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Abstract

We use ICESat-2 laser altimetry crossovers and repeat tracks collected over the North Slope of Alaska to estimate elevation

changes due to the deformation of seasonally freezing and thawing permafrost. We compare these measurements with a time

series of surface deformation from Sentinel-1 interferometric synthetic aperture radar (InSAR) and demonstrate agreement

between these independent observations of surface deformation. Both methods resolve pronounced surface subsidence dur-

ing the 2019 thaw season within the 2007 Anaktuvuk River fire scar. A temporal relationship between measured surface

subsidence/uplift and changes in normalized annual degree days is observed, consistent with the thermodynamically driven

seasonal freezing and thawing of the active layer. We discuss optimal strategies of post-processing ICESat-2 data for permafrost

applications, as well as the future potential of joint ICESat-2 and InSAR investigations of permafrost surface dynamics.

1



manuscript submitted to Geophysical Research Letters

Quantifying permafrost deformation with ICESat-21

R. J. Michaelides∗,1, M. Bryant∗,2, M. R. Siegfried1, A. A. Borsa22

1Department of Geophysics, Colorado School of Mines, Golden, CO USA3

2Institute of Geophysics and Planetary Physics, Scripps Institution of Oceanography, University of4

California, San Diego, La Jolla, CA USA5

∗Contributed equally to the manuscript6

Key Points:7

• We demonstrate that ICESat-2 altimetry can successfully resolve surface subsi-8

dence due to seasonally thawing permafrost9

• ICESat-2 measurements of surface deformation are broadly consistent with independently-10

derived deformation estimates from Sentinel-1 InSAR11

• The complementarity of ICESat-2 laser altimetry and InSAR methods shows promise12

for novel investigations of permafrost surface dynamics13
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Abstract14

We use ICESat-2 laser altimetry crossovers and repeat tracks collected over the North15

Slope of Alaska to estimate height change due to the deformation of seasonally freezing16

and thawing permafrost. We compare these measurements with a time series of surface17

deformation from Sentinel-1 interferometric synthetic aperture radar (InSAR) and demon-18

strate agreement between these independent observations of surface deformation. Both19

methods resolve pronounced surface subsidence during the 2019 thaw season within the20

2007 Anaktuvuk River fire scar. A temporal relationship between measured surface sub-21

sidence/uplift and changes in normalized annual degree days is observed, consistent with22

the thermodynamically driven seasonal freezing and thawing of the active layer. We dis-23

cuss optimal strategies of post-processing ICESat-2 data for permafrost applications, as24

well as the future potential of joint ICESat-2 and InSAR investigations of permafrost25

surface dynamics.26

Plain Language Summary27

NASA’s Ice, Cloud, and Land Elevation Satellite (ICESat-2) was designed to ac-28

curately measure surface heights so that changes on ice sheets, sea ice, and biomass might29

be studied. In this paper, we demonstrate the ICESat-2 can be successfully employed30

in permafrost regions, where seasonal freezing and thawing of frozen ground causes the31

Earth’s surface to deform with time. By comparing changes in estimated height from32

the ICESat-2 satellite, we can quantify the amount of surface deformation that occurs33

over a study site on the Alaskan North Slope. We compare these estimates of surface de-34

formation with independent estimates of surface deformation acquired by the European35

Space Agency’s Sentinel-1 spacecraft, which was specifically designed to precisely mea-36

sure surface deformation. By comparing these independent measurements from two satel-37

lites, we demonstrate that agreement of the estimated spatial patterns of surface defor-38

mation, suggesting that ICESat-2 can be used to quantify surface dynamics in permafrost39

regions.40

1 Introduction41

Permafrost, defined as ground that remains frozen for two or more consecutive years,42

underlies 24% of the Northern Hemisphere, and contains stores of bound carbon in the43

subsurface (primarily carbon dioxide and methane) amounting to 60% of the world’s soil44
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carbon (Turetsky et al., 2020). The Arctic, where the majority of permafrost is located,45

is the fastest changing component of the global climate system, with air temperatures46

across the Arctic currently increasing at roughly twice the average global rate (Jorgenson47

et al., 2001). Rising air temperatures can increase the magnitude of seasonal thawing48

and freezing of the uppermost portion of the permafrost column (the “active layer”) and49

can induce permanent melting and unrecoverable loss of permafrost. Both of these pro-50

cesses can result in decomposition of bound soil carbon and its release into the atmo-51

sphere (Natali et al., 2019). Results from the Coupled Model Intercomparison Project52

Phase 5 (CMIP5) suggest that global permafrost extent may decrease anywhere from53

20–37% by the end of the 21st century (Wang et al., 2019). As simultaneously one of the54

largest carbon reservoirs in the global carbon cycle and one of the fastest-warming re-55

gions on Earth, permafrost plays a disproportionately large role in the global climate sys-56

tem. Consequently, robust and expansive monitoring of regions with changing permafrost57

will be essential through the 21st century.58

The Circumpolar Active Layer Monitoring Network (CALM) was established in59

1991 to observe long-term, interannual impacts of variable climate on the active layer60

and near-surface permafrost (Brown et al., 2000). More recently, Global Navigation Satel-61

lite System (GNSS) reflectometry has been used to resolve both annual and inter-annual62

surface deformation associated with thawing of the active layer (Liu & Larson, 2018; Hu63

et al., 2018). Although GNSS and dedicated in-situ monitoring efforts like CALM can64

provide precise estimates of permafrost subsidence, these are point measurements that65

may not adequately represent permafrost changes away from the point of observation.66

The vastness of permafrost regions and the general inaccessibility of much of the north-67

ern high latitudes hamper many conventional methods of in situ monitoring. As a re-68

sult, remote sensing techniques such as visual (e.g., Quinton et al., 2010) or multispec-69

tral (e.g., Nitze & Grosse, 2016) imagery mapping, lidar surveying (e.g., Jones et al., 2013),70

and synthetic aperture radar (SAR) analysis (e.g., Liu et al., 2010), have been employed71

to monitor permafrost, with varying degrees of success.72

Interferometric synthetic aperture radar (InSAR) is a geodetic technique that can73

resolve centimetric deformation of the Earth’s surface (e.g., Goldstein & Zebker, 1987;74

Rosen et al., 2000). InSAR has been successfully applied to study a range of phenom-75

ena in permafrost regions that give rise to surface deformation, including seasonal thaw-76

ing of the active layer (Liu et al., 2012), wildfire-induced thermokarst (Liu et al., 2014),77
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initiation of retrogressive thaw slumps (Zwieback et al., 2018), and post-wildfire active78

layer thaw and recovery (Michaelides et al., 2019). Although InSAR processing is capa-79

ble of resolving deformation over vast spatial extents, precise estimates of deformation80

require several repeat observations and interferometric coherence from image to image.81

Extensive vegetation cover, changes in surface water cover, extent, and saturation, and82

variable snow cover, all of which are ubiquitous phenomena in permafrost regions, can83

induce signal decorrelation over temporal baselines as short as several weeks and limit84

the precision with which InSAR analysis can determine deformation in permafrost re-85

gions.86

The launch of the Ice, Cloud, and land Elevation Satellite 2 (ICESat-2) mission (Markus87

et al., 2017) in September 2018 provides an opportunity to complement InSAR techniques88

with spaceborne laser altimetry that extends to ±88◦ latitude. The small footprint, fine-89

scale along-track spacing, and high precision of elevation retrievals (e.g., B. Smith et al.,90

2020) suggests that ICESat-2 data products should be of sufficient quality to estimate91

surface deformation in complex permafrost terrain. Whereas C-band InSAR decorrelates92

across temporal baselines longer than a few weeks, ICESat-2 can yield long-period tem-93

poral information without signal degradation. Similarly, InSAR and laser altimetry are94

sensitive to different atmospheric characteristics, providing complementary observations95

of permafrost evolution and hazards in a challenging atmospheric environment. In this96

work, we demonstrate the capability of the ICESat-2 mission to quantify spatial patterns97

of active-layer deformation of permafrost in Arctic Alaska on the order of centimeters98

to decimeters. We compare our ICESat-2 results to InSAR-derived models of active-layer99

subsidence to validate our ICESat-2 retrievals and finally suggest future steps for expand-100

ing ICESat-2 data analysis to pan-Arctic estimates of Arctic permafrost change.101

2 Methods102

2.1 Field Site103

We compare Sentinel-1 InSAR deformation and ICESat-2 height change in a 3220104

km3 region of the North Slope of Alaska that encompasses the foothills of the Brooks105

Range to the south and the Arctic coastal plain to the north (Figure 1). Although the106

southern reaches of the study region exhibit considerable topographic relief, the tundra107

to the North of the foothills is flat and characterized by heath vegetation, tussock tun-108
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Figure 1. Study site within the Alaskan North Slope, with relative position within Alaska (in-

set). The bounding box of the comparison between Sentinel InSAR and ICESat-2 data is shown

in blue and the 2007 Anaktuvuk River fire scar is highlighted in red.

dra, and wet sedge tundra along well-drained hilltops, hillslopes, and saturated lowland109

valleys, respectively (J. Chen et al., 2020). The entirety of the Alaskan North Slope is110

underlain by continuous permafrost, with reported active layers ranging from 40 cm to111

100 cm in depth (Brown et al., 2000).112

Ignited by a lightning strike on 16 July 2007, the Anaktuvuk River fire burned ∼1039113

km2 of tundra in our study region, resulting in a doubling of the cumulative burned area114

of the Alaskan North Slope over the last 50 years (Jones et al., 2009) and a release of115

∼2.1 Tg of carbon into the atmosphere—equivalent to the net annual carbon sink of the116

circumpolar Arctic tundra (Mack et al., 2011). Both field measurements and InSAR mea-117

surements have indicated post-fire increases in active layer thickness and seasonal sub-118

sidence of the tundra burned by the Anaktuvuk River fire (Rocha & Shaver, 2011; Liu119

et al., 2014).120
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2.2 InSAR121

We use SAR data acquired between 7 Jan. 2019 and 21 Dec. 2019 by the Sentinel-122

1A satellite, which operates at C-band (∼5.65 cm wavelength) and with a 12-day tem-123

poral repeat in the high Arctic. We processed raw data (L1.0) collected in the interfer-124

ometric wide swath (IWS) mode using the ‘geocoded single-look complex’ (SLC) back-125

projection method (H. A. Zebker & Zheng, 2016; Zheng & Zebker, 2017). All SLC radar126

images were coregistered to a digital elevation model (DEM) spanning the region of in-127

terest and produced from the photogrammetric ArcticDEM dataset (Porter et al., 2018).128

The DEM was downsampled to a resolution of ∼5 m by ∼15 m, to match the native 5 m129

by 15 m spatial resolution of the Sentinel-1A satellite in range and azimuth, respectively.130

We generated a network of interferograms from all coregistered SLCs using a tem-131

poral baseline of 48 days and a perpendicular baseline of 150 m. We took 18 looks in range132

and 6 looks in azimuth during interferogram formation to increase the signal-to-noise ra-133

tio (SNR) of the phase estimation, resulting in interferograms with a spatial resolution134

of ∼100 m in both range and azimuth. We then unwrapped all interferograms using the135

SNAPHU algorithm (C. W. Chen & Zebker, 2001). We used the correlation files of each136

interferogram to aid in the unwrapping scheme and tiled each interferogram to speed up137

computational time. We then applied a unimodal correction to all unwrapped interfer-138

ograms to correct for any phase unwrapping errors in the unwrapped interferograms. All139

interferograms exhibiting severe decorrelation or turbulent atmospheric noise were re-140

moved from the set of interferograms used for analysis. The topography-correlated com-141

ponent of atmospheric noise was empirically removed from all interferograms using the142

DEM following Doin et al. (2009). Due to the paucity of reliable GNSS stations in the143

study region, all interferograms were phase-referenced using a selection of several pix-144

els exhibiting high coherence in regions of no assumed deformation (i.e., mountain ridges)145

following Liu et al. (2012).146

After applying the above calibrations to the InSAR data, we generated a pixel-wise147

time-series across the comparison region using the small baseline subset (SBAS) method148

(Berardino et al., 2002). The SBAS method is an inversion that solves for the pixel-by-149

pixel instantaneous velocity at the time of each SAR image acquisition. The estimated150

velocities were then integrated through time to form a time-series of surface displace-151

ments for each pixel over the temporal range of the network of input interferograms.152
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2.3 ICESat-2153

ICESat-2 is in a polar orbit with a 92◦ inclination, collecting observations from 88◦N154

to 88◦S with a 91-day exact repeat (Markus et al., 2017). ICESat-2’s laser instrument155

emits a single pulse, which is split into 3 pairs of beams, where each pair has one strong156

beam that is four times stronger than the corresponding weak beam. The three pairs are157

spaced at ∼3.3 km across-track and beams within a pair are spaced at ∼90 m, with the158

exact geometry controlled by spacecraft attitude (Neumann et al., 2019).159

Each beam illuminates a surface spot of 12–15 m diameter (Klotz et al., 2020) ev-160

ery 0.7 m along track. During the period covered by this study, ICESat-2 operated in161

“mapping mode” away from polar regions, , resulting in a higher density of tracks but162

no repeat measurements (Neumann et al., 2019). However, since the North Slope of Alaska163

is “target of opportunity” for the ICESat-2 mission, every fifth descending track was re-164

peated. This resulted in a small number of repeated tracks during the 2019 thaw sea-165

son that is the focus of our study. We note that on 9 Sep. 2019, the satellite performed166

a yaw flip in which the orientation of the altimeter instrument, and thus the relative or-167

dering of weak and strong beams, was reversed.168

We used surface height estimates from the Land Ice Height Product, ATL06 (B. E. Smith169

et al., 2019). ATL06 processing filters and provides a linear fit to the geolocated surface170

photons along 50%-overlapping 40 m segments to estimate the centroid height and sur-171

face slope in the along-track and across-track directions (B. Smith et al., 2019). We only172

used ATL06 data points flagged as high quality and that had a height within 2 m of ad-173

jacent segments. In addition, we removed segments with surface height uncertainty >1 m,174

along-track slope >5 degrees, and a signal-to-noise ratio significance level <0.02.175

We estimated surface height changes from both repeated tracks and profile crossover176

points. To identify crossing locations, we divided the study area into 10 km latitudinal177

bands. Within each band, we fit lines to the longitude and latitude coordinates of ATL06178

segments on individual tracks and calculated all intersections. Using this method, we com-179

pared 291 profiles and identified 9839 potential crossovers. For each crossover, we then180

constrained the data from the crossing tracks to segments lying within a specified radius181

of the crossing location. We considered the crossover valid if the track had a density of182

at least 1 point every 40 m, then recalculated the precise crossover location using these183

local segments .We estimated the profile heights at the crossover location using a line184
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fit to ATL06 segment heights as a function of along-track distance. Finally, we estimated185

the crossover height difference (dH) as the difference of the profile elevations at the crossover186

location, subtracting the later observation in time from the earlier observation. We prop-187

agated uncertainties on individual ATL06 elevations through to the final dH estimates.188

To examine the sensitivity of our crossover estimation to our choice of input data,189

we tested interpolation distances ranging from 20 m to 100 m for fitting lines to ATL06190

segments on either side of the crossover location. For this analysis, we used crossovers191

with a time interval of 14 days or less, a period over which we assume surface height change192

is negligible.193

We identified potential repeat tracks by flagging tracks from the same RGT with194

different collection dates and corresponding beams had an across-track distance differ-195

ence of <45 m. For each point from the earlier profile, we identified the closest point on196

the later profile and calculated the distance between observations. In order to ensure suf-197

ficiently overlapping segments, we only kept pairs that were within 5 m of each other across-198

track. We then calculated the height difference between each pair. In order to reduce199

the noise in our final results, we applied a boxcar filter over 2 km. Through this process200

we identified four RGTs with repeat profiles and consistent collection across the region201

of interest, including three 182-repeats and one 91-day repeat. Seven additional tracks202

had sparse coverage, likely due to cloud cover. We selected the 91-day repeat track (RGT203

1280) and one of the 182-day repeats tracks (RGT 335) for direct comparison with the204

InSAR results.205

3 Results and Discussion206

3.1 InSAR Deformation207

We applied the SBAS algorithm to 14 interferograms spanning the 2019 thaw sea-208

son. The SBAS algorithm solves for a time series of instantaneous velocity estimates for209

each epoch at which a SAR image was acquired. Integrating this velocity time series yields210

a time series of surface deformation, which can be directly compared to all deformation211

estimates derived from ICESat-2. The SBAS method resolves increased subsidence over212

the 2007 Anaktuvuk River fire scar (red outline, Figure 1). We observe a ∼1.5 cm dif-213

ference in subsidence between the burned tundra and unburned tundra, which is con-214

–8–



manuscript submitted to Geophysical Research Letters

sistent with estimates of 12 year post-fire active layer recovery from the Yukon-Kuskokwim215

delta (Michaelides et al., 2019).216

3.2 ICESat-2 Height Change217

We compared 291 individual ICESat-2 beams on ascending and descending tracks218

spanning the 2019 thaw season, yielding between 785 and 975 crossovers with the required219

point density, depending on the interpolation radius. The crossovers spanned time pe-220

riods ranging from 3 to 218 days, with 120 129 “short-period” crossovers spanning 14221

days or less. Figure 2 shows the standard deviation of short-period crossovers and me-222

dian propagated uncertainty (1σ) as a function of radius. The median standard devi-223

ation increases sharply with interpolation distance. Although we would expect interpo-224

lations over longer length scales to reduce the uncertainty for flat areas, the topography225

in this region is complex, leading to high residuals when interpolating over several ATL06226

segments. Both the uncertainty and short-period standard deviation are minimized for227

the 20 m interpolation, with a median uncertainty of 1.9 cm across all estimates and a228

standard deviation of 14 cm for the 120 short-period crossovers. Therefore, we conclude229

that interpolation using only the nearest two points is the optimal solution given the ter-230

rain.231

Crossovers height changes (dH) from the entire thaw season indicate net subsidence232

across the region, with elevation changes ranging from -156 to 83 cm, a median of -19233

cm, and uncertainties ranging up to 94 cm. The subset of short-period crossovers indi-234

cate large crossover variability. While the median bias of short-period crossovers is a small235

-0.15 cm , individual estimates vary from -47 cm to 36 cm.236

The 11 total repeat tracks in this study yielded height changes ranging from -550237

to 350 cm, with uncertainties between 0.8 and 97 cm. Overall, repeat-track comparisons238

show net subsidence over the study region, with a mean of -29 cm. As expected, the mag-239

nitude of height change from 181-day repeat tracks are higher (-550 cm < dH < 350240

cm; 1.5 cm < σ < 97 cm) than that for the 91-day repeats (-270 cm < dH < 230 cm;241

0.81 cm < σi < 95 cm). We selected one 91-day repeat (RGT 1280) and one 182-day242

repeat (RGT 0335) for comparison to the InSAR results. Applying the 2 km boxcar fil-243

ter reduces both the spread and the uncertainty in the data. For RGT 0335 spot 2l, this244

reduces the standard deviation and median uncertainty from 43 cm and 6.4 cm to 30 cm245
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Figure 2. Top: standard deviation of short-period (<14 days) crossovers (left axis) and me-

dian propagated uncertainty (right) as a function of interpolation radius. Bottom: an example

of linear fitting of an ATL06 profile in this region. As the interpolation radius increases, the in-

terpolation does a poorer job of fitting the surface, and the crossover height estimate deviates

further from the true surface.

and 0.8 cm respectively. For track 1280 spot 2l, this reduces the standard deviation and246

median uncertainty from 21 cm and 6.4 cm to 12 cm and 1.3 cm. The spatial distribu-247

tion of the averaged dH values for each of the two RGTs is shown in figure 3.248

3.3 Comparison Between Techniques249

Due to the large amount of noise in the crossover estimates (as indicated by the250

short-period crossovers), a direct comparison between crossovers and InSAR estimates251

is challenging. However, by comparing crossover-derived height changes to their asso-252

ciated changes in normalized accumulated degree days (NADD)–which were calculated253

from NASA’s Daily Surface Weather and Climatological Summaries (DAYMET) reanal-254

ysis temperature dataset–a clear temporal correlation emerges. The magnitude (sign)255

of ICESat-2-derived vertical surface deformation is positively (negatively) correlated with256
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Figure 3. Left: comparison of the elevation changes from 91-day (RGT 1280) and 182-day

(RGT 0335) repeat tracks, as well as the SBAS deformation estimate over a similar time period.

Right: along-track profiles of the ICESat-2 raw (yellow) and boxcar-filtered (purple) elevation

changes for spot 2l of each track, and the SBAS-derived estimates (red) of the deformation over

that time interval. The vertical dashed line indicates the latitudinal bounds of the burn area.
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Figure 4. Left: Two-dimensional histogram of ICESat-2 crossover height-change estimates

and the associated change in normalized accumulated degree days (NADD). Right: The linear

best fit to the histogram to the data in the left panel.

the magnitude (sign) of NADD change (Figure 4). This relationship is physically con-257

sistent with active layer thawing (subsidence) during time spans where degree days accumulate–258

warming summer months– and freeze-up (uplift) during active layer freezing, when changes259

in degree days are negative.260

To validate ICESat-2 permafrost deformation estimates from repeat tracks, we com-261

pare our ICESat-2 height-change estimates to SBAS-derived deformation over approx-262

imately the same temporal baseline. Figure 3) displays the SBAS-derived deformation263

observed between dates 23 Jun. 2019 and 16 Sep. 2019, with ICESat-2-derived 91-day264

height change from RGT 1280, which spanned 06 Jun 2019 and 19 Oct 2019 overlain.265

We also show the comparison between SBAS deformation between 20 Apr 2019 and 23266

Oct 2019 and 182-day height change on RGT 0335, which spanned 04 Apr 2019 and 18267

Oct 2019. The difference in acquisition date between the first ICESat-2 and Sentinel im-268

ages and second ICESat-2 and Sentinel images is 3 days for RGT 1280 and 5-6 days for269

RGT 0335, such that the expected deformation of the surface between the inter-instrument270

image acquisition can be assumed small. As such, the surface deformation observed by271

InSAR and ICESat-2 are expected to be roughly equivalent.272

–12–
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Whereas ICESat-2 observes systematically larger elevation changes than InSAR,273

both the spatial pattern and sign of observed elevation change (i.e., uplift or subsidence)274

is consistent with InSAR observations. Notably, both Sentinel-1 and ICESat-2 observed275

increased subsidence over the 2007 Anaktuvuk River fire scar compared to nearby un-276

burned tundra. Additionally, both methods observe an inverse correlation between to-277

pography and subsidence, with well-saturated lowlands exhibiting larger subsidence than278

well-drained hill slopes and ridge crests, consistent with past studies (J. Chen et al., 2020).279

Anomalously large uplift values are inferred from ICESat-2 crossovers over topograph-280

ically rough surfaces (such as exposed rock ridge tops) and several rivers and river flood-281

plains. These large-magnitude values are likely related to errors in our interpolation over282

rough terrain or failure of the ATL06 assumption that over 40 m length scales, the sur-283

face topography can be estimated as a plane, suggesting a higher level surface-height data284

product that considers the unique topographic and roughness characteristics of permafrost285

regions would improve ICESat-2’s utility for long-term thaw monitoring. Deformation286

estimates from the 182-day repeat are systematically higher than those from the 91-day287

repeat. This discrepancy is likely predominantly due to the fact that the 182-day repeat288

spans the entire thaw season, while the 91-day repeat does not. However, height changes289

due to late spring snow melt may also be contained within the 182-day deformation mea-290

surement. If ICESat-2 is indeed sensitive to changes in snow height, it may prove com-291

plementary to InSAR-based studies of late spring thaw, which can be severely impacted292

by signal decorrelation.293

Sentinel-1 InSAR, ICESat-2 crossovers, and ICESat-2 repeat-track methods cap-294

ture spatially consistent patterns of surface deformation associated with subsidence of295

the thawing active layer. However, ICESat-2 measurements are systematically larger and296

noisier than InSAR measurements, and require along-track filtering with a boxcar im-297

pulse response on the order of 100 segments (2 km) to derive comparable deformation298

estimates to the InSAR results. This discrepancy may be partially due to both the op-299

erational nature of the two imaging techniques, as well as their respective post-processing300

methods. Although synthetic aperture radar interferometry and laser altimetry are both301

coherent source imaging techniques, the physical nature of each instrument’s backscat-302

tered signal is different. SAR backscatter represents a convolution of the output radar303

signal with the distribution of scattering elements contained within each ground reso-304

lution element (resel). The distribution of scattering elements within any one individ-305
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ual resel may result in a noisy phase estimate, but considerable spatial averaging (“mul-306

tilooking”) in both the along-track and across-track of the radar image results in a larger307

signal-to-noise ratio (SNR) and more precise phase estimate (Goldstein et al., 1988; Li308

& Goldstein, 1990; H. Zebker & Villasenor, 1992). Starting from SAR images with a na-309

tive resolution of ∼5 m by ∼15 m across-track and along-track, respectively, a total of310

18 looks across-track and 6 looks along-track were taken during interferogram image for-311

mation to generate images with a 100 m spatial resolution in both along-track and cross-312

track. As such, each individual phase estimate represents a statistical average of 108 in-313

dependent measurements. In contrast, the ICESat-2 ATL06 dataset has a native along-314

track resolution of 40 m. The altimetric return from the ICESat-2 laser is dictated by315

the count density of backscattered photons, which is typically <10 signal photons out316

of 200 trillion transmitted photons (Neumann et al., 2019). Although the deformation317

uncertainty of a native resolution InSAR pixel is on the order of 1 cm, ATL06 height es-318

timates have a precision of 9 cm for best-case targets (high reflectivity; low roughness)319

(Brunt et al., 2019), and any inferred deformation (i.e., change in height) will be even320

larger. Therefore, an even greater number of statistical averages is likely necessary to321

achieve height-change estimates from ICESat-2 with the precision of InSAR methods.322

Moreover, because ICESat-2 provides a one-dimensional, along-track measurement323

rather than a two-dimensional image like SAR, achieving a comparable number of sta-324

tistical samples as a 100 m InSAR pixel necessitates boxcar-filtering ICESat-2 data in325

the along-track direction with a spatial resolution of ∼2 km. As such, InSAR and ICESat-326

2 estimates of deformation will agree better in flatter regions such as the northern Arc-327

tic coastal plain, where topographically rough areas like the Brooks Range foothills ex-328

hibit larger differences in inferred deformation. Therefore, a large amount of along-track329

filtering over complicated topography will break assumptions of signal ergodicity, and330

may result in biased estimates of deformation with large uncertainties. The ATL06 data331

product was designed primarily for surface slopes of 1◦ or less (B. Smith et al., 2019),332

whereas slopes in this region are often a few degrees or more. We only included height333

changes for areas with surface slopes less than 5◦,however stricter surface slope restric-334

tions may be needed. Alternatively, uncertainties in ICESat-2 derived deformations might335

be lowered by adaptively varying the crossover interpolation and along-track smooth-336

ing based upon local topography.337
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ICESat-2 can retrieve estimates of surface deformation that are qualitatively in agreement–338

particularly in terms of spatial structure–with independent InSAR estimates, but achiev-339

ing this result requires appropriate statistical averaging and is expected to work better340

in regions exhibiting more uniform surface topography and permafrost distribution at341

the km spatial scale. In regions that exhibit a large degree of spatial heterogeneity, the342

assumptions of signal ergodicity inherent to any statistical averaging techniques break343

down, and biases in estimated deformation can manifest. Additionally, the complex rough-344

ness characteristics of tundra terrains–particularly tussock tundra–can introduce uncer-345

tainties in the ICESat-2 height retrieval itself, as photons may backscatter from vege-346

tation scattering elements distributed over several decimeters. The smaller native pre-347

cision of interferometric measurements, as well as the two-dimensional nature of InSAR348

images, makes InSAR measurements more robust to spatial variability than ICESat-2.349

Nonetheless, we have demonstrated a noticeable sensitivity of ICESat-2 to local-scale de-350

formation associated with seasonal permafrost thawing, which necessitates future inves-351

tigation into the full potential of ICESat-2 observations for characterization of permafrost352

surface dynamics. Coherent ICESat-2 repeat and crossover estimates at 91 and 182 day353

intervals complement the ubiquitous problem of interferometric temporal decorrelation354

that plagues InSAR-based studies in permafrost regions. Furthermore, these two meth-355

ods can also look at complementary targets: whereas the sidelooking viewing geometry356

of conventional SAR imaging systems makes them insensitive to surface water bodies,357

the nadir geometry of ICESat-2 might allow for precise estimates of surface water height358

levels and changes. Such measurements, combined with InSAR-based measurements of359

surface subsidence and active layer thickness, could allow for novel investigations of the360

spatiotemporal relationships between permafrost thaw, water table and lake/river level361

heights, as well as potentially the horizontal flow of groundwater through the permeable362

active layer.363

4 Summary364

This study provides a preliminary investigation into the effectiveness of using ICESat-365

2 height changes to study permafrost thaw subsidence. We compared ICESat-2-derived366

surface deformation over a 91-day and a 182-day interval across a region of the North367

Slope, Alaska, to InSAR-derived subsidence. We found that, although the magnitudes368

of deformation differ between ICESat-2 and InSAR retrievals, the longer-wavelength spa-369

–15–



manuscript submitted to Geophysical Research Letters

tial structures of deformation are similar, indicating that the two instruments are sen-370

sitive to large-scale subsidence patterns. Furthermore, both crossovers and repeat tracks371

are capable of detecting large-scale subsidence patterns over the thaw season, although372

additional repeat-track data collection is necessary to better assess the short-scale noise373

characteristics of ICESat-2 altimetry over permafrost. The uncertainty in ICESat-2-based374

deformation estimates seems to be primarily due to the complicated topography and scat-375

tering physics of vegetated tundra. Thus, it may be possible to refine ICESat-2 estimates376

of surface deformation by limiting analysis to topographically smooth areas, or by de-377

veloping adaptive algorithms that account for more local topography variations during378

statistical averaging. Further investigation into the fundamental nature of the scatter-379

ing physics which gives rise to radar backscatter and photon backscatter over tundra ter-380

rain is also warranted. Given the importance of permafrost dynamics to the global car-381

bon cycle, we advocate for investigation into the full potential of using ICESat-2 data382

products to quantify surface dynamics in permafrost and periglacial environments.383
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