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Abstract

In northern Fennoscandia, semi-alluvial boulder-bed channels with coarse glacial legacy sediment are abundant, and due to

widespread anthropogenic manipulation during timber-floating, unimpacted reference reaches are rare. The landscape context

of these semi-alluvial rapids— with numerous mainstem lakes that buffer high flows and sediment connectivity in addition to

a regional low sediment yield— contribute to low amounts of fine sediment and incompetent flows to transport boulders. To

determine the morphodynamics of semi-alluvial rapids and potential self-organization of sediment with multiple high flows, a

flume experiment was designed and carried out to mimic conditions in semi-alluvial rapids in northern Fennoscandia. Two slope

setups (2% and 5%) were used to model a range of flows (Q1 (summer high flow), Q2, Q10 & Q50) in a 8 x 1.1 m flume with a

sediment distribution analogous to field conditions; bed topography was measured using structure-from-motion photogrammetry

after each flow to obtain DEMs. No classic steep coarse-bed channel bedforms (e.g., step-pools) developed. However, similarly

to boulder-bed channels with low relative submergence, at Q10 and Q50 flows, sediment deposited upstream of boulders and

scoured downstream. Because the Q50 flow was not able to re-work the channel by disrupting grain-interlocking from preceding

lower flows, transporting boulders, or forming channel-spanning boulders, the channel-forming discharge is larger than the Q50.

These results have implications for restoration of gravel spawning beds in northern Fennoscandia and highlight the importance

of large grains in understanding channel morphodynamics.
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Key Points:

 Boulder-bed semi-alluvial channels behave like low submergence regime mountain 
streams with sediment deposition upstream of boulders

 Fennoscandian semi-alluvial rapids are not re-worked (boulders transported or bedform 
formation) by high fluvial flows (i.e., Q50) 

 Large grains (>D84) are important in shaping channel morphodynamics and have 
implications for restoration of salmonid spawning gravel
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Abstract

In northern Fennoscandia, semi-alluvial boulder-bed channels with coarse glacial legacy 
sediment are abundant, and due to widespread anthropogenic manipulation during timber-
floating, unimpacted reference reaches are rare. The landscape context of these semi-alluvial 
rapids— with numerous mainstem lakes that buffer high flows and sediment connectivity in 
addition to a regional low sediment yield— contribute to low amounts of fine sediment and 
incompetent flows to transport boulders. To determine the morphodynamics of semi-alluvial 
rapids and potential self-organization of sediment with multiple high flows, a flume experiment 
was designed and carried out to mimic conditions in semi-alluvial rapids in northern 
Fennoscandia. Two slope setups (2% and 5%) were used to model a range of flows (Q1 (summer 
high flow), Q2, Q10 & Q50) in a 8 x 1.1 m flume with a sediment distribution analogous to field 
conditions; bed topography was measured using structure-from-motion photogrammetry after 
each flow to obtain DEMs. No classic steep coarse-bed channel bedforms (e.g., step-pools) 
developed. However, similarly to boulder-bed channels with low relative submergence, at Q10 
and Q50 flows, sediment deposited upstream of boulders and scoured downstream. Because the 
Q50 flow was not able to re-work the channel by disrupting grain-interlocking from preceding 
lower flows, transporting boulders, or forming channel-spanning boulders, the channel-forming 
discharge is larger than the Q50. These results have implications for restoration of gravel 
spawning beds in northern Fennoscandia and highlight the importance of large grains in 
understanding channel morphodynamics.
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Plain language summary 

Many streams in northern Scandinavia and Finland contain abundant boulders that were 
originally deposited by glaciers (>10,000 year ago). However, most of these so-called ‘semi-
alluvial’ streams were heavily altered during the timber-floating era. In order to understand how 
these streams should look naturally and change over time, experiments were conducted 
mimicking this stream type. An experimental stream was built in a flume (8 x 1.1 m) with down-
scaled sediment sizes matching that of streams in northern Sweden. With two different slopes 
(2% and 5%), four flows were run to mimic flows ranging from the annual high flow to the 50-
year flood. Because lakes are common along these streams, high recurrence-interval flows (that 
occur rarely) are not as large as in mountain streams. Therefore, boulders barely moved even 
with the 50-year flood at the 2% slope and only rolled slightly at the 5% slope (due to 
downstream scour). During 10-year and 50-year floods, finer sediment deposited upstream and 
eroded downstream of boulders. Contrary to mountain streams with coarse boulders, a flow 
much greater than the 50-year flood is necessary to re-work the channel bed. These results have  
implications for stream restoration, including providing habitat and spawning gravel for trout and
salmon.

1 Introduction

1.1 Semi-alluvial channels

Semi-alluvial channels have commonly been described as those where a cohesive 
boundary, most commonly bedrock or cohesive clays, either composes the channel banks, thus 
confining the channel from lateral migration, or the channel bed, thus constraining the channel 
from degrading (Coulombe-Pontbriand & LaPointe, 2004; Meshkova et al., 2012; Turowski, 
2012). Another type of semi-alluvial channel exists where the channel contains abundant 
cohesive or coarse sediment, which are fixed immobile points in the channel and have not been 
deposited by alluvial processes (Pike et al., 2018). This potentially immobile sediment has been 
referred to either as lag or legacy deposits in cases where mass wasting has caused an input of 
coarser material (e.g., Brummer & Montgomery, 2003), where lahar deposits below the channel 
inhibits incision (Reid et al., 2013), or where a previous geomorphic process regime, such as 
glaciation, has deposited sediment that is currently immobile within the current fluvial 
hydrological regime (Gran et al., 2013; Polvi et al., 2014). Semi-alluvial channels with glacially-
derived sediment from depositional landscapes formed by continental ice sheets may contain 
non-alluvial patches that are (1) easily eroded and form alluvial deposits, (2) cohesive fine-
grained material that only responds to extreme high flows (Pike et al. 2018), or (3) coarse-
grained cobbles and boulders (Ashmore & Church, 2001; Polvi et al., 2014). Such semi-alluvial 
channels with till beds, containing either cohesive sediment or sand, gravel and large boulder 
clasts, are common on Canada’s Southern Shield and Southern Boreal Shield (Ashmore & 
Church, 2001) and in northern Fennoscandia (Polvi et al., 2014). In such systems, where all 
sediment was not deposited by fluvial processes and is potentially unable to be reworked even by
high recurrence-interval high flows, it is unknown whether the mobile sediment self-organizes 
into predictable bedforms or whether predictable patterns of sediment clusters and scour form.
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In northern Fennoscandia, boulder-bed semi-alluvial channels are common (Polvi et al. 
2014; Rosenfeld et al., 2011), as the landscape has been shaped by several episodes of 
continental glaciation. Glacially drifted till is the most common deposit in Fennoscandia, 
forming various landforms in the form of ribbed and Rogen moraines, drumlins, eskers, and 
erratics (Seppälä, 2005). Semi-alluvial channels are found in tributary catchments to large rivers 
that flow from the mountains to the Baltic Sea in areas with mapped fluvio-glacial sediment in 
longitudinal swaths (Geological Survey of Sweden surficial geology maps, 1:25,000- 1:100,000).
The tributaries are divided into three main process domains, which are spatially separate zones 
with distinct suites of geomorphic process (sensu Montgomery, 1999): lakes, slow-flowing 
reaches in peat or fine sediment (S0: <0.01 m/m), and semi-alluvial rapids (S0: 0.005-0.07 m/m) 
(Figure 1). Similar systems with abundant mainstem lakes and ‘steeps’ and ‘flats’ have been 
described by Snyder et al. (2008, 2012) in a similarly glaciated landscape in Maine, USA. 
Putting semi-alluvial rapids within the context of their stream network organization of process 
domains is necessary to understand reach-scale sediment processes. Mainstem lakes buffer 
sediment and water fluxes, which reduce the available fine sediment input from upstream reaches
(Snyder et al., 2012) and may preclude very high flows (Leach & Laudon, 2019). Thus, to 
summarize, a process-based understanding of morphodynamics in semi-alluvial rapids in 
northern Fennoscandia is hampered by two geomorphic factors: (1) streams are semi-alluvial, in 
that they contain coarse glacial lag sediment (till from moraines and subglacial tunnels) and (2) 
numerous mainstem lakes buffer sediment and water fluxes. 

Furthermore, natural reference sites are lacking due to extensive timber-floating (mid 
1800s to ~1980) that caused widespread channelization and clearing of rapids, so stream 
restoration schemes cannot rely on copying existing reference sites. In these rapids, some of 
which were unimpacted and others of which were channelized and later restored, no clear pool-
riffle or step-pool bedforms have been observed in the field (personal observation), and cascade 
bedforms have been observed at slopes where plane bed, alternate bar, or step-pools should form 
in alluvial channels (S0: ~0.04-0.07 m/m, sensu Montgomery & Buffington, 1997; Palucis & 
Lamb, 2017). Due to the widespread nature of timber-floating, which necessitated channelization
and clearing of coarse boulders (through manual clearing, the use of dynamite and bulldozers), 
virtually no unimpacted reference reaches exist (Nilsson et al., 2005). Most of those that were 
unimpacted by channelization—though were still impacted by clearing of instream wood, 
harvesting of old-growth riparian trees, and flow diversion—are steeper than those that have 
been restored (Polvi et al., 2014). In the past decade, several stream restoration projects have 
attempted to restore these semi-alluvial rapids because of the low salmonid populations and 
negative effects on biodiversity (Gardeström et al., 2013); however, very little research or 
knowledge on the processes governing sediment transport and organization in these streams are 
available (except Rosenfeld et al., 2011). 
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Figure 1. (a) Schematic of stream networks in tributary streams in northern Fennoscandia. 
Streams are segmented into three process domains: semi-alluvial rapids, slow-flowing reaches 
and lakes, with four examples of prototype reaches of semi-alluvial rapids (b-e). Photos b & c are
of unimpacted reaches with channel bed slopes of 0.05 and 0.04 m/m, respectively; photos d & e 
are of restored reaches with channel bed slopes of 0.03 and 0.02 m/m, respectively. In photos b-
d, the flow direction is out of the picture, and in photo e, the flow direction is from right to left.
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1.2 Background

The channel geometry and bedforms found in semi-alluvial channels are not easily 
predicted based on slope or bankfull discharge. Forms and processes of alluvial streams, on the 
other hand, have been well-studied, allowing prediction of sediment transport, channel geometry,
and bedforms (Church, 2006; Faustini et al., 2009). For example, regionally-derived downstream
hydraulic geometry equations can be used to predict channel width, depth, and velocity based on 
relationships with bankfull discharge or drainage area, because these channel geometry 
parameters reflect the stream’s equilibrium conditions (Church, 2006; Leopold & Maddock, 
1953). Even in steep, coarse-bed channels, channel bed slope can predict bedform morphology 
(e.g., step-pools, plane bed or pool-riffle), which may reflect a balance between sediment supply 
and transport capacity (Montgomery & Buffington, 1997) or other processes co-varying with 
slope (Palucis & Lamb 2017). In addition, the formation of and the controlling mechanisms of 
sediment sorting in step-pools and pool-riffles have been examined, showing that these bedforms
reflect a self-organization phenomenon that form in order to dissipate energy (Chin & Wohl, 
2005), and that sediment is preferentially stored in and mobilized from pools (e.g, Sear, 1996). 

Some insight into semi-alluvial channels with coarse glacial sediment are available from 
experiments based on mountain streams with boulder-bed channels. In general, the effects of 
boulders on local sediment transport are poorly understood due to local feedbacks between 
hydraulics and bed response (Monsalve & Yager, 2017; Nitsche et al., 2012; Yager et al., 2007). 
Finer sediment patches commonly form on the lee side of protruding clasts due to flow 
separation (Thompson, 2008), which in turn alter local roughness, affecting hydraulics and thus 
sediment transport around boulders (Laronne et al., 2001). However, in boulder-bed channels 
with low relative submergence (h/D <3.5, where h is the flow depth and D is the boulder 
diameter; Papanicolaou & Kramer 2005), experimental studies have documented deposition of 
fine to medium-sized sediment directly upstream of boulders (Monsalve & Yager, 2017; 
Papanicolaou et al., 2018). Monsalve and Yager (2017) explained the formation of upstream 
patches as a consequence of negative shear stress divergence upstream of boulders and an 
increase in dimensionless shear stress downstream of boulders in channels with low relative 
submergence (RS); however, this study used a simplified system with regularly spaced equi-
sized hemispheres, spaced so that wakes between consecutive boulders did not interfere with one
another. Furthermore, the presence of protruding boulders can absorb a significant amount of 
shear stress so that the available shear stress for entrainment and transport of mobile sediment 
decreases, leading to potential overestimation of sediment transport (Papanicolaou et al., 2012; 
Yager et al., 2007, 2012).

On a larger spatial and longer temporal scale than sediment deposition dynamics, 
processes that drive bedform development and steer which flow is channel-forming may differ 
for semi-alluvial and alluvial channels. In steep, coarse- (gravel, cobble, and boulder) bed 
alluvial channels, bed slope can predict either a unique bedform or multiple stable states (Palucis 
& Lamb, 2017). For example, according to Montgomery & Buffington (1997), step-pool 
channels commonly have slopes ranging from 0.03 to 0.065 m/m; however, further studies have 
shown that only individual steps form at slopes around 0.04 m/m and continuous steps require 
slopes exceeding 0.07 m/m (Church & Zimmerman, 2007). At lower slopes, stone lines or 
transverse ribs form out of cobbles and boulders, without channel-spanning pools; however, 
these are commonly submerged even at moderate flows (Church & Zimmerman, 2007). In terms 
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of the role of sediment, the formation of step-pools is a combination of the random location of 
keystones, at which other large grains come to rest (Curran & Wilcock, 2005; Lee & Ferguson 
2002; Zimmerman & Church, 2001), and hydraulics, where step-pools form under antidune 
crests at high discharges so that scour occurs on the falling limb creating a pool between coarser 
deposits (Grant, 1997; Lenzi, 2001; Whittaker & Jaeggi, 1982). Based on these step-forming 
hypotheses, the limiting factor for forming steps in boulder-bed semi-alluvial channels will not 
be keystone clasts but rather the ability for additional large grains to deposit upstream of 
keystones and for sufficient scour to take place downstream of keystones.

Furthermore, regardless of whether step-pools or any other bedform or regular sediment 
cluster can form, there is the question of which flow creates and then maintains the current 
channel configuration, in terms of bedforms and boulder configuration. It is debated whether the 
effective discharge, defined as the flow that transports the most sediment over time, is also the 
discharge that determines the channel morphology (Andrews, 1980; Emmett & Wolman, 2001; 
Lenzi et al., 2006a; Torizzo & Pitlick, 2004). Although effective discharge originally referred to 
transport of suspended sediment (Wolman & Miller, 1960), this concept has also been applied to 
bedload transport (e.g., Lenzi et al., 2006a; Torizzo & Pitlick, 2004). In many alluvial channels, 
the bankfull flow, with a 1.5-2 year recurrence interval, does the most geomorphic work and is 
the flow to which the channel has adjusted (Andrews, 1980; Phillips and Jerolmack, 2016). 
However, depending on the system, the effective discharge for bedload may be discordant with 
the channel-forming flow (e.g., Downs et al., 2016) and may instead be a channel-maintaining 
discharge, while a more infrequent flow shapes the channel (Lenzi et al., 2006a). For example, in
alluvial, snowmelt-dominated Rocky Mountain streams, the effective discharge reflects rare 
events (e.g., Q50) in plane-bed channels, whereas the effective discharge is nearer the Qbf flow in 
step-pool channels (Bunte et al., 2014); however, the channel-forming discharge for step-pool 
channels often reflects a higher recurrence-interval flow (Lenzi et al., 2006b). Similarly, in a 
study in formerly glaciated mountain streams of British Columbia, the effective discharge was 
overall very frequent but was also highly variable, depending on the threshold for gravel-sized 
sediment transport (Hassan et al., 2014). Hassan et al. (2014) distinguished three stream types in 
British Columbia based on whether there was mobile or immobile gravel or whether sand was 
transported over gravel. Channels with mobile gravel exceeded the effective discharge multiple 
days per year, channels with immobile gravel had very low-frequency, high-magnitude effective 
discharges, and those with mobile sand but immobile gravel showed a bimodal effective 
discharge. Therefore, there may be a low effective discharge that does not, however, equal the 
channel-forming discharge. In addition, the presence of large boulders and thus low relative 
submergence increases the flow resistance (Bathurst, 2002). For example, the most accurate 
equations to predict the grain component of flow resistance require the D84 in addition to D50 
(Bray, 1979; David et al., 2011; Hey, 1979). Thus the available shear stress to mobilize sediment
is reduced (Yager et al. 2007). Therefore the potential of flows to transport sediment decreases 
which should increase the channel-maintaining or channel-forming discharge. 

Predictions of potential sediment transport and channel re-working depend not only on 
shear stresses associated with different flow magnitudes, but also on the flow history since a 
channel-reworking flow (Masteller et al., 2019).  During low-magnitude flows, sediment is 
locally rearranged and particle interlocking increases, thus increasing the critical shear stress for 
particle movement (Reid et al., 1985). However, during high-magnitude flow events, particle 
interlocking is disrupted and the critical shear stress decreases, allowing for much higher 
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transport rates (Turowski et al., 2009; Masteller et al., 2019). Thus, the probability of sediment 
transport depends on prior flows, including the time since a high-magnitude, sediment 
transporting flow (Masteller et al., 2019; Yager et al., 2012), which may thus account for a large 
portion of the variability in dimensionless shear stress values (Johnson, 2016). Therefore, when 
determining whether a flow is capable of re-working the channel, the probability of a high flow 
reworking the channel decreases if a channel has experienced previous low or medium flows. So,
a more conservative estimate (avoiding underestimations) of a channel-forming flow should be 
based on a channel where the sediment has been locally rearranged with particle interlocking 
thus exhibiting a critical shear stress on the higher end within the range of variability.

1.3 Objectives

In order to gain insight of the morphodynamics of semi-alluvial boulder-bed channels , a 
flume study was designed and carried out to mimic conditions in previously field-studied semi-
alluvial rapids in northern Sweden (Polvi et al., 2014). The objective of this study was to model 
the potential evolution of bedforms or self-organization of sediment in semi-alluvial channels 
with coarse glacial legacy sediment using a range of flows (annual high-flow to 50-year flood) in
a flume at two different slopes (0.02 and 0.05 m/m). I aimed to answer the following questions: 
(1) given a history of potentially stabilizing, low flows, can we determine the potential range of 
channel-forming discharges? Specifically, is a large-magnitude flow (e.g., Q50) capable of 
reworking the channel, transporting boulders and creating bedforms? Here, I define channel-
forming discharge as a flow that can transport boulders and re-organize potential bedforms or 
sediment clusters. This question is addressed through observations of potential boulder transport 
and by calculating the event-based and cumulative geomorphic work by each flow given a 
specific order of flows. Whether or not the geomorphic work during the Q50 flow exceeds that of 
the Q1 or Q2 flows will determine whether the higher flow is capable of re-organizing the bed. (2)
Do patterns of sediment erosion and deposition form around large, potentially immobile 
boulders? This builds on the literature of boulder-bed channels in low relative submergence 
regime systems.  These results will provide management recommendations on how to best 
restore these semi-alluvial channels in a self-sustaining manner.

1.4 Prototype description

The flume study modeled semi-alluvial boulder-bed stream channels found in tributaries 
to the free-flowing Vindel River, which with a drainage area of ~12,500 km2 is the largest 
tributary to the Ume River that flows into the Baltic Sea from the Scandes Mountains at the 
Swedish-Norwegian border. From the mid-1800s to the 1970s, the stream networks were used as 
a transport system for timber from the inland forests to the coastal sawmills, and thus nearly all 
semi-alluvial channels were channelized. Channelization involved manual clearing of coarse 
sediment, closing off side channels, building levees with coarse sediment (cobbles and boulders),
and later using bulldozers to clear the middle of the channel. Restoration started in the 1990s 
with ‘basic restoration’ that entailed returning coarse sediment from levees to the main channel 
and opening up some side channels (Gardeström et al., 2013). In 2010, ‘enhanced restoration’ 
commenced that involved significantly widening the channel and obtaining large boulders (>1 
m) from the surrounding forest that were placed into the channel in addition to the cobbles and 
boulders that remained along the channel edge (Gardeström et al., 2013). Although virtually all 
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semi-alluvial rapids were channelized, some unimpacted reaches remain but most of them are 
steeper than those that were channelized and subsequently restored (Polvi et al., 2014). 

In this study, two prototype channels were used, representing enhanced restored reaches 
(note: enhanced restored reaches are referred to as ‘demo restored’ reaches in Polvi et al., 2014) 
and unimpacted reaches (Figure 1). Channel geometry and sediment distribution parameters were
obtained from four unimpacted and five enhanced restored stream reaches described in more 
detail in Polvi et al. (2014). The average channel bed slope of the enhanced restored reaches was 
~0.02 m/m (range: 0.015-0.037 m/m), whereas unimpacted reaches had an average slope of 
~0.05 m/m (range: 0.029-0.074 m/m). The remainder of the channel geometry parameters, 
including width, depth and sediment distribution, was similar between the two groups of reaches 
(Polvi et al., 2014); channel widths range from 7-20 m and average bankfull depths are 0.5-1 m. 
The catchments, which vary in drainage area from 9-151 km2, consist of an average of 2.53% 
lakes (0.04-6.65%), all of which are connected to the stream network, and an average of 21% 
wetlands (6.00-52.40%) (SMHI, 2015). Sediment distributions were obtained from 300-particle 
pebble counts of the nine reaches. The average median grain size was 245 mm (range: 130-400 
mm), average 84th percentile sediment size was 624 mm, and average maximum sediment size 
was 1670 mm (range: 1400-5000 mm). There was less than 10% sand, and examination of the 
sub-surface sediment did not reveal higher percentages of sand; i.e., there is not substantial 
armoring that shields a buried sand layer. This is further supported by the low rates of 
weathering and sediment production in the region, as suggested by global-scale sediment yield 
maps (Lvovich et al., 1991; Walling & Webb, 1983) and quantification of annual sediment flux 
in a nearby catchment of only ~55 t/km2 (Polvi et al., 2020), which is due to the relatively low 
relief, crystalline bedrock (and till), and cold climate. Because of the segmented channel 
network, where mainstem lakes are abundant, there is probably very little sediment transport of 
fine grain sizes from upstream high-gradient reaches (Arp et al., 2007). 

The flow regime in northern Sweden is dominated by snowmelt-runoff high flows in the 
spring/early summer. The average annual precipitation is 600 mm, of which 40% falls as snow 
(SMHI, 2017). The numerous mainstem lakes serve to buffer high flows, therefore low-
recurrence interval floods do not substantially increase in magnitude compared to higher-
recurrence interval floods, as seen in ratios of recurrence interval flows (Bergstrand et al., 2014). 
For example, the Q50 flow is less than twice that of the Q2 flow (Q50/Q2 = 1.8), and even the 
predicted Q100 and Q500 flows are only 1.12 and 1.4 times that of the Q50 flow, respectively 
(Figure S1). Ice forms in most of these channels during winter, as either surface or anchor ice 
and flooding due to ice cover and ice jamming is also common (Lind et al., 2016). Although 
there are few studies studying the role of ice formation and break-up on sediment transport, 
Lotsari et al. (2015) found that boulders (up to 2 m in diameter) embedded in ice can be 
transported downstream during ice break-up. Polvi et al. (2020) quantified the amount of 
sediment transport under ice and during ice break-up as ~5% of annual sediment yield. However,
the potential effect of ice varies within a catchment, as no anchor ice forms and little surface ice 
forms in reaches close to an upstream lake (Lind et al., 2016). 
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2 Methods

2.1 Flume setup

A mobile-bed physical model of the semi-alluvial prototype streams in northern Sweden 
was set up in an 8-m long, 1.1-m wide fixed-bed flume at the Colorado State University 
Engineering Research Center in Fort Collins, Colorado, USA (Figure 2). Using a geometric (yr 
and zr) scaling factor of 8, the initial sediment distribution was scaled-down to be analogous to 
that in the semi-alluvial prototype streams, and because the flume D10 was 4 mm and Dmin was 
0.14 mm, all sizes were sand-sized or above so there were no issues with cohesiveness (Table 1).
No sediment feed was provided from upstream, creating clear water conditions, and this is 
consistent with the prototype field conditions with very low levels of suspended sediment or 
annual sediment flux (Polvi et al., 2020) and little sediment input from the hillslopes or upstream 
reaches. Two flume setups were used with initial bed slopes of 0.02 and 0.05 m/m, respectively. 
Before the flows were run, the grain size distribution was thoroughly mixed in the flume, and 
checks were made to ensure equal sediment depth and the desired slope throughout the flume 
length. For each slope, four runs were conducted with flows analogous to the summer high (Q1), 
the 2-year (Q2), 10-year (Q10), and 50-year (Q50) flows in the prototype streams. The flows were 
run in a sequence from the lowest to highest flow, with initial bed conditions for each flow equal 
to that of the final conditions of the preceding flow. The summer high flow (Q1) was not based 
on a bankfull flow that filled the banks in the flume channel, but rather based on field conditions 
in the prototype channels. Flow measurements were taken in the field at the summer high flow, 
which was close to or just below the geomorphically-defined bankfull flow (Gardeström J., 
unpublished data) (see Section 2.2. for a full description of flows). Each flow was run for 60 
minutes, which surpassed the time necessary until equilibrium conditions were met, as defined 
by minimal to no visible sediment transport or transport out of the reach. As no boulder (>D84) 
movement was detected (other than slight rotation, as described in Results) during any flow, 
equilibrium conditions were only based on transport of the fine sediment fraction. After each 
flow, the bed topography and channel geometry were measured (described below in Section 2.3) 
before running the next higher flow. After the flume’s slope was altered from 0.02 to 0.05 m/m, 
sediment lost from the previous slope setup was returned and all sediment was manually mixed 
with shovels, so that the initial conditions for both slopes were approximately the same, with a 
plane bed and well-mixed sediment sizes. This experimental setup means that initial conditions 
were different for the two slopes and for each flow. However, due to the wide sediment size 
distribution, it would be nearly impossible to replicate initial conditions for each flow and slope. 
Therefore, the results should not be used to compare processes between slopes but to be used as 
two case studies of boulder-bed semi-alluvial reaches. The bed degraded slightly during each 
subsequent flow, as seen through an increase in slope: for the 2% slope setup, the centerline 
slope started at 0.022 m/m and changed to 0.0211, 0.0223, 0.0226, and 0.0222 m/m with each 
consecutively higher flow; for the 5% slope setup, the centerline slope started at 0.0532 m/m and
changed to 0.0538, 0.0538, 0.0549, and 0.0545 with each consecutively higher flow. However, 
this reach-scale degradation is fairly minor in terms of changing initial conditions for each flow, 
and the centerline slope was controlled more by local sediment re-arrangement rather than reach-
scale degradation. With this setup, channel width could not adjust; however, due to the coarse 
sediment sizes, it is assumed that adjustment of the channel would occur via downstream 
sediment transport rather than streambank erosion and lateral migration. 
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Figure 2. Photos of each flume run at two slope setups with four different flow magnitudes. 
Pictures a-d were taken at the 2% slope setup, and pictures e-h were taken at the 5% slope setup. 
Photos a & e were taken at Q1 (0.006 m3/s); photos b & f at Q2 (0.017 m3/s); photos c & g at Q10 
(0.025 m3/s); and photos d & h at Q50 (0.031 m3/s).  
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Table 1. Prototype Reach Characteristics and Corresponding Flume Specifications

 Prototype reach characteristics Flume specifications
Bed Slope Restored channels: 0.8-3.7% 

Unimpacted channels: 2.9-7.4% 
Setup 1: 2%
Setup 2: 5%

Width 8.8 m 1.1 m
Length 64.0 m 8.0 m
Sediment 
Input

Crystalline rocks, low levels of
weathering, and abundant lakes that buffer

sediment = low levels of suspended
sediment

Clear water (no sediment feed)

Initial 
Conditions

Rapids form in poorly sorted till within
moraines and eskers

Unsorted sediment mix, with 
plane bed morphology

Sediment size distribution 
D16 56 mm 7 mm
D50 248 mm 31 mm
D84 624 mm 78 mm
Dmax 1672 mm 209 mm

Flows/unit discharges
Q1 1.0 m3/s / 0. 125 m2/s 0.006 m3/s / 0.005 m2/s
Q2 3.1 m3/s / 0. 062 m2/s 0.017 m3/s / 0.015 m2/s

Q10  4.6 m3/s / 0.577 m2/s 0.025 m3/s / 0.023 m2/s

Q50 5.6 m3/s / 0.705 m2/s 0.031 m3/s/ 0.028 m2/s

2.2 Flume flows

For each of the four unimpacted and five enhanced restored stream reaches studied in 
Polvi et al. (2014), the various flow magnitudes that represent the Q2, Q10 and Q50 flows were 
derived from a hydrological model, S-HYPE, developed by the Swedish Meteorological and 
Hydrological Institute (Lindström et al., 2010; SMHI, 2015). The model (HYdrological 
Predictions for the Environment) makes sub-basin scale hydrological calculations based on the 
basin-characteristics of surficial geology, landuse, altitude, lake depth, and stream length, and 
temporal inputs of sub-basin mean daily temperature and precipitation (Lindström et al., 2010). 
The average of each of these flows for the nine reaches were used to calculate the desired 
discharge for the flume runs. The Q1 flow magnitude was based on high flow field-measurements
of enhanced restored streams (Gardeström J., personal communication); although this may not 
equate to a flume channel-filling flow, it is analogous to the flow magnitude experienced by the 
prototype channel most years directly after the snowmelt-induced spring flood. The experimental
flows were scaled down by a factor of 181.02 according to equation (1) following Froude 
number similitude over fixed beds (Julien, 2002). 

Qr= yr zr

3
2                   (1)
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where, Qr is the discharge scaling factor, and yr and zr are the lateral and vertical scaling factors, 
respectively, which were both set to 8.  

Although the objective of this study was to model temporal evolution of the bed and potential 
bedforms, scale effects used for mobile bed Froude models was not deemed to play a significant 
role. Because the main objective of scaling the discharge was to obtain relative changes in flow 
that correspond to different recurrence intervals in the field, exact correspondence to a specific 
flow was not necessary. Also in Froude scaling, non-dimensional shear stress scales directly, 
thus entrainment of model particles will be equal to that in the field.   For each flume setup, a 
low-flow discharge was run first to provide saturated conditions prior to the experimental runs. 
Discharge was measured in a closed pipe prior to the inflow in the flume using a Badger-meter 
M2000 flow meter. Before entering the flume, the inflow was allowed to mix in a ‘crash box’ for
~0.5 m to dampen turbulence before entering the flume. The top 0.5 m of the flume was lined 
with very coarse sediment so that preferential scour and sediment entrainment did not occur 
where the water first entered the flume over a lip. Morphologic measurements started 
downstream of the coarse sediment buffer zone. Likewise, at the downstream end of the flume, 
sediment was preferentially transported as a headcut formed. However, the morphologic analyses
were cut off where this effect was seen.

2.3 Morphologic & hydraulic data acquisition and analyses

Structure-from-motion photogrammetry (SfM) was used to create digital elevation 
models (DEMs) of bed topography (Westoby et al., 2012). SfM-created DEMs were constructed 
before all runs at each slope setup and after each run, with progressively higher flows. For each 
flume setup with different slopes, a terrestrial LiDAR scan (TLS) was used to determine a 
coordinate system and be able to georeference the SfM scans, based on targets affixed to the 
flume walls. The TLS scans provided exact xyz coordinates of the targets, which were used to 
georeference the SfM-based DEMs. A Canon EOS Rebel T3i DSLR camera with a fixed, non-
zoom lens (Canon EF-S 24 mm prime lens), which minimizes edge distortion of photos, was 
mounted to a movable cart on rails ~30 cm above the flume bed. Photos were taken ~20 cm apart
looking upstream and downstream at an oblique 45° angle. This flume setup and sediment 
distribution was included in a study comparing results from SfM and TLS scans, which found 
that SfM can produce topographic point clouds with comparable quality and greater point 
densities to TLS (Morgan et al., 2017), thus verifying the validity of the SfM scans in this study. 
The images were processed using AgiSoft PhotoScan Professional (Agisoft LLC, 2014) to obtain
topographical point clouds. 

The topographical point clouds were imported into ArcMap 10.5.1 (ESRI, 2017) and 
rasters were created with a grid size of 5 mm to create digital elevation models (DEMs) of the 
topography for the initial conditions at each slope setup and after each flow with a precision of 2 
mm (Polvi, 2020; Figure 3). In areas with missing data, the neighboring points were iteratively 
averaged to interpolate elevations for pixels. The flume study area was clipped to 7.0 m and 6.3 
m in length for the 2% and 5% slope setups, respectively, to remove the upstream turbulent 
section containing much coarser sediment and a headcutting section at the downstream portion of
the flume. To analyze differences in aggradation versus degradation after each run, the DEMs 
were subtracted from one another to create DEMs of difference (DoDs) (Wheaton et al., 2010); 
DoDs were created comparing each flow to the initial conditions and after each successive flow. 
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In addition, all large clasts, defined as sediment clasts >D84 (~80 mm in diameter), were digitized
(Polvi 2020), and the spatial distribution of aggradation and degradation in relation to the large 
clasts were analyzed by creating buffers equal to half the diameter of the respective clasts. Each 
buffer was then split into an upstream and downstream half, and the mean elevation change in 
each upstream and downstream buffer was calculated using zonal statistics within ArcGIS. One-
sample t-tests were used to determine whether the mean elevation change in all of the upstream 
and downstream buffers after a given flow, compared to the previous flow and compared to the 
pre-flow conditions, were significantly different from 0. Two-sample t-tests were used to 
determine whether the mean elevation change differed between the upstream and downstream 
buffers for a given flow compared to the previous flow and compared to the initial conditions. 
Although some downstream buffers were close to or slightly overlapped with an upstream buffer 
for another clast, or vice versa, the effect of other large clasts in the vicinity of a buffer may 
contribute to variation in the mean values but should not affect the overall mean values. All 
statistical analyses were performed using the statistical software ‘R’ (RStudio Team, 2016).

The total geomorphic work done by each flow was calculated as the sum of the volume of
aggradation and degradation in the entire flume area, which is different than the standard method
of using transport rates and assumes that large channel changes implies relatively high transport 
rates. Because the flows were run in order from lowest to highest for each slope setup, the 
geomorphic work for the higher flows may be underestimated due to interlocking of grains 
during lower flows (e.g., Masteller et al., 2019); therefore, the geomorphic work for each flow is 
also reported as the cumulative combined aggradation and degradation of that flow in addition to
all prior flows. To determine how much the sediment was reworked after each flow, the percent 
of the flume area that experienced erosion or deposition was calculated by determining how 
many pixels (5 mm x 5 mm) in DoDs experienced >0.01 m or < -0.01 m of elevation change and 
by transforming this to a percent of the entire bed. Thresholding of the DoDs was only done for 
visualization purposes (Figures 4a, S2, S3) and for calculation of the area affected by erosion or 
deposition (>0.01 m of elevation change). For the volume analysis of erosion/deposition, 
potential errors would contribute to negligible or small volumes compared to actual change. For 
the D84 buffer analysis, random errors should cancel each other out (positive and negative 
change) in calculation of mean elevation change. DEMs were detrended to visualize topography 
throughout the entire reach (Figure 3). Using the detrended DEMs, topographical roughness was 
calculated as the standard deviation of elevation values.

Because the main objective of this flume experiment was to analyze changes in 
morphology, detailed hydraulic measurements were not made. However, flow depths were 
recorded longitudinally spaced throughout the channel and at three lateral locations during each 
flow. Missing flow depth data from the first two flows at the 2% slope setup were estimated 
using time-lapse photos during the runs and DEMs by measuring flow depths based on the water 
surface elevation. Reach-scale averages of flow depth were used to calculate the reach-averaged 
shear stress (Equation 2), relative submergence, and Froude number. Because the critical shear 
stress required to entrain larger than D50 grain sizes does not increase linearly, but is lower due to
protrusion effects (e.g., Ashworth & Ferguson, 1989), only the dimensionless shear stresses (τ*) 
on D50-sized sediment for each flow and slope were calculated  using Shield’s equation 
(Equation 3). These values were then compared with critical dimensionless shear stress (τc*) 
values of 0.1, which may be more accurate for steep streams with low relative submergence 
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(Lenzi et al., 2006b), and those calculated based on Lamb et al.’s (2008) slope-dependent 
regression (Equation 4).  

τ=ρw ghS          (2)

where, τ is the reach-scale shear stress (N/m2), ρw is the density of water (1000 kg/m3), g is 
acceleration due to gravity (9.81 m/s2), h is the average flow depth, and S is the reach-averaged 
bed slope.

τ∗¿
τ

(ρs− ρw )g D50

        (3)

where, τ* is the dimensionless shear stress, D50 is the median grain size (m), τ is the reach-scale 
shear stress (N/m2), ρs is the density of sediment (2650 kg/m3), ρw is the density of water (1000 
kg/m3), and g is acceleration due to gravity (9.81 m/s2).

τ∗¿c=0.15S0.25
¿         (4)

where, τ*c is the critical dimensionless shear stress and S is the bed slope (m/m) (Lamb et al., 
2008).
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Figure 3. Detrended digital elevation models based on structure-from-motion photogrammetry at
the 2% slope setup (a & b) and 5% slope setup (c & d), showing initial conditions (a & c) and 
channel bed topography after the Q50 flow (b & d).  Color scales show relative detrended 
elevations in meters. Distance scale bar applies to all DEMs. Note that the analyzed flume area 
was slightly shorter with the 5% slope setup due to the larger affected area by headcutting. 
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3 Results

3.1 General visual observations

At both slope setups, the large clasts (>D84) were basically immobile, with some 
downstream rotation and imbrication observed at the Q50 flow at the 5% slope due to scour 
downstream of boulders. Medium-sized sediment (~D50) also showed imbrication at the Q10 and 
Q50 flows at both slopes; imbrication was located directly upstream of large clasts or independent
of the hydraulic influence of boulders (Figure 4b; 4c). Most sediment transport occurred at the 
beginning of each flow, and mobile sediment was quickly deposited in shielded or stable 
locations, inhibiting potential further transport until the next higher discharge was run. Sediment 
clusters of small- to medium-sized sediment (~4-20 mm), corresponding to grains sizes between 
the D10 and D50, were observed upstream of immobile clasts after the Q10 flows at both slope 
setups, with corresponding scour downstream of immobile clasts (Figure 4). . Because the large 
clasts remained immobile at all flows, no classic bedforms, including steps, developed in these 
experiments; however, the formation of small-scale bedforms and structures around boulders are 
discussed below (section 3.3). 
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Figure 4. Patterns of erosion and sedimentation after flume runs: a) elevation change after Q10 
flow at 2% slope setup around large clasts (>D84). Photos (b & c) show imbrication, both after 
Q10 flow, at 5% and 2% slope setups, respectively. (d) Scour forms downstream of large clasts 
after Q50 flow at 5% slope setup, which caused slight downstream rotation of large clasts. (e) 
Photo after Q10 flow at 2% slope setup showing patterns of sedimentation (red) and scour (blue) 
around large clasts. (f) Sediment size distribution for flume experiments. See Polvi et al. (2014) 
for range of grain size distributions for enhanced (referred to as ‘demo’) and unimpacted reaches.
Arrows indicate flow direction.

The relative submergences (RS) of large boulders (>D84) differed for each flow but were 
similar between slope setups (Figure 2; Table 2); RS values were calculated for the D84 clast size 
and is therefore lower for larger clasts. At the Q1 flow, the RS was very low (0.31 and 0.32) at 
both slopes; a few surface waves were evident at the 5% slope but very little turbulence or 
surface waves were evident at the 2% slope. At Q2, wakes start to form downstream of boulders, 
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and the RS was ~0.6. The RS at the Q10 flow was approaching 1 at the 2% slope (0.87 for D84) 
and ranged from ~0.8-1.2 for the 5% slope with clear boulder-affected wakes forming. At the Q50

flow, all boulders were nearly submerged at both slopes. At the 2% slope, the RS = 1.0 and 
waves and wakes formed downstream of boulders; at the 5% slope, the average RS was 
calculated to be less than 1 but according to visual observations seemed to range from 1-1.5 with 
very turbulent flow. All reach-scale Froude numbers were below 1 (Table 2), but there was 
variation throughout the reach with local zones of critical and supercritical flow around clasts 
>D84, particularly at Q10 and Q50 flows.

3.2 Summary of aggradation/degradation results

Less than 20% (7.13- 19.91%) of the flume area was re-worked through erosion or 
deposition (>0.01 m positive or negative elevation change) during each flow for both slope 
setups (Table 3). At the 2% slope, 3.40-9.80% of the flume area was eroded after each flow, and 
1.58-7.60% of the flume area experienced deposition. At the 5% slope, 4.93-10.39% of the flume
was eroded, and 5.85-11.26% of the flume area experienced deposition. 

At the 2% slope, the Q10 flow does the most amount of work (0.044 m3), followed closely
by the Q1 flow (0.042 m3) (Table 3). This was visually observed during the flume runs as the 
bankfull flow was able to mobilize fine sediment. Because there was no input of fine sediment 
during or between the runs at a given slope, by the time the highest flow (Q50) was run, all 
potentially mobilized sediment had either already been transported out of the system or settled 
into a shielded or non-mobile position. With little available fine sediment, combined with the Q50

flow not being competent enough to start mobilizing the large clasts (>D84), the largest flow, Q50,
actually does the least amount of work (0.028 m3). Because it would not have been possible to 
re-create the exact same initial conditions with such a wide grain size distribution (Figure 4f), the
closest estimation of comparing the work by each flow from initial conditions is by calculating 
cumulative geomorphic work. Here, the cumulative Q50 flow (representing the sum of work by 
the Q1, Q2, Q10 & Q50 flows) eroded and deposited ~3.5 times as much sediment as the Q1 flow 
but only 1.2 times that of the cumulative Q10 flow (sum of Q1, Q2 & Q10 flows) (Table 3; Figure 
S2). 

At the 5% slope, the Q50 flow does the most amount of geomorphic work , followed in 
descending order by the Q1, Q2, and Q10 flows. As noted by visual observations of the flume runs 
and the DoDs, at the Q50 flow, the largest clasts start to mobilize by rolling slightly (due to 
downstream scour); but the other flows show the same process as with the 2% slope, where the 
potentially mobile sediment has already been moved. Considering cumulative geomorphic work, 
the Q50 flow eroded and deposited ~3.5 times as much sediment as the Q1 flow and 1.6 times that 
of the Q10 flow at the 5% slope (Table 3; Figure S2). 

The shear stress for the Q1 flow at the 5% slope was roughly the same as that of the Q10 
flow at the 2% slope. At the Q2 flow at the 5% slope, the shear stress (22.3 N/m2) already 
exceeded that of the shear stress at the Q50 flow at the 2% slope (13.36 N/ m2) (Table 2); 
however, the geomorphic work did not differ greatly between slopes for the same flows, likely 
because shear stresses were not sufficient to entrain the coarser fractions even at the 5% slope 
(Table 2). Dimensionless shear stress values for D50 grain sizes at the 2% slope did not exceed 
0.027, and thus were only approximately 50% of the slope-dependent τc* value of 0.056 (sensu 
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Lamb et al. 2008) and <30% that of 0.1 (Lenzi et al. 2006b).. The same analysis for the D50 at the
5% slope results in τ* values of 0.024-0.058, which is also substantially lower than than the τc*-
value of 0.071 (sensu Lamb et al. 2008) or 0.1. 

Table 2. Hydraulic & Shear Stress Parameters

Slope Flow Q (m3/s)

Stream power 

Ω (N/s) Froude #

Mean flow           

depth (m)

Relative 

submergence 

(d/D84) τ (N/m2)

τ* for D50 

mobilization

2% Qbf 0.006 1.18 0.47 0.024 0.31 4.48 0.009

Q2 0.017 3.34 0.45 0.049 0.63 8.87 0.018

Q10 0.025 4.91 0.41 0.068 0.87 11.83 0.024

Q50 0.031 6.08 0.42 0.078 1.00 13.36 0.027

5% Qbf 0.006 2.94 0.43 0.025 0.32 11.88 0.024

Q2 0.017 8.34 0.45 0.050 0.64 22.30 0.044

Q10 0.025 12.26 0.51 0.058 0.75 25.91 0.052

Q50 0.031 15.21 0.52 0.067 0.856 29.20 0.058

Table 3. Erosion, deposition and geomorphic work calculations

Slope Pre-flow Flow Q (m3/s)

Std. Dev. 

DEM (m)

Flume area with 

deposition (%)a                 

Flume area with 

erosion (%)a                 

Flume area with erosion 

or deposition (%)a

Volume of 

aggradation (m3)

Volume of 

degradation (m3)

Geomorphic 

work (m3)b

Cumulative 

geomorphic work (m3)c

Cumulative work 

per area (m)

Pre 0.0228

Pre Q1 0.006 0.0231 4.83 9.80 14.63 0.013 -0.029 0.042 0.042 0.006

Q1 Q2 0.017 0.0228 1.58 5.55 7.13 0.019 -0.017 0.036 0.079 0.011

Q2 Q10 0.025 0.0229 7.60 7.91 15.51 0.022 -0.021 0.044 0.122 0.017

Q10 Q50 0.031 0.0228 4.32 3.40 7.73 0.015 -0.013 0.028 0.150 0.021

Pre 0.0304

Pre Q1 0.006 0.0308 5.85 7.07 12.92 0.017 -0.020 0.037 0.037 0.005

Q1 Q2 0.017 0.0307 6.08 4.93 11.01 0.019 -0.015 0.034 0.071 0.010

Q2 Q10 0.025 0.0306 11.26 7.48 18.74 0.006 -0.003 0.010 0.080 0.012

Q10 Q50 0.031 0.0303 9.52 10.39 19.92 0.024 -0.027 0.050 0.131 0.019

a % area of deposition and erosion defined as area that experienced > 0.01 m net positive or negative elevation change.
b Geomorphic work is defined as the cumulative sum of absolute values of aggradation and degradation after each flow.  
c Cumulative geomorphic work is defined as the sum for the given flow with all previous flows.

5%

2%

3.3 Erosion and deposition next to large clasts

Statistically significant differences in the mean elevation change of upstream and 
downstream buffers around large clasts (>D84) were found at both slope setups, and similar 
trends were observed between each of the flows at both slopes, indicating patterns of sediment 
organization in relation to large immobile clasts (Figure 4, 5, S3, S4). After the Q1 flow, 
significant degradation occurred in both the downstream and upstream buffers at the 2% slope, 
whereas there was only significant degradation in the downstream buffer at the 5% slope. Only 
the 5% slope showed significant differences in the upstream and downstream buffer after Q1, 
with more aggradation upstream. Both slope setups showed significant differences after the Q2 
flow with more aggradation in the downstream buffers, but at the 5% slope there was no 
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significant change in elevation in the upstream buffers. The Q10 flow showed significant 
upstream buffer aggradation at both slopes and significant degradation in the downstream buffers
at the 2% slope. The opposite trend was evident at the Q50 flow at the 5% slope with degradation 
in upstream buffers; at the 2% slope, significant, yet minimal, aggradation was found in both 
upstream and downstream buffers. 

Figure 5. Boxplots of mean elevation change (i.e., aggradation/degradation) in buffers upstream 
(grey) or downstream (white) of D84 clasts. Boxplots on left show comparisons between previous
flow and boxplots on right show comparisons between each flow and pre-flow conditions. 
Asterisks next to boxplots denote that mean is significantly different from 0 at (α=0.05) and 
asterisks between labels on x-axis denote that there is a significant difference between the mean 
elevation change in the upstream and downstream buffers. 

4 Discussion

4.1 Geomorphic work and channel reworking

This flume experiment was designed to elucidate how semi-alluvial boulder-bed channels
with a snowmelt-dominated flow regime evolve in terms of potential bedforms or sediment 
clusters. The first aspect of determining what controls channel evolution in these channels was to
examine whether it is possible to determine which flow is the channel-forming discharge within 
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the present flow regime. These flows were modeled with clear-water conditions, which was 
considered representative of what these channels experience in northern Sweden. This low 
sediment supply is due to a combination of the low sediment production in the landscape and 
lakes along the stream network that buffer sediment coming from upstream. Therefore, the order 
of the flows, which was from the lowest to the largest flows, played a crucial role in determining 
how much sediment was available to be re-worked. At the 2% slope, the Q1 flow did almost the 
same amount of work as the Q10 flow (0.042 and 0.044 m3 of combined aggradation and 
degradation, respectively), but this is likely a function of the order the flows were conducted. 
The Q50 flow did the least amount of geomorphic work at the 2% slope, because there was very 
little mobile sediment remaining after the previous lower flows had deposited the available 
sediment in stable locations, thus potentially increasing the critical shear stress (Masteller et al., 
2019). Therefore, examination of the cumulative geomorphic work for the successive flows is 
more appropriate within this experimental setup. The cumulative geomorphic work is naturally 
largest for the Q50 flow, as it has summed aggradation and degradation for previous flows; 
however, the cumulative geomorphic work for the Q50 flow is only approximately three times 
that of the Q1 flow at the 2% flow.  In channels with a broad or bimodal sediment distribution, 
clusters tend to remain stable unless the anchor sediment is entrained during high flows 
(Hendrick et al., 2010); therefore, once sediment clusters form at lower flows, those sediment 
particles are more difficult to mobilize even at higher flows. 

At the 5% slope, the Q1 and the Q2 flows did similar amounts of geomorphic work, which
was approximately three times the amount as that of the Q10 flow . This marked decrease in 
sediment transport during the Q10 flow can be explained in a similar way to that of the Q50 flow at
the 2% slope, that all potentially mobile sediment had been mobilized and deposited in a stable 
setting before the Q10 flow. The Q50 flow did almost two and five times the amount of 
geomorphic work compared to the Q2 and Q10 flows, respectively, at the 5% slope, but this is an 
artefact of slight downstream rotation of large clasts, which appears as downstream 
sedimentation and upstream degradation relative to boulders’ previous positions. However, as 
these results are dependent on the sequencing of flows, they should not be interpreted as 
indicative of the relative amount of geomorphic work done by these flows over a longer period 
of time with a varying sequence of flow events. Had the higher flows preceded low flows, then 
the geomorphic work done by the lower flows would likely have been much lower. That said, 
these results can indicate whether the larger flows are capable of resetting the channel by 
reworking most of the bed sediment and entraining boulders. Because the Q50 flow did less 
geomorphic work than the Q1 at the 2% slope, the Q50 is clearly not capable of reworking the 
channel bed. Although the Q50 flow did do more geomorphic work than the Q1 flow at the 5% 
slope, the higher amount of work is an artefact of slight rolling of large clasts and thus the Q50 
did not rework the channel bed at the higher slope either.

Through this flume experiment, it was only possible to test flows up to Q50, due to the 
capacity of the pump; however, we can get a sense of the magnitude of flows necessary to 
transport boulders and re-work the channel bed. In this experiment, the geomorphic work done 
by the Q50 flow may be underestimated because it was preceded by several runs with lower flows 
that can cause interlocking of grains, thus increasing the necessary critical dimensionless shear 
stress (Masteller et al., 2019). However, given that the Q50 flow did not re-work the channel more
than the Q1 flow and no clasts >D84 were transported, we can conclude that the Q50 flow is not 
capable of disrupting grain interlocking in these channel types. In other steep, coarse-grained 
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channels, boulder or bedform reorganization occurs during much lower recurrence interval 
flows; for example, step-pool structures in the Erlenbach, a small step-pool stream in 
Switzerland (18% slope), were completely rearranged three times within a 20-year period 
(Turowski et al., 2009). The recurrence intervals of the effective or channel-forming discharge in
other steep coarse-bed channels have ranged from the Q1 to the Q50 flow depending on slope, 
sediment size distribution and bedforms (Bunte et al., 2014; Hassan et al., 2014; Lenzi et al. 
2006a), in addition to the local hydroclimatic regime controlling the magnitude of high 
recurrence-interval flows. Results from this study indicate that these semi-alluvial rapids in 
northern Sweden are similar to step-pool channels in alluvial, snowmelt-dominated Rocky 
Mountain streams where low flows may do a large amount of geomorphic work, depending on 
the history of previous flows (Bunte et al., 2014; Hassan et al., 2014). However, these low flows 
may only reflect a channel-maintaining and not a channel-forming flow (Hassan et al., 2014).

That begs the question of if fairly high flows (Q50) are not capable of mobilizing 
boulders, what is the channel-forming flow and how did these channels originally form? Because
of the snowmelt-dominated flow regime with buffering of flows by mainstem lakes, extremely 
high flows are unlikely (Arp et al., 2006; Bergstrand et al., 2014). The Q50 flow is only 1.8 times 
that of the Q2 flow in this experiment, and the ratio of the Q50 to the Q1 in this region ranges from
1.5-1.9 (Bergstrand et al., 2014). If the Q100 and Q500 flows follow the same logarithmic trend, 
those flows will only be 1.12 and 1.38 times that of the Q50 flow, respectively. Furthermore, the 
prototype channels are located in partly confined to unconfined moraine-, drumlin-, or esker-
bounded floodplains, so flow depths would not increase significantly with higher flows. There 
are few mechanisms for post-glacial extreme flows in streams originating below the Scandes 
mountains in inland northern Sweden. Potential mechanisms for extreme flows, which do not 
follow the modeled RI-Q relationships, that cannot be ruled out include local cumulative effects 
of breached beaver dams or moraine-dammed lakes combined with a rain-on-snow event over 
seasonally-frozen ground. Based on the low magnitude of high-recurrence interval hydrologic 
events in this region, combined with results from this study showing that the Q50 flow is not 
channel-forming, it is unclear how often channel-forming flows, that are capable of transporting 
boulders, occur in these streams.

Large rivers in northern Sweden (e.g., Ume, Vindel, Lule Rivers) with steep bedrock 
gorges, to which these semi-alluvial channels are tributaries, were formed by sub-glacial 
meltwater while glaciers were melting ca 10,000 y. BP and have experienced very little fluvial 
erosion post-glaciation (Jansen et al., 2014). Although this study did not model higher than Q50 
flows, there is a possibility that these semi-alluvial channels have not experienced a channel-
forming discharge (capable of transporting boulders) since directly pre- or post-deglaciation 
when flow magnitudes could have been much larger and under higher pressure (Herman et al., 
2011) and thus competent enough to move large boulders. Dimensionless shear stresses for D50 
grains range from 0.009-0.027 at the 2% slope and 0.024-0.058 at the 5% slope (Table 2), which 
are well below critical dimensionless shear stress values of 0.056 for 2% slopes and 0.071 for 5%
slopes (sensu Lamb et al. 2008). Given the non-linear increase in τ*c for larger grain sizes due to 
protrusion effects (e.g., Ashworth & Ferguson, 1989), the dimensionless shear stress values are 
not provided for D84 sediment, but can be assumed to be higher than the D50  lower than with a 
linear increase. Assuming Lamb et al.’s (2008) slope-dependent τc*-values, a flow depth of 0.14 
m (1.8 times that of the Q50 flow depth) would be required just to entrain D50 sediment in the 
flume at the 2% slope; at the 5% slope, a water depth of 0.07 m (1.1 times that of the Q50 flow 
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depth) flow would be required. If a τc*-value of 0.1 is assumed, which may be more appropriate 
in low RS-settings (Lenzi et al., 2006b), then depths of 0.25 m and 0.10 m are required at the 2%
and 5% slopes, respectively. Due to the mostly unconfined to partly confined nature of the 
prototype streams, reaching analogous mean flow depths (1.1-2.0m and 0.57-0.81 m, 
respectively) would require very high magnitude flows to mobilize D50 sediment, let alone D84-
sized boulders. However, during deglaciation (~9000-10000 y BP), glaciers receded very rapidly
at ~100 km in 100 years in the inland region below the Scandes mountains (Lundqvist, 1986; 
Stroeven et al., 2016), with the rate varying between 200 and 1600 m yr-1 in the region (Stroeven 
et al., 2016). This high deglaciation rate led to locally high discharges: modelled summer 
discharges in sub-glacial tunnels at the ice margin during deglaciation range from 100 to 300 m3/
s (Arnold & Sharp, 2002; Boulton et al., 2009). These post-glacial discharges are two orders of 
magnitude greater than the current Q50 and the extrapolated Q100 or Q500 flows and would thus be 
capable of transporting much larger clasts than current flow regimes allow. Since then, with the 
current snowmelt-dominated flow regime buffered by lakes, hydraulic processes provide few 
mechanisms for these channels to re-organize in terms of steps, pools or other large bedforms. 

Another potential mechanism for localized sediment transport, including that of boulders,
is winter ice cover and ice break-up (Lotsari et al., 2015; Polvi et al. 2020). Although boulders 
up to 2 m in diameter can be transported by ice during ice break-up (Lotsari et al., 2015), it is 
unclear how important the role of sporadic, localized transport by ice is for long-term channel 
formation (Ettema & Kempema, 2013). Therefore, channels may have inherited their overall 
geometry from unsorted glacial sediment, yet fluvial flows and ice processes from the current 
flow regime have likely promoted the formation of sediment clusters and control microhabitat 
formation. 

4.2 Bedforms and sediment clusters

Within the flows modelled in this flume experiment, no classic alluvial steep-channel 
bedforms, such as step-pools, developed. Large clasts are not even transported by the Q50 flow, 
although some rotation and imbrication occurred at the highest flows. Thus the large clasts create
fixed constrictions that the remainder of mobile sediment and potential instream wood and log 
jams form around. Even channel morphologies of steep alluvial channels (plane bed, step-pool, 
and cascades) are most likely controlled by the location of lateral constrictions and coarse 
sediments (Vianello & D’Agostino, 2007), and flow convergence at channel constrictions in 
pool-riffle channels play a major role in sediment routing and backwater development 
(Thompson & Wohl, 2009). Therefore, it is not surprising that immobile boulders would play a 
large role in the organization of the entire channel morphology. Thus neither Montgomery & 
Buffington’s (1997) or Palucis & Lamb‘s (2017) general patterns regarding correlations between 
bedforms and slope apply in this environment. According to Montgomery & Buffington’s (1997)
bedform scheme, step-pools form in supply-limited systems. However, the setting for the 
prototype streams are severely transport-limited system due to the non-flashy hydrological 
regime, where very high magnitude flows are limited due to mainstem lakes and the unconfined 
valley geometries. Furthermore, channel widths may be too large to promote boulder jamming 
and thus step formation (Zimmerman et al., 2010). 

Although no channel-spanning bedforms developed, there were patterns of sediment 
deposition and scour in relation to large clasts. These patterns are in accordance with previous 
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studies on boulder-bed channels with low relative submergence regimes, where sediment will 
deposit upstream of large immobile boulders (Monsalve & Yager, 2017; Papanicolaou et al., 
2011, 2018). However, in this study, this pattern was only observed at the highest flows (Q10 and 
Q50) when large clasts were fully submerged but still with very low RS values (1-1.3). At lower 
flows (Q1 and Q2) where large clasts protruded above the water surface elevation and fully 
turbulent and hydraulically rough flows had not developed, more sediment deposited 
downstream of large clasts. After the Q10 and Q50 flows at both slope setups, sediment clusters of 
fine- to medium- sized sediment (D10 and D50) formed upstream of large clasts. Previous flume 
experiments have examined the role of individual boulders on sediment deposition and have 
measured the hydraulics around large clasts in low RS, in terms of velocity, shear stress, and 
shear stress divergence. Monsalve and Yager (2017) observed sediment deposition upstream of 
large clasts and scour between clasts, which they explained formed as a result of negative bed 
shear stress divergence within a medium range of shear stress magnitudes so that size-selective 
entrainment is possible, in addition to the direction of bed shear stress vectors. Papanicolaou et 
al. (2018) note that the reversal in depositional locations in high RS versus low RS environments
can be due to differences in the turbulent vortex structures and that the area or length of these 
structures relative to clasts may affect depositional areas. Furthermore, at  low RS, the Froude 
number determines the location of sediment deposition: at subcritical flows, sediment deposits in
the stoss of boulders but at supercritical flows, sediment can deposit at the upstream flanks of 
boulders (Papanicolaou et al., 2018). This pattern of upstream flank depositional zones was also 
observed in this study at the Q10 flow at the 5% slope, where local areas of supercritical flow 
with small hydraulic jumps were observed.

These previous flume studies of the effects of boulders in low RS regimes provide 
valuable insights into hydraulics and mechanisms of sediment deposition around boulders in low 
RS streams (e.g., Monsalve & Yager, 2017; Papanicolaou et al. 2011, 2018); however, in order 
to isolate the effects of individual boulders, these experiments represented oversimplified 
conditions than those found in the field in terms of boulder spacing and sediment size 
distribution. This study adds several layers of complexity that more accurately reflects field 
conditions of semi-alluvial channels by using a scaled down sediment distribution from field 
conditions of a prototype stream (Figure 4f), rather than a bimodal bed vs. boulder sediment 
distribution. Also, in contrast to previous studies where simple bed configurations were used, 
with isolated flow regimes where wakes do not interfere with those of consecutive boulders, 
boulders in this study were randomly located throughout the channel. Therefore, the data showed
a large range in mean aggradation/degradation upstream and downstream of large clasts, as the 
stoss or lee side of one clast may be experiencing the effects of a proximal boulder located 
upstream, downstream or even laterally. Although a more controlled study can yield interesting 
data on hydraulic effects of single boulders, this study provides results that reflect the complexity
and variability in field conditions. Therefore, even with large variation, statistically significant 
differences in the amount erosion/deposition around boulders can provide general trends of 
sediment patterns around boulders. Future work should expand on the detailed hydraulic 
measurements around boulders where large clasts are unevenly spaced, affecting one another, 
and have a wider grain size distribution, in order to determine the length and area of turbulent 
vortex structures around clasts (per Papanicolaou et al., 2018) and how they interact with one 
another to determine the areas of sediment deposition relative to large clasts.
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The protrusion of large boulders can play an important role in determining potential 
sediment transport (Yager et al., 2007, 2012). Yager et al. (2007) found that protrusion of 
immobile grains determines the shear stress available to transport mobile sediment. Furthermore,
protrusion decreases when sediment is deposited which in turn increases velocities and shear 
stress available to transport sediment. There is insufficient data in this experiment to determine 
whether there was a feedback in degree of protrusion, aggradation, and potential for further 
sediment transport. However, smoothing of the longitudinal profile, visualized through increased
elevations upstream and downstream of protrusions suggest a decrease in protrusion (Figure S5). 

4.3 Importance & widespread distribution of semi-alluvial channels

Recently, the importance of large grains in controlling processes in coarse-bed streams 
has gained prominence in the scientific literature (e.g., Williams et al., 2019). For example, 
MacKenzie and Eaton (2017) found that a slight increase in the D90 of a sediment size 
distribution caused a four-fold decrease in sediment transport. Rather than relying on the classic 
median grain size to determine sediment transport processes and channel morphology, 
MacKenzie et al. (2018) encourage us to examine the mobility of the largest grains in order to 
understand channel morphology. Similarly, Yager et al. (2018) argue that grain resistance, in 
particular that of large boulders that protrude from the channel, serve to increase the 
dimensionless critical shear stress so that the sediment transport threshold varies substantially 
among streams. Given these insights into the role of large grains in shaping sediment transport 
processes and thus channel morphology, semi-alluvial channels with abundant boulders relative 
to their transport capacity may form quite unique morphologies compared to alluvial channels. 

Previous work on semi-alluvial channels have focused nearly solely on those with a mix 
of alluvial and bedrock elements, with either the channel bank or bed composed of bedrock 
(Turowski, 2012). However, few studies have examined sediment organization in semi-alluvial 
channels where immobile sediment reduces potential sediment transport and encourages 
sediment cluster formation.  As many fluvial geomorphic studies have been conducted in 
temperate zones, beyond the limit of continental glaciation, or in mountain environments that are
usually supply-limited, the sediment transport literature has focused on alluvial channels. The 
widespread distribution of continental glaciation-related till at northern latitudes probably means 
that boulder-bed semi-alluvial channels may also be widespread. Systematic global mapping of 
these channel types is lacking; however, mapping of Canadian channel types suggest that semi-
alluvial streams are common in large parts of the Canadian Shield (Ashmore & Church, 2001). 
Understanding these boulder-bed semi-alluvial channels bridges previous research on semi-
alluvial bedrock channels or low-gradient channels cut into peat or lacustrine sediment with that 
of steep coarse-bed channels in young mountain ranges. Even in young mountain ranges, 
hillslope-derived blocks (>1 m) can slow the rate of channel incision (Shobe et al., 2016), and 
thus could also be described as semi-alluvial.

Furthermore, at northern latitudes, mainstem lakes are widespread (Messager et al., 
2016). With the exception of studies on the effects of lakes on sediment size in Maine, U.S.A. 
(Snyder et al., 2012) and the effect of lakes on downstream hydraulic geometry in Idaho, U.S.A. 
(Arp et al., 2007), the effect of lakes on geomorphic channel dynamics is little studied. Mainstem
lakes buffer downstream sediment transport and will decrease the fine sediment available to be 
re-worked in a semi-alluvial rapid reach (Arp et al., 2007; Synder et al., 2012). In Fennoscandia, 
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this decrease in available fine sediment is exacerbated by the overall low sediment yield on the 
continental shield due to the crystalline bedrock, cold climate and generally low relief (Polvi et 
al. 2020). These conditions that lead to low sediment yields are also common in the boreal shield
regions of Canada, and may translate to similar low sediment yield stream systems. Fine 
sediment can only be recruited from channel banks and local tributary junctions. This 
interpretation is supported by analyses of sediment yields in Canada that show that sediment 
yield increases disproportionately with drainage area because sediment is eroded directly from 
streambanks. This indicates that rivers are degrading and that streams are eroding through 
Quaternary deposits of glacial sediment (Church et al. 1999). In addition to streambank 
sediment, some prototype reaches produce additional fine sediment from pre- or interglacially 
highly weathered bedrock or boulders of Revsunds granite (personal observation; personal 
communication, Rolf Zale). If greater amounts of fine sediment (sand to medium gravel) were 
available, it is possible that different patterns of deposition in relation to boulders would result.

4.4 Implications for restoration

In the past two decades, semi-alluvial rapids have been targeted for restoration, with 
>100 million Euro being spent to improve trout and salmon habitat in Sweden and Finland (e.g., 
Gardeström et al., 2013); however, positive ecological results have been sparse (Nilsson et al., 
2015). Restoration has included increasing geomorphic complexity by adding large boulders, in 
addition to opening side channels and removing small dams, followed by adding spawning 
gravel downstream of boulders. However, based on the results from this flume experiment, to 
ensure the longevity of spawning beds, spawning gravel should not always be placed in 
downstream wakes in channels with low relative submergence regimes. In contrast to alluvial 
channels, the channel will likely not re-organize the restored major bed elements such as coarse 
boulders. Therefore, there is a larger burden on restoration practitioners to restore these streams 
correctly, in terms of balancing erosion and deposition and creating appropriate microhabitats.  

5 Conclusions

A flume experiment was designed to elucidate how semi-alluvial boulder-bed channels 
with a snowmelt-dominated flow regime evolve in terms of potential bedforms or sediment 
clusters. These channels have a coarse sediment distribution, resembling that of steep mountain 
streams, but previous field observations have suggested that these channels do not form 
bedforms found in coarse-bed alluvial channels (sensu Montgomery & Buffington, 1997). My 
results confirmed that even a 50-year flow event does not reorganize bed sediment to form 
regular bedforms. However, patterns in sediment deposition were found in relation to boulders 
(>D84): at moderate to high flows (Q10-Q50), finer sediment is deposited upstream of boulders 
rather than in downstream wakes. Because the geomorphic work done by the Q50 flow, following
a sequence of lower flows, is less than that of the annual high-flow event (Q1), it shows that the 
Q50 flow would not be able to disrupt grain interlocking and thus re-organize bedforms or 
boulders. This finding places these boulder-bed semi-alluvial channels in a different category 
than mountain streams, where many step-pool channels re-organize steps every 10-50 years (e.g.,
Bunte et al., 2014; Turowski et al., 2009). These results lead to the conclusion that the channel 
geometry of these semi-alluvial channels do not reflect equilibrium conditions based on the 
current snowmelt-dominated flow regime and sediment regime. The results from this study, 
combined with low-magnitude high-recurrence flows, due to mainstem lakes that buffer high 
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flows and unconfined channel geometry, and the history of extremely high post-glacial flows, 
suggest that few channel-forming flows have occurred post-glaciation. Channels may instead 
have inherited their geometry from unsorted glacial sediment that was deposited from glacial 
meltwater sub-glacially or downstream of melting glaciers ca. 9000-10000 y. B.P.
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Introduction  

The supporting information provides additional background on prototype streams 
and additional data from flume results of boulder‐bed semi‐alluvial streams in 
northern Fennoscandia. The purpose of the flume experiments were to analyze 
changes in morphodynamics, in particular in relation to boulders, defined here as 
>D84 (624 mm in prototype streams). Figure S1 shows the flood‐frequency 
relationship in the prototype streams with fairly low discharges even at high 
recurrence interval flows. These data are combined from field data of low‐flow and 
annual high‐flows and from regional hydrological models. Figure S2 graphically 
shows cumulative geomorphic work and aggradation/degradation after each flow, 
based on data shown in Table 3. Figures S3 and S4 show a representative portion of 
the DoDs (DEMs of difference) following each flow for the 2% and 5% slopes, 
respectively. These were created from structure‐from‐motion (combined with LiDAR‐
based control points) based DEMs, where photographs were taken after each flow.  
Figure S5 shows the longitudinal profile of the centerline of the flume after each flow 
at the 2% and the 5% slopes. The data for the longitudinal profiles were taken from 
the DEMs, created as described above. 
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Figure S1. Flood frequency curve for prototype stream, calculated as average of nine 
streams. Flows for the recurrence interval of 0.1 and 1 years are from field data 
(Gardeström, unpublished data) and the flows with recurrence intervals of 2, 10 and 
50 years are modeled using S‐HYPE (Lindström et al., 2007; SMHI, 2015) (filled 
squares); the extrapolated values for the Q100 and Q500 flows based on the best‐fit 
logarithmic line (dashed line) are shown as hollow squares. 
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Figure S2. Cumulative geomorphic work (black line) for each of flows (Q1, Q2,Q10 & 
Q50), and aggradation (red line) and degradation (blue line) after each flow at (a) 2% 
slope and (b) 5% slope. 
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Figure S3. DEMs of difference after each flow at 2% slope compared to the previous 
flow, following the Q1 flow (a), Q2 flow (b), Q10 flow (c), and Q50 flow (d). Note that a 
representative portion of the flume is shown, rather than the entire flume, in order to 
aid in visualization and allow examination of patterns around large clasts. 

 

 

Figure S4. DEMs of difference after each flow at 5% slope compared to the previous 
flow, following the Q1 flow (a), Q2 flow (b), Q10 flow (c), and Q50 flow (d). Note that a 
representative portion of the flume is shown, rather than the entire flume, in order to 
aid in visualization and allow examination of patterns around large clasts. 
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Figure S5. Longitudinal profiles of centerline in flume for initial conditions and 
following each subsequently higher flow for the 2% slope (a) and the 5% slope (b). 
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