
P
os
te
d
on

24
N
ov

20
22

—
C
C
-B

Y
4.
0
—

h
tt
p
s:
//
d
oi
.o
rg
/1
0.
10
02
/e
ss
oa
r.
10
51
04
15
.1

—
T
h
is

a
p
re
p
ri
n
t
an

d
h
as

n
ot

b
ee
n
p
ee
r
re
v
ie
w
ed
.
D
at
a
m
ay

b
e
p
re
li
m
in
ar
y.

Processing digital elevation data for deep learning models using

Keras Spatial

Aiman Soliman1 and Jeffrey Terstriep1

1University of Illinois at Urbana-Champaign

November 24, 2022

Abstract

Most state-of-the-art deep learning systems have their roots in computer vision, which force the remote sensing community

to develop ad-hoc procedures for applying deep learning methods in the analysis of remote sensing data. In this Juypuiter

notebook, we present Keras Spatial (https://pypi.org/project/keras-spatial), a new python package for pre-processing and

augmenting geospatial data for deep learning models. Keras Spatial is composed of loosely-coupled components, which allow

users to pre-process geospatial raster data on-the-fly before ingesting them into neural networks. The advantage of using Keras

Spatial over more traditional Ad-hoc pipelines are (1) allowing scientists and developers to work in projected coordinates rather

than pixels and (2) controlling the sample space and hence avoiding issues such as bias and class imbalance during training.

We will demonstrate Keras Spatial using the case study of processing digital elevation data for a segmentation model. We will

also demonstrate advanced data pre-processing features of this package, such as accessing remote data sources directly, easy

integration of multiple datasets using automatic reprojection and resampling, and decoupling training samples dimensions from

the geographic extent to open the door for prediction across different scales.

1

Processing digital elevation data for deep learning
models using Keras Spatial

Aiman Soliman and Jeffrey Terstriep

National Center for Supercomputing Applications (NCSA)

University of Illinois at Urbana-Champaign, Urbana, Illinois

1. How to avoid ad hoc preprocessing with Keras Spatial

There are endless possibilities for developing deep learning applications to extract geospatial insights from
large remote sensing archives such as NASA LP DAAC (https://earthdata.nasa.gov/eosdis/daacs/lpdaac)
and NSIDC DAAC (https://nsidc.org/). However, if you have tried to develop your GeoAI application, you
must have already stumbled upon the hurdle of getting remote sensing data ready for your deep learning
model. Unlike regular images, remote sensing data includes important information about their location, map
projection, and coordinate system. Further, rasters tend to be stored in a single file much larger than a single
training sample. A common solution around this problem is to ‘chop’ the large remote sensing image in many
equal-sized samples. This ad hoc process becomes even more tedious if you would like to repeat the
experiment with your GeoAI model as each change of the model input dimensions (i.e., width and height)
would require repeating the entire preprocessing steps and duplicating your data.

In this notebook, you will learn how to avoid these problems by using Keras Spatial, a new python library for
preprocessing geospatial data. This library will help you feed your remote sensing data as batches with
predefined dimensions, without worrying too much about preprocessing your data in advance. The key point
here is that Keras Spatial will handle the projection and the spatial resolution of your remote sensing data
and let you specify your input dimensions as if you are handling a regular image.

2. What is Keras Spatial?

Keras Spatial (https://github.com/ncsa/keras-spatial) is a python package designed to be part of Keras'
preprocessing library. It provides capabilities to generate samples and extracting tensor data derived on-the-
fly from a raster data source. The most significant design principle for Keras Spatial is the separation of the
sample boundary and array size passed to the DL model. The researcher can define a coordinate reference
system and sample size in spatial coordinates that are most appropriate to the problem being solved.
Following, multiple raster sources can be easily merged together, while re-projection and re-sampling will be
done automatically to match the dimensions of the model's input layer.

Following we will discuss with examples the three main components of Keras Spatial: (1) a
SpatialDataGenerator (SDG) class that handles access to raster data, (2) Sample definition utilities to aid in
the definition of sample boundaries, and (3) Sample Iterator.

In [40]: import geopandas as gpd

import numpy as np

import matplotlib.pyplot as plt

from rasterio.plot import show

https://earthdata.nasa.gov/eosdis/daacs/lpdaac
https://nsidc.org/
https://github.com/ncsa/keras-spatial

2.1 Spatial Data Generator

If you are familiar with the deep learning framework Keras (https://keras.io/), then the SpatialDataGenerator
(SDG) resembles the standard Keras ImageDataGenerator class (https://blog.keras.io/building-powerful-
image-classification-models-using-very-little-data.html). The main difference is that SDG extracts sample
data from raster files on-the-fly. This approach is more convenient for remote sensing applications, where the
dimensions of an input raster file are not equal to the dimensions of a single sample and it may be desirable
to extract hundreds or thousands of samples from a single raster. SDG also understands coordinate
reference systems and transparently handles reprojection when required.

In [41]:

As can be seen in the final print statement above, the RasterIO src instance is available from the SDG and is
useful when inspecting the source raster. The SDG class wraps the RasterIO file class and provides many of
the same attributes and methods. In general, the SDG attributes and methods should be preferred as the
RasterIO src may be opened and closed automatically during program execution.

Using default parameters, the SDG will return samples in the same coordinate reference system as the
source raster. An alternative system can be chosen using the crs parameter or crs attribute. Similarly indexes
can be used to specify one or more bands from the source raster. The SDG also supports standard
interpolation methods (nearest neighbor, bilinear, cubic, etc) as provided by the GDAL library
(http://www.gdal.org) and the Rasterio package (https://github.com/mapbox/rasterio). Resampling becomes
significant when transforming from raster pixel size to sample size as will be shown in more detail later.

2.2 Sample Definition Utilities

In addition to the source raster data, a GeoAI model will require a set of sample boundaries. Samples can be
any vector source containing polygons that can be read into a GeoPandas GeoDataframe. If pre-defined
boundaries are not available, the Keras Spatial grid module provides two functions for generating
GeoDataFrames that define the samples, regular_grid, and random_grid. Both require the spatial extent of
the study area, the sample size in the source coordinate units, and the coordinate reference system (CRS).
The regular_grid may also include a percentage overlap that increases the number of samples available to
model.

The SDG class includes convenience methods that provide a shortcut in accessing these functions where the
spatial extent and CRS are determined directly from the raster source. By default, the sample width and
height are specified in the native coordinate system units (in this case, feet). Alternatively, samples can be
specified in pixels by using the units='pixels' parameter.

Regardless of the approach used, the sample boundaries will be defined in spatial coordinates and are
unrelated to the final array size that will be passed to the model. The sample size should be based on the
geometry or physical attributes of the feature being studied. For instance, detecting buildings with sample
sizes of 3 by 3 meters may be inappropriate whereas the same sample size may be appropriate for detecting
small gullies.

{'driver': 'GTiff', 'dtype': 'float32', 'nodata': -9999.0, 'width': 2000, 'heigh

t': 2000, 'count': 1, 'crs': CRS.from_epsg(3443), 'transform': Affine(48.96, 0.

0, 801795.0,

 0.0, -42.5675, 1460734.99)}

from keras_spatial import SpatialDataGenerator

raster_dem = './data/raster.tiff'

sdg = SpatialDataGenerator(source=raster_dem)

print(sdg.src.meta)

https://keras.io/
https://blog.keras.io/building-powerful-image-classification-models-using-very-little-data.html
http://www.gdal.org/
https://github.com/mapbox/rasterio

In [42]:

Similarly, you could create a dataframe with random samples. In this case, you will need to specify the
number of samples in addition to the width and height dimensions of each sample in the native resolution of
the SDG source raster. For example, here we created 323 samples as in the regular grid with equal
dimensions of 5000 feet.

Created 323 samples

Out[42]: geometry

0 POLYGON ((806795 1375599.99, 806795 1380599.99...

1 POLYGON ((811957.2222222222 1375599.99, 811957...

2 POLYGON ((817119.4444444445 1375599.99, 817119...

3 POLYGON ((822281.6666666666 1375599.99, 822281...

4 POLYGON ((827443.8888888889 1375599.99, 827443...

df = sdg.regular_grid(5000, 5000)

print(f'Created {len(df)} samples')

df.plot(color=None, edgecolor='k')

df.head()

In [43]:

2.3 Sample Iterator

Developers familiar with ImageDataGenerator may be familiar with the flow_from_dataframe method that
returns an iterator that reads images from the file system based on the path contained in the dataframe. The
SDG flow_from_dataframe method performs similarly returning an iterator that performs the following steps:

Extract sample data from raster source, reprojecting if necessary
Resample data to match model input size
Invoke any requested callback functions on each sample
Stack samples into desired batch sizes

The most important task of the flow_from_dataframe generator is to return arrays that match the input size
expected by the model. The iterator always returns a NumPy array of shape (batch_size, height, width,
layers). Batch_size, height, and width are parameters passed to the flow_from_dataframe method and
should be self-explanatory. The layers may be indexes (also known as bands) read from the source raster,
data created using the SDG callback mechanism, or a combination of the two.

The SDG callback mechanism enables on-the-fly data transformation or augmentation of each sample. A
callback can be any function that accepts a NumPy array of shape (1, width, height, n) and returns a NumPy
array of shape (1, width, height, m) so the callback may produce new layers. Callbacks are invoked as a
pipeline with the results of the earlier callbacks being passed to the subsequent callback. The final callback
should always produce an array that matches the model input size.

3. A Practical Example: Preprocessing Digital Elevation Models
(DEM)

We will start with a simple example of preparing Digital Elevation Models (DEM) for a landscape
morphological classification using a deep learning model. Here we have two input rasters (1) an elevation
raster that we want to segment and (2) a label raster that identifies the locations grass waterways, which are

Created 323 samples

Out[43]: <matplotlib.axes._subplots.AxesSubplot at 0x7ff10e4f2128>

df_rand = sdg.random_grid(5000, 5000, 323)

print(f'Created {len(df_rand)} samples')

df_rand.plot(color=None, edgecolor='k')

commonly found surface hydrology features in agriculture fields. The model produces a binary classification
of positions on the landscape that are associated with waterways.

The DEM raster, below, shows the height of every pixel over the Lake Bloomington Watershed area in central
Illinois, where the dark pixels are regions with lower elevation.

In [44]:

The label is a binary raster where light color pixels indicate the locations of the feature of interest, in this
case, grass waterways. You should notice that the features are concentrated within the boundaries of the
Lake Bloomington Watershed. Areas outside of the watershed were not manually labeled, therefore we can
not use them to train the model, and these areas must be excluded from the training and evaluation samples
set. It should be also noticed that the geographic projection and spatial resolution of DEM and label rasters
are different, but both rasters' units are in feet.

In [45]:

3.1 Managing sample space

Out[44]: <matplotlib.axes._subplots.AxesSubplot at 0x7ff10b2cbda0>

Out[45]: <matplotlib.axes._subplots.AxesSubplot at 0x7ff10b1037f0>

dem_path = './data/raster.tiff'

dem = SpatialDataGenerator(source=dem_path)

show(dem.src)

label_path = './data/label.tiff'

labels = SpatialDataGenerator(source=label_path)

show(labels.src)

One of the advantages of using a GeoDataFrame to store the boundaries of the samples is easy filtering and
selecting samples to feed to the deep learning model. You can select a subset of samples either by applying
a spatial selection criterion (intersection, within, etc.) with an external vector file or by applying a database
query on the sample attributes columns. We will discuss how to create sample attributes columns later, but
let us start with selecting samples based on spatial relationships.

Selecting samples within an area of interest

Selecting samples based on spatial relationships is useful in the case that the study area has an irregular
boundary, or as we mentioned earlier, some areas might have not been included in the manual labeling.
Keras Spatial inherited the spatial queries from geopandas, therefore Keras Spatial supports any
complicated spatial selection criteria on the samples objects.

We will use the Lake Bloomington watershed as a mask and select only the samples that intersect the
watershed boundaries. Notice that you could use a more complicated spatial relationship as a selection
criterion, such as selecting samples that fall within, touch, or do not intersect with the boundaries of a vector
object.

In [46]:

Here we select all the samples that intersects our watershed.

Out[46]: <matplotlib.axes._subplots.AxesSubplot at 0x7ff10b0e40f0>

watershed_path = './data/watershed.geojson'

mask = gpd.read_file(watershed_path)

mask.plot()

In [47]:

Calculating attributes for each sample

Upon creating a GeoDataFrame for samples, it will contain a single column with the bounding box (geometry)
of each sample. A powerful concept in Keras Spatial is setting selection criteria based on sample attributes.
This capability comes handy when quantifying class imbalance in training samples, or the geographic bias of
samples towards an area with specific attributes, such as specific soil type, average elevation, etc. Once
these attributes are added to your GeoDataFrame, selecting samples will be a matter of applying conditional
query based on column values as in slicing any DataFrame. The question is how to add the samples
attributes to the samples GeoDataFrame?

An easy way to solve this problem is to use the SpatialDataGenerator's iterator to extract samples from the
source raster, calculate the attribute for each sample, and store it as a column in the GeoDataFrame. In the
following example, the count of labels pixels will be extracted from the label raster and added as a second
column named features in the samples' GeoDataFrame. We defined a batch size of one to guarantee a one
to one correspondence with every single sample.

Out[47]: <matplotlib.axes._subplots.AxesSubplot at 0x7ff10b089c50>

samples = df[df.intersects(mask.unary_union)].copy()

samples.plot(color=None, edgecolor='k')

In [48]:

The same process could be repeated to add more attributes from other raster files. In the following cell, we
calculate the average elevation of each sample. Remarkably, we can add attributes from vector layers as
well. For example, a land cover layer could be used to estimate the dominant land cover type of each
sample.

Out[48]: geometry features

14 POLYGON ((879066.1111111111 1375599.99, 879066... 0.000000

15 POLYGON ((884228.3333333334 1375599.99, 884228... 0.000000

16 POLYGON ((889390.5555555555 1375599.99, 889390... 46.056988

17 POLYGON ((894552.7777777778 1375599.99, 894552... 642.023926

18 POLYGON ((899715 1375599.99, 899715 1380599.99... 218.907867

define label raster as a source raster

label_path = './data/label.tiff'

lsdg = SpatialDataGenerator(source=label_path)

width, height = 128, 128

samples['features'] = [(np.sum(np.where(arr==1, 0, arr)))

 for arr in lsdg.flow_from_dataframe (samples, width, height,

samples.plot(column='features', legend=True)

samples.head(5)

In [49]:

3.2 Estimating global statistics

One of the major challenges that you could face when using data generators is estimating global statistics for
the entire samples set. For example, in the case that you want to normalize each sample using the global
maximum and minimum of the entire data set. This process is difficult because of the piecewise strategy of
the data generator to load a batch of samples at a time. Although this strategy uses memory efficiently, it
makes the retrieval of global statistics difficult.

We adopted a two-step solution to solve this problem with Keras Spatial. In the first step, we estimate the
local statistical attributes for each sample. In the second step, the global attribute is passed as a parameter
to the SDG callback function.

In the following example, we estimate the global maximum and minimum elevation by first adding two
columns with the maximum and minimum elevation for each sample (local statistics) as we demonstrated
before. Once the minimum and maximum columns are added to the dataframe, we can estimate the global
maximum and minimum directly from the dataframe.

In [50]:

Out[49]: <matplotlib.axes._subplots.AxesSubplot at 0x7ff10b2bc978>

912.4614868164062 724.9473266601562

dem_path = './data/raster.tiff'

rsdg = SpatialDataGenerator(dem_path)

samples['elevation'] = [(np.max(arr)) for arr in rsdg.flow_from_dataframe (sample

samples.plot(column='elevation', legend=True)

samples['maxelv'] = [(np.max(arr)) for arr in rsdg.flow_from_dataframe (samples,

samples['minelv'] = [(np.min(np.where(arr>0, arr, np.nan))) for arr in rsdg.flow_

print(samples.maxelv.max(), samples.minelv.min())

3.3 Sample normalization using a callback function

Here we define a normalization function and use it as a callback. The first sample is plotted for demonstration
purposes.

In [51]:

3.4 Feeding data directly to train a deep learning model

After the sample data frame is filtered and all the relevant samples are selected, then it can be used to feed
data in a stepwise fashion to the deep learning model. Our final challenge is to provide a tuple containing our
label and source data. We use Python's zip function to create a new iterator that is passed to the TensorFlow
model.

In [52]:

4. Conclusion

We introduced Keras Spatial that provides a preprocessing module tailored for remote sensing and
geospatial data. Keras Spatial reduces the friction in handling geospatial data by providing loosely coupled
preprocessing capabilities to retrieve and transform data on-the-fly before feeding them to deep learning
models. Through this notebook, you learned the advantages of using Keras Spatial over more traditional Ad-
hoc pipelines, particularly in (1) preparing your samples set in a reproducible way and (2) controlling the
sample space and hence avoiding issues such as bias and class imbalance during training. Keras Spatial
could also contribute to solving the Geo-AI model bias problem, by providing means to quantify the samples'

Out[51]: <matplotlib.colorbar.Colorbar at 0x7ff1095a7278>

def normalize(arr, gmin, gmax):

 return (arr - gmin) / (gmax - gmin)

sdg.add_preprocess_callback('elvnorm', normalize, samples.minelv.min(), samples.m

gen = sdg.flow_from_dataframe(samples, 128, 128, batch_size=1)

arr = next(gen)

imgplot = plt.imshow(arr[0, :, :, 0], cmap='viridis')

plt.colorbar()

example of Feeding samples to a DL model

width, height = 128, 128

train_gen = zip(labels.flow_from_dataframe(df, width, height), dem.flow_from_data

statistical distribution and estimate the degree of concordance between the statistical distribution of training
and prediction datasets to ensure the quality of prediction. Please refer to (Soliman and Terstriep, 2019)
(https://dl.acm.org/doi/10.1145/3356471.3365240) for more information about Keras Spatial.

Acknowledgment
This research is based in part upon work supported by the Illinois Natural Resources Conservation Service,
Illinois State Geological Survey, and the Illinois State Water Survey.

https://dl.acm.org/doi/10.1145/3356471.3365240

