland temperate aquatic environments like rivers have also exhibited seasonal
413	trends in CO ₂ efflux (Laruelle et al., 2015). However, the concentrations of both GHGs in the
414	creek did exhibit more of a seasonal pattern than the efflux (Figure 3). The lack of a seasonal
415	trend for GHG efflux compared to the concentrations suggests the influence of confounding and
416	competing factors beyond the concentration gradient between water and air. These factors were
417	tidally linked, likely influencing the gas transfer velocity (k ; see below), as the efflux of both
418	GHGs differed markedly by tidal stage (Figures 4-5). Both GHG effluxes also lacked the
419	expected high correlations with water temperature (Figure 6), suggesting that creek GHG efflux
420	has drivers that are fundamentally different from those of inland terrestrial and aquatic
421	ecosystems. This lack of temperature dependency should be tested across other salt marsh creeks
422	but, if it proves to be persistent, then this could be an important mathematical and conceptual
423	formulation for ecosystem-process models across terrestrial-aquatic interfaces.
424	The influence of tides may explain why the second hypothesis (that ebb and flood tides
425	would have the highest GHG efflux) was only partially supported. One relevant tidal factor is
426	likely water velocity changing with tide stage. Water velocity has been observed to increase the
427	gas transfer velocity (k) of air-water gas efflux in terrestrial streams (Raymond et al., 2012). A
428	higher k during flood and ebb tides may explain why there is a higher GHG efflux during those
429	tide stages. Many tidal channels also experience tidal asymmetry between ebb and flood tides
430	(Pethick, 1980) where one stage has a faster velocity than the other. This tidal asymmetry in
431	velocity may explain the observed difference in flux magnitude between ebb and flood tides
432	(Figures 2-4). However, low tide exhibited higher mean efflux than both ebb and flood tide
433	despite its slower velocity. Thus, turbulence may be an additional tidal factor that affects GHG

efflux in tidal creeks. As water level falls in a tidal channel, more flow is directed along the 434 channel axis, rather than across, which generates higher turbulence between the creek bed and 435 the water body (Ralston & Stacey, 2006). Laboratory experiments have demonstrated that 436 increased turbulence at the bottom of water bodies 48-48.6 cm in depth increases the k at the 437 surface (Herlina & Jirka, 2008). At low tide, the creek surface can range from 10-28 cm above 438 439 the creek bed and thus the surface k may be more sensitive to turbulence changes at the creek bed. This suggests velocity-based GHG efflux models, as typical for inland streams, will not be 440 accurate for tidal creeks without taking turbulence into account.

441

Standardized k_{600} values for CO₂ for all tide stages were one to two orders of magnitude 442 higher than those observed in estuaries and deep (>1 m depth) rivers (Bianchi 2006, Borges et 443 al., 2004). High tide k_{600} values were similar to k_{600} values in shallow streams and rivers, flood 444 tide values were three times higher, while low and ebb tide values were an order of magnitude 445 higher than the highest k_{600} values in these shallow systems (Lorke et al., 2015; Raymond et al., 446 447 2012). CH₄ k_{600} values fell within the typical range for shallow streams and rivers save for low tide which averaged twice as high as the highest shallow system observations (Lorke et al., 448 2015). It is likely that tidal creeks have uniquely high k_{600} values due to their shallow depths and 449 450 the dynamic shifting of velocity and turbulence (Herlina & Jirka, 2008; Ralston & Stacey, 2006; Raymond et al., 2012) due to tides. 451

The canonical correlation analysis (CCA) allowed us to explore the third hypothesis, that 452 dissolved oxygen and salinity would inhibit CH₄ efflux, at the annual scale and by phenophase. 453 Dissolved oxygen had a negative effect on CH₄ efflux at the annual scale, but also during the 454 Dormant and Greenup phenophases (Figure 6). These relationships were expected due to the 455 456 inhibiting effect of oxygen on methanogenesis (Poffenbarger et al., 2011; Tobias & Neubauer,

2009). At the annual scale, wind speed was also an important factor as higher wind speeds can 457 produce more turbulence, aerate the water surface and thus bring more dissolved oxygen into 458 streams (Chu & Jirka, 2003; Gualtieri, et al., 2002). Salinity showed a positive relationship with 459 CH₄ efflux during the *Dormant* and *Greenup* phenophases and no notable relationships at the 460 annual scale or for any other phenophase. This contrasts with the expected negative relationship 461 462 that has been observed in salinity gradient studies and between salt marshes with differing salinity ranges (Bartlett et al., 2016; Poffenbarger et al., 2011). This apparent contradiction could 463 be explained by the temporal variability of salinity within the creek being smaller in magnitude 464 compared to the spatial variability within and between salt marshes. Despite previous studies 465 having found a strong relationship between temperature and soil CH₄ efflux (Westermann 1993; 466 Yvon-Durocher et al., 2014), our results only supported these observations during the *Greenup* 467 phenophase. This may be due to tides having a strong influence on k, which in turn is a stronger 468 control on creek CH₄ efflux than temperature influence. 469

CO₂ efflux also lacked its expected temperature relationship, likely for the same reason as 470 CH₄ efflux, as the CCA showed no notable correlations for CO₂ efflux at the annual scale 471 (Figure 6). However, during the *Dormant* phenophase, dissolved oxygen, wind speed, solar 472 473 radiation, and salinity were notable drivers for CO₂ efflux. Both GHG effluxes also had high correlations with each other and the aforementioned drivers during the *Dormant* phenophase 474 (Figure 6). Thus, the relevant drivers for CO_2 efflux may have emerged due to this positive 475 476 relationship with CH₄ efflux. Both GHG effluxes also held positive relationships with each other and turbidity during the Maturity phenophase. The turbidity relationship may represent a pulse of 477 478 sediments and GHGs entering the creek from the banks with the two events of water level rise 479 seen during the *Maturity* phenophase (Figure 1). These results bring attention to the potential

challenges of modeling GHG fluxes from tidal creeks since there appear to be confounding and competing factors for CH_4 efflux and no clear dominant factors for CO_2 efflux. Identifying consistent key drivers for soil CO_2 and CH_4 efflux under non-stationary conditions (e.g., during wetting-drying and freezing-thawing cycles) has also be proven to be challenging (Kim et al, 2012). Thus, there is a need to provide more information regarding GHGs pulses and trends across terrestrial and aquatic environments.

Nighttime creek CO_2 efflux was higher than nighttime sediment CO_2 efflux and made up 486 a significant portion of ecosystem-scale CO_2 efflux (i.e., nighttime NEE), thus supporting the 487 fourth hypothesis that the creek was a hotspot for CO₂ efflux. Our results support previous 488 observations on point measurements of GHG efflux across different flowing waters of coastal 489 wetlands but expand upon these observations by comparing automated measurements across 490 water, sediments and the ecosystem-scale. For example, a river flowing through a salt marsh was 491 found to have higher CO₂ emissions but slightly lower CH₄ emissions than the bare soil or marsh 492 plants (Yang et al., 2017), which matches our comparatively low creek CH₄ efflux. However, it 493 should be noted that our model does not incorporate ebullition of CH₄, as ebullition is a rapid 494 episodic process (Joyce & Jewell, 2003) that was not captured during our manual measurements. 495 496 Based on CH₄ ebullition studies of wetland sediments and streams, the model may be underestimating creek CH₄ efflux (Chanton et al., 1989; Crawford et al., 2004). The tidal creeks 497 of mangroves have also shown high pCO₂ and pCH₄ (Call et al., 2015; Linto et al., 2014), but 498 499 gas transfer velocities (k) need to be developed to quantify the effective water-to-atmosphere efflux from these surfaces. Furthermore, this study builds on the evidence that inland streams and 500 501 rivers have large CO₂ emissions globally (1.8 pG CO₂/yr) relative to their surrounding 502 ecosystems (Lauerwald et al., 2015; Raymond et al., 2013) by suggesting that tidal creeks are

503	also emission hotspots within their respective ecosystems. Therefore, it is critical to constrain the
504	magnitude of water-to-atmosphere fluxes to reduce the large uncertainties in the carbon cycle
505	associated to tidal wetlands (Hayes et al., 2018).

We postulate that higher CO_2 efflux at the creek may be due to lateral transport of CO_2 506 from the creek bank (i.e., sediments that get exposed during low tide) into the creek water (as a 507 508 physical process driven by the tidal patterns) that increases the water-atmosphere CO_2 gradient (Koné & Borges, 2008). Of note is that creek CO₂ efflux during the *Dormant* period was 509 disproportionately high, having a higher mean than ecosystem-scale CO_2 efflux. It is likely that 510 511 lateral transport of CO₂ from sediments to the creek waters (promoted by tidal patterns) is persistent throughout the year and maintains high CO₂ concentrations and emissions from the 512 tidal creek. The overall ecosystem CO_2 efflux (i.e., nighttime NEE) decreased during the 513 Dormant period likely due to low S. alterniflora root respiration (Teal & Kanwisher, 1966) from 514 plant senescence, and low microbial heterotrophic respiration from lower temperatures (Yvon-515 Durocher et al., 2012; Zhang et al., 2013). Therefore, we propose that the influence of physical 516 processes driven by tidal patterns should be included in process-based models for tidal salt 517 marshes and should be taken into consideration when partitioning eddy covariance NEE into 518 519 gross primary production and ecosystem respiration.

Tides can also promote the lateral transport of CH_4 stored in sediments to the creek. It has been reported that sediments at our study site can have CH_4 concentrations >50,000 µmol/mol (Bothfield, 2016), so they can also be a source of CH_4 to the tidal creek. It was not uncommon to measure CH_4 concentrations at 2000 µmol/mol (and up to > 6000 µmol/mol) within the creek, so this opens the following question: where does this CH_4 go? We postulate that tides promote lateral transport of CH_4 stored in sediments of salt marshes to the coastal ocean. This has been suggested as a mechanism for CH_4 transport in the North Sea of Germany from surrounding tidal flats (Osudar et al., 2015). This hypothesis must be tested across tidal ecosystems around the world.

Finally, the insights gained into the tidal processes affecting creek GHG efflux and its 529 relationship to ecosystem-scale and sediment GHG fluxes would not be possible without high-530 531 temporal resolution using automated measurements. Manual measurements can often miss rapid changes in ecological variables like dissolved oxygen (Banas et al., 2005) so automated 532 measurements have been touted to help resolve uncertainties in sediments of salt marshes 533 (Capooci et al., 2019), ecological and carbon cycle models (Hamilton et al., 2014; Vargas et al., 534 2011). However, manual GHG flux measurements are urgently needed to understand the spatial 535 variability and magnitudes of GHG fluxes across different landscape features of tidal salt 536 marshes around the world. Only a synergistic effort across the scientific community will provide 537 the much-needed information to accurately account for the contribution of wetlands to the global 538 carbon cycle. 539

540

541 **5 Conclusions**

This study offered unprecedented information of GHG dynamics in a tidal creek using high-temporal resolution automated measurements. Both GHG effluxes from the creek did not exhibit the expected strong temperature-driven seasonal trend, with CO_2 efflux having no trend and CH_4 efflux having a moderate one. We postulate that the physical effects of tidal changes (velocity, turbulence) overshadows the influence of water temperature in determining magnitudes of GHG efflux. Dissolved oxygen exhibited a negative relationship with CH_4 efflux, as expected, while salinity did not due to confounding factors. CO_2 efflux had no consistent

549	drivers across the year, suggesting it will be difficult to model and predict throughout the year.
550	The creek exhibited two times higher CO ₂ efflux than the sediments and made up around 66% of
551	the overall CO ₂ emissions from the marsh, suggesting creeks are CO ₂ emission hotspots within
552	the salt marsh landscape. We postulate that tidal patterns influence the lateral transport of marsh
553	sediment CO_2 and CH_4 into the creek water, and because of the supersaturation of pCO_2 and
554	pCH ₄ in the water, there is likely a lateral transport to the coastal ocean. The dynamics of GHG
555	fluxes in tidal marshes are regulated in a fundamentally different way than from terrestrial
556	ecosystems; thus, future ecosystem-process based models should evaluate current assumptions to
557	improve the representation of terrestrial-aquatic interfaces.
558	
559	Acknowledgments and Data
559 560	Acknowledgments and Data This study was supported by NSF Grant #1652594. We would also like to thank Kari Saint-
560	This study was supported by NSF Grant #1652594. We would also like to thank Kari Saint-
560 561	This study was supported by NSF Grant #1652594. We would also like to thank Kari Saint- Laurent and Mike Mensinger for support of our work at the study site; and Daniel Warner, Josep
560 561 562	This study was supported by NSF Grant #1652594. We would also like to thank Kari Saint- Laurent and Mike Mensinger for support of our work at the study site; and Daniel Warner, Josep Barba, and Ricardo Llamas help in collecting manual GHG flux measurements. AVL
560 561 562 563	This study was supported by NSF Grant #1652594. We would also like to thank Kari Saint- Laurent and Mike Mensinger for support of our work at the study site; and Daniel Warner, Josep Barba, and Ricardo Llamas help in collecting manual GHG flux measurements. AVL acknowledges support from a CONACyT doctoral fellowships. MC acknowledges support from
560 561 562 563 564	This study was supported by NSF Grant #1652594. We would also like to thank Kari Saint- Laurent and Mike Mensinger for support of our work at the study site; and Daniel Warner, Josep Barba, and Ricardo Llamas help in collecting manual GHG flux measurements. AVL acknowledges support from a CONACyT doctoral fellowships. MC acknowledges support from a DENIN Environmental Fellowship, as well as an NSF Graduate Research Fellowship
560 561 562 563 564 565	This study was supported by NSF Grant #1652594. We would also like to thank Kari Saint- Laurent and Mike Mensinger for support of our work at the study site; and Daniel Warner, Josep Barba, and Ricardo Llamas help in collecting manual GHG flux measurements. AVL acknowledges support from a CONACyT doctoral fellowships. MC acknowledges support from a DENIN Environmental Fellowship, as well as an NSF Graduate Research Fellowship (#1247394).
560 561 562 563 564 565 566	This study was supported by NSF Grant #1652594. We would also like to thank Kari Saint- Laurent and Mike Mensinger for support of our work at the study site; and Daniel Warner, Josep Barba, and Ricardo Llamas help in collecting manual GHG flux measurements. AVL acknowledges support from a CONACyT doctoral fellowships. MC acknowledges support from a DENIN Environmental Fellowship, as well as an NSF Graduate Research Fellowship (#1247394).

and measured creek CO_2 and CH_4 efflux, soil CO_2 efflux, and water quality data can be

571 downloaded from (to be submitted to Dryad).

572 **References**

573	Banas, D., Grillas, P., Auby, I., Lescuyer, F., Coulet, E., Moreteau, J. C., & Millet, B. (2005).
574	Short time scale changes in underwater irradiance in a wind-exposed lagoon (Vaccarès
575	lagoon, France): Efficiency of infrequent field measurements of water turbidity or weather
576	data to predict irradiance in the water column. <i>Hydrobiologia</i> , 551(1), 3–16.
577	https://doi.org/10.1007/s10750-005-4446-1
578	Barba, Josep, Alejandro Cueva, Michael Bahn, Greg A. Barron-Gaffordd, Benjamin Bond-
579	Lamberty, Paul J. Hanson, Aline Jaimes, et al. 2018. "Comparing Ecosystem and Soil
580	Respiration: Review and Key Challenges of Tower-Based and Soil Measurements."
581	Agricultural and Forest Meteorology 249 (February): 434–43.
582	Bartlett, K. B., Bartlett, D. S., Harriss, R. C., Sebacher, D. I., Biogeochemistry, S., & Sebacher,
583	D. I. (2016). Methane Emissions along a Salt Marsh Salinity Gradient. Biogeochemistry,
584	4(3), 183–202. https://doi.org/10.1007/BF02187365
585	Baumann, H., Wallace, R. B., Tagliaferri, T., & Gobler, C. J. (2015). Large Natural pH , CO2
586	and O2 Fluctuations in a Temperate Tidal Salt Marsh on Diel, Seasonal, and Interannual
587	Time Scales. Estuaries and Coasts, 38(1), 220-231. https://doi.org/10.1007/s12237-014-
588	9800-у
589	Bianchi, T. S. (2006). Dissolved Gases in Water In Biogeochemistry of Estuaries (pp. 84-100).
590	Oxford, UK: Oxford University Press.
591	Bond-lamberty, B., Bailey, V. L., Chen, M., Gough, C. M., & Vargas, R. (2018). Globally rising
592	soil heterotrophic respiration over recent decades. Nature, 560, 80-83.

593 https://doi.org/10.1038/s41586-018-0358-x

594	Borges, A.V., Vanderborght, JP., Schiettecatte, LS., Gazeau F., Ferron-Smith, S., Delille, B., &
595	Frankignoulle, M. Variability of the gas transfer velocity of CO2 in a macrotidal estuary
596	(the Scheldt). (2004). Estuaries, 27(4): 593-603. https://doi.org/10.1007/BF02907647
597	Bothfeld, Frances. (2016). "Spatial and Temporal Heterogeneity of Methane and Carbon Dioxide
598	Production and Flux in a Temperate Tidal Salt Marsh." University of
599	Delaware. https://search.proquest.com/pqdtlocal1006271/docview/1776481154.
600	Call, M., Maher, D. T., Santos, I. R., Ruiz-Halpern, S., Mangion, P., Sanders, C. J., et al. (2015).
601	Spatial and temporal variability of carbon dioxide and methane fluxes over semi-diurnal and
602	spring-neap-spring timescales in a mangrove creek. Geochimica et Cosmochimica Acta,
603	150, 211-225. https://doi.org/10.1016/j.gca.2014.11.023
604	Capooci, M., Barba, J., Seyfferth, A.L., & Vargas, R. (2019). Experimental influence of storm-
605	surge salinity on soil greenhouse gas emissions from a tidal salt marsh. Science of the Total
606	Environment, 686, 1164-1172. https://doi.org/10.1016/j.scitotenv.2019.06.032
607	Chanton, J. P., Martens, C.S., & Kelley C.A. (1989.) Gas transport from methane-saturated, tidal
608	freshwater and wetland sediments. Limnology and Oceanography, 34(5), 807-819.
609	Chmura, G. L., Anisfeld, S. C., Cahoon, D. R., & Lynch, J. C. (2003). Global carbon
610	sequestration in tidal, saline wetland soils. Global Biogeochemical Cycles, 17(4), 1111.
611	https://doi.org/10.1029/2002GB001917
612	Chmura, G. L., Kellman, L., & Guntenspergen, G. R. (2011). The greenhouse gas flux and

- 613 potential global warming feedbacks of a northern macrotidal and microtidal salt marsh.
- 614 Environmental Research Letters, 6(4), 044016. https://doi.org/10.1088/1748-

615 9326/6/4/044016

- Chu, C. R., Jirka, G. H., & Asce, F. (2003). Wind and Stream Flow Induced Reaeration. *Journal of Environmental Engineering*, *129*, 1129–1136. 1
- Cox, T. & Schepers, L. (2017). Tides: Quasi-Periodic Time Series Characteristics. R package
 version 2.0. https://CRAN.R-project.org/package=Tides
- 620 Crawford, J.T., Stanley E.H., Spawn A.S., Finlay, J.C., Loken L.C., & Striegel, R.G. (2014).
- Ebullitive methane emissions from oxygenated wetland streams. *Global Change Biology*,
- 622 20, 3408-3422. doi: 10.1111/gcb.12614
- 623 Delaware Department of Natural Resources and Environmental Control (1999). DELAWARE
- 624 NATIONAL ESTUARINE RESEARCH RESERVE ESTUARINE PROFILE. Dover, DE:
- 625 National Oceanic and Atmospheric Administration.
- Dausse, A., Garbutt, A., Norman, L., Papadimitriou, S., Jones, L.M., Robins, P.E., & Thomas,
- 627 D.N. (2012). Biogeochemical functioning of grazed estuarine tidal marshes along a salinity

628 gradient. *Estuarine, Coastal and Shelf Science, 100,* 83-92.

- 629 https://doi.org/10.1016/j.ecss.2011.12.037
- 630 Fagherazzi, S., Wiberg, P. L., Temmerman, S., Struyf, E., Zhao, Y., & Raymond, P. A. (2013).
- Fluxes of water, sediments, and biogeochemical compounds in salt marshes. *Ecological*
- 632 *Processes*, 2(1), 3. https://doi.org/10.1186/2192-1709-2-3

- 633 Filippa, G., Cremonese, E., Migliavacca, M., Galvagno, M., Forkel, M., Wingate, L., ...
- Richardson, A. D. (2016). Phenopix: A R package for image-based vegetation phenology.
- 635 *Agricultural and Forest Meteorology*, 220, 141–150.
- 636 https://doi.org/10.1016/j.agrformet.2016.01.006
- 637 Flanagan L.B. (2009) Phenology of Plant Production in the Northwestern Great Plains:
- 638 Relationships with Carbon Isotope Discrimination, Net Ecosystem Productivity and
- 639 Ecosystem Respiration. In: Noormets A. (eds) *Phenology of Ecosystem Processes*. Springer,
- 640 New York, NY
- Forbrich, I., & Giblin, A. E. (2015). Marsh-atmosphere CO2exchange in a New England salt

marsh. *Journal of Geophysical Research G: Biogeosciences*, *120*(9), 1825–1838.

- 643 https://doi.org/10.1002/2015JG003044
- 644 Forbrich, I., Giblin, A. E., & Hopkinson, C. S. (2018). Constraining Marsh Carbon Budgets
- 645 Using Long-Term C Burial and Contemporary Atmospheric CO2 Fluxes. *Journal of*
- 646 *Geophysical Research: Biogeosciences*, *123*(3), 867–878.
- 647 https://doi.org/10.1002/2017JG004336
- Gillespie, A. R., Kahle, A. B., & Walker, R. E. (1987). Color Enhancement of Highly Correlated
- 649 Images. II. Channel Ratio and "Chromaticity" Transformation Techniques. *Remote Sensing*
- 650 of Environment, 22(3), 343–365. https://doi.org/10.1016/0034-4257(87)90088-5
- González, I. & Déjean, S. (2012). CCA: Canonical correlation analysis. R package version
 1.2.https://CRAN.R-project.org/package=CCA
- 653 Gualtieri, C., Gualtieri, P., & Doria, G. P. (2002). Dimensional Analysis of Reaeration Rate in

654 Streams. Journal of Environmental Engineering, 128(1), 12–18.

Greenwood, D.J. (1961). THE EFFECT OF OXYGEN CONCENTRATION ON THE DECOMPOSITION OF ORGANIC MATERIALS IN SOIL. *Plant and Soil*, *14*(4), 360376.

658	Hamilton, D. P., Carey, C. C., Arvola, L., Arzberger, P., Cole, J. J., Gaiser, E., Lin, F. (2015).
659	A Global Lake Ecological Observatory Network (GLEON) for synthesising high-frequency
660	sensor data for validation of deterministic ecological models A Global Lake Ecological
661	Observatory Network (GLEON) for synthesising high-frequency sensor data for validation
662	of deterministic ecological models. Inland Waters, 5(1), 49-56. https://doi.org/10.5268/IW-
663	5.1.566
664	Hayes DJ, Vargas R, Alin SR, Conant RT, Hutyra LR, Jacobson AR, et al. Chapter 2: The North
665	American carbon budget. In: Cavallaro N, Shrestha G, Birdsey R, Mayes MA, Najjar RG,
666	Reed SC, et al., editors. Second State of the Carbon Cycle Report (SOCCR2): A Sustained
667	Assessment Report Washington, DC, USA,: U.S. Global Change Research Program; 2018.
668	p. 71-108, https://doi.org/10.7930/SOCCR2.2018.Ch2.
669	Herlina, & Jirka, G. H. (2008). Experiments on gas transfer at the air-water interface induced by
670	oscillating grid turbulence. Journal of Fluid Mechanics, 594, 183–208.
671	https://doi.org/10.1017/S0022112007008968
672	Howard, J., Sutton-Grier, A., Herr, D., Kleypas, J., Landis, E., Mcleod, E., Simpson, S.
673	(2017). Clarifying the role of coastal and marine systems in climate mitigation. Frontiers in
674	Ecology and the Environment, 15(1), 42-50. https://doi.org/10.1002/fee.1451

- Huertas, I. E., Flecha, S., Figuerola, J., Costas, E., & Morris, E. P. (2017). Effect of hydroperiod
- on CO₂ fluxes at the air-water interface in the Mediterranean coastal wetlands of Doñana.
- *Journal of Geophysical Research: Biogeosciences*, 1615–1631.
- 678 https://doi.org/10.1002/2017JG003793
- Jones, S. F., Stagg, C. L., Krauss, K. W., & Hester, M. W. (2018). Flooding Alters Plant-
- 680 Mediated Carbon Cycling Independently of Elevated Atmospheric CO2Concentrations.
- *Journal of Geophysical Research: Biogeosciences*, *123*(6), 1976–1987.
- 682 https://doi.org/10.1029/2017JG004369
- Joyce, J. & Jewell, P.W. (2003). Physical Controls on Methane Ebullition from Reservoirs and
 Lakes. *Environmental and Engineering Geoscience*, 9(2), 167-168.
- Kim, D. G., R. Vargas, B. Bond-Lamberty, and M. R. Turetsky. 2012. "Effects of Soil Rewetting
 and Thawing on Soil Gas Fluxes: A Review of Current Literature and Suggestions for
- Future Research." *Biogeosciences* 9 (7): 2459–83.
- 688 Kirwan, M. L., Guntenspergen, G. R., & Langley, J. A. (2014). Temperature sensitivity of
- organic-matter decay in tidal marshes. *Biogeosciences*, *11*(17), 4801–4808.
- 690 https://doi.org/10.5194/bg-11-4801-2014
- 691 Koné, Y. J. M., & Borges, A. V. (2008). Dissolved inorganic carbon dynamics in the waters
- 692 surrounding forested mangroves of the Ca Mau Province (Vietnam). *Estuarine, Coastal and*

693 Shelf Science, 77(3), 409–421. https://doi.org/10.1016/j.ecss.2007.10.001

- Lauerwald, R., G. G. Laruelle, J. Hartmann, P. Ciais, and P. A. G. Regnier (2015), Spatial
- 695 patterns in CO2 evasion from the global river network, *Global Biogeochemical Cycles*, 29,

696 534–554, doi:10.1002/2014GB004941.

697	Laruelle, G. G., Lauerwald, R., Rotschi, J., Raymond, P. A., Hartmann, J., & Regnier, P. (2015).
698	Seasonal response of air-water CO2 exchange along the land-ocean aquatic continuum of
699	the northeast North American coast. Biogeosciences, 12, 1447–1458.
700	https://doi.org/10.5194/bg-12-1447-2015
701	Linto, N., Barnes, J., Ramachandran, R., Divia, J., Ramachandran, P., & Upstill-Goddard, R. C.
702	(2014). Carbon Dioxide and Methane Emissions from Mangrove-Associated Waters of the
703	Andaman Islands, Bay of Bengal. Estuaries and Coasts, 37(2), 381-398.
704	https://doi.org/10.1007/s12237-013-9674-4
705	Lorke, A., Bodmer, P., Noss, C., Alshboul, Z., Koschorrek, M., Somlai-Haase, C., et al.
706	Technical Note: Drifting versus Anchored Flux Chambers for Measuring Greenhouse Gas
707	Emissions from Running Waters. (2015) Biogeosciences, 12(23), 7013–7024.
708	https://doi:10.5194/bg-12-7013-2015.
709	Macreadie, P. I., Hughes, A. R., & Kimbro, D. L. (2013). Loss of "Blue Carbon" from Coastal
710	Salt Marshes Following Habitat Disturbance. PLoS ONE, 8(7), 1–8.
711	https://doi.org/10.1371/journal.pone.0069244
712	Mahecha, M. D., Reichstein, M., Carvalhais, N., Lasslop, G., Lange, H., Seneviratne, S. I.,
713	Richardson, A. D. (2010). Global Convergence in the Temperature Sensitivity of
714	Respiration at Ecosystem Level. Science, 329, 838–840.
715	McLeod, E., Chmura, G. L., Bouillon, S., Salm, R., Björk, M., Duarte, C. M., Silliman, B. R.
716	(2011). A blueprint for blue carbon: Toward an improved understanding of the role of

- 717 vegetated coastal habitats in sequestering CO2. *Frontiers in Ecology and the Environment*,
- 718 9(10), 552–560. https://doi.org/10.1890/110004
- 719 Moffett, K. B., Wolf, A., Berry, J. A., & Gorelick, S. M. (2010). Salt marsh-atmosphere
- exchange of energy, water vapor, and carbon dioxide: Effects of tidal flooding and
- biophysical controls. *Water Resources Research*, 46(10), 1–18.
- 722 https://doi.org/10.1029/2009WR009041
- Moseman-Valtierra, S. Reconsidering the climatic role of marshes: Are they sinks or sources of
- greenhouse gases? (2012). In Marshes: Ecology, Management and Conservation. Nova
- 725 Scientific Publishers; Hauppauge, NY, USA:. 1–48.
- Neubauer, S. C., & Anderson, I. C. (2003). Transport of dissolved inorganic carbon from a tidal
 freshwater marsh to the York River estuary. *Limnology and Oceanography*, 48(1), 299–307.
- Osudar, R., Matou, A., Alawi, M., Wagner, D., & Bussmann, I. (2015). Environmental factors
- affecting methane distribution and bacterial methane oxidation in the German Bight (North
- 730 Sea). *Estuarine*, *Coastal and Shelf Science*, *160*, 10–21.
- 731 https://doi.org/10.1016/j.ecss.2015.03.028
- Pearson, A. J., Pizzuto, J. E., & Vargas, R. (2016). Influence of run of river dams on f oodplain
- sediments and carbon dynamics. *Geoderma*, 272, 51–63.
- 734 https://doi.org/10.1016/j.geoderma.2016.02.029
- 735 Pendleton, L., Donato, D. C., Murray, B. C., Crooks, S., Jenkins, W. A., Sifleet, S., ... Baldera,
- A. (2012). Estimating Global "Blue Carbon" Emissions from Conversion and Degradation
- 737 of Vegetated Coastal Ecosystems. *PLoS ONE*, 7(9).

- 738 https://doi.org/10.1371/journal.pone.0043542
- Pethick, J. S. (1980). Velocity surges and asymmetry in tidal channels. *Estuarine and Coastal Marine Science*, *11*(3), 331–345. https://doi.org/10.1016/S0302-3524(80)80087-9
- Poffenbarger, H. J., Needelman, B. A., & Megonigal, J. P. (2011). Salinity Influence on Methane
 Emissions from Tidal Marshes. *Wetlands*, *31*(5), 831–842. https://doi.org/10.1007/s13157011-0197-0
- Raich, J.W. & Schlesinger, W.H. (1992). The global carbon dioxide flux in soil respiration and
 its relationship to vegetation and climate. *Tellus*, *44*, 81-99.
- Ralston, D. K., & Stacey, M. T. (2006). Shear and turbulence production across subtidal
 channels. *Journal of Marine Research*, *64*(1), 147–171.
- Rawitch, M. J. (2015). STREAM CO2 DEGASSING: REVIEW OF METHODS AND
- 749 LABORATORY VALIDATION OF FLOATING CHAMBERS (Unpublished doctoral
- 750 dissertation). University of Kansas, Lawrence, Kansas.
- Raymond, P. A., Hartmann, J., Lauerwald, R., Sobek, S., McDonald, C., Hoover, M., ... Guth, P.
- (2013). Global carbon dioxide emissions from inland waters. *Nature*, *503*(7476), 355–359.
- 753 https://doi.org/10.1038/nature12760
- Raymond, P. A., Zappa, C. J., Butman, D., Bott, T. L., Potter, J., Mulholland, P., et al. (2012).
- 755 Scaling the gas transfer velocity and hydraulic geometry in streams and small rivers.
- *Limnology and Oceanography: Fluids and Environments*, 2(1), 41–53.
- 757 https://doi.org/10.1215/21573689-1597669

758	Richardson A. D., Andy B. T., Ciais P., Delbart N., Friedl M. A., Gobron N., et al. (2010)
759	Influence of spring and autumn phenological transitions on forest ecosystem productivity
760	Philospohical Transactions of the Royal Society B, 365, 1555.
761	http://doi.org/10.1098/rstb.2010.0102
762	Risk, D., Nickerson, N., Creelman, C., Mcarthur, G., & Owens, J. (2011). Agricultural and
763	Forest Meteorology Forced Diffusion soil flux : A new technique for continuous monitoring
764	of soil gas efflux. Agricultural and Forest Meteorology, 151(12), 1622-1631.
765	https://doi.org/10.1016/j.agrformet.2011.06.020
766	Ruiz-Fernández, A. C., Carnero-Bravo, V., Sanchez-Cabeza, J. A., Pérez-Bernal, L. H., Amaya-
767	Monterrosa, O. A., Bojórquez-Sánchez, S., Marmolejo-Rodríguez, A. J. (2018). Carbon
768	burial and storage in tropical salt marshes under the influence of sea level rise. Science of
769	The Total Environment, 630, 1628–1640. https://doi.org/10.1016/j.scitotenv.2018.02.246
770	Soil Survey Staff NRCS, United States Department of Agriculture. (2019) Web Soil Survey.
771	https://websoilsurvey.sc.egov.usda.gov/App/HomePage.htm
772	Seyednasrollah, B., Young, A.M., Hufkens, K., Milliman, T., Friedl, M.A., Frolking, S.,
773	Zona, D. 2019. PhenoCam Dataset v2.0: Vegetation Phenology from Digital Camera
774	Imagery, 2000-2018. ORNL DAAC, Oak Ridge, Tennessee, USA.
775	https://doi.org/10.3334/ORNLDAAC/1674
776	Teal, J. M., & Kanwisher, J. W. (1966). Gas transport in the marsh grass, Spartina alterniflora.
777	Journal of Experimental Botany, 17(2), 355-361. https://doi.org/10.1093/jxb/17.2.355
778	Thomas, B. (1984) Canonical Correlation Analysis: Uses and Interpretation. Thousand Oaks,

- 779 California: Sage Publications.
- Tobias, C., & Neubauer, S. (2009). Chapter 16 Salt Marsh Biogeochemistry An Overview.
- 781 *COASTAL WETLANDS: An Integrated Ecosystem Approach* (First edit, Vol. 76). Elsevier.
- 782 https://doi.org/10.1016/B978-0-444-53103-2.00016-8
- Tong, C., Huang, J.F., Hu Z.Q., & Jin, Y.F. (2013). Diurnal Variations of Carbon Dioxide,
- Methane, and Nitrous Oxide Vertical Fluxes in a Subtropical Estuarine Marsh on Neap and
 Spring Tide Days. Estuaries and Coasts, 36, 633-642. https://doi.org/10.1007/s12237-0139596-1
- Tong, C., Wang, W.-Q., Zeng, C.-S., & Marrs, R. (2010). Methane (CH4) emission from a tidal
- marsh in the Min River estuary, southeast China. *Journal of Environmental Science and*
- 789 *Health. Part A, Toxic/Hazardous Substances & Environmental Engineering, 45*(4), 506–16.
- 790 https://doi.org/10.1080/10934520903542261
- Van Dam, B. R., Edson, J. B., & Tobias, C. (2019). Parameterizing air-water gas exchange in the
- shallow, microtidal New River estuary. *Journal of Geophysical Research: Biogeosciences*,
- 793 *124*, 2351–2363. https://doi.org/ 10.1029/2018JG004908
- Vargas, R., & Carbone, M. S. (2011). Frontiers and challenges in soil respiration research : from
 measurements to model-data integration. *Biogeochemistry*, *102*(1-3) 1–13.
- 796 https://doi.org/10.1007/s10533-010-9462-1
- ⁷⁹⁷ Wang, Z. A., & Cai, W. J. (2004). Carbon dioxide degassing and inorganic carbon export from a
- marsh-dominated estuary (the Duplin River): A marsh CO2 pump. *Limnology and*
- 799 *Oceanography*, 49(2), 341–354. https://doi.org/10.4319/lo.2004.49.2.0341

800	Wang, Z. A., Kroeger, K. D., Ganju, N. K., Gonneea, M. E., & Chu, S. N. (2016). Intertidal salt
801	marshes as an important source of inorganic carbon to the coastal ocean. Limnology and
802	Oceanography, 61(5), 1916–1931. https://doi.org/10.1002/lno.10347
803	Wanninkhof, R. (2014). Relationship between wind speed and gas exchange over the ocean
804	revisited. Limnology and Oceanography: Methods, 12, 351-362.
805	Warner, D. L., Villarreal, S., Mcwilliams, K., Inamdar, S., & Vargas, R. (2017). Carbon Dioxide
806	and Methane Fluxes From Tree Stems, Coarse Woody Debris, and Soils in an Upland
807	Temperate Forest. <i>Ecosystems</i> , 20(6), 1205–1216. https://doi.org/10.1007/s10021-016-
808	0106-8
809	Westermann, P. (1993). Temperature Regulation of Methane in Wetlands. Chemosphere, 26,
810	321-328.
811	C. Wu, J.M. Chen, T.A. Black, D.T. Price, W.A. Kurz, A.R. Desai, et al. (2013) Interannual
812	variability of net ecosystem productivity in forests is explained by carbon flux phenology in
813	autumn. Global Ecology & Biogeography, 22, 994-1006. https://doi.org/10.1111/geb.12044
814	Yang, W. Bin, Yuan, C. S., Tong, C., Yang, P., Yang, L., & Huang, B. Q. (2017). Diurnal
815	variation of CO2, CH4, and N2O emission fluxes continuously monitored in-situ in three
816	environmental habitats in a subtropical estuarine wetland. Marine Pollution Bulletin,
817	119(1), 289–298. https://doi.org/10.1016/j.marpolbul.2017.04.005
818	Yvon-Durocher, G., Allen, A. P., Bastviken, D., Conrad, R., Gudasz, C., St-Pierre, A., del
819	Giorgio, P. A. (2014). Methane fluxes show consistent temperature dependence across
820	microbial to ecosystem scales. Nature, 507(7493), 488-491.

- 821 https://doi.org/10.1038/nature13164
- 822 Yvon-Durocher, G., Caffrey, J. M., Cescatti, A., Dossena, M., Giorgio, P. Del, Gasol, J. M., ...
- Allen, A. P. (2012). Reconciling the temperature dependence of respiration across
- timescales and ecosystem types. *Nature*, 487(7408), 472–476.
- 825 https://doi.org/10.1038/nature11205
- 826 Zhang, Q., Lei, H.M., Yang, D.W. (2013). Seasonal variations in soil respiration, heterotrophic
- respiration and autotrophic respiration of a wheat and maize rotation cropland in the North
- 828 China Plain. *Agricultural and Forest Meteorology*, 180, 34-43.
- 829 https://doi.org/10.1016/j.agrformet.2013.04.028.
- 830 Zhong, Q., Du, Q., Gong, J., Zhang, C., & Wang, K. (2013). Effects of in situ experimental air
- 831 warming on the soil respiration in a coastal salt marsh reclaimed for agriculture. *Plant and*

Soil, *371*(1–2), 487–502. https://doi.org/10.1007/s11104-013-1707-z

833

Figure 1.

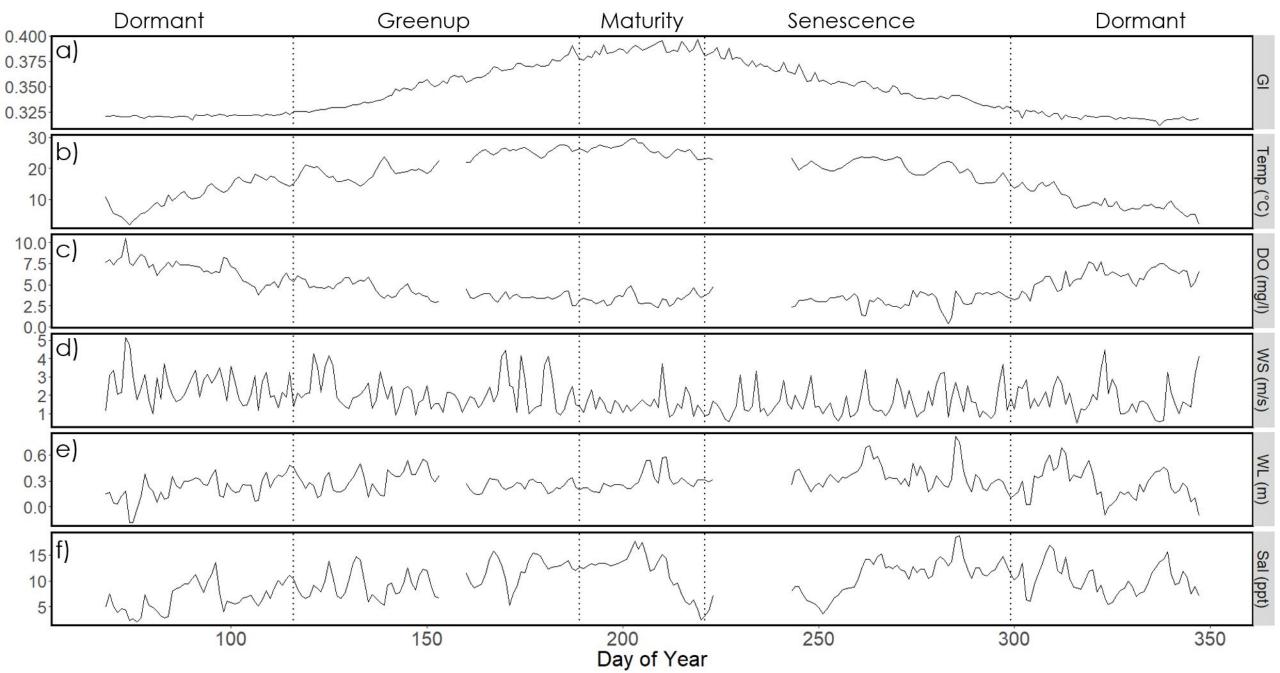


Figure 2.

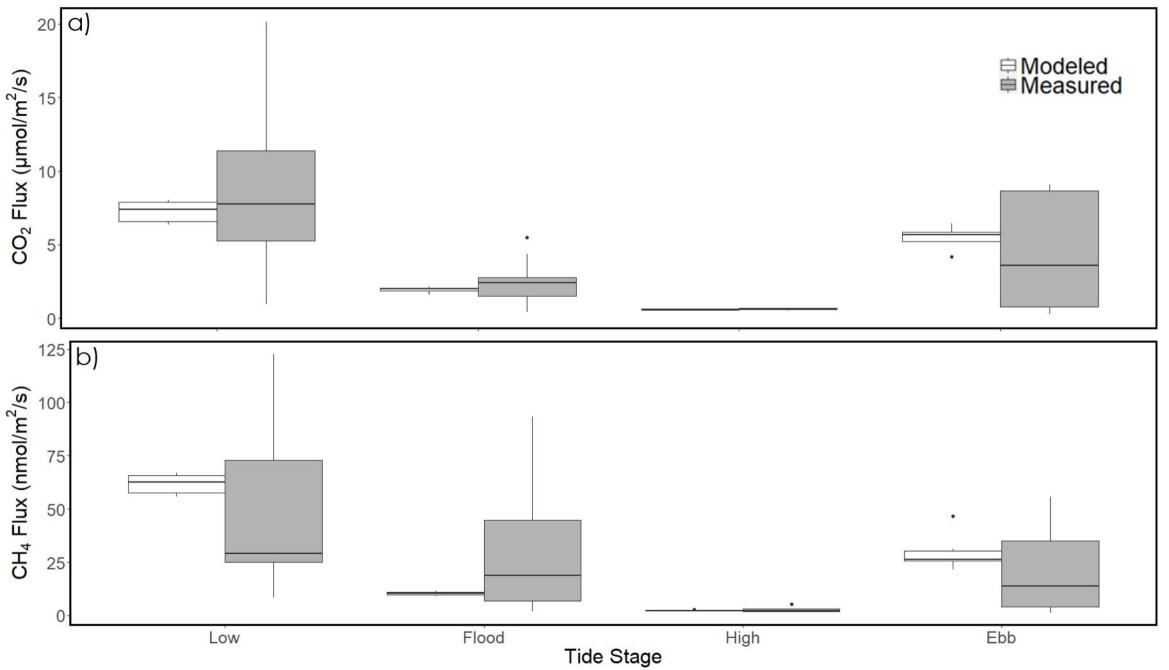


Figure 3.

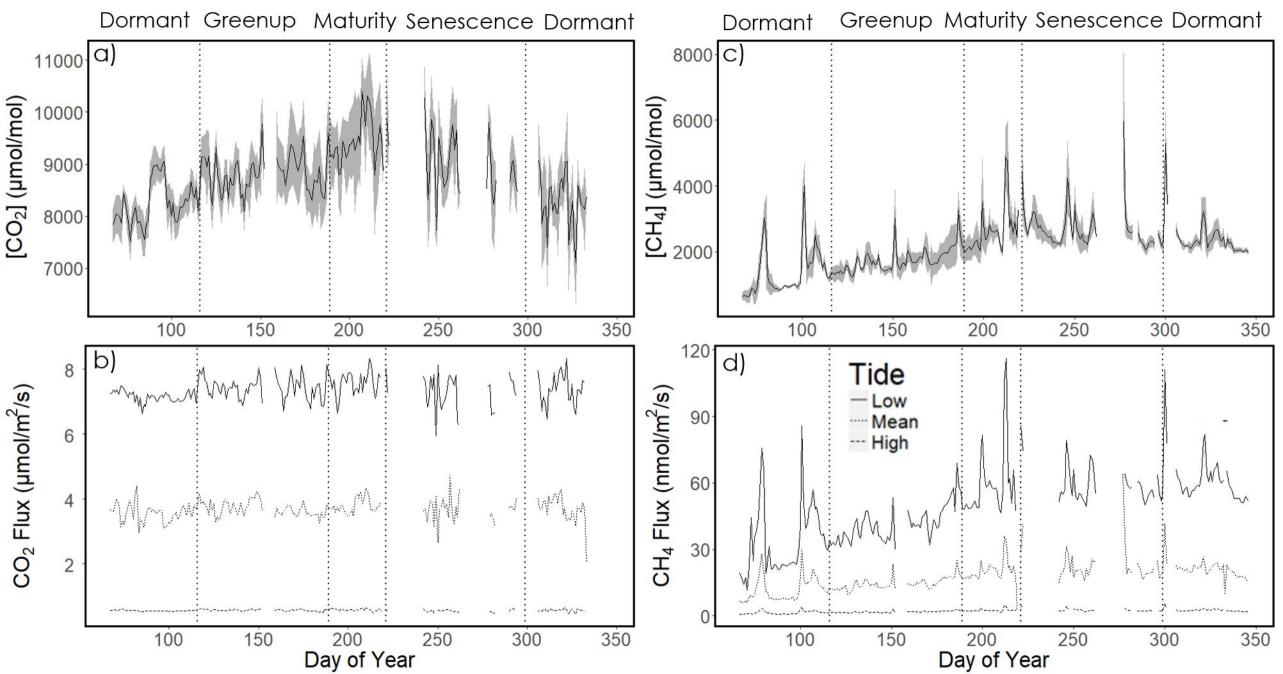


Figure 4.

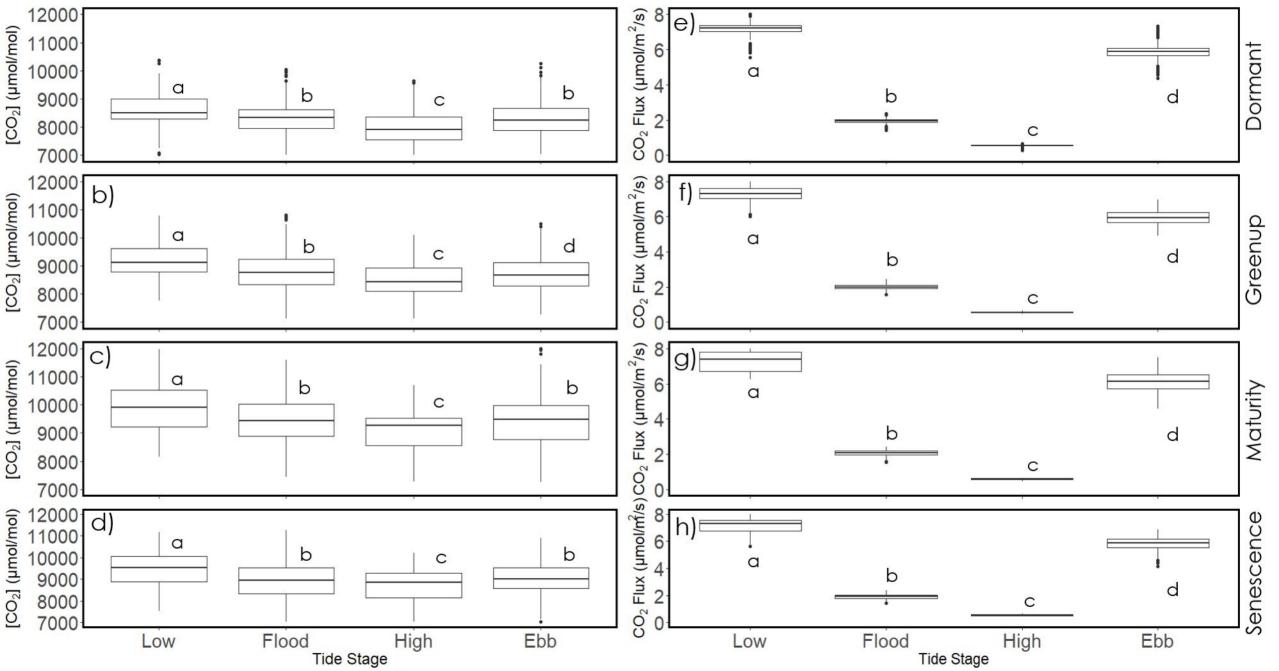


Figure 5.

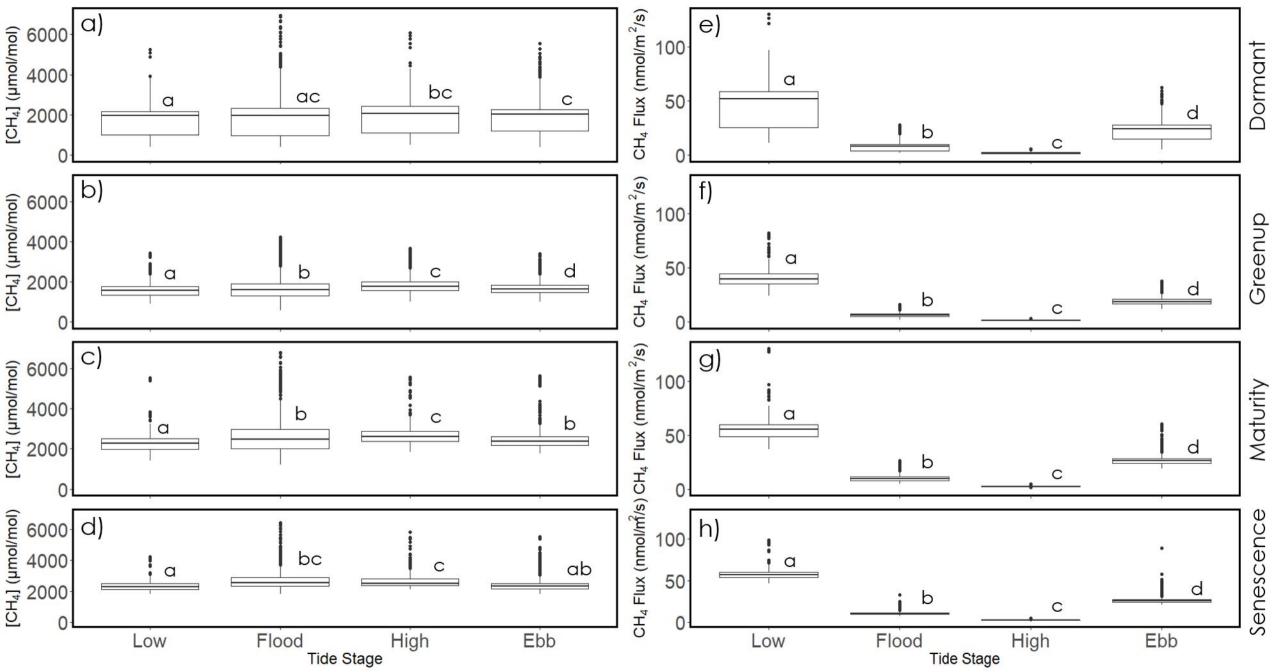


Figure 6.

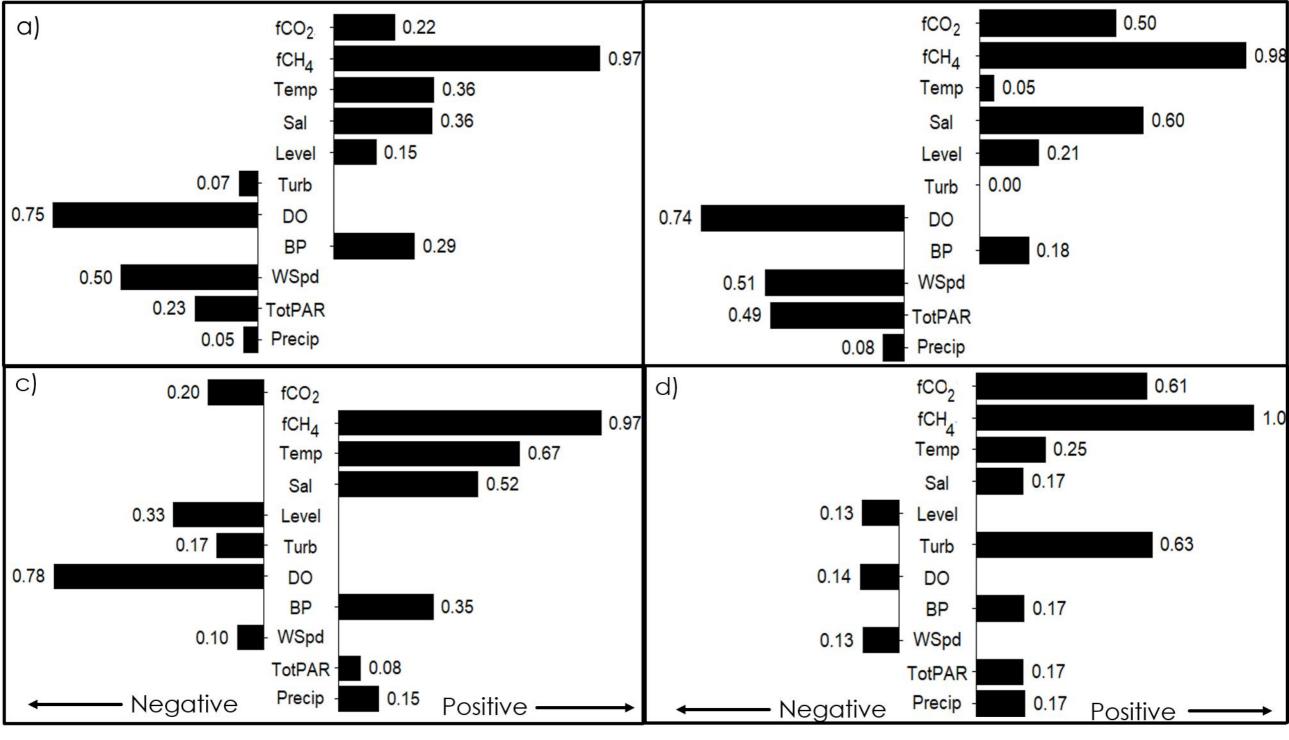


Figure 7.

