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Abstract

Channel networks increase in complexity as the importance of erosion grows compared to diffusion by soil creep, giving rise

to a channelization cascade. In this cascade, smaller channels join to form progressively larger ones with an alternation of

ridges and valleys involving a multitude of wavelengths. Simulations of landscape evolution models and laboratory experiments

are used to uncover the signature of such a cascade in the wavenumber spectrum of elevation fluctuations. Power spectra at

intermediate distances from the boundaries are characterized by a peak wavenumber (the most energetic mode) that is related

to the quasi-cyclic valleys superimposed on power-law scaling with exponent ($\alpha$) across a wide range of smaller scales.

Dimensional analysis and self-similarity arguments are used to reveal the controlling factors on $\alpha$, showing that $\alpha$
is uniquely linked to the power-law relation (with exponent $m$) between erosion potential and the specific drainage area via

$\alpha = 2m -3$.
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Key Points:8

• The elevation spectrum contains a power-scaling in a wide range of scales.9

• Dimensional and self-similarity arguments connect the power-scaling of the spec-10

trum to the nonlinearity of erosion term.11

• Numerical simulation and data from a physical experiment are used to validate12

our results.13
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Abstract14

Channel networks increase in complexity as the importance of erosion grows compared15

to diffusion by soil creep, giving rise to a channelization cascade. In this cascade, smaller16

channels join to form progressively larger ones with an alternation of ridges and valleys17

involving a multitude of wavelengths. Simulations of landscape evolution models and lab-18

oratory experiments are used to uncover the signature of such a cascade in the wavenum-19

ber spectrum of elevation fluctuations. Power spectra at intermediate distances from the20

boundaries are characterized by a peak wavenumber (i.e., the most energetic mode) that21

is related to the quasi-cyclic valleys superimposed on power-law scaling with exponent22

(α) across a wide range of smaller scales. Dimensional analysis and self-similarity argu-23

ments are used to reveal the controlling factors on α, showing that α is uniquely linked24

to the power-law relation (with exponent m) between erosion potential and the specific25

drainage area via α = 2m− 3.26

Plain Language Summary27

Landscapes exhibit a periodic valley spacing at the interface of the channelization28

phase transition. As the importance of erosion grows, quasi-cyclic valleys emerge with29

a characteristic power-law scaling in the elevation spectrum across a wide range of scales.30

We use dimensional analysis and self-similarity arguments to show that the exponent of31

this power-scaling α is uniquely linked to the power-law relation (with exponent m) be-32

tween erosion potential and the specific drainage area. This result is validated in numer-33

ical simulation and using data from a physical experiment.34

1 Introduction35

Landscape channelization starts at the critical point where erosion overcomes the36

smoothing effects of the diffusive soil creep (Sweeney et al., 2015; Perron, Dietrich, &37

Kirchner, 2008; Bonetti et al., 2020). Below this critical point, the landscape is without38

channels, while just above it, regularly spaced channels form (Perron, Dietrich, & Kirch-39

ner, 2008; Perron et al., 2009), defining an emergent length scale of erosional landscapes40

(Perron et al., 2009). As the importance of erosion further increases, the surface becomes41

progressively complex forming a hierarchy of interconnected valley and ridge networks42

(Bonetti et al., 2020). In the highly channelized regime, the topographic surface exhibits43

several scaling laws (Rodŕıguez-Iturbe & Rinaldo, 2001; Horton, 1945; Strahler, 1952)44

and self-similar statistical properties typical of branch-forming and out-of-equilibrium45

systems in statistical physics (Sinclair & Ball, 1996; Rinaldo et al., 1996; Banavar et al.,46

1997, 2001; Witten & Sander, 1983; Goldenfeld & Shih, 2017; Kramer & Marder, 1992;47

Arneodo et al., 1992). Moreover, the valley spacing is no longer regular and acquires a48

statistical connotation, resulting from a superposition of modes of landscape fluctuations49

linked to both geomorphological characteristics and external geometrical constraints (i.e.,50

boundary conditions in numerical simulations or large scale geology in natural topog-51

raphy).52

Understanding the interplay of the factors determining the properties of this pro-53

gression from deterministic to statistical regularity of the valley-ridge topography ap-54

pears as a fundamental problem having both theoretical and practical implications. Be-55

sides the already mentioned work on regular valley spacing (Perron, Dietrich, & Kirch-56

ner, 2008; Perron et al., 2009), previous literature also analyzed specific aspects of the57

spectral signature of channelization in relation to the characteristic length scale (Perron,58

Kirchner, & Dietrich, 2008), the self-similarity across scales (Passalacqua et al., 2006),59

and the related fractal dimensions (Newman & Turcotte, 1990; Huang & Turcotte, 1989).60

To bridge the previous work on valley spacing and self-similar landscape variability, in61

this paper, we consider the linkages among the spectral properties of landscape transects,62

their scaling laws, and the dominant ridge-valley mode. To this purpose, a landscape power63

spectrum can be defined considering elevation variations along one-dimensional (longi-64
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tudinal) transects in which the total ’energy’ content is the variance associated with these65

variations (Perron, Kirchner, & Dietrich, 2008; Passalacqua et al., 2006). At the criti-66

cal point of channel formation, the surface contains periodic channels (see the compre-67

hensive analysis in (Perron, Dietrich, & Kirchner, 2008; Perron et al., 2009)) and the el-68

evation variance becomes concentrated around the wavenumber of the regular channel69

spacing (Bonetti et al., 2020). Beyond the critical point, landscape channelization en-70

ables the transfer of sediment or water flux to form a channel hierarchy, which presum-71

ably corresponds to an ’energy’ cascade in the landscape spectrum due to the nonlin-72

ear coupling across different modes of variability of the landscape evolution equations.73

Regarding the role of these aforementioned nonlinearities, several studies on ele-74

vation spectra of 1-dimensional transects report power-law decay of energy across scales75

with an exponent close to −2 (Newman & Turcotte, 1990; Huang & Turcotte, 1989). This76

is a rather intriguing result since such scaling is characteristic of classical Brownian noise77

(Turcotte, 1987; Bell Jr, 1975) and corresponds to a Lorentzian spectrum (Berg-Sørensen78

& Flyvbjerg, 2004), implying an exponential decay of the elevation autocorrelation with79

increasing spatial lag. Taken at face value, these clues would suggest an underlying lin-80

ear stochastic dynamics, at odds with the presence of nonlinear terms responsible for the81

very formation of the channel network. A plausibility argument to explain this oddity82

is that increases in landscape complexity are accompanied by a reduction of the effect83

of nonlinearity. This conjecture is thus related to whether the activation of many degrees84

of freedom at high channelization regimes may elicit some form of statistical regularity85

capable of obfuscating the role of nonlinearities acting at small scales within each valley-86

ridge pair.87

To address at least in part this conjecture, a link between the spectral signature88

of surface channelization and the basic parameters describing a landscape evolution model89

is needed. In simulated surfaces within a long rectangular domain, the spectrum con-90

tains a well-defined peak that hints at a dominant channelization mode with a charac-91

teristic spacing. The wavenumber at the peak of this most energetic mode depends on92

the relative magnitude of erosion in relation to the exponent of the drainage area in the93

erosion law (denoted by m). At scales smaller than the spectral peak (higher wavenum-94

bers), the energy content drops with a power-law scaling on a wide range of scales, high-95

lighting the self-similarity and fractal behavior of elevation fluctuation. Starting from96

the spectrum of the regular valley regime, the power decay becomes flatter (spectrum97

widens) with increasing relative contribution of erosion. Especially interesting in this re-98

gard is the question of the possible existence of asymptotic behavior in the limit of high99

erosion rates and the appearance of a local, small scale regime of quasi-isotropy. In ad-100

dition, the connection between spectral behavior of landscapes and basic geomorphologic101

parameters can connect the nonlinearity of erosion law to the power-law decay of spec-102

trum and, in turn, to the fractal dimension of longitudinal elevation data (Huang & Tur-103

cotte, 1989; Voss, 1985).104

2 Mathematical model and Simulations105

The focus here is on a minimalist landscape evolution model (LEM) in the detachment-
limited conditions (Izumi & Parker, 1995; Howard, 1994; Bonetti et al., 2020), where sed-
iment redeposition is negligible. In this model, the change in surface elevation occurs due
to diffusive soil creep, fluvial erosion, and tectonic uplift, according to

∂z

∂t
= U +D∆z −Kam|∇z|, (1)

where z is the elevation fields, U is the uplift rate and a is the specific drainage area (or
drainage area per unit contour length). The diffusive soil creep is D∆z and D is the soil
diffusivity. The term Kam|∇z| quantifies the fluvial erosion (sediment movement due
to water flow) in which the constants m and K must be externally supplied. Eq. (1) is
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coupled to the governing equation of the specific drainage area

∇ ·
(
a
∇z
|∇z|

)
= −1, (2)

representing the steady-state continuity equation of water flow over a surface generated106

by a unitary rainfall with the assumption that water moves in the direction of the lo-107

cal slope with a constant velocity (Bonetti et al., 2018, 2020). Such assumptions are com-108

mon to locally uniform free-surface open channel flow as expected from the Chezy or Man-109

ning type equations (Bonetti et al., 2017). The assumption of negligible sediment depo-110

sition in Eq. (1) is common in landscape evolution modeling; however, other formula-111

tions accounting for sediment redeposition have also been proposed (Smith & Brether-112

ton, 1972; Willgoose et al., 1991; Davy & Lague, 2009). While the analysis here is re-113

stricted to detachment-limited conditions, the methodology based on dimensional and114

self-similarity arguments can be extended to models with different sediment transport115

formulations.116

For a problem characterized by a single typical dimension l, the behavior of the sys-117

tem of Eqs. (1) and (2) is captured by a dimensionless number referred to as ’channel-118

ization index’ and denoted by CI = (Klm+1/D) where l is a typical length scale of the119

domain (Bonetti et al., 2020).120

The coupled system formed by Eqs.(1) and (2) are solved numerically in a lx =121

1500 m by ly = 150 m rectangular domain with zero-elevation at the boundaries (zω =122

0 m) as shown in Fig. 1a. The choice of a long domain (i.e., lx >> ly) ensures that ly123

is the dominant (or restrictive) length scale. Hence, the channelization index can be de-124

fined as CI = Klm+1
y /D. The numerical scheme uses an implicit approach to integrate125

the erosion term in Eq. (1). Details about the accuracy and efficiency of the numerical126

algorithm are featured elsewhere (Anand et al., 2019).127

Fig. 1a and b compares the steady-state surfaces from numerical simulation for CI =128

103 and 104 and m = 0.5. The formation and progression of channels have their im-129

print in the elevation field. As previously reported (Bonetti et al., 2020), with increas-130

ing CI the surface becomes progressively more dissected with a branched network of chan-131

nels. Channels disappear in regions where the diffusive transport dominates over fluvial132

erosion mainly because of a small value of the specific drainage area.133

Fig. 1c and d show the elevation along transects A-A and B-B, which are marked134

in Fig. 1a and b. The local minima in the elevation series correspond to channels, whereas135

the local maxima are ridges. The elevation series exhibits a quasi-cyclic behavior in which136

the dominant cycles correspond to the spacing of the main channels. With higher CI and137

as the surface becomes more channelized, the elevation fluctuations at smaller scales (higher138

wavenumbers) appear (see Fig. 1d). This finding is analogous to increasing the bulk Reynolds139

number (here CI) and the generation of finer Kolmogorov sized eddies in jets where the140

integral scale remains fixed (Tennekes et al., 1972).141

3 Power Spectra142

To address the study objective, connections between m, CI , and the spectral ex-
ponent of the longitudinal elevation series at preset y is sought. For this purpose, ele-
vation fluctuations in wave-space are analyzed using the power-spectral density (PSD)
of the longitudinal elevation series (along the x-axis) at a given y (denoted by zy(x)) as

E(ω) = |ẑy(ω)|2, (3)

where

ẑy(ω) =

∫
x

z(x)e−2πiωdx, (4)
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Figure 1. The steady-state numerical solution of Eqs.(1) and (2) for m = 0.5 and CI = 103

in (a) and CI = 104 in (b). The elevation along A-A and B-B transects are shown in (c) and (d).

A rectangular domain (lx = 1500 m by ly = 150 m) with zero elevation at the boundaries

(zω = 0 m) is used. The first and last 100 m along the x-axis were removed for further analysis to

approximate a semi-infinite domain.

is the Fourier transform of zy(x). Examples of zy are shown in Fig. 1c and d for y =143

30 m. Fig. 2a shows the stationary PSDs for the elevation series for different values of144

y covering the distance from the boundary and the domain’s center in 5 m intervals. The145

PSDs exhibit approximate power-law scaling for almost a decade in the high wavenum-146

ber (small scale) ranges. The range of power-law scaling expands as y is moved away from147

the boundary. The corresponding wavenumber at which the PSDs’ peak (i.e., energetic148

modes), denoted by ωmax, decrease (see the inset of Fig. 2a). For intermediate values149

of y, the PSDs appear independent of y, which allows isolating the effects of y by only150

devoting analysis to such an intermediate range of y.151

Fig. 2b shows the PSD of elevation series at the intermediate distance from the bound-152

ary and domain center for a wide range of CI and m = 0.5. Each line is the average of153

the PSDs for 0.07 ≤ y l−1y ≤ 0.27 from the steady-state solutions. Two examples of154

such surfaces for CI = 103 and 104 are shown in Fig. 1a and b. The change of CI , which155

has previously been shown to modulate the channelization and mean-elevation profile156

(Bonetti et al., 2020; Hooshyar, Bonetti, et al., 2019), also impacts the distribution of157

energy of elevation fluctuations across scales. The PSDs also exhibit asymptotic behav-158

ior and collapse to a single curve at high CI . It can be surmised that the PSDs become159

independent of CI at high values analogous of CI analogous to turbulent flow statistics160

becoming independent of Reynolds number at very high Reynolds numbers. The PSDs161

contain a visually evident power-law scaling at a wide range of scales, although their slopes162

vary with CI . For each PSD, the exponent of the power-law scaling α is computed by163

fitting a piece-wise function to cover the rising limb at large frequencies, the intermit-164
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tent range with the power-law scaling, and the deviation at the fine scales. The inset of165

Fig. 2b shows the computed exponent for a range of CI . As CI increases, the power-law166

fits result in flatter exponents and saturate to a constant value for sufficiently large CI .167

The steepest PSD in the simulations correspond to CI = 103 with the exponent α ≈168

−4.2 shown in Fig. 1b. The corresponding elevation series is shown in Fig. 1c and fol-169

lows an almost triangular-shaped wave. It worth noting that for a perfectly triangular170

periodic wave function, the PSD decays following a power-law with exponent = −4.171

Figure 2. The PSD of elevation longitudinal series for steady-state surface variations. (a)

shows PSDs for CI = 105 and m = 0.5 at different distance from the boundary, denoted by

y covering the distance from the boundary to the domain’s center in 3 m intervals. Each line

corresponds to the average of the PSDs for all elevation signals within that interval. This inset

shows the frequency at peak ωmax for different values of y. Quantities y and ω are normalized

by ly. (b) shows the PSDs for different values of CI for m = 0.5 at intermediate values of y (i.e.,

0.07 ≤ y l−1
y ≤ 0.27). Each line corresponds to the average of the PSDs of all y within this range.

The PSDs are normalized by the area under the spectrum for better visualisation. The inset

shows the exponent α of power-law scaling fitted to the intermediate wavenumber for a range of

CI .

The change of peak ωmax for 0.1 ≤ m ≤ 1 and different values of CI is shown172

in Fig. 3. In general, ωmax exhibits a non-monotonic response to change in CI (Fig. 3)173

and m (Fig. 3b). The response of ωmax to change in CI depends on the value of m, whereby174

ωmax increases with CI for large m. For small values m, an increase in ωmax with CI is175

observed followed by a declining trend at high CI . The non-monotonic response to change176

in m is also highlighted in Fig. 3b in which an intermediate value of m maintains the177

smallest or biggest ωmax. Examples of numerically-simulated surfaces at selected val-178

ues of m and CI are also shown in Fig. 3.179

Figure 3. The response of ωmax to change in CI (a) and m (b). The peaks are calculated

from PSDs at intermediate values of y (i.e., 0.07 ≤ y l−1
y ≤ 0.27).
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4 Self-Similarity and Scaling180

The dependence of the spectral scaling properties on the governing parameters can
be analyzed with the aid of dimensional analysis (G. I. Barenblatt, 1996). For a longi-
tudinal elevation series at a given y (see Figs. 1c and d), the amount of energy at a wavenum-
ber ω at steady-state must vary with ω and variables described by Eq. 1. That is,

E(ω) = g1 (ω, y, ly, D,K,U,m) , (5)

where g1 is an unknown function. The energy E(ω) is defined over the fluctuations along181

the x-axis (see Eq. (3)); therefore, it has the dimension [L2
zLx] where Lz and Lx are lengths182

along z and x-axis. The ω represents a wavenumber along the x direction and has the183

dimension [L−1x ]. The D, K, and U have the dimensions [L2
yT
−1], [L1−m

y T−1], and [LzT
−1

184

where T and Ly are dimensions of time and length along the y-axis. The y and ly have185

a dimension [Ly]. At a sufficient distance from the boundary, it may be assumed that186

the information regarding the domain geometry and direction is lost; thus, length scales187

may become statistically isotropic, i.e., Lx ≡ Ly (refer to Appendix I for details). This188

assumption is similar to local isotropy at small scales (or eddies detached from the bound-189

ary) of fully developed turbulent flow (Tennekes et al., 1972) and is further discussed in190

the following section.191

Given three dimensions Lz, Ly, T and 7 dimensional governing variables, and choos-
ing K, U , and ω as fundamental dimensionally independent variables guided by Eq. 1,
the Buckingham Π-theorem results in five Π groups. Stated differently, one of the Π groups
(i.e. the one that contains E(ω) here) must then vary with the remaining three dimen-
sionless groups. That is,

E(ω)K2ω3−2m

U2
= g2

(
Kω−(m+1)

D
,ωly, ωy,m

)
. (6)

A manipulation of Eq. (6) leads to

E(ω)K2ω3−2m

U2
= g3 (CI , η, ηω,m) , (7)

where CI = Klm+1
y /D is the channelization index (Bonetti et al., 2020) defined ear-

lier using the domain length scale ly and quantifies the relative magnitude of erosion to
diffusion, the quantity η = Kym+1/D has same form as that of CI but defined locally
at y distance from the boundary, and ηω = Kω−(m+1)/D is equivalent to η but defined
in the frequency domain. In the asymptotic limit of relatively high CI , η and ηω must
attain a near-constant limit away from the boundary. For this asymptotic limit, a hy-
pothesis of complete self-similarity can be invoked in which g3 is only a function of m,

E(ω) ∝ ω2m−3, (8)

where the proportionality coefficient is
(
U
K

)2
g3(m). Eq. (8) predicts the exponent of the192

power spectral density that is independent of D and has a power-law decay. The con-193

dition of high CI , η and ηω is expected in systems that are dominated by erosion (high194

CI), far enough from the boundary (high η), and within small enough scales (high ηω).195

The assumption of complete self-similarity with respect to η and CI can be verified nu-196

merically. As shown in Fig. 2a at a distance far enough from the boundary (high η) the197

power-law scaling of PSD is robust. The collapse of PSDs at high CI in Fig. 2b also val-198

idates the self-similarity with respect to CI .199

Fig. 4a shows the PSDs of longitudinal elevation series in the intermediate range200

(0.07 ≤ y l−1y ≤ 0.27) from numerical simulation with CI = 105 and 0.1 ≤ m ≤ 1.201

Fig. 4b shows the exponent of the power fits to PSDs for simulations with CI ≥ 105,202

denoted by α, for different m values. This finding is, once again, in agreement with the203

relation α = 2m−3 in the intermediate range of m. This finding further corroborates204
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the validity of the assumption of complete self-similarity with respect to ηω. Although205

an incomplete self-similarity or self-similarity of type two (G. Barenblatt & Goldenfeld,206

1995) (g3 ∝ ηβω) is also plausible, it does lead to a deviation from α = 2m− 3.207

It is to be noted that the deviation of numerical results from α = 2m−3 in Fig.208

4 may be the result of channel-branching anisotropy that violates the assumption Lx ≡209

Ly. For instance, if an anisotropy in length scales exists in the form of Lx ≡ L1+γ
y , the210

assumption of complete self-similarity predicates α = 2m− 3− γ.211

Figure 4. The power spectrum in numerical simulations. (a) shows the PSD of z at the in-

termediate distance from the boundary (0.07 ≤ y l−1
y ≤ 0.27) for different values of m from

numerical simulation. Each line is the average PSD of the signal for0.07 ≤ y l−1
y ≤ 0.27. (b)

shows the slope of power fit to the declining part of the PSD from simulations with CI ≥ 105,

denoted by α as function of the exponent m. The data from the physical experiment are also

shown. The black line is the relation α = 2m − 3 derived from dimensional and self-similarity

arguments in Eq. (8). (c) shows an example of the experimental landscape with ly = 500 mm.

(d) shows the PSD computed from the elevation signal at the intermediate distance form the

boundary (0.1 ≤ y l−1
y ≤ 0.3). The exponent of power fit is α = −2.42 from regression analysis.

5 Power Spectra of Laboratory Experiments212

Topographic surfaces from a physical experiment performed at the St. Anthony213

Falls Laboratory at the University of Minnesota using the eXperimental Landscape Evo-214

lution (XLE) facility (Singh et al., 2015; Hooshyar, Singh, et al., 2019) are analyzed. The215

experiment domain was a 500 mm long 500 mm wide sediment box with a closed-boundary216

at the sides (vertical boundaries in Fig. 4c) and open-boundary at the top and the bot-217

tom (horizontal boundaries in Fig. 4c). Details of the experimental setup can be found218

elsewhere (Singh et al., 2015). Here, results from ten snapshots of the landscape are shown.219

These snapshots are taken at 5 minutes intervals at the dynamic steady-state condition220

–8–
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in which the uplift was in balance with total erosion. Fig. 4c shows an example of the221

normalized elevation field. We used the method proposed by (Perron et al., 2009) to es-222

timate the parameters in Eq. (1). The values of m for the surfaces range from 0.29 to223

0.3 (see (Hooshyar, Bonetti, et al., 2019) for details). We computed the exponent of power224

decay α by regression analysis of the average PSD at the intermediate distance form the225

boundary (0.1 ≤ y l−1y ≤ 0.3) as shown in Fig. 4d for the surface in Fig. 4c. The ex-226

ponent α ranges from −2.49 to −2.39 for the ten surfaces analyzed here. The data points227

(m,α) are shown in Fig. 4b, which are in agreement with the prediction from the dimen-228

sional and self-similarity arguments.229

6 Conclusion230

Spectral analysis of longitudinal landscape elevation series has been used in a plethora231

of applications that vary from the theoretical to the operational (Perron, Kirchner, &232

Dietrich, 2008; Pelletier, 2013). The elevation spectrum contains a peak corresponding233

to a characteristic length scale beyond which the energy content across wavenumbers drops234

following a power-law scaling with a characteristic exponent α. The analysis reported235

here has connected such an exponent α to the basic erosion model parameter m, and in236

turn, to landscape typology. Specific drainage area exponent m in the erosion term is237

routinely used to distinguish between the steep landscapes with debris-flow-dominated238

channels (smaller m) and relatively flat fluvial landscapes (larger m) (Montgomery &239

Foufoula-Georgiou, 1993; Hooshyar et al., 2017).240

Several studies of the elevation spectrum reported exponents near α = −2 (Newman241

& Turcotte, 1990; Huang & Turcotte, 1989; Passalacqua et al., 2006), which corresponds242

to a fractal dimension Dm = 1.5 (Huang & Turcotte, 1989; Voss, 1985) and to fractional243

Brownian noise. This α value was connected to m = 0.5 in the erosion law using self-244

similarity and dimensional analysis (α = 2m − 3). Interestingly, m = 0.5 also corre-245

sponds to the base case in the Optimal Channel Network theory (Rodŕıguez-Iturbe &246

Rinaldo, 2001; Hooshyar et al., 2020), which reproduces several scaling laws of natural247

basins.248

A minimalist model in detachment-limited conditions was employed for the numer-249

ical simulations and validation of the results. Besides the dimensions of the main gov-250

erning variables and parameters, no additional information from the model equation was251

used in the dimensional analysis; thus, one can expect these results to remain valid for252

different landscape evolution models (e.g., transport limited or hybrids between trans-253

port and detachment limited (Smith & Bretherton, 1972; Willgoose et al., 1991; Davy254

& Lague, 2009)).255

Although the power-scaling in the elevation spectrum persists for a range of chan-256

nelization index CI , the explicit relation between its exponent α and m was achieved in257

the asymptotic case of very high CI . Similarly, scaling laws in other non-equilibrium sys-258

tems such as fluid turbulence and critical phenomena often arise only asymptotically (Stauffer259

et al., 1982; Townsend, 1980) (this was humorously labeled ’asymptopia’ by R.A. Fer-260

rell (Stauffer et al., 1982)). Thus, on the one hand, finite-size effects, boundary condi-261

tions, and other ’impurities’ will alter or restrict both the emergence and reliable esti-262

mation of power-laws (here α). On the other hand, a known spectral scaling of landscape263

elevation, especially in its relation to the model parameters, could be profitably utilized264

in developing efficient numerical simulations of the landscape evolution (Passalacqua et265

al., 2006). Such numerical schemes would potentially resemble Large-eddy simulation266

methods used in fluid turbulence (Pope, 2001), where the unsolved dynamics at finer scales267

are approximated by extrapolating the PSD and can facilitate large-scale simulations of268

landscape evolution under future scenarios of natural and anthropogenic changes.269
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7 Appendix I: Locally Isotropic Landscapes282

The assumption of local isotropy allowed unifying two length scales Lx and Ly and283

was essential to deriving Eq. 8. Here, we elaborate on the assumption of the landscape284

isotropy in relation to the direction of water flow over the surface that is assumed to be285

in the direction of the surface gradient (i.e., ∇z|∇z| ). Fig. Fig. 5 shows the distribution of286

flow direction in small (a ≤ ly) and large (a > ly) channels that are subjectively de-287

fined for demonstration. In the vicinity of the boundaries (red area in Fig. 5a) the flow288

directions are aligned towards the boundary both in small and large channels, as shown289

in the distribution of gradient direction in Fig. 5b. At an intermediate distance from the290

boundary (the gray area in Fig. 5a) the effect of the boundary partially vanishes at small291

scales as the flow directions are ’almost’ uniformly distributed, although the flow at large292

scales is strongly aligned towards the boundary Fig. 5c. This observation hints at the293

validity of the assumption of local isotropy at small scales, which was the basis of the294

dimensional and self-similarity arguments used to arrive at the relation between α and295

m.296

Figure 5. The distribution of flow direction ( ∇z
|∇z| ) in vicinity of the boundary (b) and in-

termediate distance from the boundary (c). These regions are marked in (a) by red and gray,

respectively. The distributions are shown for small (a ≤ ly) and large (a > ly) channels.
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