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Abstract

Statistical classifications and machine-learning-based predictive models are increasingly used for environmental data analysis and

management. There now exist numerous classifications on the same topic but applied to different regions or spatial scales, such

as geomorphic classifications. However, no quantitative meta-analysis framework exists to compare and reconcile across multiple

classifications. To fill this gap, we jointly characterize statistical classifications and predictions by combining information theory

and machine learning in three novel ways by: (i) measuring the degree of discriminatory information underlying a statistical

classification; (ii) estimating the stability of the learning process with tuning entropy; and (iii) leveraging the sequential coarse-

graining of information inherent to deep neural networks but absent from traditional machine learning models. This framework

is applied through a benchmark of 59 millions models on a unique example of a single statistical classification methodology

applied to nine different regions of California, USA. Regional results show that random forest consistently outperforms deep

neural networks. In addition, a correlation analysis between regional characteristics, the level of discriminatory information of

each classification, and the performance in statistical learning explains variations in performance and reveals the decisive role

of the spatial scale of classification outputs. Because such a spatial scale is itself linked to the common situation of limited

field sampling, directly comparing findings from statistical classifications and associated predictions appears seldom justified.

A more desirable avenue to compare findings lies in combining data underlying statistical approaches in an interpretable and

justifiable environmental data science.
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Abstract14

Statistical classifications and machine-learning-based predictive models are increasingly used for en-15

vironmental data analysis and management. There now exist numerous classifications on the same topic but16

applied to different regions or spatial scales, such as geomorphic classifications. However, no quantitative17

meta-analysis framework exists to compare and reconcile across multiple classifications. To fill this gap, we18

jointly characterize statistical classifications and predictions by combining information theory and machine19

learning in three novel ways by: (i) measuring the degree of discriminatory information underlying a sta-20

tistical classification; (ii) estimating the stability of the learning process with tuning entropy; and (iii) lever-21

aging the sequential coarse-graining of information inherent to deep neural networks but absent from tra-22

ditional machine learning models. This framework is applied through a benchmark of 59 millions models on23

a unique example of a single statistical classification methodology applied to nine different regions of Cal-24

ifornia, USA. Regional results show that random forest consistently outperforms deep neural networks. In25

addition, a correlation analysis between regional characteristics, the level of discriminatory information of26

each classification, and the performance in statistical learning explains variations in performance and reveals27

the decisive role of the spatial scale of classification outputs. Because such a spatial scale is itself linked to28

the common situation of limited field sampling, directly comparing findings from statistical classifications29

and associated predictions appears seldom justified. A more desirable avenue to compare findings lies in com-30

bining data underlying statistical approaches in an interpretable and justifiable environmental data science.31
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1 Introduction32

Machine Learning (ML) is becoming increasingly prevalent in natural sciences because of its ability to33

identify and predict patterns in large and complex datasets (Shen, 2018; Bergen et al., 2019; Reichstein et34

al., 2019). In hydrologic sciences, this popularity leads to an increasing number of statistical classifications35

and ML predictions of patterns of hydrologic response and channel forms at regional, continental and global36

scales (Table 1). A statistical classification (e.g., hierarchical clustering) identifies latent patterns directly37

from data, and a predictive ML model (e.g., random forest, neural networks) estimates a relationship be-38

tween data and already labelled patterns, or labels. In addition, statistical classification and predictive mod-39

elling may augment one another. For example, in Byrne et al. (2019) and Guillon et al. (2020), the labels40

outputted by a statistical classification were fed into a predictive model using more-readily available data41

(e.g., remote sensing) than the one used for classifying. Alternatively, in McManamay et al. (2018), the dataset42

used in classification was completed using predictive models.43

Classification and pattern recognition are routine human activities in both science and management,44

but the ability to integrate across many studies to reveal underlying natural phenomena hinges on the com-45

patibility of numerous and likely divergent methodological choices. There are many classification purposes,46

data types, approaches, and instances for the same environmental systems, yet science needs to synthesize47

and interpret that diversity and complexity to enable broader understanding and societal benefit beyond each48

original classification application. Hence, while the growing number of statistical classifications provides ma-49

terial for meta-analysis at increasingly larger scales, a quantitative approach to compare such statistical find-50

ings is missing, limiting the potential for scientific synthesis. As a result, meta-analysis dominantly relies on51

expert knowledge. For example, in a rare instance of comparison of geomorphic classifications, Kasprak et52

al. (2016) compared the results from three conceptual and one statistical approaches to classifying river chan-53
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nels within a single watershed of the Columbia River Basin, USA, and found generally comparable outputs.54

Kasprak et al. (2016) heuristically attributed the fuzzy correspondence across classifications to the geomor-55

phic linkage between form and process (Davis, 1899) inherent to the empirical classifications tested, which56

differed in their required input data and spatio-temporal scale of their labels. Yet, both for empirical and57

statistical classifications, it is unclear how to integrate findings beyond one individual geographic area into58

knowledge in other regions or at larger scales. In addition, there has been no attempt to quantitatively com-59

pare one or multiple statistical classifications within or between study areas.60

In this study, we develop a quantitative approach for comparing statistical classifications which, albeit61

developed in the context of fluvial geomorphology, is intended for use across all environmental sciences. The62

developed framework is capable of answering important scientific synthesis questions in the testbed context63

of fluvial geomorphology: why do different statistical classifications end up with different numbers of classes,64

and how does this relate to ML performance? We leverage nine statistical classifications of river channel forms,65

stemming from a single classification methodology (Byrne et al., 2019), and recently developed for nine dis-66

tinct regions of California, USA. Our approach, rooted in information theory and machine learning, increases67

the interpretability of each individual classification and enables the direct comparison of distinct classifica-68

tions established in different or the same region into an overarching unified classification to facilitate anal-69

ysis and management. Specifically, we characterize each classification by its information content and by the70

performance of the associated predictive models. Study results yield general implications for the sampling71

strategies at the core of statistical classifications and subsequent predictions. The rest of the article is or-72

ganized as follows. The next section introduces necessary background on information theory and machine73

learning. Section 3 details our case study and methods. Section 4 presents results and section 5 discusses74

their implications and limitations. Section 6 concludes by summarizing our findings.75
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2 Background on Information Theory and Artificial Intelligence76

Since their inception in the 1950s, artificial intelligence (AI) and information theory have been closely77

related. In fact, at the 1956 Dartmouth Workshop on Artificial Intelligence, a landmark event for the foun-78

dation of AI, one of the attendants was Claude Shannon, the founder of information theory with his sem-79

inal paper “A Mathematical Theory of Communication” (Shannon, 1948). Broadly, information theory is80

concerned with estimating (and preserving) the statistical structure of a message communicated with noise81

and AI is concerned with mimicking (human) cognition processes. Seventy years later, both fields span a vast82

scope and, because of their shared roots in statistics and computer science, are present to some extent in83

most fields of science. In particular, machine learning (ML), the subfield of AI concerned with pattern recog-84

nition with self-improving algorithms (Michie, 1968), is increasingly popular.85

Hydrological sciences have increasingly incorporated information theory and AI. For information the-86

ory, this is best exemplified by a recent series of articles debating its relation with statistical physics (Perdigão87

et al., 2020), inference (Nearing et al., 2020) and model parsimony (Weijs & Ruddell, 2020) and for AI, by88

a recent review of the hydrologic applications and associated challenges of deep learning (detailed below, Shen,89

2018). Some specific examples of information theoretic approaches include evaluating causality in dynam-90

ical systems (Jiang & Kumar, 2019), identifying hydrologic response times (Tennant et al., n.d.), interpo-91

lating spatial data (Thiesen et al., 2020), and diagnosing the performance (Ruddell et al., 2019) and struc-92

ture (Bennett et al., 2019) of physics-based hydrologic models. Furthermore, applications of deep learning93

are becoming pervasive in hydrology, for example to predict streamflow (e.g. Kratzert et al., 2019; Worland94

et al., 2019; Tennant et al., n.d.), downscale satellite products (e.g. Alemohammad et al., 2018) or model95

outputs (e.g. Pan et al., 2019), reconstruct historic flood (e.g. Bomers et al., 2019) and classify images (e.g.96

Ling et al., 2019).97
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Deep learning repeats and stacks the basic structure of an artificial neural network (LeCun et al., 2015).98

An artificial neural network is constituted by a succession of layers of connected neurons. Each neuron holds99

a weight, describing its connection with neurons in the next layer, and some form of activation, function-100

ally combining inputs from neurons in the previous layer. The first, last and in-between layers correspond101

to input, output, and hidden layers, respectively. A shallow neural network has one hidden layer, a deep neu-102

ral network (DNN) has more than one hidden layer and numerous architectures exist to arrange the hidden103

layers and their connections (see (Shen, 2018) for example in hydrologic sciences).104

While deep learning can predict complex patterns (LeCun et al., 2015), its performance is only par-105

tially explained by how a deep neural network processes information. DNN can approximate any function106

(Cybenko, 1989; Hornik et al., 1989) without settling in local optima (Baldassi et al., 2016) or suffering from107

over-parameterization (Belkin et al., 2019; Geiger et al., 2019). Notwithstanding, a complete theoretical ex-108

planation of DNN’s ability to generalize learned patterns is still missing (Zhang et al., 2016). Nonetheless,109

deep learning success is tied to the stacked architecture of DNN, which sequentially reverses the hierarchi-110

cal generative process between output and input (H. W. Lin et al., 2017). In particular, the sequential pro-111

cessing of the data through the hidden layers optimally decouple dependent inputs, extract relevant infor-112

mation from noise and compress it to allow generalization (Tishby & Zaslavsky, 2015; Shwartz-Ziv & Tishby,113

2017). Such information distillation, or the sequential coarse-graining of information from a microscopic scale114

to a macroscopic scale, led to decisive cross-pollination between statistical learning and statistical physics115

(H. W. Lin et al., 2017; Carleo et al., 2019).116

Information distillation is absent from Support Vector Machine (SVM) and Random Forest (RF), two117

of the most used traditional machine learning methods (i.e. non-deep learning). SVM is a maximum mar-118

gin classifier where the width of the margin between classes is defined by the distance between each class’119
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closest points forming the support vectors of the class boundary (Cortes & Vapnik, 1995). While filtering120

the information inputted to SVM is a common practice, SVM itself omits explicit information distillation.121

RF is an ensemble of classification and regression trees (Breiman et al., 1984) and includes at each split of122

each tree an information selection process based on the Gini coefficient or on an information theory mea-123

sure. The repetition of this information selection process in each tree of the forest is combined with inter-124

nal bagging and leads to (mostly) uncorrelated trees which makes the ensemble decision process robust to125

noise and yields good generalization. While this repeated and random predictor selection explains the per-126

formance of RF when the training dataset is reduced, noisy or both (Fox et al., 2017), it is distinct from the127

information distillation present in DNN. In this study, we relate this distinction in information processing128

between deep learning and traditional ML to the information ingrained in the labels from statistical clas-129

sifications130

3 A Quantitative Approach for Comparing Statistical Classifications131

To characterize each individual classification and allow for cross-comparison, we aim to evaluate (i) the132

degree of discriminatory information ingrained in each classification, that is the amount of information needed133

to separate class examples, and (ii) the performance of ML models. Then, we investigate the potential link-134

ages between the degree of discriminatory information and ML model performance by performing a corre-135

lation analysis. For completeness, we also include in this correlation regional classification characteristics like136

the number of observations. The following sections detail the derivation of each variable included in the cor-137

relation analysis.138
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3.1 Statistical Classifications of California Channel Types139

As a case study, we use independent channel classifications for nine regions of California (USA), a phys-140

iographically diverse state (Mount, 1995) with numerous integrated management challenges (e.g. Lane et al.,141

2018). The nine regions vary in terms of size, hydro-climate, physiography, and geology (Fig. 1, Table 2).142

Each region received a different intensity of sampling due to financial and logistical constraints, rareness of143

some natural conditions, and the limited remains of sufficiently natural sites for some channel types (Table144

3). For example, small, low-order, unconfined streams in mountain meadows and on valley floors are ubiq-145

uitously plowed over for various land uses. Among selected sites for all regions, all observations were made146

using the same procedures by people trained together to yield standardized results. Sampling locations for147

each region were randomly selected in a stratified scheme aimed at capturing the existing natural variabil-148

ity in terms of four GIS-derived attributes: 10-m digital elevation model channel slope, valley confinement,149

drainage area and sediment supply. The channel classification for each region was made using the same an-150

alytical methodology (Byrne et al., 2019) involving hierarchical clustering mostly based on field-measured151

channel attributes (e.g. bankfull channel width and depth, width and depth variability, grain size metrics,152

and channel slope), but also including GIS-derived valley confinement and catchment area. In total, 1,110153

observations were used to produce nine regional statistical classifications (Fig. 1, Table 3). The labels re-154

sulting from the classifications, the channel types, are identified and named in terms of valley confinement,155

bed morphology and sediment size (e.g. unconfined riffle-pool sand-bedded river, confined cascade/step-pool156

stream with boulders).157
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3.2 Estimating Information Needed to Discriminate between Classes158

The degree of information inherent to each statistical classification relates to the information needed159

to discriminate between each label of each classification and is derived from information theory metrics. We160

detail below the relations between entropy, conditional entropy, mutual information, Kullback-Leibler diver-161

gence, Jensen-Shannon divergence and Jensen-Shannon distance.162

Shannon’s entropy describes the predictability of a random variable X with discrete probability mass163

function P over n outcomes (Shannon, 1948):164

H(X) = −
n∑

i=1
P (xi)logbP (xi)

with b, the base of the logarithm function; when b = 2, information theory metrics have units of bit.165

If the distribution is biased towards a specific outcome, entropy is low. Conversely, entropy is maximum when166

all outcomes are equally probable. Following the rules of statistics, entropy can be conditioned on the dis-167

tribution of another random variable Y . Then, conditional entropy, H(X|Y ), represents the uncertainty left168

in X after learning the outcome of Y (Shannon, 1948):169

H(X|Y ) = −
n∑

i=1
P (yi)

n∑
i=1

P (xi|yi)logbP (xi|yi)

From entropy and conditional entropy definitions stems mutual information, a measure of the degree170

of information shared between X and Y (Shannon, 1948):171

MI[X; Y ] = H(X)−H(X|Y )

–9–



manuscript submitted to Water Resources Research

where the right-hand side is the difference between the uncertainty in X before and after the outcome172

of Y becomes known. Mutual information is symmetric, MI[X; Y ] = MI[Y ; X], and zero if X and Y are173

statistically independent.174

The Kullback-Leibler divergence describes the mean information for discriminating between discrete175

probability distributions P and Q by observing P only (Kullback & Leibler, 1951):176

DKL(P, Q) =
n∑

i=1
P (xi)logb

P (xi)
Q(xi)

Formally, the Kullback-Leibler divergence is the expectation of the logarithmic difference between dis-177

crete probability distributions P and Q with respect to probability distribution P . Because of this, the Kullback-178

Leibler divergence is asymmetric and, in non-trivial cases, DKL(P, Q) 6= DKL(Q, P ).179

The Jensen-Shannon divergence is a measure of discrimination between two probability distribution180

functions and is directly related to the Kullback-Leibler divergence (J. Lin, 1991; Topsoe, 2000):181

DJS(P, Q) = 1
2 [DKL(P, R) + DKL(Q, R)]

with R = 1
2 (P +Q) the midpoint probability. The Jensen-Shannon distance, dJS = D

1/2
JS retains the182

advantageous symmetric property of the Jensen-Shannon divergence, while satisfying the triangular inequal-183

ity and being a proper distance metric (Endres & Schindelin, 2003) which allows for constructing distance184

matrices; a common tool in data analysis (e.g. correlation matrix).185

In the California channel classification case, for each regional classification and between each pair of186

its channel types, we calculate the average d̄JS from the distributions of seven channel attributes measured187
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in-situ: bankfull depth, bankfull width, bankfull width-to-depth ratio, coefficients of variation for width and188

depth and the 50th and 84th percentiles of grain size (D50, D84). Channel types with high d̄JS are defined189

from more distinct underlying information, requiring on average a lower degree of information (i.e. less in-190

formation) for discriminating between them. Conversely, channel types with low d̄JS are defined from less191

distinct underlying information, requiring on average a higher degree of information (i.e. more information)192

to discriminate between them. Importantly, the channel attributes used to construct the Jensen-Shannon193

distance matrix excludes the four coarser-scale GIS metrics used to stratify the random sampling, even though194

two of them (area and confinement) were prominent in classifying some regions. In consequence, the d̄JS rep-195

resents here the degree of discriminatory information potentially missing from coarser-scale predictors. Each196

regional d̄JS matrix is summarized by its median Jensen-Shannon distance, d̃JS , representing the typical de-197

gree of information needed to separate class examples in a given regional classification.198

3.3 Assessing Performance of Machine Learning Models199

Given a regional channel classification created by identifying patterns from data mainly measured in-200

situ, ML prediction aims to assign labels to the remaining unsampled sites throughout the region, on the201

basis of coarser scale remote sensing and GIS data. Our three-tiered ML framework is based on Guillon et202

al. (2020) with the following modifications (Fig. 2). Predictors (Table 4) are selected prior to statistical learn-203

ing by an information filter and 49 runs are performed with a number of predictors between 2 and 50. For204

each region, three baseline models (naive bayes, featureless and k-nearest-neighbor) are trained with default205

hyper-parameters and DNN, SVM and RF models are tuned with nested resampling. This allows for eval-206

uating the stability of the tuning process and selecting an optimal number of predictors. We detail in the207

following how predictors are filtered and how ML model performance is measured.208
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3.3.1 Filtering Predictors209

The inclusion of a high number of irrelevant predictors may lead to over-fitting, hindering a robust gen-210

eralization. In the complex problem of predicting fine-scale labels with coarser-scale geospatial predictors,211

Guillon et al. (2020) selected groups of predictors using data complexity measures (Lorena et al., 2018). Here,212

we select individual predictors using a filtering method based on mutual information (Guyon & Elisseeff, 2003).213

Such a filter maximizes the relevance of the predictors used to identify the channel types based on the sta-214

tistical relationship between predictor and channel types distribution. As the filtering is based on field-measured215

data at observation locations, it may be biased according to the observed distribution of channel types (Ta-216

ble 3). To address this issue and derive a more robust filter, the filtering is averaged over 500 iterations, each217

using 80% of the training data in a stratified subsampling scheme. This selects predictors that have the high-218

est degree of statistical dependence with respect to the channel types distribution.219

Filtering predictors with mutual information is algorithm-agnostic but maximizes predictor relevance220

without consideration for redundancy. Nonetheless, only perfectly correlated variables are truly redundant221

with no additional information gained by adding them. In fact, engineering new predictors from highly cor-222

related but complementary predictors may increase class separation (Guyon & Elisseeff, 2003). Yet, the three223

ML models tested here have a different inherent relationship to the predictor space and might be impacted224

differently. SVM calculates its maximum margin at once for the entire predictor space and likely benefits225

from removing redundant predictors. In RF, each decision tree is built sequentially by comparing at each226

split a subset of individual predictors against a subset of observations. The ensemble decision process im-227

plicitly combines predictors while being able to robustly filter out irrelevant predictors. In DNN, multiple228

hidden layers of neurons act as latent predictors by combining input. In consequence, removing highly cor-229

related but complementary predictors may impact DNN performance negatively by hindering the discov-230
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ery of relevant latent predictors. Thus, to reduce near-perfect redundancy without potentially impacting DNN231

performance, predictors with correlation greater than 0.95 are filtered out before entering the information232

filter (Fig. 2).233

3.3.2 Measuring Performance234

We assess ML model performance in both statistical learning and predictive modeling. The performance235

in statistical learning is assessed by benchmarking ML models across the nine regions of study using area-236

under-curve (AUC) and hyper-parameter tuning entropy. The observations are balanced using Synthetic Mi-237

nority Oversampling TEchnique (Chawla et al., 2002) and the input data are filtered for no-variance pre-238

dictors, centered and scaled, and missing values are imputed with a median imputation. The tuning is dis-239

crete with length 16 for RF and SVM, and random with 100 iterations for DNN. DNN are trained during240

20 epochs and with a batch number between 120 and 560 depending on the size of the training dataset for241

each region of study. The benchmark is performed with nested resampling that estimates the robustness of242

the tuning process and limits over-fitting by using two nested loops: an inner loop for model tuning and an243

outer loop for model selection (Bischl et al., 2012, Fig. 2). Here, the outer resampling is a 10-fold stratified244

cross-validation repeated 10 times, and the inner resampling is a 10-fold stratified cross-validation. While245

traditional resampling leads to a distribution of model performance, nested resampling additionally provides246

a distribution of best-tuned hyper-parameters. In consequence, in addition to AUC, the performance of the247

model is assessed by estimating the hyper-parameter tuning entropy from the distribution of their best-tuned248

hyper-parameters. AUC is preferred here to accuracy for its higher discrimination performance, its relation249

to class-separability and its suitability for limited dataset (Rosset, 2004; Huang & Ling, 2005; Ferri et al.,250
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2009). Combined with 49 runs of predictor selection, these benchmark parameters lead to training 57,267,000251

tuned models and 132,300 baseline models (6,510,000 per region).252

For each region, the selection of the optimal model is based on the statistical differences between AUC253

distributions for different numbers of predictors. The selection is performed in a sliding window of 7 mod-254

els, meaning that one model withM(n) with n predictors is compared to the following models {M(n+1)255

. . . M(n + 6)}. The statistical comparison is performed by a Dunn’s test with a Bonferroni correction of256

the p-value to account for multiple comparisons. In consequence, a difference is considered significant if the257

test p-value is lower than 0.05/7 ' 0.007.258

Similar to Guillon et al. (2020), the performance in predictive modeling is assessed for each region at259

the network-scale using entropy rate and an expert evaluation of the geomorphic relevance of the predictions260

(Fig. 2). Entropy rate leverages the network structure of the predictions and estimates the stability of the261

predictions from the transition probabilities between each channel type. Such entropy rate prognosticates262

the prediction skill of a model (Stephenson & Dolas-Reyes, 2000; Roulston & Smith, 2002) and helps select263

models providing the best information (Daley & Vere-Jones, 2004; Nearing & Gupta, 2015). Both metrics264

are computed from predictions after a cross-validated multinomial calibration that corrects the potential dis-265

tortion of posterior probabilities and improves model performance (DeGroot & Fienberg, 1983; Zadrozny,266

2002; Niculescu-Mizil & Caruana, 2005).267

3.4 Correlation Analysis268

The previous subsections explain how the three main types of data characterizing each regional clas-269

sification were obtained to enable cross-classification comparison. A correlation analysis then elucidates the270

potential linkages between variables describing each region, measures of the information ingrained in sta-271
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tistical classifications, and measures of the performance of traditional ML models and deep learning mod-272

els. The regional variables included are: number of observations, area, observation density, number of classes,273

and number of confined classes. Confined channel types are likely the most difficult classes to correctly iden-274

tify because their more limited spatial imprint is imperfectly captured by large scale geospatial predictors275

(Guillon et al., 2020). The degree of required discriminatory information d̄JS in each regional classification276

is aggregated by a median value over all classes and by minima min
{

d̄JS

}
over all classes and confined classes277

only. The ML model performance metric variables include AUC, accuracy, hyper-parameter tuning entropy,278

entropy rate and the relative difference in performance between traditional and deep learning models. Both279

Pearson and Spearman correlation were performed on scaled data and yielded similar results. Because of280

the limited dataset (n = 9), we present the average of 500 correlations performed with a 80% subsampling.281

282

4 Results283

In the following section, we report results for: (i) the discriminatory information ingrained in each sta-284

tistical classification; (ii) the performance of ML models in statistical learning and predictive modeling; and285

(iii) the correlation analysis between regional characteristics and ML model performance.286

4.1 Information Needed to Discriminate between Classes287

The median degree of information required to discriminate between classes, d̃JS , is varied between the288

different regional classifications. An example of derivation of Jensen-Shannon distance is provided for the289

Sacramento region (Fig. 3) while being directly summarized for all nine Jensen-Shannon distance matrices290

(Table 5). The two regions requiring the least amount of discriminatory information are SJT and SFE. The291

two regions requiring the largest amount of discriminatory information are NC and SAC. In most regions,292
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dJS decreases when considering confined channel types, indicating that these channel types require more in-293

formation to be identified. Nonetheless, in seven regions, the minimum dJS is not between two confined chan-294

nel types (Table 5).295

4.2 Performance in Statistical Learning and Predictive Modelling296

RF outperforms other models in terms of AUC, even with an increasing number of predictors (Fig. 4).297

The performance of all models increases with additional predictors, but RF consistently displays a greater298

and faster increase in its performance. In NC, SC and SFE regions, additional predictors decrease the per-299

formance of the naive bayes model, suggesting the progressive inclusion of irrelevant or noisy predictors in300

the learning process. Furthermore, DNN significantly underperforms, only outperforming the default near-301

est neighbour baseline model in two of nine regions: SC and SFE.302

Tuning entropy remains high for all models and increases with the number of predictors (Fig. 5). This303

effect is generally more marked for SVM or DNN than for RF. DNN’s tuning entropy is high yet stable with304

respect to the number of predictors. For DNN, the tuning entropy is an average of the tuning entropies of305

its seven hyper-parameters (Fig. 6a). Interestingly, across all regions, the same trend is observed for these306

hyperparameters, pointing to a more stable learning process for DNN than for SVM or RF. The RF learn-307

ing process appears relatively stable in most regions with exception of SCC and SECA (Fig. 6b). Tuning308

entropies are high and with similar values for both RF and SVM in SAC, SC, and SECA regions (Fig. 5).309

RF tuning entropy is clearly higher than SVM’s one in the SCC region. RF tuning entropy is, however, clearly310

lower than SVM’s one in K, NC, NCC, SFE and SJT regions. In all regions, RF tuning entropy rapidly in-311

creases with the initial addition of predictors before either reaching a plateau. However, after this initial in-312

crease, the evolution of RF tuning entropy with the number of predictors is nuanced. In K, NC, SAC, SECA,313
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SFE and SJT regions, tuning entropy tend to then decreases with additional predictors, whereas it increases314

in NCC, SC and SCC regions. While maintaining a relatively high tuning entropy, the optimal RF models315

use in general a lower number of predictors than SVM or DNN (Table 6) and clearly outperforms the other316

two models in terms of AUC and accuracy (Fig. 4). In consequence, RF is selected for performing the pre-317

dictions. Such performance in statistical learning of RF precludes using entropy rate and stream-segment318

entropy to select one final predictive model as done by Guillon et al. (2020).319

RF predictions generally conform with expert-based expectations of the regional distribution of chan-320

nel types (Fig. 7). Across all regions, valley confinement is most often selected as a predictor in the opti-321

mal RF models (Fig. 8). In more than half of the nine regions, the standard deviation of elevation, the sta-322

tistical roughness of topography at short spatial scales (Hurst coefficients), median slope and curvature met-323

rics are selected as relevant predictors. Drainage area at the watershed and stream interval scales appears324

relevant albeit only in less than half of the regions. Contextual predictors only appear in the optimal set of325

predictors in SC region where, after valley confinement and drainage area metrics, they correspond to nine326

predictors describing lithology (6) and land use (3).327

4.3 Correlation Analysis328

Correlation analysis revealed that different classifications yield a varying number of channel types and329

a varying ML performance as a result of a few sampling design factors (Tables 2,5-6; Fig. 4,9). For regional330

characteristics, the number of channel types is strongly linked to the number of observations (r = 0.90).331

As expected, observation density is negatively correlated with catchment area (r = −0.62), but the num-332

ber of channel types and the number of observations are inconclusively linked to area and observation den-333

sity. Area and observation density are negatively correlated with the number of confined channel types (r =334
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−0.47 and r = 0.65, respectively). The observation density and area are not correlated with the statisti-335

cal learning performance for DNN or RF (Fig. 9a-b). Instead, statistical learning performance metrics are336

anti-correlated with the number of observations, the number of channel types and the number of confined337

channel types. They are also positively correlated with one another. Similarly, all variations of dJS are pos-338

itively correlated with one another. All dJS metrics positively correlate with statistical learning performance339

metrics, more so with AUC. However, they are negatively correlated with the number of observations and340

the number of classes.341

The less information needed to separate classes, the more stable the label predictions are. Entropy rate342

is generally anti-correlated with dJS metrics, especially with the minimum dJS for confined channel types343

(r = −0.80), and weakly correlated with regional metrics increasing the complexity of the classification task:344

number of observations, number of channel types and number of confined channel types. For RF, entropy345

rate and hyper-parameter tuning entropy are only weakly linked (r = −0.32, Fig. 9b) and both are weakly346

anticorrelated with statistical learning performance metrics. Hyper-parameter tuning entropy appears mostly347

disconnected from statistical learning performance metrics (r = −0.10, r ' 0). In general, hyper-parameter348

tuning entropy shows weak correlation with the other variables with exception of the minimum dJS for con-349

fined channel types (r = 0.48) and the number of confined channel types (r = −49). This suggests that350

hyper-parameter tuning entropy increases with decreasing complexity while entropy rate increases with in-351

creasing complexity.352

The difference in performance between traditional ML models and deep learning models prognosticates353

the required degree of discriminatory information (Fig. 9c). The correlation of the statistical learning met-354

rics are inverted with respect to DNN and RF correlations (Fig. 9a-b). The difference in statistical learn-355

ing performance between RF and DNN correlates with the number of observations, the number of channel356
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types and the number of confined channel types while being negatively correlated with all of the dJS met-357

rics quantifying the degree of discriminatory information needed to separate the channel types, in partic-358

ular minimum dJS .359

5 Discussion360

5.1 Discriminatory Information Explains why RF Outperforms DNN361

Our proposed framework characterizes each individual classification by estimating the typical amount362

of information needed to discriminate between classes. This measure provides major insights into the mean-363

ing of the labels derived from statistical classifications, importantly helping their interpretation and com-364

parison. In particular, the difference in discriminatory information (Table 5) is interpreted as differences in365

the scale at which the labels are inherently defined between the different regional classifications. In the ap-366

plication to statistical classifications of channel types in California, we suggest that the degree of discrim-367

inatory information is linked to the scale mismatch between labels and geospatial predictors and explains368

deep learning under-performance.369

Even when selecting predictors inputted to ML models, RF outperforms SVM and DNN. Filtering the370

predictors makes for a fair benchmark for SVM which does not include any predictor selection process like371

RF or DNN. Yet, the tuning entropy results (Fig. 6) underline that SVM exhibits a noisy statistical learn-372

ing without one defined value for its hyper-parameter. Nonetheless, the SVM included in the benchmark is373

a linear SVM and a kernelized SVM may display a better performance by being able to capture non-linear374

patterns.375

As in Guillon et al. (2020), DNN underperforms relative to other ML models in most regions (Fig. 4)376

while exhibiting stable statistical learning with a more defined choice of hyper-parameters than RF or SVM,377
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and across all regions (Fig. 6). Two combined reasons explain DNN under-performance. First, in general,378

DNN performance increases with the number of available observations, and the current data deluge helps379

explain their increasing popularity (LeCun et al., 2015). Second, the performance of DNN is tied to infor-380

mation distillation through the successive layers of the networks, which filters out irrelevant information from381

the input to predict the output. In the California channel classification case, the datasets are limited in size382

(Table 2) and the output labels are defined from field scale data (< 200 m) while the input predictors are383

defined at a coarser scale (> 500 m, Table 4). This scale mismatch corresponds to missing or overly noisy384

information, which precludes efficient information processing in the DNN and the reverse engineering of the385

hierarchical generative process between input and output (Tishby & Zaslavsky, 2015; H. W. Lin et al., 2017).386

The effect of the scale mismatch is exemplified by the correlation between required discriminatory informa-387

tion from the datasets used to generate the labels and the performance of DNN relative to RF: the coarser388

the label, the lower the difference between RF and DNN (Fig. 9c). With additional observations, DNN in-389

formation distillation is likely to better filter out noisy information, reducing the gap in performance between390

RF and DNN. However, in the case of limited and noisy datasets with potential scale mismatch in the def-391

inition of labels and predictors, a common issue in environmental sciences, it is likely that RF-inspired al-392

gorithms will consistently outperform DNN-inspired algorithms.393

An objective constraint on the specific scale of the set of statistical classification labels, such as found394

in this study from discriminatory information (Fig. 3) and deep learning relative performance (Fig. 9c), is395

likely beneficial for a wide variety of classifications across the hydrologic sciences. In particular, the same396

label is often used by different scientists to represent a range of spatial or temporal scales. For example, in397

fluvial geomorphology, a common label applied to a site on a river is a “riffle-pool reach”. However, this la-398

bel has no inherent spatial scale: some studies use it to refer to lengths as short as 1-5 times channel width,399
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while others use the same label to refer to lengths as long as 100-1000 times channel width. Having more400

explicitly defined scales associated with statistically derived labels would yield a more universal lexicon and401

facilitate a better understanding of eco-physical processes intertwined with spatio-temporal patterns rep-402

resented by labels. For classifications based on time series analysis, we suggest that the information content403

of the core data (i.e. temporal resolution, number of stations) defines the spatial or temporal scale of the404

resulting labels. Interestingly, our correlation analysis shows that discriminatory information, or scale, is equally405

evaluated either from the data used for the classification (Fig. 3, Table 5) or from the relative performance406

of traditional and deep learning approaches (Fig 9c). Below, we further discuss the main implications of our407

results in terms of limitations, analysis and management implications.408

5.2 Limitations409

While statistical learning performs well to estimate patterns between channel types and predictors (Fig.410

4), generalizing the learned pattern in predictive modeling and assessing the geomorphic relevance of the re-411

sulting predictions lead to implementing a post-hoc heuristics to predictions in one of nine regions. The ge-412

omorphic relevance is qualitatively assessed by comparing the predicted spatial distributions of channel types413

with their expert-based expected spatial distribution. In the K region, the mainstem channel type K03 is414

hardly predicted to occur in the mainstem where it ought to and a stream-order-based heuristic was imple-415

mented.416

Limited sampling mainly explains the need for a post-hoc heuristic to conform ML predictions with417

expert-knowledge expectations in K region. Channel types exist in significantly different natural abundances,418

with some types quite rare and difficult to isolate in the sampling scheme, and other types so anthropogeni-419

cally impacted as to be all but unavailable to sample despite their potential importance for aquatic and ri-420
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parian ecology. In all regions, the unequal sampling of channel types (Table 3), that is the imbalance in the421

classification labels, is addressed with the commonly used SMOTE (Chawla et al., 2002) which generates422

synthetic observations and helps the statistical learning of channel types with a lower number of examples.423

However, the random generation of synthetic observations is handled with a k-Nearest Neighbour algorithm424

(with in our case k ≤ 5 depending on the number of available observations). In consequence, fewer field425

observations of a channel type lead to less diversity in the corresponding synthetic data, hindering a robust426

learning of the patterns between under-sampled channel types and predictors. In the K regions, the mispre-427

dicted channel type has the lowest possible value for prevalence, 1 over 105 observations, and thus for the428

diversity in the associated synthetic data (Table 3). The next lowest value of prevalence, 4, appears high enough429

across all regions to enable robust pattern learning when compared to expert evaluation. Interestingly, the430

most of the under-sampled channel types fall into two categories tied to the logistics of in-situ sampling: high-431

order main stem rivers and low-order steep cascade/step-pool channels. High-order main stem rivers are of-432

ten highly channelized and far from natural conditions while displaying dimensions and water depth that433

hinder field sampling. Low-order steep cascade/step-pool channels are difficult to access through private land434

and remote, dangerous terrain, leading to sampling a specific subset of most accessible channels.435

5.3 Implications436

The results of this study have some general implications for the sampling strategies at the core of sta-437

tistical classifications and subsequent predictions. Our correlation analysis underlines a positive correlation438

between the number of field observations and the number of classes and a negative correlation between the439

number of classes and the required discriminatory information. This then translates into better ML perfor-440

mance. This is somewhat paradoxical yet explicable. With fewer observations, the likelihood of finding sta-441
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tistically significant groupings decreases resulting in fewer classes, which can be separated with coarser in-442

formation, reducing the complexity of the problem. In other words, with fewer observations, one can get away443

with a simpler, coarse-scale problem to solve. An increasing number of observations leads to fine-scale la-444

bels, at least for some channel types, and to a more complex problem including mismatched scales. For ex-445

ample, riffle-pool reaches are so common that random sampling is likely to oversample them (even with our446

effort to stratify sampling using four meaningful catchment scale variables), yielding more variety of riffle-447

pool reach channel types. In contrast, there could be an equal diversity of cascade reach types, but if there448

are fewer of these sites in the geographical study area or there are randomly fewer sampled, then the clas-449

sification is more likely to lump them together into one class. Thus, the outcome can be mismatched scales450

of classification between broader channel types, and even when statistical learning performs well, general-451

izing the learned pattern beyond the training datasets may be hindered by insufficient sampling. Consequently,452

there exists a sweet spot between sampling enough to capture some of the natural variability in the study453

area at a uniform level of detail across broad channel types and sampling more but not enough to ensure454

that a generalizable pattern is learned across all broad channel types to yield an equivalent diversity of fine-455

scale labels. This is likely an ubiquitous problem in natural sciences where classification and prediction con-456

tend with a mix of rare and common types, multi-scalar typologies, uneven anthropogenic disturbance across457

types, limited sampling capability, and high uncertainty in design of the sampling strategy. The character-458

ization of this sampling optimum is beyond the scope of this study as it likely depends on the definition of459

the statistical classification which then conditions the performance in statistical learning.460

The increasing popularity of statistical classifications begs the question of how one would compare them.461

Our application of one statistical classification methodology to multiple regions indicates that it is not a straight-462

forward task. This likely remains true when comparing different statistical classification methodologies in463
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a single region of interest. In particular, the information content of the classification, interpreted as the over-464

all spatial scale at which channel types are defined, vastly differs, impacting performance in statistical learn-465

ing and predictive modeling. This hinders direct comparison between statistical classification outputs, as the466

statistical classification results in a fuzzy correspondence akin to the loose agreement between empirical clas-467

sifications of channel types (Kasprak et al., 2016). A better strategy to robustly compare areas of study or468

combine results from statistical classifications is to assemble a dataset spanning geographical areas and per-469

form a new bottom-up statistical classification pooling all data into one set. This better ensures that labels470

are defined with a similar level of information. However such an approach is only tractable if the underly-471

ing sampling methods, raw data, and data processing steps of statistical classification are reasonably sim-472

ilar. All data also has to be publicly available from their authors, further bolstering reproducible, open, trans-473

parent, interpretable and justifiable environmental data science (Murdoch et al., 2019; Yu & Kumbier, 2020).474

475

6 Conclusion476

Machine learning is becoming more prevalent to inform decision-making, in particular with the increas-477

ing popularity of machine-learning-enabled classifications and predictions in environmental sciences. In this478

study, we thoroughly investigated the previously unexplored robustness of the statistical learning process479

and evaluated the often unknown spatial scale of statistical classification outputs. Our proposed approach480

combines information theory and machine learning in three novel ways: (i) measuring the degree of discrim-481

inatory information underlying a statistical classification; (ii) estimating the stability of the learning pro-482

cess with tuning entropy; and (iii) leveraging the sequential coarse-graining of information inherent to deep483

neural networks but absent from traditional machine learning models. While applied to a unique example484

of a single statistical classification framework applied to nine distinct regions of California, the developed485
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approach is relevant for numerous classification and prediction problems in environmental sciences and un-486

derlines the importance of limited sampling on classification outputs and associated predictions. Importantly,487

the approach characterizes and compares different statistical classifications, providing an estimate of the spa-488

tial scale of their outputs and paving the way for a reconciliation of findings across or within study areas.489

In addition, we found that the difference in traditional and deep learning performance identifies the min-490

imum degree of information needed to separate classes, providing a proxy for spatial scale.491
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Reference Target Classification data Prediction data

McManamay et al. (2018) physical habitat diversity 6 discrete-valued physical habitat layers –
McManamay et al. (2018) reach-scale hydrologic class – land cover, climate, topography, soils
McManamay et al. (2018) summertime temperature – land cover, climate, topography, soils
McManamay et al. (2018) mean substrate diameter – land cover, climate, topography, soils
McManamay et al. (2018) bankfull width – land cover, climate, topography, soils
Wolfe et al. (2019) watershed hydrologic class climate, geology, topography, land cover –
Yang et al. (2019) surface-groundwater interactions – topography, hydrology, geology, land cover
Henshaw et al. (2019) channel form channel dimensions, morphological features –
Beechie & Imaki (2014) channel pattern – topography, hydrology, land cover
Clubb et al. (2019) geomorphic domains river profiles –
Lane, Dahlke, et al. (2017) reach-scale hydrologic class topography, geology, climate topography, geology, climate
Lane, Pasternack, et al. (2017) channel types field-measured attributes, topography –
Byrne et al. (2019) channel types field-measured attributes, topography –
Guillon et al. (2020) channel types – topography, climate, geology, land cover
Sergeant et al. (n.d.) watershed hydrologic class daily streamflow statistics –
Gaucherel et al. (2017) watershed hydrologic class topography, land cover, network topology –
Dallaire et al. (2019) river types hydrology, climate, topography –
Flores et al. (2006) channel types – topography, hydrology, climate
Walley et al. (2020) watershed river networks network topology –

Table 1: Recent examples of statistical classifications and machine-learning predictions in hydrologic sciences.

Region ID Geographical region Observations Channel types Area (km2)

K Klamath 105 7 (3) 27,747

NC North Coast 201 8 (6) 12,504

NCC North Central Coast 103 6 (4) 13,263

SAC Sacramento Basin 290 10 (4) 70,130

SC South Coast 67 5 (2) 36,982

SCC South Central Coast 119 8 (3) 26,595

SECA South East California 63 5 (2) 107,622

SFE South Fork Eel 96 7 (5) 1,785

SJT San-Joaquin-Tulare 65 6 (4) 83,498

Table 2: Regional characteristics. The number of confined channel types is reported between parenthesis.
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Region

Channel type K NC NCC SAC SCC SC SECA SFE SJT

1 18 8 23 6 9 9 14 12 5

2 4 32 21 27 7 8 8 4 19

3 1 17 9 36 21 6 8 12 6

4 5 14 21 33 27 23 19 28 9

5 14 5 24 43 18 21 14 30 4

6 16 28 24 45 8 – – 4 22

7 47 – 36 33 16 – – 6 –

8 – – 43 24 13 – – – –

9 – – – 27 – – – – –

10 – – – 16 – – – – –

Total 105 104 201 290 119 67 63 96 65

Min 1 5 9 6 7 6 8 4 4

St. Dev. 15.56 10.76 10.27 11.85 7.00 7.96 4.67 10.98 7.73

Table 3: Distribution of observations across all regions.
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Predictor name Spatial scale Original data Methodology

Elevation 512 m; 100-m buffer Gesch et al. (2002) Hijmans et al. (2018)
Slope 512 m; 100-m buffer Gesch et al. (2002) Hijmans et al. (2018)
Aspect 512 m; 100-m buffer Gesch et al. (2002) Hijmans et al. (2018)
Roughness 512 m; 100-m buffer Gesch et al. (2002) Hijmans et al. (2018)
Flow direction 512 m; 100-m buffer Gesch et al. (2002) Hijmans et al. (2018)
Planform curvature 512 m; 100-m buffer Gesch et al. (2002) Florinsky (1998)
Profile curvature 512 m; 100-m buffer Gesch et al. (2002) Florinsky (1998)
Topographic position index 512 m; 100-m buffer Gesch et al. (2002) Hijmans et al. (2018)
Terrain ruggedness index 512 m; 100-m buffer Gesch et al. (2002) Hijmans et al. (2018)
Channel slope 200 m Gesch et al. (2002) ESRI (2016)
Confinement - Gesch et al. (2002) Byrne et al. (2019)
Sediment supply - Haan et al. (1994) Renard et al. (1997)
Drainage area - McKay et al. (2012) Hill et al. (2015)
Strahler’s stream order - McKay et al. (2012) Strahler (1957)
Local drainage density - McKay et al. (2012) Danesh-Yazdi et al. (2017)
Hurst coefficients 640 m to 82 km Gesch et al. (2002) Liucci & Melelli (2017)
Lithology >1 km Cress et al. (2010) Hill et al. (2015)
Soil characteristics 1 km Schwarz & Alexander (1995) Hill et al. (2015)
Land cover 30-m initial resolution Homer et al. (2015) Hill et al. (2015)
1981-2010 climatologies 800-m initial resolution PRISM Climate Group (2004) Hill et al. (2015)
Indices of Catchment Integrity - Thornbrugh et al. (2018) Hill et al. (2015)

TAM-DM : Terrain Analysis Metrics - Distribution Metrics

Table 4: Predictors Used in the Machine Learning Framework. The 10-m National Elevation Data Set (Gesch et al., 2002,

NED) and the Stream-Catchment Data Set (StreamCat; Hill et al., 2015) are publicly available on download platform

from the United States Geological Survey and the United States Environmental Protection Agency, respectively. The

stream network from the National Hydrology Data Set (McKay et al., 2012, NHDPlusV2) is publicly available on both

platforms.

Region ID Median JSd Mean JSd Minimum JSd

K 0.54 (0.45) 0.57 (0.44) 0.38 (0.38)

NC 0.47 (0.45) 0.48 (0.43) 0.34 (0.34)

NCC 0.52 (0.52) 0.52 (0.51) 0.33 (0.35)

SAC 0.47 (0.44) 0.49 (0.43) 0.27 (0.34)

SC 0.53 (0.52) 0.53 (0.52) 0.37 (0.52)

SCC 0.51 (0.45) 0.50 (0.45) 0.33 (0.39)

SECA 0.54 (0.62) 0.53 (0.62) 0.37 (0.62)

SFE 0.61 (0.58) 0.59 (0.58) 0.34 (0.42)

SJT 0.62 (0.62) 0.61 (0.60) 0.40 (0.44)

Table 5: Degree of discriminatory information estimated from the Jensen-Shannon distance. Values for confined channel

types are reported between parenthesis.
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Model Predictors AUC Accuracy Training time Normalized tuning entropy

DNN 30 0.931 0.668 4.510 0.792

RF 18 0.949 0.740 0.290 0.757

SVM 31 0.943 0.743 0.366 0.844

Table 6: Summary table of the average performance of learners across all areas of study. Training time is given here in

seconds for one iteration of the learning process and does not correspond to the total CPU-hours required for training.
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8 Figures498
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Figure 1: Field sites location in California (USA) across nine distinct regions. Ecoregions are displayed as

a proxy combining geology, soils, vegetation, climate, and hydrology Omernik & Griffith (2014). Detailed

information about each region is in Table 2.
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Figure 2: Schematic of the machine-learning framework.
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Figure 5: Evolution of tuning entropies with the number of predictors
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Figure 7: Map of all predictions. In each region, hue maps to confinement so that cyan (red) corresponds to

the most unconfined (confined) channel type, and lightness maps to slope so that the channel type with low

(high) slope are drawn in lighter (darker) colors.
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