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2Federal University of Ceara

November 21, 2022

Abstract

The relative scarcity of water resources have encouraged cities to create mechanisms to control water demand and avoid water

stress. In the decision-making process, water companies need to assess the price influence on water demand predictions to

design better policies. The aim of this study is to assess the medium-term effectiveness of the implementation of a contingent

tariff and its consequences for water demand elasticity to price. A novel model that requires only secondary data is proposed,

that can be useful for guiding the drought planning process. The methodology consists in a framework that provides monthly

predictions of water demand at the household level, considering price, seasonality, and previous water use. The results indicated

that the contingent tariff promoted a reduction of 11-15% in water demand, but at a higher cost for low income households.

Also, reduction in water demand was found to be inelastic to price increase. Using google search hits as a proxy for public

interest, we found that water cost has a higher influence on users decision to save water than drought awareness.
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Abstract 14 

The relative scarcity of water resources have encouraged cities to create mechanisms to control 15 

water demand and avoid water stress. In the decision-making process, water companies need to 16 

assess the price influence on water demand predictions to design better policies. The aim of this 17 

study is to assess the medium-term effectiveness of the implementation of a contingent tariff and 18 

its consequences for water demand elasticity to price. A novel model that requires only 19 

secondary data is proposed, that can be useful for guiding the drought planning process. The 20 

methodology consists in a framework that provides monthly predictions of water demand at the 21 

household level, considering price, seasonality, and previous water use. The results indicated that 22 

the contingent tariff promoted a reduction of 11-15% in water demand, but at a higher cost for 23 

low income households. Also, reduction in water demand was found to be inelastic to price 24 

increase. Using google search hits as a proxy for public interest, we found that water cost has a 25 

higher influence on users decision to save water than drought awareness. 26 

Plain Language Summary 27 

The inadequate distribution of water have encouraged cities to promote water demand reduction 28 

in order to be able to supply enough water. In the decision-making process, water companies 29 

need to know in what extent the water tariff is determinant to consumption. The aim of this study 30 

is to assess the effectiveness of the implementation of a penalty cost for excess water 31 

consumption during at least a year. The model requires only data that is already available for the 32 

companies and can be useful for guiding the drought planning process. The methodology 33 

consists in a framework that provides monthly predictions of water demand at the household 34 

level, considering price, seasonality, and previous water use. The results indicated that the 35 

contingent tariff promoted a reduction of 11-15% in water demand, but at a higher cost for low 36 

income households. Also, reduction in water demand was found to be inelastic to price increase. 37 

Using the frequency of google searches to measure public interest, we found that economic 38 

incentive is more likely to encourage the consumers to save water than knowing about the 39 

drought condition. 40 

1 Introduction 41 

The growing water demand associated with urbanization processes has increased water 42 

stress and the risk of shortage in several regions of the world (McDonald et al., 2014). For some 43 

of them, the elevated temporal and spatial variability in water availability offer an additional 44 

challenge to water supply management. 45 

In this context, water companies and policymakers have been implementing demand 46 

control measures, since increasing water supply capacity is not always possible or effective. A 47 

widely used approach is the adoption of increasing block rates (IBR), which is expected to 48 

encourage rational water consumption. This kind of policy is typical of regions affected by 49 

droughts and developing countries (Romano et al., 2014; Zhang et al., 2017) and has complex 50 

impacts on consumer behavior (Rinaudo et al., 2012). 51 

Another strategy to reduce water use under drought conditions is the implementation of 52 

contingent tariffs to households with an elevated consumption. In Brazil, Fortaleza and São 53 

Paulo’s governments have used this approach to deal with water crisis (Priscoli and Hiroki, 54 

2015). In Fortaleza, water pricing follows an IBR structure, and the contingent tariff was adopted 55 
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three years after the beginning of a severe drought that reduced reservoir storage in about 63% 56 

(Pontes Filho et al., 2020). 57 

Previous studies have reported that water scarcity impacts price elasticity, but the 58 

consequences are adverse. Consumers response to price change is related to different exogenous 59 

factors, such as climate (Monteiro and Roseta-Palma, 2011), income (Ma et al., 2014) and 60 

environmental attitude (Garrone et al., 2019). Debate continues about the effectiveness of price 61 

control policies for demand control, especially on IBR schemes (Mansur and Olmstead, 2012; 62 

Zhang et al., 2017; Matikinca et al., 2020).  63 

The research to date has provided cross section analysis to evaluate price influence on 64 

water consumption – together with other socioeconomic and/or climatic variables - but is not 65 

able to address it over long time horizons. Most studies on water price use survey data, which 66 

can be expensive and time consuming. Water companies have a huge amount of smart meter data 67 

available that could be useful to extract information on use patterns and consumer behavior 68 

(Cominola et al., 2019). So far, however, no method has been proposed to use this data to predict 69 

medium-term water demand under price-related policies.  70 

This study proposes a data-driven model to assess the medium-term effect of price-based 71 

water conservation policies at the household level. In addition, we calculate the elasticity of 72 

water demand reduction to price and we assess how much water price and public interest in the 73 

drought can affect consumption habits. The methodology can be used by water companies to 74 

assess price-related strategies of water conservation and does not require additional variables that 75 

could be difficult to obtain in a refined scale. Although this study considers a block tariff 76 

structure, the framework can be adapted to any other price strategy, if it is applied at the 77 

household level. 78 

2 Materials and Methods 79 

2.1 Study area 80 

The city of Fortaleza, capital of Ceará, located in the Northeast region of Brazil, is the 81 

fifth most populated city of the country, with over 2.6 million inhabitants distributed 82 

across 314.9 km². The population is expected to grow to 3.1 million people in 2040 83 

(Iplanfor, 2015). The city is part of the Metropolitan Region of Fortaleza, which 84 

comprises 19 municipalities of Ceará. 85 

Fortaleza’s water supply Jaguaribe-Metropolitano supply system (JMS), consisting of 86 

eight reservoirs which sum up to a storage capacity of 11,112 hm³. JMS transfers water 87 

from the Jaguaribe basin and supplies 36 municipalities. Urban and industrial demand of 88 

Fortaleza is 9.5 m³/s, corresponding to 80% of the volume released by the supply system. 89 

2.2 Water tariff structure 90 

During the period between 2012 and 2018, the northeast of Brazil suffered from a historic 91 

drought that significantly impacted its economy and water storage (Pontes Filho et al., 92 

2020). The main reservoirs of Fortaleza’s supply system were affected by the 2012-2018 93 

drought, resulting in a significant reduction in water availability. To encourage domestic 94 
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water conservation, which accounts for more than 80% of Fortaleza’s water demand, the 95 

local water company implemented a contingent tariff. 96 

The contingent tariff was implemented in December 2015 (Figure 1) and defined a 97 

minimum reduction of 20% of the water consumption based on the mean consumption 98 

between October 2014 and September 2015. If a household had a consumption above this 99 

threshold, an extra charge of 110% on the exceeded volume would be added to the bill. 100 

This percentage was updated to 120% in October 2016. Water price follows an increasing 101 

block tariff structure (Table 1), thus the contingent tariff also varies with the consumption 102 

block of the household. Users with a monthly consumption of up to 10 m³ did not have to 103 

pay the contingent tariff. 104 

Although we consider these specific conditions in the prediction model, the methodology 105 

could be replicated under different price-associated water conservation measures. 106 

 107 

Monthly 

consumption (m³) 
2016 (BRL) 2017 (BRL) 

0 to 10 2.79 3.48 

11 to 15 3.61 4.51 

16 to 20 3.92 4.88 

21 to 50 6.71 8.36 

Table 1. Water tariff in Fortaleza for each consumption category for the years of 2016 108 

and 2017. 109 

2.3 Predictive model 110 

The predictive model has three explanatory variables: previous water demand, monthly 111 

seasonality, and penalty price. The model was tested for multiple leading times, ranging 112 

from one to twelve months.  113 

The penalty price was calculated as the cost of the volume of water consumed in the 114 

previous month that exceeded a threshold. This threshold sets how much water should be 115 

saved and is a percentage of the average monthly water consumption of the household for 116 

a baseline period. Here, the baseline period goes from October 2014 to September 2015 117 

and the threshold is 20%.  118 

At each step, the predictions for the previous month are used to determine the tariff block 119 

of each household. Then, we calculate the volume of consumed water that exceeded the 120 

threshold and how much it costed for the user. For example, when calculating water 121 

consumption at n-months ahead, the predictions for the month n-1 are used to assess the 122 

water conservation measure (Figure 2). This strategy allowed us to avoid the simultaneity 123 

issue associated with water consumption modelling under block tariff policies. 124 

Previous studies have used different price variables in econometric models of water 125 

demand, and there is not a generally accepted approach. Many authors find it more 126 

appropriate using the marginal price, i.e. the cost of increasing the water consumption at 127 
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each time step (Rinaudo et al. 2012), while others prefer the average price (Zhang et al. 128 

2017) or both (Ma et al. 2014; Deyà-Tortella et al. 2016). Although some researchers 129 

argue that the users might be more influenced by the average price (Deyà-Tortella et al. 130 

2016), in case of a contingent tariff policy, they might pay especial attention to the 131 

additional charge expressed on the bill. 132 

In addition to the lagged water consumption and the price component, a seasonal variable 133 

was included to account for seasonal behavior. This variable corresponded to the seasonal 134 

component extracted for each household with the STL method. This approach captures 135 

different patterns of seasonal behavior and adds more information to the model than the 136 

usual approach of using 11 dummy variables for the months. 137 

The model was validated with a classical out-of-sample evaluation. The model was 138 

trained for the year of 2016 and tested for the year of 2017. We chose a machine learning 139 

regression model that has been widely used for electricity and wind prediction. Gradient 140 

boost regression also performs better than other linear and machine learning models in 141 

predicting residential water demand (Lee and Derrible 2020). 142 

2.3.1 Seasonality extraction 143 

The water demand time series was decomposed into trend, seasonal and remainder 144 

components using the Seasonal and Trend decomposition using Loess (STL) method 145 

(Cleveland and Cleveland 1990). This procedure was used to extract the seasonality of 146 

water consumption for each household. STL consists in sequential applications of the 147 

local regression model and provides an additive decomposition of the original signal (D) 148 

into three components: 149 

𝐷(𝑡)  =  𝑆(𝑡)  +  𝑇(𝑡)  +  𝑅(𝑡) 

where S, T and R are the seasonal, trend and remainder components, respectively. The 150 

algorithm work as follows: 151 

The local regression smoothing estimates a function g(x) for the independent variable at 152 

any value of x rather than for the measurements xi of the dependent variable. To calculate 153 

the regression curve g, an initial value for the parameter q is chosen; q values of xi that 154 

are closest to x are selected and weighted on their distance from x. For q ≤ n, where n is 155 

the number of observations in the data set, the weight for xi is calculated as follows: 156 

𝑣𝑖(𝑥) = 𝑊 (
|𝑥𝑖 − 𝑥|

𝜆𝑞(𝑥)
) 

where W(u) is the tricube function, expressed as: 157 

𝑊(𝑢) = {
(1 − 𝑢3)3      𝑖𝑓 0 ≤ 𝑢 < 1

0             𝑖𝑓 𝑢 ≥ 1
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For q > n, the weight for xi is multiplied by q/n. Next, a polynomial of degree d is fit to 158 

the weighted data at (xi, yi). The fitted function corresponds to g(x). It is possible to add a 159 

robustness term for each pair (xi, yi) by multiplying it by the weight νi. 160 

STL consists of two nested loops (Cleveland and Cleveland 1990). In the outer loop, 161 

robustness weights are calculated for each time point. This approach makes the STL 162 

method robust to outliers. The inner loop follows these steps: (i) Detrend the original 163 

signal; (ii) Estimate a smoothing function using Loess for each cycle-subseries, where q 164 

is the cycle periodicity (e.g. for a monthly time series, q is set to 12) and n is equal to 1; 165 

(iii) Apply a low pass filter to the smoothed cycle-subseries, which consists in sequential 166 

applications of a moving average; (iv) Detrend the smoothed cycle-subseries; (v) Remove 167 

the seasonality from the series; (vi) Smooth the deseasonalized series using Loess. 168 

2.3.2 Gradient boosting 169 

Gradient Boosting (GBM; Friedman 1999) is a learning method that converts weak 170 

learners, usually regression trees, into strong learners by combining them sequentially. 171 

The idea behind the method is that new weak learners can learn from the residuals of the 172 

output from the previous model; this ensemble technique is called bagging. For 173 

regression tasks, we want to find the function that best fits the data points in a set 174 

containing input variables x and a corresponding output variable y. To do this, the 175 

algorithm minimizes a loss function between y and the predicted values, in our case, the 176 

Mean Squared Error. 177 

𝐿(𝑦, 𝑦̂) =
1

𝑁
∑(𝑦𝑖 − 𝑦̂𝑖)2

𝑁

𝑖=1

 

The gradient boosting method consists in a combination of weak learners that are added 178 

together. The individual models fm are added one after the other to improve model 179 

performance.  180 

𝑦̂𝑖 = ∑ 𝑓𝑚(𝑥)

𝑀

𝑚=1

 

The weak learners, in this case, regression trees, are fitted on the residuals of the previous 181 

model. The general representation of GBM is expressed as follows:  182 

𝐹𝑚(𝑥) = 𝐹𝑚−1(𝑥) + 𝜈𝑓𝑚(𝑥), 183 

meaning that the model fm does not change the previously fitted model Fm-1. The term ν is 184 

a regularization parameter or the learning rate, which determines the number of iterations. 185 

Small values of the learning rate (ν < 0.1) reduce the chances of overfitting.  186 

Gradient boosting applies a functional gradient descent method to minimize the loss 187 

function, where each new weak model is equivalent to the negative gradient of the MSE. 188 

The negative gradient is given as: 189 
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−𝑔𝑚(𝑥𝑖) = − [
𝜕𝐿(𝑦𝑖 , 𝐹(𝑥𝑖)

𝜕𝐹(𝑥𝑖)
]

𝐹(𝑥)=𝐹𝑚−1(𝑥)

 

The algorithm stops when the loss reaches a threshold, or the maximum number of trees 190 

is built. We defined model parameters in a trial and error manner; the number of trees 191 

was set to 300 and the learning rate to 0.1. All analyses were performed using R 192 

programming language. The gradient boosting model was implemented with the package 193 

gbm (Greenwell et al. 2019). 194 

2.3.3 Performance assessment 195 

Model performance was evaluated for the entire prediction horizon, i.e., for twelve 196 

months of the testing period. Two measures were used: Root Mean Squared Error 197 

(RMSE) and R squared (R²). 198 

𝑅𝑀𝑆𝐸𝑗 = √∑
(𝑦̂𝑖,𝑗 − 𝑦𝑖,𝑗)2

𝑛

𝑛

𝑖=1

 

𝑅𝑗
2 =

∑ (𝑦𝑖,𝑗 − 𝑦̂𝑖,𝑗)2𝑛
𝑖=1

∑ (𝑦𝑖,𝑗 − 𝑦̅𝑗)2𝑛
𝑖=1

 

where 𝑦𝑖,𝑗 is the observed water demand in household i at month j, 𝑦̂𝑖,𝑗 is the predicted 199 

water demand in household i at month j, 𝑦̅𝑖,𝑗 is the mean observed water demand at 200 

month j, and n is the number of households. 201 

2.4 Elasticity of water demand reduction to price 202 

Different scenarios of price increase were considered, based on the tariff for the previous 203 

year (2015 for the training and 2016 for the validation period): no increase, 5, 10, 15 and 204 

25%. To calculate the elasticity of water demand reduction to price, we used the 205 

predictions for the year of 2016 obtained with the model. The reduction is related to the 206 

average consumption during the baseline period (October 2014 to September 2015).  207 

𝐸 =
∆𝑅 𝑅⁄

∆𝑃 𝑃⁄
 

where R is the monthly average reduction in water demand and P is the average water 208 

block tariff.  209 

Water demand elasticity was assessed for different socioeconomic classes, as users’ 210 

response to water conservation policies tend be heterogeneous. These classes were based 211 

on the criteria used by the Brazilian Institute of Geography and Statistics (IBGE), which 212 

is based on per capita family income. IBGE uses the minimum wage to classify the 213 
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families in five classes (Table 2). We also compared the predicted monthly reduction 214 

with the actual reduction aggregated water demand. 215 

Class Number of minimum wages Number of households 

A 20 or more 53 

B 10 < N < 20 969 

C 4 < N < 10 5,186 

D 2 < N < 4 17,554 

E N < 2 13,927 

Table 2. Socioeconomic classes and number of households in each of them. 216 

2.5 Public interest and media coverage 217 

We assessed public interest with the frequency of google searches of the terms 218 

“contingent tariff” and “drought” in Ceará, in a similar approach as Quesnel and Ajami 219 

(2017) and Kam et al. (2019). Media coverage was evaluated with the frequency of news 220 

related to the contingent tariff, which were collected from the websites of the three main 221 

local newspapers (Tribuna do Ceará, OPovo and Diário do Nordeste). These sources have 222 

a strong online presence and usually share the news on social media such as Instagram 223 

and Twitter. Data was collected with web scraping using Python and the BeautifulSoup 4 224 

library. 225 

To assess the marginal response and the relative influence of public interest in drought 226 

and the contingent tariff on water demand, a regression analysis was performed. Water 227 

demand was predicted as a function of water demand in the previous month, public 228 

interest and the contingent tariff cost for the previous month. Google search hits for the 229 

term “drought” were used as a proxy for public interest in water scarcity, from which the 230 

trend component was extracted using the STL method.  231 

The GBM algorithm was used to perform the regression. For this analysis, we used data 232 

from 2012 (beginning of the drought) to 2017. The dataset was randomly split into 80% 233 

train and 20% test. After obtaining the predictive model, we extracted the marginal 234 

response of each variable using partial dependence plots and their relative influence. The 235 

relative influence is measured with the reduction of squared error associated with each 236 

variable, i.e. how much worse the model’s performance would be without that variable. 237 

2.5.1 Partial dependence plot 238 

The partial dependence plot (PDP) represents the marginal effect of indepedent variables 239 

on the response of a machine learning model (Friedman 1999). The partial dependence of 240 

the response on a variable xl is represented by: 241 

𝑓𝑥𝑙
(𝑥𝑙) = 𝐸𝑥𝑠

[𝑓(𝑥𝑙 , 𝑥𝑠)] = ∫ 𝑓(𝑥𝑙 , 𝑥𝑠)𝑃(𝑥𝑠) 𝑑𝑥𝑠 

Where xl is the independent variable analyzed in the partial dependence plot, xs is the 242 

subset of the other input variables of the regression model 𝑓 and P(xs) is the marginal 243 
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probability density of xs. The function shows the effect of the variable xl on the dependent 244 

vaiable by marginalizing over the other explanatory variables. 245 

3 Data 246 

Monthly water demand data for the period between 2009 and 2017 from 45,141 households were 247 

provided by the Water and Wastewater Company of Ceará (CAGECE). This analysis focused on 248 

households with consumption up to 50 m³/month. Households with monthly water consumption 249 

inferior than one m³ per month or the ones in which the total water consumption between 2009 250 

and 2017 was less than five m³ were excluded from the dataset. The data cleaning process 251 

reduced the dataset to 37,685 observations.  252 

Socioeconomic data from the 2010 Census were used to classify the households. Average per 253 

capita income is available at the census tract level, territorial units containing a maximum 254 

number of households that allow a survey to be carried out by a single person (IBGE). Fortaleza 255 

is divided into 3,043 census tracts, and 2,586 of them are attended by CAGECE’s water supply. 256 

4 Results and discussion 257 

Model performance was evaluated for each month of the testing period (Figure 3). The model 258 

presented reliable predictions in terms of RMSE and R² for a short-term horizon (1 to 6 months 259 

ahead), and satisfactory results for a medium-term horizon (7 to 12 months ahead). The 260 

autoregressive component was the most important, i.e., removing it from the model would mean 261 

a significant increase in the loss function. This suggests that water demand is strongly dependent 262 

on past use.  263 

A comparison between the predicted and observed mean percent reduction in residential water 264 

demand shows that the model provided accurate predictions (Figure 4). For this analysis, 265 

households were grouped according to their socioeconomic class, to assess variation in model 266 

performance and mean percent reduction in water demand. Classes D and E presented a rather 267 

regular behavior during the year, with an average reduction of 14.73% and 13.99%, respectively. 268 

Households in class B had the largest reduction in water demand: 17.58% over the year. Class A, 269 

with the smallest reduction (11.22% on average), presented a peak in January but almost no 270 

change in March. 271 

The reduction in water demand was revealed inelastic to tariff variation (Figure 5). These results 272 

suggest that the contingent tariff itself would be enough to encourage a reduction in water 273 

consumption in all socioeconomic classes. However, the policy has adverse effects on each type 274 

of consumer. While the water tariff represents less than 1% of the average per capita income of 275 

classes A and B, it is about 23% of the income of class E, which represents 37% of the 276 

households (Table 3). The lower income classes had the lowest per capita consumptions during 277 

the baseline period, but still managed to reduce their demand after the implementation of the 278 

contingent tariff. Except for households in class B, none of the classes would reach the 20% 279 

reduction goal. Class B also had the highest average daily per capita consumption (Table 3) 280 

during the baseline period. 281 

These findings agree with other studies that also found water demand is inelastic to price 282 

variation (Rinaudo et al. 2012; Deyà-Tortella et al. 2016). Also, Zhang et al. (2017) showed that 283 
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increasing block policies are not effective to encourage a reduction in water consumption. Ma et 284 

al. (2014) indicated that the highest income group is not sensitive to price changes, while 285 

residents from the lower income group respond to marginal price and might even compare the 286 

tariff for different blocks to optimize their benefit. De Maria André and Carvalho (2014) found 287 

similar values of water demand elasticity to price in Fortaleza using survey collected data. The 288 

advantage here is that we used only secondary data and wer able to calculate elasticity for 289 

different socioeconomic classes. 290 

Overall, the results indicate that the restriction policy might be unfair with the lower income 291 

classes, for which the tariff represents a significant percentage of their income and sill had to 292 

decrease their already low daily per capita demand. In a scenario where the customers must pay 293 

an additional charge for their excess consumption, price increase does not seem to affect 294 

consumer behavior. 295 

This result can be explained by the fact that the customers might be at the kink point of the block 296 

rate schedule or their willingness to pay for water rises under drought conditions, since it 297 

represents only a small percentage of their income. The first is the most reasonable explanation 298 

for classes D and E, while the second is consistent with higher income classes. Another aspect to 299 

be considered is the reservation capacity of households (water tanks or cisterns, private borehole 300 

drilling), which is higher for wealthy customers (Grande et al. 2016), who might be able to 301 

maintain their standards and still reduce the water volume from public supply. 302 

 303 

Class A B C D E 

Elasticity of water demand 

reduction to price 
0.515 0.212 0.426 0.314 0.295 

Number of households 53 969 5,186 17,554 13,927 

Percentage of the average per 

capita income related to the water 

tariff (%) 

0.46 0.89 2.00 3.77 22.97 

Average daily per capita 

consumption (L/hab/day) for the 

baseline period 

102.25 123.36 105.19 96.78 94.96 

Average daily per capita 

consumption (L/hab/day) after the 

restriction measures 

90.06 104.99 92.37 84.60 83.69 

Table 3. Reduction in water demand elasticity to price increase and characteristics of the 304 

socioeconomic classes. 305 

It is important to bear in mind that the consumers are not necessarily aware of the pricing policy 306 

structure. Although the contingent tariff is clearly expressed on the water bill, increasing block 307 

tariff scheme is not detailed for households. 308 

A clear increasing trend in public interest is observed after 2012 (when the drought started), 309 

while the number of news related to the restriction measure peaked in 2016 (Figure 6). While 310 
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this could imply that the public was well informed about pricing policy, the finding cannot be 311 

extrapolated to all customers, since not all households have access to internet. 312 

A regression analysis between water demand, public interest, the contingent tariff and past water 313 

demand was performed for each socioeconomic class (Table 4). The relative importance values 314 

imply that an increase in the cost associated with the contingent tariff has a higher influence on 315 

consumer behavior than information on drought. Also, it seems that residents with higher income 316 

have a more significant response to both the contingent tariff and information on drought 317 

compared to residents in classes with lower income. 318 

Class A B C D E 

Past water demand 85.87 95.78 98.31 98.67 98.55 

Contingent tariff cost 10.17 3.90 1.59 1.29 1.42 

Public interest 3.96 0.32 0.10 0.03 0.02 

R² 0.69 0.69 0.75 0.74 0.73 

RMSE 4.37 4.08 3.26 3.01 3.05 

Table 4. Relative importance of the explanatory variables of the regression model between water 319 

demand, past water demand, public interest and contigent tariff. 320 

PDPs were plotted for each regression model (Figure 7). The results indicate that water cost has 321 

an inverse relationship with water demand for all households, while an increase in the interest in 322 

the drought has little effect on consumer habits. It is worth mentioning that class A is the only 323 

one to present a direct relationship between public interest in the drought and water demand. 324 

However, we should be careful when interpreting these results since class A has a low number of 325 

households. 326 

5 Conclusions 327 

The main objective of this research was to address the influence of a contingent tariff on a 328 

predictive model of water demand in Fortaleza, Brazil. The model contained an autoregressive 329 

component and variables assessing seasonality and the cost associated with the contingent tariff. 330 

This study has found that the contingent tariff was effective and resulted in a 11-17% reduction 331 

in residential water demand. Also, reduction in consumption was inelastic to price increase in all 332 

socioeconomic classes. 333 

The evidence from this study suggests that a price policy that associates IBT with a contingent 334 

tariff could be unfair to lower income households, for which the tariff represents a large 335 

percentage of household income. Hence, although the strategy warrants a high revenue for the 336 

water company (that can be allocated to water security projects), its equity is questionable. 337 

Managers should be careful when implementing pricing policies to ensure the affordability of 338 

water services to all consumers. 339 

The findings of this study imply that price-related water demand control policies are effective, 340 

while drought awareness is less likely to encourage consumers to save water. The increase in 341 

public interest in the drought does not necessarily indicate that consumers are well informed 342 

about the risks associated with it. It is crucial that the users are aware of the water resources 343 

management strategies and the implications of their habits rather than having a limite perception 344 
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of drought. This can only be accomplished if social dynamics aspects are considered when 345 

designing drought plans and policies. 346 

The framework proposed here is flexible and can be useful for water companies planning to 347 

implement price-related measures to encourage water demand reduction. The predictions at the 348 

household level can be useful to design policies for different classes of consumers. The 349 

predictive model can be used to verify at what extent the changes in the price policy could 350 

influence water demand. 351 
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Figure 1. Total domestic water demand (m³) in Fortaleza from 2009 to 2017. The baseline 432 

period was used by the local water company to calculate the reduction goal for each household. 433 

Figure 2. The predictive model has an autoregressive component (previous month water 434 

demand) and the penalty price as explanatory variables, in addition to the seasonality of the 435 

corresponding month. Starting from January, the water demand in December would be used to 436 

calculate the cost of the contingent tariff. For the next month, the penalty cost is calculated using 437 

the predicted water demand for January. 438 

Figure 3. Model performance. 439 

Figure 4. Real and predicted monthly reduction in aggregated water demand for the year of 2017 440 

for each socioeconomic class. 441 

Figure 5. Elasticity of water demand reduction to price for each socioeconomic class. 442 

Figure 6. Public interest and media coverage on the contingent tariff policy. 443 

Figure 7. Partial dependence plots for public interest and the contingent tariff cost. A regression 444 

model was built for each socioeconomic class. 445 
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