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Abstract

We propose a method, based on Neural Networks, that detects the nonlinear robust interplanetary solar wind variables, with

varying delays, driving the coupled behavior of three geomagnetic indices (Dst, AL, and AU). As opposed to minimizing a

prediction error, the method is based on degrading the prediction by distorting the inputs of the trained Neural Networks in

order to highlight the most sensible drivers. We show that the $z$ component of the magnetic field, the duskward oriented

electric field, and the speed of the particles of the interplanetary medium, at particular time delays, seem to be the most efficient

drivers of the three coupled geomagnetic indices. Using only the sensible or robust drivers in the model, we demonstrate that

iterated predictions during geomagnetic storm are significantly improved from models that only use one of the outstanding

drivers with multiple time delays. The derived robust nonlinear Neural Network model is also a significant improvement over

linear approximations, specially when used as iterated predictors.
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Abstract7

We propose a method, based on Neural Networks, that detects the nonlinear robust in-8

terplanetary solar wind variables, with varying delays, driving the coupled behavior of9

three geomagnetic indices (Dst, AL, and AU). As opposed to minimizing a prediction10

error, the method is based on degrading the prediction by distorting the inputs of the11

trained Neural Networks in order to highlight the most sensible drivers. We show that12

the z component of the magnetic field, the duskward oriented electric field, and the speed13

of the particles of the interplanetary medium, at particular time delays, seem to be the14

most efficient drivers of the three coupled geomagnetic indices. Using only the sensible15

or robust drivers in the model, we demonstrate that iterated predictions during geomag-16

netic storm are significantly improved from models that only use one of the outstand-17

ing drivers with multiple time delays. The derived robust nonlinear Neural Network model18

is also a significant improvement over linear approximations, specially when used as it-19

erated predictors.20

1 Introduction21

The study of the solar wind-magnetosphere-ionosphere (SWMI) coupled system has22

become a relevant subject of wide interest, not only because of its scientific repercussions,23

but also for its application in space weather forecasts (e.g. Hapgood (2018); Campore-24

ale (2019); Bala and Reiff (2018)). As such, constructing models that are able to describe25

certain characterizations of the SWMI system in a robust manner can have important26

social and economical consequences for our countries, and the world in general, since space27

weather can affect a number of human activities such as mining, natural disaster man-28

agement, remote communications, precise farming, aircraft traffic communication, power29

grid management, etc (e.g. Hapgood (2018); Council (2008)).30

It is well known that the Sun activity can affect the Earth magnetosphere and iono-31

sphere (Gosling, 2000). This can be quickly realized by observing the simultaneous evo-32

lution of a number of solar wind parameters and magnetospheric indices that are used33

to monitor the magnetospheric and ionospheric activity. For example the Disturbance34

Storm-Time (Dst) index is used to describe the horizontal magnetic field variations close35

to the magnetic equator. Hourly Dst indices since 1957 have been derived by Sugiura36

(1964), and more recently, they are available, in real-time, at the World Data Center in37

Kyoto in Japan. The Dst is likely the most studied index in relation to geomagnetic storms,38

for example, Burton et al. (1975) constructed a linear evolution model driven by the so-39

lar wind V Bs and dynamic pressure P . Here V is the bulk ion velocity, Bs is the south-40

ward component of the interplanetary magnetic field. Further studies and discussions41

suggested that the Dst evolution may be nonlinear (J. A. Valdivia et al., 1996; Vassil-42

iadis et al., 1999) and that more magnetospheric and solarwind variables should be con-43

sidered to represent storm time space-weather phenomena (Borovsky & Shprits, 2017;44

Borovsky, 2020).45

Similarly, the upper AU and lower AL auroral indices, representing the envelopes46

of the magnetic fields variations taken from around 12 high latitude geomagnetic obser-47

vatories (Davis & Sugiura, 1966), provide complementary information about a different48

region of the SWMI system. There has been a number of studies that strongly suggest49

that the solar wind driven dynamics of AL and AU are nonlinear (Bargatze et al., 1985;50

Vassiliadis et al., 1995, 2000).51

Furthermore, a system science approach very quickly reveals that there are com-52

plex interactions among the different regions of the magnetosphere and the solar wind (Borovsky53

& Valdivia, 2018). Hence, the inherent complexity of the SWMI system (J. A. Valdivia54

et al., 2005; J. Valdivia et al., 2013; Consolini et al., 2018; Donner et al., 2019), demands55

the development of models and techniques to account for these interactions in a robust56

manner.57
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This is becoming particularly true as we are increasingly relying on artificial in-58

telligence models to try to account for such complex behavior (Bortnik et al., 2018; Jawad59

et al., 2019). However, when developing robust models, it is not enough to just train a60

neural net with a large number of variables since, given the complex and nonlinear na-61

ture of the system, the model will probably not work as efficient on a set of events that62

is different from the training set. Therefore, we need to identify what are the robust vari-63

ables, among all accessible ones, that should be included when constructing a simplified64

representation of the SWMI system such that it still works on a different set of events.65

Hence, a robust multivariate nonlinear system science description, that for exam-66

ple includes the coupling of these 3 magnetospheric indices (MI) and with solar wind drivers (Borovsky67

& Denton, 2018; J. A. Valdivia et al., 1999) can further our understanding of these in-68

teractions and their time scales (Adhikari et al., 2020), and could pave the way to ro-69

bust Space Weather applications. This is what we are going to start analyzing in this70

manuscript. So that, for simplicity, we will study the 3 above described geomagnetic or71

magnetospheric indices (MI) (Dst(t),AL(t) and AU(t)) and search for the robust solar72

wind variables (SWV), and their possible time delays, that drive the magnetosphere re-73

sponse as characterized by these 3 indices. In our study we will consider data with an74

hour time scale and let faster variation to future work.75

As a model reconstruction, we will use Neural Networks (NN) because they have76

demonstrated to be a powerful machine learning tool capable of performing complex tasks77

(Abiodun et al., 2018). NN have already been used to forecast the Dst index (Lazzus78

et al., 2017; Gruet et al., 2018) showing that it has a high self correlation with the im-79

mediate past measurements, therefore, the NN will include the Dst index at time t as80

part of the NN variables. The same will be done for the other magnetospheric indices81

that we are considering here.82

A huge advantage of NN is their capability to build functions that can be highly83

non-linear and that property is the one we want to exploit in the present study. The coun-84

terpart is that once they are trained, they are a black box which parameters remain mean-85

ingless to humans. We are therefore strongly limited to extract valuable physical infor-86

mation from what they could have “learned”. Furthermore, it is very common that their87

predictability could be quite high in the training set, but not as good in out-of-sample88

forecasting of other events. In the present manuscript we purpose a method that quan-89

tifies the robustness of a solar wind variable as the degradation of the predictability of90

the trained model when such a variable is perturbed trying to forecast a different test-91

ing set of events. The most sensitive or robust variables, are those which produce the92

largest error when perturbed over the testing set.93

In the present study we address the model construction in two ways. First we con-94

sider a short term prediction that uses the selected solar wind variables, and their de-95

lays, at a particular moment in order to predict the geomagnetic indices for the next hour,96

which we call one step forecasting. The second way is to use the one step prediction model97

to forecast the MI for a longer time interval, using the selected SWV, and their time de-98

lays, and reinserting the predicted geomagnetic indices in the model, which we will call99

iterated forecasting.100

In order to simulate real-time forecasting we use the iterated forecasting, since we101

note that some of these indices are not easily accessible in real time or are available only102

part of the time.103

If successful, our approach would provide a strong indication that the selected ro-104

bust inputs drive the signal and brings information about the physics of the system. This105

information could be used as a complementary approach to test, validate, and optimize106

forecasting models of the magnetospheric response to solar wind input, and in general107

of any driven complex system under study. For example, predictions of the Dst index108
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are provided by many services like the Space Weather Center Prediction, or www.spaceweatherlive109

.com. Their short term accuracy could be tested, improved, and optimize by following110

our strategy to find robust modes of interaction. Additionally, since our strategy of con-111

structing these forecasting models is quite different from the standard ones, it is always112

useful to provide an alternative forecast, specially during periods where real-time Dst113

may not be available. The same can be said about AL and AU, which are usually not114

easily available in real time.115

2 Data description116

The values of the Dst index are provided hourly from year 1957 to the present at117

the World Data Center for Geomagnetism in Kyoto, they can be found at http://wdc118

.kugi.kyoto-u.ac.jp/dstdir/index.html ((Masahito et al., 2015)). No value is miss-119

ing since 1957, thus no signal reconstruction is needed. We will then use the hourly res-120

olution in all the study Data of interplanetary medium and the AU and AL indices where121

retrieved from the OMNI database provided by the National Aeoronautic and Spatial122

Agency and freely available at ftp://spdf.gsfc.nasa.gov/pub/data/omni/high res123

omni/ ((King & Papitashvili, 2005)). The oldest available data in OMNI is from 1963124

but with an average data rate lower than 20% which is too sporadic for our purposes.125

From year 1995 the data rate improved significantly thanks to the Wind and ACE satel-126

lites commissioning.127

OMNI data are provided with a resolution of one minute but are not continuous.128

Since Dst is provided hourly, we choose to perform this study using a resolution of one129

hour, therefore OMNI data need to be transformed to one hour sampling.Values are taken130

when the UTC minute is equal to 0 and will be calculated as the average over all avail-131

able data of the 60 following minutes. Even if only one value is available during this hour132

it will be taken as the value of the corresponding hour. In case no data is provided dur-133

ing this interval, they will be generated with by a linear interpolation from the available134

values.135

The SWV that we use from the OMNI database are the three interplanetary mag-136

netic field (IMF) components given in the GSE coordinate system (Bx, By, Bz), the par-137

ticle flow speed (V ), the proton number density (N), the plasma temperature (T ), and138

the proton dynamical pressure (p). It is worth noticing that p is not a direct measure-139

ment but it is calculated from the proton speed and density by p = 2×10−6NV 2(nPa).140

We can also construct composed variables that will be considered in the analysis. One141

is V Bs, where Bs is the negative component of Bz, so that it is zero if Bz > 0 and Bz142

if Bz < 0. Sometimes, people prefer to write this expression in the GSM coordinate sys-143

tem, but for our purpose we stay within the GSE coordinate system just to demonstrate144

that we can include composed indexes in the analysis. Similarly, we define εA = V B2 sin4(θ/2)l20,145

where B as the magnitude of the IMF, l0 is seven times the Earth radii, and the clock146

angle θ is tan−1(|By/Bz|) for Bz > 0 and π − tan−1(|By/Bz|) for Bz < 0. When us-147

ing variables in the GSM coordinate system, such formula would describe the Akasofu’s148

index.149

All the used interplanetary variable are summarized in Table 1 with their units and150

typical values in quiet and disturbed times, they will all be treated as independent vari-151

ables.152

Since we are interested in studying perturbations of the magnetosphere, we will con-153

centrate on geomagnetic storms intervals where the Dst index reach a climax below −100nT.154

We consider the storm is over the first time that Dst reach Dstend > −10nT after the155

climax. The beginning of the storm is taken Tb hours before the climax, such that Tb is156

20% of the time that separates the climax to the end of the storm. Between 1995 and157

2018 we identify 97 geomagnetic storms that reach a climax below −100nT. In order158

–4–



manuscript submitted to Space Weather

SW signal Symbol Quiet Storm Unit

3 Magnetic field
components

Bx,y,z |Bx,y,z| ≤ 10 |Bx,y,z| > 10 nT

Flow speed V 300− 400 > 500 km s−1

V Bs parameter V Bs 0 < −4000 µV s−1

Pressure P 0− 5 > 5 nPa
Temperature T 104 − 105 > 2× 105 K

Number density N 1− 10 > 15 # particles/cc
ǫA parameter ǫA < 1011 > 1011 Watt

Table 1. Solar wind variables that are analyzed for their capability to drive the geomagnetic

indices considered here. We give their mathematical symbol, their typical values during quiet

and active periods, and their units. To be used for the neural net analysis, all variables will be

mapped to the range between [0, 1], so their absolute values and units will not be extremely

relevant in the rest of the development.

Figure 1. Separation of storms for training, testing, and validation sets, the first 24 storms

will be used for training, the following 20 storms for the testing phase, and the last 20 storms for

the validation step.

to improve the robustness of the data we require that all the variables used during the159

time of the storm fulfill with the following criteria: (a) a maximum of 5 continuous hours160

with no data, and (b) at least 90% of data available during the storm interval. After ap-161

plying those filters we have a set of 64 storms between 1995 and 2018 that will be used162

for our study.163

3 Analysis164

The 64 selected storms are split in training, testing, and validation sets as described165

in figure 1. In order to train and test our NN we use the Keras library under python.166

All data are scaled with the MinMaxScaler from the python sklearn library.167

For the training phase we use the default Keras binary cross entropy loss function168

defined as:169

C = −
1

N

Nout
∑

j=1

[

yj ln ȳ
L
j + (1− yj) ln(1− ȳLj )

]

,

where Nout corresponds to the number of outputs of the NN, yj are the normal-170

ized data values, ŷj are the normalized output predicted by the NN. This function is non-171

negative and converge to zero when ŷj gets closer to yj . The minimization if performed172

with the Keras adam optimizer.173
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Figure 2. Input/Output variables used to train and test the NN in the case of a single solar

wind driver (n = 1). The general case with multiple solar wind drivers follows the same pattern.

Note that the magnetospheric variables in the evolution model are considered, for simplicity, only

at the previous time t. This will be generalized in a future work.

All our NN have 3 hidden layers of 100 neurons activated with a sigmoid function.174

This allows us to describe a reasonably complex evolution function, given by175

Ḡt+1 = NN(Gt, It), (1)

which gives us the value of the GI at t + 1 from information at previous times. From176

now on, the bar on top of a variable means it is generated by the NN model. Here Gt177

corresponds to the magnetospheric vector178

Gt = (Dstt, AUt, ALt),

while It corresponds to a set of solar wind drivers, possibly at different time delays, namely179

It = (I1,t−1, · · · , I1,t−mi
, · · · , In,t−1, · · · , In,t−mn

),

where In,t is the nth solar wind driver at time t. The 9 solar wind drivers are described180

in table 1 and we will study their capability to robustly drive Gt. In our study we will181

take, at most, mi = m = 10 for all solar wind drivers, so that we will be able to check182

the influence of each solar wind driver on the magnetospheric variables up to 10 hours183

in the past. The NN is trained to make one step forecasting using the evolution func-184

tion given by Eq. 1. The global structure of the NN for the training and testing phases185

is represented in Fig. 2.186

In order to avoid over-fitting, at each epoch of the training phase, the cross entropy187

function is calculated using data from the testing set and is compared with the last best188

result obtained during the minimization. At each step, if the NN is better than the last189

best NN, it replaces it. This minimization process runs over 400 epochs, thus the NN190

corresponding to the last best epoch will be saved.191

One of the difficulties of training NNs with real data is the multiple solution that192

can be found by the algorithm. The minimizing process can stabilize around a bad lo-193

cal minimum and then will miss the optimal solution. The best model of geomagnetic194

behavior prediction should be the NN that provides the lowest errors, even if we can-195

not guarantee that the algorithm has actually found the best solution. For each SWV196

of Table 1, we train around 40 NN and keep the best one for the testing phase.197

In order to evaluate our models, we compare it to the toy model Ḡp
t+1 = Gt that198

we call persistence model. For the testing and validation phases we compute the unit-199

less mean absolute error (MAE) of a particular geomagnetic index Xt, normalized by the200
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error calculated in the persistence model, namely,201

ǫMAE =

∑tf
ti=1

∣

∣X̄t+1 −Xt+1

∣

∣

∑tf
ti=1

∣

∣X̄p
t+1 −Xt+1

∣

∣

. (2)

The advantage of this measure is that it provides a direct comparison with the per-202

sistence model, but it also gives equal relevance to all the magnetospheric indices when203

we add the MAE for the 3 of them.204

In order to evaluate the contribution of a particular solar wind driver, with a par-205

ticular time delay, we will add to it a Gaussian noise centered in 0 and with an increas-206

ing standard deviation σ, such that the particular solar wind driver is now given by Ii,t−j →207

Ii,t−j+δ
(i,j)
t . All the other solar wind drivers are not perturbed. Here, σ will vary from208

0% to 100% of the difference between the maximum and the minimum values obtained209

in the particular solar driver signal during the tested storm interval. If the NN is well210

trained, the noised introduced to the particular solar wind driver, at the particular time211

delay, is expected to degrade the prediction; and the higher the value of σ, the higher212

should be the ǫMAE . This will be called the noised input method. This analysis is then213

repeated on the same NN but perturbing another solar wind driver and/or time delay.214

We expect that the most robust solar wind drivers, at a particular time delay, are the215

ones that are most sensitive to the perturbation giving the largest error. Here we report216

the normalized MAE as ǫ(σ)/ǫ(0)− 1 for each of the geomagnetic indices.217

To start, we train a NN that contains the geomagnetic indices and only one solar218

wind driver Ii,t over the training set. We then perturb the same solar wind driver over219

the testing set, and observe its sensitivity with σ. We repeat the procedure for the other220

solar wind drivers, as shown in Fig. 3a-c for the storm of March 2001 that reached a pick221

value of −149nT for the Dst index.222

For each trained NN that corresponds to a particular solar wind driver, the test-223

ing phase is repeated 50 times for each σ and we keep the average of the obtained er-224

ror. Since the error is centered, all the curves begin at 0 for σ = 0. The solar wind driver225

is associated with one error per geomagnetic index. With this procedure, we expect to226

gain information on the correlation of the disturbed solar wind driver and its capabil-227

ity to predict Gt.228

We note that Bz and V Bs are consistently the most sensitive variables for the pre-229

diction of these 3 geomagnetic indices, which we will denote them the robust solar wind230

variables. For example, when the perturbations is of the size of the signal for Dst, mean-231

ing with σ = 1 the error is multiplied by 9 in the case of Bz and above 6 for V Bs, while232

the other drivers show a much lower perturbation when the noise increases. For the AL233

index, the effect is lower but still present, and Bz and V Bs remain by far the most sen-234

sitive solar wind drivers. Although in the case of AU the error does not reach more than235

100% from the clean input for any of the solar wind drivers, still Bz and V Bs show up236

as relevant. Of course, for AU other variables could also be relevant such as density. Hence,237

we obtain an error for each geomagnetic index given a value of σ that informs us about238

the global robustness of the solar wind driver in the NN, and therefore, about the global239

robustness of this solar wind driver to predict Gt. Let us note that the strategy we are240

using to determine the robust solar wind variables may at first sight seem counter in-241

tuitive, since we are not trying to minimize an error, but to maximize it. But after sub-242

sequent consideration, we hope it becomes more clear.243

In order to provide a more general conclusion we repeat the experiment 50 times244

with σ(%) = 1 for each storm. We show the average error over all the storms for each245

geomagnetic index and solar wind driver in Fig. 4. For a given magnetospheric index and246

solar wind driver we have a bin that represents how perturbed is the error when the in-247

put is noised, therefore, telling us about its contribution to the forecast. We also give248
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Figure 3. Evolution of the normalized MAE for each of the geomagnetic indices (a) Dst, (b)

AL, and (c) AU with the amplitude of the noise σ during the storm of March 2001. The Bz and

V Bs signals are consistently the most sensitive solar wind variables to the variation of σ while

the others are not giving any strong evidence of contribution to the prediction.
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Figure 4. Summary of the response of each trained NN to the perturbed solar wind driver

over all the storms in the testing set. The standard deviation of the error is also shown. We use

50 surrogates for each storm and solar wind driver. The most sensitive parameters are clearly Bz

and V Bs.
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Figure 5. Summary of the response of the trained NNs to the randomization for each solar

wind driver at each time delay τ considered in the entry. We show the error on (a) Dst, (b) AL,

(c) AU, and (d) Sum of the previous 3. We note that only a few variables are relevant.

an error range that shows how stable is the perturbation. If the bar is compatible with249

0, we can conclude that the driver is globally not contributing to the prediction. A global250

overview shows that the Dst index is the most sensitive to the solar wind drivers since251

the error is clearly higher than AU or AL. AU is not convincing in its sensitivity to the252

solar wind drivers, only Bz has a result not compatible with 0. From the point of view253

of the solar wind variables, we see again that Bz and V Bs are picked up by strategy as254

the most relevant solar wind variables to forecast the geomagnetic indices. The Bx and255

ǫA variables do not bring significant information to the prediction while the error pro-256

duced by By, V , N , T , and P is quite reduced compared with the first two variables Bz257

and V Bs.258

From now on, instead of adding an error to the signal we randomize the order of259

the solar wind driver time series for a particular storm (a surrogate). Using this random-260

ization input method, we can look deeper inside the solar wind drivers. We are not only261

interested in identifying the solar wind variable that could contribute to predict the ge-262

omagnetic indices, but also at which time t−τ they should be taken to make a robust263

prediction. In order to find the most relevant components Ii,t−τ that affect the GI, we264

test the selected NN for each SWV at a particular time delay and repeat the surrogate265

randomizing procedure outlined above. Again, we expect that the most relevant com-266

ponents are the ones that should degrade the prediction the most. This procedure will267

produce one global associated error for each solar wind driver, at each time delay, of each268

geomagnetic index and each storm. Hence, it will give us clues about which solar wind269

drivers and delays should be used to construct a robust NN prediction model.270
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In Fig. 5a-c, we show the variation of the MAE produced by each component of271

each solar wind driver up to 10 hrs before the last available measurement for each ge-272

omagnetic index. We note that only a few solar wind variables, at particular time de-273

lays, are robust variables. Figure 5d displays the sum of the MAE for the 3 geomagnetic274

indices, providing a global descriptor of the robust solar wind drivers for this coupled275

system. We consider that a component contributes to the prediction (i.e., is robust) when276

it reaches 10% of the maximum value obtained in the matrix. For Dst, Bz is contribut-277

ing up to 3 hours before the last measurement while V Bs only 2 hours. Some delayed278

components of the speed signal also seem to bring a significant contribution to the pre-279

diction. For AU, it looks that many components are turned on given the very low max-280

imum, however, we can highlight the most important components being the immediate281

measurements of Bz, V , and V Bs. Finally AL has five components turned on, where again282

the last value of Bz and V Bs seem to be the best contributors. The global sum of the283

errors, shown in Fig. 5d, highlight 6 values which will be considered for our final robust284

model, namely, the 3 previous values of Bz, the last value of V , and the two last values285

of V Bs.286

Once we have determined which are the most relevant solar wind drivers, at par-287

ticular time delays, that drive the coupled geomagnetic indices, we train a robust NN288

replacing It by a vector containing those 6 components. Hence, we now retrain our NN289

with the global entry containing the same geomagnetic indices but with the 6 outstand-290

ing solar wind inputs of Fig. 5d. In parallel we build a linear model using the same en-291

tries for comparison.292

As a matter of testing, we also want to use iterated predictions for the NN and lin-293

ear model, meaning that they have to use the geomagnetic values they predicted Ḡt in294

the previous time step to produce the next predicted value, namely,295

Ḡt+1 = NN(Ḡt+1, Ĩt),

where Ĩt corresponds to the subset of 6 robust variables that are used as drivers of the296

neural net. Such approach may be useful for real time forecasts when only solar wind297

variables are available. One would naturally expect that the iterated predictions are less298

accurate than the one step predictions, that uses previously measured Gt values to drive299

the neural net. However it becomes relevant to compare these results with an equiva-300

lent model that does not consider the robustness of the variables. Therefore, as a way301

to compare, we construct NN and linear models using the 11 last measurements of the302

best driver Bz (left column of Fig. 5d). In Fig. 6a we plot the results over the valida-303

tion set for the globally robust NN, while in Fig. 6b we show the results of the NN and304

linear models that use only the Bz driver at all time delays (11 inputs to the neural net).305

Each bin represents the normalized-by-persistence error for each geomagnetic index with306

a deviation bar for the 20 storms of the validation set.307

In the case of one step forecasting of the robust model, although existent, the im-308

provement do not look significantly different for both linear and NN models, but when309

we do iterated predictions the results becomes much more interesting. The prediction310

of Dst by the globally robust NN model are 38% (14.3% for AL, and 17.0% for AU) bet-311

ter than the linear model.312

When comparing both robust and Bz-based nonlinear NN models, we find that for313

Dst and AU the iterated globally robust forecast show a global improvement of 12.7%314

and 8.7%, respectively, as compared with the Bz-based model. In the case of AL we ob-315

tain no improvement. Note that we have used 6 solar wind entries for the robust model,316

compared with the 11 solar wind entries of the Bz-based model. If we reduce the Bz-317

based model to only just the first 6 time delays, the difference is more notorious with318

respect to the robust model.319
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Figure 6. Normalized MAE for the (a) globally robust model, and (b) the model using the 11

last hours of Bz. We compare the NN versus a linear model using the same entries for one step

and iterated predictions. The results are normalized with the error of the persistence. hence, the

iterated forecasts using the nonlinear global robust model is an improvement from the equivalent

model that uses only Bz variables, despite the fact that the later have a larger number of inputs

(11 vs 6).
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Figure 7. Forecasts of the geomagnetic indices during the storm of May 2005 for the (Left)

Globally robust models and (Right) the Bz based models. The solid black line shows the data

with a legend of MAE. Solid red (blue) corresponds to the one step prediction of NN (linear

models).

Figure 7 shows the one step and iterated globally robust model forecasting during320

the storm of May 2013 that reached a Dst minimum of −113nT. In the left panel we321

show the predictions for the globally robust NN and linear models and in the right panel322

we have results corresponding to the Bz-based models. The given numbers in the leg-323

end correspond to the bare MAE without normalization, and the errors of the different324

models (and one step vs. iterated) normalized to the persistence. The one step predic-325

tions show improvements from the Bz based model, for example Dst one step forecast-326

ing is improved by 23.8% when comparing the NN models. When looking at the iter-327

ated prediction, the globally robust model improves the Dst iterated prediction by 10.5%328

in this particular case. On the other hand, we highlight the notorious improvement for329

this storm of the error in Dst for the globally robust model of 40.1% between linear and330

NN models.331

4 Conclusions332

We have studied the correlation between geomagnetic indices (Dst, AU and AL)333

and interplanetary solar wind variables at the L1 point of the Sun-Earth system through334

64 geomagnetic storms, for which we have simultaneous data, that occurred since 1995.335

The method we used is based on training Neural Networks and look at their capability336

to predict the evolution of the magnetosphere in storm periods. We stressed the entries337

of the trained Neural Networks in order to evaluate their robustness of the solar wind338

variables, at particular time delays, in the prediction of the geomagnetic indices. The339

magnetic z-component of the interplanetary magnetic field and the duskward oriented340

component of the electric field V Bz appeared to be the most robust drivers for the pre-341

diction since the addition of a noise to them shown a significant degradation in their ca-342

pacity to drive the geomagnetic indices. By a similar method we determined which of343

the 9 solar wind variables, and particular time delays, we must consider in this analy-344
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sis to give the best predictions of the geomagnetic indices. We obtain that the relevance345

of the geomagnetic variables gets reduced considerably for t ≤ 3 hours from the last346

measurement.347

The pressure, the ǫA parameter, the temperature, the x and y components of the348

magnetic field, and the particle density of the interplanetary medium do not seem to bring349

significant contribution to the prediction at this level of approximation.350

Finally we built a linear and nonlinear models based on the robust solar wind vari-351

ables in their capability to forecast. We show that over a sample of 20 storms, the fore-352

casting of Dst is improved by 12.7% from a Neural Network based only on the interplan-353

etary z-component of the magnetic field that consider 11 time delays. Neural network354

are 38% better to predict Dst than linear models which emphasizes the highly non-linear355

behavior of the magnetosphere. Hence, the robust model, with only its 6 solar wind drivers,356

provides an improvement in the forecast of this simplified SWMI system representation.357

Of course, we could consider including robust magnetospheric indices at various time de-358

lays, as variables for the NN, a work that we plan to conduct in a future publication.359

Future forecasting models of MIs should strongly consider the highlighted variables360

and time delays as input of their models. This is in particular true for Dst forecasting361

which is widely used to describe the state of the magnetosphere. Of course, additional362

information is provided about AL and AU, which are in general hard to obtain in real363

time. A similar method can be used to highlight the driving variables of other geomag-364

netic indices, like Kp or Ap, used in web services in order to improve the reliability of365

the forecasts. Those results can be used to construct step-by-step a multivariate, robust366

system science, description of the magnetosphere evolution.367

Moreover, variables that show significant contribution at several time delays can368

be interpreted as orders in differential equation that can drive the MIs. Therefore it could369

improve existing minimal system-science mathematical descriptions of the magnetosphere370

behavior at the one hour time-scale.371

It is worth noticing that the MI coupled model can be further used to test hypoth-372

esis of cross-predictability among the MIs, by using measured sequences of a subset of373

them to forecast, in an iterated scheme, the others by suing the measured MIs as input374

in the robust model proposed. Such analysis may help further our understanding of the375

so called “storm-substorm” coupling. This will be presented shortly.376

Finally, these type of techniques can be used to find the relevant drivers in other377

nonlinear systems, where including too many variables in the NNs may be dangerous if378

we intend to produce robust forecasts. We plan to introduce other magnetospheric in-379

dices in a larger version of the SWMI system representation.380
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