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Abstract

Shallow cloud fields over the subtropical ocean exhibit many spatial patterns. The frequency of occurrence of these patterns

can change under global warming. Hence, they may influence subtropical marine clouds’ climate feedback. While numerous

metrics have been proposed to quantify cloud patterns, a systematic, widely accepted description is still missing. Therefore,

this paper suggests one. We compute 21 metrics for 5000 satellite scenes of shallow clouds over the subtropical Atlantic

Ocean and translate the resulting dataset to its principal components (PCs). This yields a unimodal, continuous distribution

without distinct classes, whose first four PCs explain 82% of all 21 metrics’ variance. The PCs correspond to four interpretable

dimensions: Characteristic length, void size, directional alignment and horizontal cloud-top height variance. These dimensions

span a space in which an effective pattern description can be given, which may be used to better understand the patterns’

underlying physics and feedback on climate.
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Key Points:7

• Shallow cloud field patterns in satellite observations are quantified by 21 metrics and8

follow a unimodal, continuous distribution.9

• Most existing metrics are redundant; 4 principal components capture 82% of the10

variance of 21 metrics.11

• Characteristic length, void size, directional alignment and cloud-top height variance12

combine to effectively describe the patterns.13
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Abstract14

Shallow cloud fields over the subtropical ocean exhibit many spatial patterns. The frequency15

of occurrence of these patterns can change under global warming. Hence, they may influence16

subtropical marine clouds’ climate feedback. While numerous metrics have been proposed17

to quantify cloud patterns, a systematic, widely accepted description is still missing. There-18

fore, this paper suggests one. We compute 21 metrics for 5000 satellite scenes of shallow19

clouds over the subtropical Atlantic Ocean and translate the resulting dataset to its prin-20

cipal components (PCs). This yields a unimodal, continuous distribution without distinct21

classes, whose first four PCs explain 82% of all 21 metrics’ variance. The PCs correspond22

to four interpretable dimensions: Characteristic length, void size, directional alignment and23

horizontal cloud-top height variance. These dimensions span a space in which an effective24

pattern description can be given, which may be used to better understand the patterns’25

underlying physics and feedback on climate.26

Plain Language Summary27

Satellite images show that clouds which develop in the lowest five kilometres of the28

atmosphere organise into many visually distinct patterns. Because different patterns have29

different radiative properties, a change in the relative occurrence of a pattern may influence30

Earth’s response to warming. To study this effect, the patterns must first be quantified;31

numerous metrics have been developed for this task. In this paper, we compute 21 such32

metrics for 5000 cloud fields observed by satellite over the Atlantic Ocean east of Barbados.33

We show that the information contained in the 21 metrics can already very accurately be34

described by only 4 derived metrics, which capture a cloud field’s typical cloud size, the size35

of connected clear sky patches, the clouds’ degree of directional alignment and variance in36

cloud-top height. Combinations of these 4 metrics do not identify the existence of typical37

patterns, as previously suggested. However, they form a new, effective and interpretable38

pattern description, which can be used to better understand how cloud fields organise and39

how this impacts the wider climate system.40

1 Introduction41

Shallow cumulus clouds are the most abundant cloud type over the tropical oceans42

(Johnson et al., 1999), but result from many interacting processes and scales. This combi-43

nation makes them the most uncertain aspect of how clouds will feed back onto a warming44

climate (e.g. Bony & Dufresne, 2005; Schneider et al., 2017). Several mechanisms that gov-45

ern this response have recently been uncovered (Rieck et al., 2012; Bretherton, 2015; Klein46

et al., 2017). However, the origins and sensitivity of the rich spectrum of spatial patterns ex-47

hibited by shallow cloud fields has remained rather unexplored (Nuijens & Siebesma, 2019).48

Such spatial patterns alter precipitation distributions in cloud resolving simulations of deep49

convection in warmer conditions (Muller & Held, 2012; Tobin et al., 2012); recent research50

indicates that spatial patterning may influence the low cloud climate feedback too (Bony et51

al., 2020). Establishing this contribution of shallow cloud-field patterns and its underlying52

physics are therefore important research objectives.53

The first step of such research is to classify or quantitatively measure any characteristic54

of the horizontal dimension of a shallow cloud field. Two comprehensive, complementing55

approaches were recently proposed: Expert visual inspection, which returns subjective, but56

interpretable classes of patterns (Stevens et al., 2019) and unsupervised machine learn-57

ing, which is challenging to interpret, but gives more objectively inferred pattern measures58

(Denby, 2020). A third, more traditional approach is to compute one or more human-59

defined metrics; these are both interpretable and objective and are therefore considered in60

this paper.61
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Quantified patterns are often associated with a quantity called “organisation”. This62

term has consequently taken on numerous interpretations. It is often synonymous with63

“aggregation” in studies of deep convection (Tobin et al., 2012; White et al., 2018; Hol-64

loway et al., 2017), sometimes characterised as the regular, random or clustered structure65

of nearest neighbour distances of cloud objects (Weger et al., 1992; Seifert & Heus, 2013;66

Tompkins & Semie, 2017), or connected to cloud scale (Neggers et al., 2019; Bony et al.,67

2020). However, cloud field organisation has also been defined by metrics of fractal analysis68

(Cahalan & Joseph, 1989), directional alignment (Brune et al., 2018), subcritical perco-69

lation (Windmiller, 2017) or spatial variance (de Roode et al., 2004; Wood & Hartmann,70

2006). While this makes it difficult to objectively define and discuss organisation, all these71

interpretations share the same aim: Quantifying cloud field patterns. Hence, this diversity72

can potentially also be harnessed to distinguish between different patterns.73

The aim of this paper is therefore to systematically extract the independent information74

encapsulated by the set of metrics associated with “cloud field organisation” in literature,75

and to use this information to describe and interpret cloud field patterns as effectively as76

possible. We first compute 21 diverse metrics for 5000 satellite observations of mesoscale77

cloud fields in the trades and synthesise these in a multivariate distribution (section 2). Next,78

we show that these metrics vary primarily along 4 principal components, allowing drastic79

dimensionality reduction (section 3.1). Analysis of these main principal components results80

in a pattern description that is remarkably effective, in addition to being interpretable and81

objective (section 3.2). We then highlight several approaches to approximate the principal82

components that balance the description’s complexity and accuracy (section 3.3). Finally, we83

demonstrate and discuss the ability of our description to characterise previously diagnosed84

and novel regimes of characteristic patterns (section 3.4), before concluding (section 4).85

2 Constructing a cloud field pattern distribution86

2.1 Data87

Following Stevens et al. (2019) and Bony et al. (2020), we concentrate on shallow,88

subtropical clouds in the marine North Atlantic trades east of Barbados (20°-30°N, 48°-89

58°W), which are representative for the entire trades (Medeiros & Nuijens, 2016). Our90

cloud fields stem from the MODIS instrument borne by NASA’s Aqua and Terra satellites.91

Specifically, we sample daytime overpasses during December-May 2002-2020 and directly use92

the level 2 Cloud Water Path (CWP), Cloud-Top Height (CTH) and cloud mask products93

at 1km resolution (Platnick et al., 2015) as basis for our metrics. Fig. S1 shows that94

the results are not overly sensitive to resolution. We only interpret pixels classified as95

“confidently cloudy” by the cloud mask algorithm as cloud.96

Our data points are scenes of cloud fields, which are 512km×512km subsets sampled97

within the 10°×10° observation region. To boost the size of our dataset, scenes are allowed98

to overlap 256km. We attempt to minimise the impact of errors and biases in remotely99

sensed cloud products by rejecting scenes with i) high clouds such as cirrus wisps, if more100

than 20% of the clouds’ tops lie above 5km, ii) overly large sensor zenith angle, if this101

angle exceeds 45°, following e.g. Wood and Field (2011) and iii) sunglint errors, manually102

excluding scenes where these are visually found to influence the cloud mask. A set of 5004103

scenes remains.104

2.2 Metrics and dimensionality reduction105

To appropriately capture the body of existing organisation metrics, we require them106

to meet either of the following two criteria: i) Are they perceived to capture a unique107

aspect of the patterns? or ii) do they frequently recur or recently first appear in literature?108

Additionally, they must be easy to interpret. This procedure (see tab. S1 for details)109

diagnoses 21 metrics, which broadly divide into three categories: Statistical moments of110
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Figure 1. Visual representation of scenes ordered by metrics derived from three categories (text

colour) and sampled at linear intervals. Bright backgrounds stem from sunglint, which is accounted

for in metric computations.
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physical cloud field properties, object-based metrics, and attributes of scale decompositions.111

These metrics are briefly introduced below, visually presented in fig. 1 and further detailed112

in Text S1.113

Statistical moments of cloud field properties comprise measures of typical cloud mass114

and area: The cloud mask’s coverage fraction (Cloud fraction), the CWP’s scene integral115

(Cloud water) and standard deviation (St(CWP)) and the variance ratio for “mesoscale116

aggregation” of moisture proposed by Bretherton and Blossey (2017) (CWP var. ratio),117

here applied only to cloud water. Furthermore, this class contains measures of the clouds’118

vertical extent: The mean and standard deviation of cloud-top height (CTH and St(CTH)119

respectively).120

Object-based metrics measure size, shape and relative positioning of individual cloud121

segments, which are identified from cloud mask fields using 4-connectivity labelling. To122

avoid artefacts at the resolution scale, objects of a smaller dimension than four times the123

instrument resolution are ignored. Our results are not sensitive to the chosen connectivity124

scheme or minimum object size (see fig. S1). The resulting metrics further divide into125

two categories: Scene statistics of individual object properties and measures of the spa-126

tial distribution of the objects. The first category includes the mean and maximum object127

length (Mean length, Max length), the number of objects (Cloud number) and the mean ob-128

ject perimeter (Perimeter); the second comprises the Simple Convective Aggregation Index129

(SCAI) (Tobin et al., 2012), Convective Organisation Potential (COP) (White et al., 2018),130

the peak of the average radial distribution function (Rasp et al., 2018) (Max RDF), the131

degree variance (Degree var) of the cloud objects’ nearest-neighbour network representation132

(Glassmeier & Feingold, 2017) and the Organisation Index (Iorg) (Weger et al., 1992), of133

which we include two versions. The first, most commonly applied form, compares the cloud134

field nearest-neighbour cumulative density function (NNCDF) to a Weibull distribution.135

The second variant (I∗org) compares it to an inhibition NNCDF that accounts for object size136

and therefore is less likely to erroneously predict regularity in the cloud fields (Benner &137

Curry, 1998). This metric is similar to that introduced by Pscheidt et al. (2019).138

We compute four metrics from scale decompositions: The size exponent of the cloud139

object size distribution modelled as a power law (Size exponent), the box-counting dimension140

of cloud boundaries in the cloud mask field (Fractal dim.), the Spectral length scale as defined141

by Jonker et al. (1999) and the deviation of variance from the mean in the horizontal, vertical142

or diagonal orientations of the cloud water field’s stationary wavelet spectrum (WOI3)143

(Brune et al., 2018). In this paper, we use these metrics as discriminators between individual144

cloud fields, not to measure their cumulative scaling properties. Finally, we introduce a novel145

metric: A scene’s largest, rectangular, contiguous cloud-free area (Clear sky), as a simple146

measure of lacunarity, the degree to which continuous areas without clouds dominate a147

scene.148

We describe patterns as a linear combination of the computed metrics, which are stan-149

dardised to weight them equally. Since many metrics in fig. 1 strongly correlate (see fig.150

S2), they are treated to a Principal Component Analysis (PCA, e.g. Abdi and Williams151

(2010)). This transforms the metrics to an orthogonal basis whose components (principal152

components - PCs) explain the maximum variance in the dataset. If a small number of153

PCs (orthogonal dimensions) can accurately capture the metric set’s variance, these form154

an effective pattern description.155

3 Describing patterns156

3.1 A four-dimensional pattern distribution157

Figure 2 shows uni- and bivariate kernel density estimates on planes spanned by the158

first four PCs of the metric distribution, annotated with the fractional variance of the159

dataset explained by each PC (explained variance ratio - EVR). It reveals that multiple160

–5–
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Figure 2. Univariate (diagonal, density on y-axis) and bivariate (off-diagonal, density in colour)

Gaussian kernel density estimates of the first four principal components (PCs) of the pattern distri-

bution. The annotations EVR and CEVR denote the individual and cumulative explained variance

ratio of each PC, respectively. Bandwidths for the Gaussian kernels are computed using Scott’s

rule (Scott, 1992).
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Figure 3. Top: Images of scenes projected onto planes spanned by the first and second (a) and

third and fourth (b) PCs of the metric distribution, overlaid by arrows oriented along the mean

gradient of several metric groups (see main text). Bottom: Filled contours of standardised metric

values that have in excess of 50% of their variance explained by the first (c) and second (d) plane,

constructed by piecewise linear barycentric interpolation and overlaid by an arrow pointing along

the mean gradient. Subfigures b) and d) are rotated counter-clockwise by 49° in-plane to improve

clarity of visualisation.

PCs (dimensions) are needed to capture the multivariate distribution’s cumulative EVR161

(CEVR) appropriately. However, the first PC is by far the most influential (EVR=0.49 -162

widest distribution). Furthermore, the CEVR of the first two PCs already rises to 0.66,163

while including 3 and 4 of the 21 original dimensions explains 75% and 82% of the dataset’s164

variance, respectively. After the fourth PC, EVR quickly deflates (PCs 5-9 have EVRs165

of 0.04, 0.03, 0.03, 0.02, 0.02), dropping below 0.01 after the tenth PC (fig. S3). These166

statistics show that four PCs effectively capture the information in all 21 metrics. Therefore,167

we reduce our 21-dimensional metric set to these four PCs.168

Of course, truncating the PCA after precisely four components remains somewhat ar-169

bitrary. Yet, this choice strikes a useful balance between including enough dimensions to170

effectively describe patterns and sufficiently few dimensions to interpret them. This claim171

is visually supported by fig. 3 a) and b) (fig. S3 adds quantitative evidence): Combinations172

of PC1 and PC2 (fig. 3 a) consistently and coherently position visually similar (different)173

scenes close to (far from) each other. PC3 and PC4 (fig. 3 b) ably reveal further distinctions.174

Hence, linear combinations of these four PCs form an effective pattern description.175

–7–
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3.2 An interpretable pattern description176

Our four-dimensional pattern description is not only effective; by relating the PCs to177

their underpinning metrics, it can also be interpreted. This interpretation is facilitated by178

fig. 3 c) and d), which show the in-plane gradient and mean direction of change of metrics179

that predominantly vary in the planes depicted in fig. 3 a) and b) respectively. By averaging180

the gradients of several similarly varying metrics, we identify a meaningful vocabulary that181

labels several directions of change in the two planes (arrows in fig. 3 a and b). Using182

this vocabulary, we name the principal components and relate them to several common183

interpretations of organisation.184

Strikingly, 17/21 metrics mainly describe variations in the first two PCs (fig. 3 c, see185

also fig. S4). These metrics derive from all three categories (field statistics, objects and186

scale decompositions) and point in a rather continuous spectrum of directions, offering a187

remarkable number of interesting choices for interpreting fig. 3 a):188

1. Coverage (Arrow in fig. 3 a represents the mean gradient of Cloud fraction, Max189

length and Cloud water)190

2. Space filling (Fractal dim., I∗org)191

3. Characteristic length (Spectral length scale, Size exponent, Mean length)192

4. Void size (Clear sky)193

5. Aggregation or clustering (Iorg, SCAI, Cloud number, Max RDF), as commonly as-194

sociated with deep convective organisation (Tompkins & Semie, 2017; Tobin et al.,195

2012).196

We adopt the two directions that best align themselves with the PCs as names for our197

pattern description’s first two dimensions: Characteristic length and void size. We find198

it both intuitive and beautiful that these two dimensions, which respectively measure the199

typical scale of clouds and the complementary clear sky space between them, naturally200

emerge from our approach.201

Linear combinations of the PCs can construct different terms in the quintet above.202

For instance, clustering/aggregation differs only subtly from characteristic length, assigning203

slightly more importance to voids between cloud clusters. Space filling weights voids even204

more heavily. Finally, coverage distinguishes itself from void size by assigning marginally205

more importance to characteristic length. Hence, the same aspects of the patterns in fig. 3206

a) can be described with different pairs of terms.207

Several such pairs are already indirectly recognised as central traits of “organisation”.208

For instance, Seifert and Heus (2013) suggest that both a spectral length scale (character-209

istic length) and Iorg (clustering) may be needed to discriminate between various modes210

of organisation; Neggers et al. (2019) identify organisation as a combination of maximum211

cloud size (coverage) and typical nearest-neighbour distances between smaller clouds (space212

filling); chapter 5 of van Laar (2019) distinguishes “cloud field characteristics” (cloud frac-213

tion, maximum cloud size - coverage) from “organisation parameters” (Iorg, SCAI, COP -214

clustering) and Bony et al. (2020) span their planar description of organisation with mean215

length (characteristic length) and Iorg (clustering). The arrows in Figure 3 relate all these216

interpretations to each other.217

However, our four-dimensional pattern description goes beyond these common, two-218

dimensional interpretations of organisation. Figure 3 d) shows that the third and fourth PC219

distinguish patterns with different directional alignment (WOI3) of the scene’s larger scales220

(CWP var ratio) and those with different horizontal variance of vertical cloud development221

(St(CTH)). Hence, variations in PC 3 and PC4 can be understood as combinations of222

directional alignment and cloud-top height variance.223
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Summarising, we propose to think of cloud field patterns, as described by organisation224

metrics, as a linear combination of the 4 PCs: Characteristic length, void size, directional225

alignment and cloud-top height variance, each term contributing a dimension that is un-226

correlated to the others. However, many valid interpretations exist, especially of the first227

two dimensions. Therefore, the consistency with which “organisation” is understood can228

be considerably advanced by using the relationships between the various interpretations229

established in this section.230

3.3 Selecting metric subsets231

While four PCs describe patterns remarkably well, they still require input from all232

metrics. If added interpretability or less computation is desired, one might approximate233

the PCs with a subset of metrics. This approach challenges each chosen metric to do234

considerably more work than merely inspiring an interpretation of the PCs, as in the previous235

section, since no metric subset is fully orthogonal or optimally variance-capturing. Moreover,236

it is often not obvious that a given metric is much better suited to approximate a PC than237

a similarly varying one. This problem is illustrated by applying sparse PCA (Zou et al.,238

2006) to our data. Despite optimising a cost function that explicitly balances the accuracy239

of the approximate PCs with how many metrics contribute to them, this technique cannot240

robustly indicate metric subsets (see fig. S5).241

One practical way to compose a subset nonetheless is choosing one metric that most242

closely correlates to each PC (Cadima & Jolliffe, 1995). This approach selects the Spectral243

length scale, Clear sky, WOI3 and St(CTH) (CEVR=0.59) and is a reasonable approxi-244

mation of the PC description (CEVR=0.82). If one’s primary interest is in the first two245

dimensions of the pattern distribution, several roughly orthogonal metric pairs competently246

estimate the plane in fig. 3 a). Examples include Spectral slope and Clear sky (CEVR=0.31),247

Cloud fraction and Fractal dim. (CEVR=0.31) or Perimeter and I∗org (CEVR=0.30). All248

three pairs sacrifice explained variance compared to two PCs (CEVR=0.66). Yet, they cap-249

ture far more information than various metric combinations considered in literature, e.g.250

Cloud number and Iorg (Bony et al., 2020, CEVR=0.18), Iorg and Fractal dim. (Denby,251

2020, CEVR=0.20), Spec. Length and Iorg (Seifert & Heus, 2013, CEVR=0.19) or Iorg,252

SCAI, COP and Max RDF (van Laar, 2019, CEVR=0.26). Therefore, we recommend to253

always assess the orthogonality and EVR of one’s metrics with a PCA, before optionally254

selecting a metric subset that approximates their desirable properties appropriately.255

3.4 Regimes of patterns256

Asking how many dimensions cloud field patterns possess is not equal to asking how257

many fundamental types of cloud patterns exist. Dividing clouds into distinct classes (e.g.258

cumulus or cirrus) is a classical approach, which recently inspired efforts to also classify259

shallow cloud field patterns, using both the human eye (Stevens et al., 2019) and metrics260

(Bony et al., 2020). We compare our pattern description to these classes (“sugar”, “gravel”,261

“fish” and “flowers”) by identifying seven k-means clusters in the four-dimensional PC262

distribution (fig. 4).263

Scenes arguably dominated by “sugar” and “gravel” reside in clusters 5 (brown) and264

3 (maroon). These patterns should, in the terminology from section 3.2, be understood as265

small-scale with rather small voids (or disaggregated/unclustered); “gravel” distinguishes266

itself through its higher cloud-top height variance and low directional alignment (see also267

left side of fig. 3 b). Cluster 1 (navy) comprises i.a. “fish”, which shares gravel’s void size,268

cloud-top height variance and low degree of directional alignment, only at larger scales.269

Finally, one may see “flowers” in cluster 7 (blue), as large-scale, aggregated structures with270

little directional alignment and low cloud-top height variance.271
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Figure 4. Seven regimes of the 4D pattern description, identified as k-means clusters of different

colour: a) Scenes scattered over planes defined by the first four PCs, each normalised to unit

variance, named using the convention from section 3.2; b) seven examples of scenes in each regime.

Pluses and crosses indicate the distribution’s mean and mode, respectively. S, G, Fi and Fl suggest

typical locations for the “sugar”, “gravel”, “fish” and “flowers” patterns diagnosed by Stevens et

al. (2019), in the two planes shown in fig. 3, determined by eye.

The natural emergence of these regimes from our systematic metric analysis is encour-272

agingly consistent with human pattern identification (Stevens et al., 2019) and solidifies273

Bony et al. (2020)’s conclusion that these patterns can be objectively identified. However,274

even in an unrealistic scenario where all scenes in these four regimes could unambiguously275

be labelled sugar, gravel, fish or flowers, they would contain only 52% of the observations in276

our dataset. Figure 4 indicates several other regimes that differ in important regards. For277

instance, many scenes possess vast voids (cluster 6, sea green). In this regime, clouds likely278

affect the region’s climate much less than sugar, gravel, fish or flowers, which all have higher279

cloud cover. Analyses of the patterns’ climate sensitivity must probably consider this and280

other different regimes explicitly.281

In fact, pattern classification is itself an approximation. The pattern distribution is uni-282

modal and continuous (fig. 2), and therefore does not inherently possess multiple “classes”,283

“clusters” or “modes”. Breaking the continuum into clusters neglects subtly different pat-284

terns within a cluster. For instance, the band-like sub-regime at high directional alignment285

in fig. 3 b) falls within cluster 4 (peach) in fig. 4, even if this sub-regime is visually distinct286

from all displayed scenes in cluster 4. To capture such subtleties, we recommend shifting287

focus from regimes, classes or clusters of patterns to a more fitting, continuous representa-288

tion.289

Finally, many of the human-identified patterns (sugar, flowers) appear on our distri-290

bution’s extremes (see also fig. 3 a) and b)). While this may explain why they are most291

easily distinguished by humans, they lie far from the distribution’s statistical mean and292

mode (indicated by pluses and crosses respectively in fig. 4 a) and are thus not typical.293

Instead, the modal pattern is partial to smaller scales and voids, which characterise scenes294

with shallow, cold-pool dominated convection (clusters 3, 5) or processes on a wide range295

of scales (cluster 4); this space may be most relevant to the climatology of patterns.296
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4 Conclusion and outlook297

Research on the climate feedback of patterns in shallow trade-wind cloud fields requires298

a consistently understood description of those patterns. In this paper, we have systemati-299

cally developed such a description for square, 500 km2 satellite-observed cloud fields east of300

Barbados. By projecting one new and 20 previously developed organisation metrics onto a301

set of PCs, we show that cloud patterns can be effectively described as a 4-dimensional, lin-302

ear combination of characteristic length, void size, directional alignment and cloud-top height303

variance. This description is objective and interpretable, in contrast to direct unsupervised304

machine learning (objective, not usually interpretable) or human pattern identification (in-305

terpretable, not objective). It also demonstrates that patterns follow a continuous, unimodal306

distribution without distinct classes and that visually striking patterns are extreme, rather307

than typical. Future studies of the physics behind and climate impact of shallow cloud field308

patterns can therefore rely either on our PCs or, if accuracy is less important, on metrics309

that correlate closely to them.310

The effectiveness of our approach may well extend to descriptions of deep convective311

organisation. Many relationships between our metrics are consistent with those found for312

deep convective cloud fields (Rempel et al., 2017; Brueck et al., 2020), suggesting that an313

effective, low-dimensional description of deep convective organisation is attainable. Our314

pattern description could also be used for forecast verification (Jolliffe & Stephenson, 2012),315

using the pattern distribution’s dimensions as matching criteria between model and obser-316

vation in similar fashion to e.g. the criteria developed by Wernli et al. (2008). In turn,317

the forecast verification community may offer useful insights to descriptions of cloud field318

patterns.319

Finally, our approach can itself be refined in several regards. First, using predefined320

metrics to describe patterns leaves potentially undiscovered information from the descrip-321

tion. Therefore, it may be fruitful to compare our approach to more unsupervised machine322

learning (e.g. Denby, 2020). However, the completeness of a pattern description should ide-323

ally be assessed in terms of how fully the underlying processes are separated. This requires324

process-resolving numerical simulations and/or temporally evolving observations, which link325

the evolution of the pattern continuum to that of the atmospheric state. Next, our con-326

clusions are tied to our observation scales (1-500 km), meaning that we may inadequately327

capture this scale window’s extremes. Furthermore, we treat this scale window in an inte-328

gral sense and ignore patterns that appear on one scale, but may be cancelled by another329

(Nair et al., 1998). Hence, a further refinement could be to consider pattern distributions330

on a per-scale basis. Lastly, some subjectivity will likely remain in how different researchers331

interpret “organisation”. This attests the richness of the underlying patterns, which we332

hope remains appreciated.333
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Introduction

This supplement contains further descriptions of the metrics that we use to characterise

our cloud field pattern distribution (Text S1). Specifically, we elaborate upon details of

and justify choices made in their computation. Code that evaluates these metrics given

input scenes of cloud mask, cloud water path and cloud top height can be found in our ac-

companying GitHub repository (https://github.com/martinjanssens/cloudmetrics)

and Figshare copy of this repository at the time of publication https://figshare.com/

projects/Cloud field organisation description with metrics/86303. The supple-

ment also contains five figures, that quantify i) the sensitivity of our metric distribution

to field resolution, object segmentation strategy and minimum cloud size, ii) the abso-

lute Pearson correlation between all metrics, iii) the fraction of variance in each metric

explained by every PC, iv) an estimate of the quality of our metric-based approach to

approximating cloud field patterns and v) the sensitivity to free parameters of approxi-

mating principal components with a subset of metrics through sparse principal component

analysis.
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Text S1. - Details of metrics

Statistical moments of cloud field properties

We quantify several statistics of the extracted cloud field products. Some of these are

straightforward computations that do not feature design choices (cloud fraction, total

cloud water, standard deviation of cloud water over cloudy pixels). The other metrics

require further qualification.

Mean and standard deviation of cloud top height (CTH and St(CTH) respectively) i)

explicitly ignore clouds higher than 5km, as cirrus wisps were found to disproportionately

affect the results otherwise and ii) only consider cloudy pixels. Higher-order moments of

these fields were small and are therefore not included.

Cloud water variance ratio R (CWP var. ratio) is directly adopted from Bretherton and

Blossey (2017), but instead of being applied to the total, vertically integrated moisture

field, it is here only applied to the cloud water:

R =
Std

(
CWPb − CWP

)
Std(CWP )

(1)

In this relation, · denotes a domain average and CWPb indicates the cloud water contained

in blocks of 16x16 pixels.

Object-based metrics

Object-based metrics follow from segmenting the cloud mask field into No objects ac-

cording to their 4-connectivity. To avoid artefacts at the grid scale, we only consider

objects with areas larger than 4 pixels. Each extracted object covers an area Ai, such

that a typical length scale for that object is li =
√
Ai.
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Mean object size is defined as 1
No

∑
i li

Max object size is defined as max li.

Mean perimeter is derived by extracting the perimeter of each object Pi and defining

the mean perimeter P = 1
No

∑
i Pi.

The Simple Convective Aggregation Index (SCAI) (Tobin et al., 2012) is defined as:

SCAI =
NoD0

Nmax

(2)

Where Nmax is the number of pixels in a scene, D0 =
Np

√∏Np

i di is the geometric mean

of Euclidian pairwise distance between all object centroids di and Np = No(No − 1)/2.

The Convective Organisation Potential (COP) (White et al., 2018) is:

COP =
1

Np

No∑
i=0

No∑
j=i+1

li + lj√
πdij

(3)

Where dij now explicitly represents the distance between two object centroids.

Max RDF is the maximum value of the radial distribution function RDF(r) as proposed

in Rasp, Selz, and Craig (2018):

RDF(r) =
1

Ni

∑
i

∑
r≤ri<r+dr 1

L
(
π (r + dr)2 − r2

) (4)

Where ri are pairwise distances from the ith centroid to all other centroids, dr denotes the

width of a radial annulus over which we sum such distances, L is the length of the scene’s

side, and Ni are the number of centroids that lie within a distance rmax from the domain

edges. We only consider coordinates within a radius rmax from any original centroid. We
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set rmax = 20 pixels, as in practice arg max RDF(r) < 20 always, and use dr = 1 (the

results are not sensitive to these parameters).

Degree variance of nearest-neighbour network representations of the scenes are quan-

tified by constructing a Voronoi tessellation from the computed object centroids and

measuring the variance in the degree (number of neighbours) distribution of the identified

Voronoi cells.

Iorg (Weger et al., 1992) is included in two flavours. The first is the original metric,

which integrates the area under the curve defined by the NNCDF, the cumulative density

function of nearest neighbour distances dN between object centroids (y axis) and the

corresponding Weibull distribution (x axis):

W = 1− exp

(
No

L2
πd2N

)
(5)

If the object centroids are scattered as a Poisson point process, they should follow W

exactly, resulting in Iorg = 0.5. Iorg < 0.5 if they are regularly spaced; if they appear

in clusters, Iorg > 0.5. As pointed out by Benner and Curry (1998), this overestimates

the regularity of the cloud field, because in reality separate cloud objects are inhibited

from forming within the area covered by another object. To account for this, we also

include a second version of Iorg, which we name I∗org. This metric compares the cloud

field NNCDF to an inhibition NNCDF, which is constructed by randomly scattering No

objects throughout the scene, provided that they do not fall within the circular area of

an object that has already been placed. The computer-generated random positions of

this approach are less robust than the Weibull distribution (Weger et al., 1992), but we
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find that repeating the computations 3 times does not impact the resulting I∗org below the

third significant digit.

Scale decomposition metrics

Size exponent b is computed by counting all cloud sizes Nc in bins of exponentially

increasing width, and fitting the resulting cloud size distribution with a power law:

logNc ∝ b log l (6)

The average coefficient of determination R2 of fitting this relation to all scenes is good:

0.923. We also investigated a fit according to subcritical percolation theory that incorpo-

rates an exponential term. However, undersampling of large cloud structures make such

fits quite unrealistic on a per-scene basis, even though the fit converges when sampling

a large number of scenes at similar cloud fraction (not shown). It is therefore likely that

these cloud fields obey the rules of subcritical percolation. Yet, the parameters of the

corresponding fit cannot reliably be identified on a per scene basis.

The box-counting dimension Df (fractal dim.) of each cloud mask field is derived by

counting the number of square boxes Nc of dimension lb that are neither fully cloud-

free nor fully cloudy (i.e. boxes that contain cloud borders). Df is then computed by

least-squares fitting the following relation over a range of lb:

logNc ∝ Df log lb (7)

The average R2 of this fit is 0.997, indicating an excellent goodness of fit.
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The Spectral Length Scale (Spectral length) Λ is derived from the field’s Fourier trans-

form. Computing this value requires several design choices. First, the scenes are tilt-

compensated by subtracting a scene’s best-fit plane. Next, one would normally apply a

radially symmetric window function to account for the scenes’ aperiodicity. However, we

find that the application of such a function occludes so much spatial information that

our scenes are ordered much less coherently. Hence, we refrain from applying window

functions. Next, we Fourier transform the scenes and construct their 1D PSD S(k) by

averaging the transform’s power signals over shells of radial wavenumber k. The validity

of this approach rests on the assumption that the satellite scenes are spatially isotropic,

which they are often not. Yet, we find that on a scale from 0-1 (0 representing a 2D PSD

where the power is equally distributed over the azimuthal direction and 1 representing

the case where all power is concentrated in a single direction), the average anisotropy

of all scenes is 0.104. We judge that this justifies the use of the 1D PSD. Finally, Λ is

computed from the distribution’s first moment, as suggested in Jonker, Duynkerke, and

Cuijpers (1999):

Λ−a =

∫ kNy

0
kaS(k)dk∫ kNy

0
S(k)dk

; a 6= 0 (8)

Where kNy is the Nyquist wavenumber and we choose to set a = 1.

We compute Wavelet-based Organisation Indices (WOIs) following Brune, Kapp, and

Friederichs (2018). These metrics are based on the domain-averaged, squared coefficients

of the 2D stationary wavelet transform (SWT) of each scene’s cloud water path (CWP)

field, ECWP . We use the Haar wavelet as our basis. ECWP contains a scale decomposition
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over three (horizontal, vertical, diagonal) directions, with each scale representing a power

of 2 that exactly fits the 512 pixel field. Using ECWP , we derive the metrics proposed by

(Brune et al., 2018):

WOI1 =
El

CWP

ECWP

(9)

WOI2 =
ECWP

Nc

(10)

WOI3 =
1

3

√√√√∑
d

(
El

CWPd
− El

CWP

El
CWP

)2

+

(
Es

CWPd
− Es

CWP

Es
CWP

)2

(11)

Where ·l and ·s indicate total energy contained in the large scales (resolution 21−25) and

small scales (resolution 26−29) respectively, · indicates averaging over all three directions

and Nc is the number of cloudy pixels in a scene. These metrics measure the fraction

of cloud water contained in the scene’s large scales (WOI1), the average cloud water

in cloudy pixels (WOI2) and the anisotropy in the spectrum’s three directions (WOI3).

Since WOI1 and WOI2 are almost exact mirrors of R (eq. 1) and cloud water variance in

cloudy pixels respectively, respectively, we choose to only include WOI3 in our analysis.

Our simple Clear Sky metric extracts the scene’s largest rectangular area spanned by the

horizontal and vertical lines drawn through any cloud-free pixel whose ends are the first

cloudy pixel encountered along those lines. This rectangle is normalised by the domain

size, to arrive at a fraction that represents the largest, contiguous, clear sky area.
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Figure S1. Gaussian kernel density estimates of the ratio D = fA
fA−fB

, which is constructed from

high-dimensional kernel density estimates of the reference metric distribution used in the main

text (fA) and three separately perturbed metric distributions (fB). An identical distribution

to the original would yield a Dirac pulse centred at 0.5 (dashed line); deviations from this

line quantify the contrast between the original and perturbed distributions. Sensitivities are

quantified with respect to i) scenes that are downsampled to half the original resolution (most

sensitive), ii) object segmentation based on 8-connectivity rather than 4-connectivity and iii) not

including a lower bound to the minimum cloud size that is considered an object (least sensitive).

All perturbed distributions are narrow and have an expected value around 0.5, indicating the

robustness of the distribution presented in the main text. Furthermore, the visual relation

between metrics is largely unaffected (not shown).
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Figure S2. Standardised metric correlation matrix, with squares sized and coloured according

to absolute Pearson correlation between a metric pair. Many metrics closely correlate, indicating

that their cumulative information can be captured by a smaller number of effective indicators.

Several closely correlating metrics follow well-known relationships, e.g. perimeter and mean

length (any combination yields approximately constant fractal dim.), or cloud number and nu-

merous aggregation metrics (this relation is similar for deep convective organisation (Brueck et

al., 2020)). Others follow rather trivial ones, e.g. max length and cloud fraction, or the Spectral

Length and size exponent. Several strong correlations are at first sight not trivial. For instance,

Iorg (both versions) and Fractal dim. are highly similar (up to a factor -1). Hence, highly concen-

trated shallow cloud clusters in rather empty scenes (high I∗org) tend towards “lines” (low fractal

dimension, approaching 1 from above); I∗org = 0.5 and fractal dim.=2 both indicate random

scattering of points. Finally, while some effort has been invested in contrasting and improving

aggregation/clustering measures (e.g. SCAI, Iorg and max RDF (van Laar, 2019)), these are

extremely similar. Instead, shifting focus to metrics that are comparatively uncorrelated might

be more more fruitful to further develop our understanding of shallow cloud field organisation.
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Figure S3. Gaussian kernel density estimate of S = 1 − ‖xai−xni‖2
‖xai−xri‖2

compiled from 0 ≤

i < 3951 scenes, where xai is the vector of the metrics for an “anchor scene”, xni
are the

metrics of a “neighbour scene” that overlaps with half the area of the anchor scene and xri

are the average metrics of 100 randomly sampled scenes. S measures how much the metrics

minimise the Euclidian distance between an anchor and its half-overlapping scene, relative to

the average Euclidian distance to a randomly sampled scene. If S = 0, the metrics estimate

that a half-overlapping scene is equally similarly organised as a randomly sampled scene; if

S = 1, the anchor and half-overlapping scene are estimated to be identically organised. Since

half-overlapping scenes share numerous spatial features, they should usually be more similarly

organised than random scenes (S > 0) - a feature we expect the metrics to capture. As 96%

of the distribution exceeds S = 0, this inspires confidence in this ability. The dashed line

indicates the mean, S = 0.47. While this lies significantly below 1, we expect the desired upper

bound of S to also lie below 1, since half-overlapping scenes are (by visual inspection) rarely

identically organised. Estimating this bound requires knowing how far a typical pattern extends

beyond a scene’s boundaries; this demands a better characterisation of the relation between the

measurement scale (“scene”) and the true scale of a pattern. However, even without an explicit

upper bound on S < 1, this distribution shows that our metrics on average come closer to that

bound than to being random. Proficiency of a cloud field description can also be assessed by

comparing S across approaches. A version of S already served as cost function for a machine-

learned pattern description (Denby, 2020). One could also compile statistics on how similar

humans find half-overlapping scenes compared to random scene pairs. Comparing both resulting

S to our metrics could more objectively assess which approach to pattern description (human,

metrics or machine) is best.
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Figure S4. Fraction of variance (colour) in each metric (vertical axis) explained by each PC

(horizontal axis). Sizes of squares are scaled by the total dataset’s explained variance fraction in

each PC (top horizontal axis). 17/21 metrics have more than 70% of their variance captured by

the first two PCs; the remaining 4/21 metrics reach this threshold after four PCs.
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Figure S5. Sensitivity of Sparse Principal Component Analysis (SPCA, Zou et al., 2006).

SPCA encourages sparsity in the weighting of metrics that form each of the four main, approxi-

mate PCs (“loadings”) by casting the PCA as a regression problem, whose cost function contains

at least i) a least squares error term of the PCA fit and ii) a penalty (in the L0 or L1 norm) on

the magnitude of the regression coefficients (the loadings). This penalty is weighted by a regular-

isation parameter λ. We solve the resulting non-convex optimisation problem using the approach

developed by Erichson et al. (2020) and refer to that paper for further details. This figure shows

the optimal sparsity structure in the loadings identified by SPCA under four combinations of

two free parameters: The magnitude of the sparsity penalty λ (top row vs bottom row) and the

omission of a single, seemingly redundant, metric (SCAI, left column vs right column). Unfortu-

nately, the optimal sparsity structure i) is rather sensitive and ii) reacts relatively unpredictably

to changes in these free parameters. This is true also when other metrics are excluded, when

a different sparsity-inducing algorithm is used or when the sparsity penalty is in the L0 norm,

rather than the L1 norm as displayed here. These considerations curb SPCA’s utility for metric

selection and prevent us from recommending its use.
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Table S1. Metrics quantified for initial analysis. Selection for paper is guaranteed by meeting

either criteria 1 or 2, and separately meeting criterion 3, as presented in section 2.2. This excludes

the lower portion of the table. Two metrics in the table’s middle section meet the criteria, but

are still excluded: WOI1, WOI2 (see Text S1). Metrics annotated with (*) are not included in

the coded library.

Metric Criterion 1 Criterion 2 Criterion 3
Unique Recurrent/recent Interpretable

Cloud fraction No Yes Yes
Cloud water Yes Yes Yes
Max length No Yes Yes
Perimeter No Yes Yes
CTH Yes Yes Yes
Size exponent Yes Yes Yes
Mean length No Yes Yes
Spectral length scale No Yes Yes
COP No Yes Yes
SCAI No Yes Yes
Cloud number No Yes Yes
Max RDF No Yes Yes
Degree var. Yes Yes Yes
Iorg No Yes Yes
Fractal dimension Yes Yes Yes
I∗org Yes No Yes
Open sky Yes No Yes
CWP var ratio Yes Yes Yes
St(CTH) Yes Yes Yes
St(CWP) Yes Yes Yes
WOI3 Yes Yes Yes
WOI1 No Yes Yes
WOI2 No Yes Yes
Multifractality index (*) Yes Yes No
Multifractal intermittency (*) Yes Yes No
Object eccentricity No No Yes
Covariance-based orientation No No Yes
Raw moment-based orientation No No Yes
borg in small clouds (Neggers et al., 2019) Yes Yes No
Skewness/kurtosis of CTH, CWP Yes Yes No
Geometric mean nearest neighbour distance No No Yes
Variance of CTH, CWP in largest cloud No No Yes
1D PSD slope No No Yes
Variance in azimuthal PSD No No Yes
Aboav-Wearie fit (Glassmeier & Feingold, 2017) Yes Yes No
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