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Abstract

Wildfire smoke influences on air quality and atmospheric chemistry have been underscored by the increasing fire prevalence in

recent years, and yet, the connection between fire, smoke emissions, and the subsequent transformation of this smoke in the

atmosphere remains poorly constrained. Toward improving these linkages, we present a new method for coupling high-time-

resolution satellite observations of fire radiative power (FRP) with in situ observations of smoke aerosols and trace gases. We

apply this technique to thirteen fire plumes comprehensively characterized during the recent FIREX-AQ mission and show that

changes in FRP directly translate into changes in conserved smoke tracers (CO2, CO, and black carbon aerosol) observed in the

downwind smoke plume. The correlation is particularly strong for CO2 (mean r>0.9). This method is important for untangling

the competing effects of changing fire behavior versus the influence of dilution and atmospheric processing on the down-wind

evolution of measured smoke properties.
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Fire
Danger

Very
High

Moderate High High High Moderate High High High High High Very
High

Extreme

Date
Sampled

07/29 08/12 08/13 08/16 07/25 07/30 08/02 08/06 07/29 08/02 08/03 08/06 08/07

#
Transects

10 15 23 18 43 12 6 10 13 9 32 7 21

#
Detections

914 180 29 460 367 142 184 181 123 617 1162 1294 2813

Smoke
Age

136 ±
76

176 ±
126

102 ±
54

165 ±
111

109 ±
56

334 ±
84

74 ±
44

116 ±
50

101 ±
74

150 ±
55

178 ±
95

85 ±
41

151 ±
62

r
(CO2:FRP)

0.98 0.95 0.95 0.99 0.99 0.99 0.99 0.99 0.80 0.99 0.99 0.93 0.98

r
(CO:FRP)

0.98 0.78 0.62 0.87 0.66 0.99 0.99 0.99 0.80 0.96 0.51 0.96 0.94

r
(BC:FRP)

0.97 0.37 0.36 0.60 0.81 0.99 0.99 0.79 0.79 0.88 0.67 0.72 0.87

r
(MCE:FRP)

0.98 0.95 0.94 0.99 0.99 0.84 0.99 0.99 0.80 0.99 0.99 0.93 0.98

Table 1: Correlations between the relative rate of change in in situ measurements and GOES FRP. Fires
are grouped into their dominant landcover type determined using final GeoMAC burned area perimeters
and FCCS fuel maps. Observed fire danger, date sampled by the DC-8, the total number of transects per
fire, the total number of daily GOES detections, and the average and standard deviation of sampled smoke
age (min) is shown in the upper two panels. The third panel shows Pearson’s correlation coefficient (r)

between the relative rate of change in transect integrated measurements
(

∂ln(X)
∂t

)
and the relative rate of

change in FRP
(

∂ln(FRP )
∂t

)
integrated over the same time interval. Significant correlations (p-value < 0.005)

are bold and insignificant correlations are not. Red grids show strong correlations (r >0.8), orange grids
show moderate correlations (0.8 > r > 0.5, and blue grids show weak correlations (r <0.5).
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Figure 2: Left figure shows a map of the DC-8 flight track on August 7th, 2019 for the first set of orthogonal transects through the 
Williams Flats smoke plume. Colors correspond to the CO2 mixing ratios from DC-8 measurements. Right figure shows a time series 
of CO2, CO, and BC observations from the DC-8 (panels a-c) that correspond to the transects shown in the left panel and are 
highlighted by average smoke age. Panel d shows GOES FRP integrated over the same time interval represented by the smoke plume 
transects and aligned in time with the observations.  
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Figure 3: The relative rate of change in CO2 (a), CO (b), BC (c), and MCE (d) versus the time 
aligned relative rate of change in GOES FRP. Colors are used to distinguish landcover types with 
light green representing a mixture of grass/shrubland and forest/woodland, dark green: forests / 
woodlands, and grey: grass/shrubland. Dotted black lines show zero change for the x and y-axis 
as a reference. 
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Key Points: 

• Geostationary satellite observations of fire radiative power are highly correlated with in-
situ airborne measurements of primary-emission smoke tracers 

• High resolution satellite observations are needed to disentangle how fire activity and plume 
dilution impact the downwind evolution of smoke  

• Diurnal fire activity for wildfires observed during FIREX-AQ is best parameterized using 
a bimodal Gaussian distribution to inform models 
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Abstract  

Wildfire smoke influences on air quality and atmospheric chemistry have been 

underscored by the increasing fire prevalence in recent years, and yet, the connection between 

fire, smoke emissions, and the subsequent transformation of this smoke in the atmosphere 

remains poorly constrained. Toward improving these linkages, we present a new method for 

coupling high-time-resolution satellite observations of fire radiative power (FRP) with in situ 

observations of smoke aerosols and trace gases. We apply this technique to thirteen fire plumes 

comprehensively characterized during the recent FIREX-AQ mission and show that changes in 

FRP directly translate into changes in conserved smoke tracers (CO2, CO, and black carbon 

aerosol) observed in the downwind smoke plume. The correlation is particularly strong for CO2 

(mean r>0.9). This method is important for untangling the competing effects of changing fire 

behavior versus the influence of dilution and atmospheric processing on the down-wind 

evolution of measured smoke properties. 

1 Introduction 

Wildfire activity in the western United States causes poor air quality, adverse human 

health impacts, and substantial economic costs (Jaffe et al., 2008; Kochi et al., 2010; Liu et al., 

2015; Lu et al., 2016; Reid et al., 2016; Stavros et al., 2014). The frequency and intensity of 

these fires are expected to increase in the future due to a combination of growing human 

settlement at the wildland urban interface and climate change (Abatzoglou & Williams, 2016; 

Hammer et al., 2009; Mell et al., 2010; Theobald & Romme, 2007; Westerling et al., 2006). 

Consequently, it is essential to understand the composition and magnitude of aerosol and trace 

gas emissions from wildland fires and prescribed fires to quantify the effects of fire emissions on 

air quality and climate.  

Fires emit a complex and highly variable mixture of gases and aerosols that can 

considerably alter atmospheric composition and tropospheric chemistry over a wide range of 

spatial and temporal scales (Bond et al., 2013; Goldammer et al., 2008; Langmann et al., 2009; 

Urbanski, 2014). Environmental conditions at the location of the fire such as local weather and 

fuel structure influence the composition and magnitude of these emissions (Loehman et al., 

2014; Thonicke et al., 2010). Wildfires generally have a pronounced diurnal cycle directly 

related to weather conditions, with activity peaking early in the afternoon and diminishing after 
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sunset (Ichoku et al., 2008; Saide et al., 2015; Zhang & Kondragunta, 2008).  

Fire emissions inventories are an essential tool for understanding the spatio-temporal 

distribution of fire emissions on a regional to global scale. The resolution of commonly used fire 

emissions inventories diverges considerably depending on their intended use and the 

methodology used in their development. As a result, considerable irregularities exist among fire 

emissions inventories in the estimated magnitude, composition, and distribution of emissions in 

space and time (Larkin et al., 2014; Li et al., 2019a; Liu et al., 2020; Shi et al., 2015). In general, 

these differences can be attributed to variations in the approach used to quantify burned area, fuel 

loads, combustion completeness, and emission factors (Kasischke & Penner, 2004). Quantitative 

comparisons between different fire emissions inventories remain difficult due to the variable 

transport models used in each study and the spatial/temporal averaging used for comparison to 

observations (Liu et al., 2020).  

Most fire emissions inventories employ remote sensing observations of fire parameters 

such as burned area, active fire counts, and fire radiative power (FRP) from instruments onboard 

polar orbiting satellites, including the Moderate Resolution Imaging Spectroradiometer (MODIS) 

(Ichoku & Ellison, 2014; Kaiser et al., 2012; van der Werf et al., 2017; Wiedinmyer et al., 2011, 

Pierce et al., 2007) and the Visible Infrared Imaging Radiometer Suite (VIIRS) (Ahmadov et al., 

2017). Typical overpass times for the satellites hosting these instruments occur only twice daily 

over North America at ~1am/pm or at ~10am/pm local time (Li et al., 2018). Due to this limited 

temporal coverage of fire observations in a given location, some fire emissions inventories or 

models supplement the diurnal cycle of emissions using FRP observations from geostationary 

satellites (Andela et al., 2015; Li et al., 2019b; Mota & Wooster, 2018; Mu et al., 2011; Zhang et 

al., 2012), or assume a Gaussian distribution of daily FRP (Kaiser et al., 2009).  

Geostationary satellite instruments such as the Geostationary Operational Environmental 

Satellite (GOES) Advanced Baseline Imager (ABI) observe fire radiative power at a higher 

temporal resolution than their polar-orbiting counterparts and over the complete diurnal cycle, 

but this comes at the expense of hemispheric, not global coverage and detection biases due to 

lower spatial resolution since errors generally increase with decreasing fire size and radiative 

power (Li et al., 2020; Schmidt, 2019). GOES ABI imagery provides a snapshot of FRP across 

the continental United States every 5 minutes and full disk FRP every 10 minutes 

(https://www.goes-r.gov/spacesegment/abi.html) at a relatively coarse spatial resolution of 2 km 
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(Schmidt, 2019), and offers the opportunity to investigate both the diurnal cycle of fire activity 

and short-term changes in fire behavior that could have important implications for fire emission 

estimates (Li et al., 2019b; Schmidt, 2019; Zhang & Kondragunta, 2008).  

There is a need to connect spatially-coarse, remotely-sensed fire observations that have 

more widespread coverage and lower time resolution with in-situ point source observations that 

have much higher spatial and temporal resolution but much lower overall coverage to achieve a 

more comprehensive understanding of fire behavior and emissions. Rather than using GOES 

FRP observations to directly estimate emissions using a top-down approach (Freeborn et al., 

2008; Ichoku et al., 2008; Wooster et al., 2003), we use 5-minute resolution, near real time 

GOES FRP observations to quantify the relationship between FRP and in situ measurements of 

fire emissions.We validate this technique using airborne observations of individual fires sampled 

during the recent Fire Influence on Regional to Global Environments and Air Quality (FIREX-

AQ) field campaign. FIREX-AQ measured the concentrations, composition, and properties of 

smoke from wildfires and prescribed fires in the Western United States during the summer of 

2019 using the NASA DC-8 aircraft. The GOES FRP observations are compared to the airborne 

in situ measurements of relatively long-lived species emitted by fires, including CO2, CO, and 

black carbon (BC) mass. This work is important and relevant for new and existing daily fire 

emissions inventories or smoke forecasting model frameworks and promises significant 

improvements for resolving the temporal resolution of emissions. 

2 Methods 

2.1 GOES FRP 

2.1.1 GOES Diurnal Cycle of FRP  

 FRP is an important quantitative indicator of fire activity and how it changes over the 

study period. We generate an average diurnal cycle of FRP for all the Western US wildland fires 

in FIREX-AQ by examining each fire sampled individually using FRP observations from the 

GOES-16 and 17 Advanced Baseline Imager (ABI) L2+ Fire/hot spot Detection and 

Characterization (FDC) product from the Wildfire Automated Biomass Burning Algorithm 

(WFABBA) processing system (Schmidt, 2019). The FRP data products for the wildland fires 

specific to FIREX-AQ are archived in the NASA data archive. This product provides FRP for 
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fires in the continental US with a spatial resolution of 2 km and a temporal resolution of 5 min. 

Previous studies have found the diurnal cycle of fire activity can be modeled as a Gaussian 

distribution or a Fourier series (Andela et al., 2015; Giglio, 2007; Roberts et al., 2009; Zhang & 

Kondragunta, 2008). In this study, we choose to use a bimodal Gaussian distribution as opposed 

to one with a single mode, because the bimodal fit had a slightly higher correlation with the 

observation-driven diurnal cycle of FRP for the FIREX-AQ fires (Supplementary Table 1). For 

each individual fire, we derive the average diurnal cycle of FRP, defined as the fit to the total 

FRP (in 5-min intervals over the course of a 24-hour day in local time) averaged over every day 

the fire was actively burning (Figure 1). A mean diurnal cycle for multi-day fires is used to fill in 

observational data gaps when cloud cover prohibits detection. The functional form of the 

bimodal Gaussian distribution is  

FRP(t) = 	∑ !!
"!√$%

𝑒
('(

"#"!
$!√&

)
&
)$

+,-         (1) 

where ai is the FRP of mode i in units of MW, ti is the median time of mode i in hours from 

midnight (local time) and si is the standard deviation of mode i in hours. GOES FRP 

observations are included if their centroid is within 4km of the final fire perimeter defined by the 

Geospatial Multi-Agency Coordination (GeoMAC) Wildland Fire Perimeters database (Walters 

et al., 2011). The size of the buffer is double the diameter of the fixed grid resolution from 

GOES in order to capture all detections of an individual fire. 

To quantify the diurnal cycle of FRP for a single fire on an individual day, any time-gaps 

in  GOES FRP observations were filled using the average Gaussian model  scaled to the mean of 

the available FRP observations for each fire on that day. Observational gaps often occur because 

of cloud cover, and on average this occurred 34% of the time for the fires included in this 

analysis. The model fit is only used to interpolate missing FRP observations for days with 

observations of FRP > 0 spanning at least 6 hours out of the entire 24-hour (local time) period in 

order to avoid overestimating FRP. In practice, this data reconstruction step has negligible 

impact on the FRP timeseries for fires where data coverage is good (e.g., the Williams Flats fire 

highlighted in Figures 2 and S1); however, for the few fires with substantial missing 

observations due to cloud cover (e.g., Castle fire), this step is more impactful. 

2.1.2 Fuels and Fire Weather 
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We investigate the influence of fuel type on the mean diurnal cycle of FRP by grouping 

fires that burned in ecosystems with similar fuel loading and structure, using the Fuel 

Characteristics and Classification System (FCCS) (Ottmar et al., 2007) to determine the 

dominant ecosystem type that was consumed. The dominant ecosystem type is defined as the 

FCCS fuel class that encompasses at least 75% of the burned area defined by the final GeoMAC 

perimeter at the end of the fire’s lifecycle. It should be noted that only the dominant fuel type per 

fire was used for classification in this study, although each fire burned through a wide variety of 

fuel types, and different ratios of fuel types on different burn-days are neglected. The fires 

included in this analysis are grouped into one of the 3 following fuel categories: 

grass/shrublands, forest/woodlands, and mixed. The mixed category is defined as a combination 

of grass/shrublands and forest/woodlands for fires with less than 75% of the burned area 

encompassed by either grass/shrubland or forest/woodlands. Daily fire weather danger levels are 

obtained from the National Fire Danger Rating System provided by the US Forest Service 

(Bradshaw et al., 1983).  

Fires in grass / shrublands are often considered to be fuel limited, while forest fires can 

be considered ignition limited because of generally higher fuel moisture. The diurnal cycle of 

fire activity begins around the same time for all ecosystems considered (12:00 hours local time), 

but extended much later into the night (24:00 hours) in mixed ecosystems compared to grass / 

shrublands or forest / woodlands (20:00 hours), with the exception of the Horsefly fire (Figure 

1). Incident reports of Horsefly indicate the fuels include a significant amount of dead and down 

trees caused by bark beetle damage (https://inciweb.nwcg.gov/incident/6502/). The longest 

diurnal combustion period occurs in mixed fuels and forests with high proportions of beetle 

killed dead and down trees. One explanation for this behavior is the finer fuels allowed for more 

rapid fire spread and helped to dry out the larger dead fuels. Simultaneously, smoldering 

combustion in coarse woody debris, including beetle killed trees, is known to continue well into 

the night (Albini & Reinhardt, 1995; Hyde et al., 2011). In all of the fires categorized as having 

mixed fuels, the invasive species cheatgrass was a component of the fuels in the burned area 

perimeter (24% Williams Flats, 12% North Hills, and 4% Ridgetop). Cheatgrass enhances fire 

size and frequency in the Western US and can outcompete native vegetation after fire (Balch et 

al., 2013; Kerns et al., 2020; Menakis et al., 2003). 

2.2 Comparison with In situ Observations  
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2.2.1 Aircraft Aerosol and Trace Gas Observations  

 We compare the high-temporal resolution GOES FRP emission product to the airborne 

measurements of CO2, CO, and refractory BC aerosol concentrations in the FIREX-AQ smoke 

plumes. The DC-8 aircraft flew through each wildfire smoke plume in a series of orthogonal 

plume transects starting near the fire and proceeding downwind as far as practical given mission 

objectives and flight limitations (Figure 2). An example set of plume transects for the Williams 

Flats fire in Washington State is shown in Figure 2. CO2 mixing ratio measurements are obtained 

using a non-dispersive IR spectrometer (LICOR, Inc. Model 7000) adapted for aircraft 

measurements in a method similar to Vay et al. (2003), while CO mixing ratios are obtained from 

mid-IR laser absorption spectrometry (Sachse et al., 1991). Both species were calibrated in-flight 

with standards from NOAA ESRL traceable to WMO scales (CO2:X2007; CO:X2014A). 

Refractory BC mass concentrations appropriate for most of the accumulation-mode were 

provided by a Single Particle Soot Photometer (SP2, Droplet Measurement Technologies). CO2 

is chosen because it is the most dominant trace gas species emitted from fires (Andreae & 

Merlet, 2001). CO and BC are chosen for comparison because they are conserved tracers of 

primarily smoldering and flaming fire processes (Sommers et al., 2014; Urbanski, 2014), 

respectively, over the relatively short (hours-long) timescales of the DC-8 sampling. The 

modified combustion efficiency (MCE), is a metric commonly used to determine relative 

contributions from smoldering and flaming fire processes to emissions (Ward & Radke, 1993). 

MCE is calculated using the following equation: 

𝑀𝐶𝐸 =	 -
.'(/'(&/-

                     (2) 

where mco/co2 is the slope of the York regression between excess mixing ratios (background 

subtracted) of CO and CO2.  

2.2.2 Relationships between In-Situ Measurements and GOES FRP 

To compare in-situ trace gas and aerosol observations with GOES FRP, we calculate the 

smoke age as the difference between when the smoke was emitted and when it was sampled by 

the DC-8, using the aircraft-measured wind speeds and assuming straight line horizontal 

advection between the fire and aircraft positions with uniform winds for all transects of a single 

plume. The average wind speed for all fires and all transects is 8 ± 3 m s-1 and the typical wind 
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direction is westerly. The vertical transport time of the plume is neglected. We calculate the time 

of emission as the average time of sampling by the DC-8 aircraft across a single transect minus 

this smoke age.  

We quantify the temporal variability of CO2 and CO mixing ratios as well as the BC mass 

concentration by integrating the DC-8 measurements across each smoke plume transect 

following the methodology of Yokelson et al. (2007). For each orthogonal transect through the 

FIREX-AQ smoke plume, we integrate excess mixing ratios of CO2, CO, and BC across the 

entire length of the plume cross-section. Basline concentration values used for the background 

subtraction are calculated as the 5-second-averaged mixing ratios of each species starting one 

second before and after each transect. We then calculate the relative rate of change of the aerosol 

and trace gas species and MCE for each transect, which we expect should scale proportionately 

with the rate of change of the FRP, after accounting for the smoke plume age, ∆t, as follows: 

 
! "#(∆&)

!(
!
	(*∆(	

∝ ! "#(FRP)
!(

!
	(	

 (3) 

where  ∆𝑋	is the integrated excess mixing ratio of species X, and t is the time corresponding to 

the measured FRP and estimated time of smoke emission. In this study, we compute the 

approximate derivative by differencing the DC-8 measurements across two adjacent aircraft 

transects. For each DC-8 plume transect, 𝑘, (and corresponding time interval at the fire, 𝑗), the 

scaling relationship is calculated as 

.
∆&!

∙ ∆&!/∆&!"#
(!/(!"#

∝ .
∆FRP$

∙ ∆FRP$/∆FRP$"#
($/($"#

                               (4) 

where ∆FRP+ is the integrated FRP over the relatively short time interval represented by the 

aircraft sampling time minus the smoke age (tj = tk - ∆tk). Implicit in Equation 4 is that the smoke 

age can be used to extrapolate from the aircraft sampling time back to the time of emission at the 

fire. Furthermore, we assume that the conserved species in the plume do not continue to evolve 

between adject transects (i.e., ∆𝑡0−∆𝑡0'- = 0). While this assumption may be reasonably valid 

for the conserved tracers examined here whose plume evolution is mainly impacted by dilution, 

it is likely to break down for other extensive aerosol and trace gas variables that are strongly 

influenced by photochemical processing, coagulation, and gas-particle partitioning of semi-

volatile compounds. Applying Equation 3 for those variables for FIREX-AQ will be more 
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complicated, as the spacing of the DC-8 sampling transects along the plume length do not reflect 

a 1:1 increase in both smoke age and sampling time interval. Figure S3 demonstrates that this 

ratio varies from 0.8-6.4 across the FIREX-AQ wildfires. In most cases, the time it takes the 

aircraft to sample successive downwind portions of the plume is considerably shorter than the 

time it takes for the plume to be advected over the intervening distance, assuming straight-line, 

horizontal advection. 

We compute Pearson’s correlation coefficients to quantify the linear proportionality 

between transect-integrated values of CO2, CO, and BC versus FRP as represented by Equation 

4. While strong correlation coefficients would be hypothesized to indicate the governing 

influence of fire activity on emissions, weaker correlation coefficients may indicate the presence 

of important, confounding processes such as smoke plume dilution. The importance of dilution 

for driving smoke variability may also vary at specific locations within the plume (e.g., near the 

edges versus the center) in ways that are not captured by this integrated plume analysis. 

Similarly, the nature of the aircraft horizontal sampling transects prevent us from examining 

changes in the vertical structure of these conserved tracer species that may be impacted by 

boundary layer convective mixing, dilution, or size-dependent particle gravitational settling. 

3 Results and Discussion 

3.1 GOES FRP Diurnal Cycles 

We investigate the average diurnal cycle of FRP on the scale of individual fires in the 

western US grouped according to the dominant ecosystem represented by the burned area 

(Figure 1; Supplementary Table 1). The diurnal cycle of FRP for all fires in this analysis is 

optimally fit using a bimodal Gaussian distribution. Coefficients of the bimodal Gaussian 

distribution for all fires are tabulated in Supplementary Table 1. Pearson’s correlation 

coefficients (r) between single-mode Gaussian distributions and bimodal Gaussian distributions 

(Supplementary Table 1) demonstrate the ability to model diurnal fire activity and highlight the 

slight differences between single and bimodal distributions.  

Our results suggest a bimodal Gaussian distribution could improve the accuracy of the 

timing of fire emissions in fire emissions inventories and smoke forecasting models. The fires 

tend to peak later in the day than might be expected based on past literature (Giglio, 2007; Pack 

et al., 2000; Roberts et al., 2009; Zhang & Kondragunta, 2008), but the model standard 
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deviations of 1-2 hours are consistent with common model assumptions. We find the timing and 

magnitude of peaks in the bimodal Gaussian fit of the diurnal distribution of FRP vary between 

all fires, but there are discernible differences between the ecosystems represented by the fires 

analyzed. Overall, the 5-minute data reveal significant time-varying structure in fire activity, 

which needs to be accounted for when examining the fire plume characteristics across different 

aging timescales.  

3.2 Relationships between Integrated GOES FRP and In Situ Measurements 

Our approach allows for direct comparison of satellite FRP observations with 1 Hz 

aircraft trace gas and aerosol observations at an extremely high time resolution of 5-minute 

intervals. The strong linear relationship between fire-integrated FRP and the combustion rate of 

biomass is well established in the literature and is the basis for top-down fire emissions 

inventories (Freeborn et al., 2008; Ichoku et al., 2008; Wooster et al., 2003). Figure 3 shows the 

relationships between the relative rate of change in transect-integrated CO2, CO, BC, and MCE 

and the corresponding relative rate of change in integrated FRP observations from GOES.  

It is clear that the DC-8 was able to sample fire emissions from periods when the fire 

activity was both waxing (𝜕 ln(FRP) 𝜕𝑡⁄  > 0) and waning (𝜕 ln(FRP) 𝜕𝑡⁄  < 0), respectively. 

While many fires were sampled during periods of increasing fire activity where both increasing 

FRP and plume dilution serve to reduce concentrations of conserved tracers during downwind 

flight legs (relative to the earlier legs), some fires (e.g., Shady on July 25th and Sheridan on 

August 16th) exhibited a decrease in FRP over time. An example of a fire sampled during periods 

of increasing FRP is given in Figure 2 for Williams Flats fire, and a counterexample of a fire 

sampled during decreasing FRP is shown in Supplementary Figure 2 for the Sheridan fire. The 

plume peak timeseries shown in Figures 2 and S2 highlight the importance of the FRP trend as a 

governing influence on plume evolution. In Figure 2, the decrease in peak areas with increasing 

downwind distance is characteristic of plume dilution, while the lack of a decrease shown in 

Figure S2 implies that the plume is not diluting. It is only with the important context provided by 

the FRP timeseries that changing fire activity, rather than dilution, be considered as the primary 

driver of these starkly contrasting plume trends. 

We uncover strong linear correlations (r > 0.8) between the relative rate of change in 

ln(FRP) and the relative rate of change in both ln(CO2) and ln(MCE) (Table 1). Figure 3 
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highlights the exceptionally strong correlation between the rate at which FRP changes with time 

and the resulting relative temporal change in CO2 mixing ratio observed by the DC-8 downwind 

(panel A). The strong correlations between FRP and CO2 and MCE are likely because fire carbon 

emissions are composed of 80-90% CO2 (Andreae & Merlet, 2001). The correlations remain 

strong (r > 0.8) on days with plentiful GOES detections to inform the diurnal cycle of FRP and 

also on days with scarce GOES detections when the Gaussian model fit to the average diurnal 

FRP cycle was relied on heavily. Smoke age did not have a discernible influence on the 

correlations over the range of FIREX-AQ variability (<6 hours old).  

The correlation with the relative rate of change in FRP weakens slightly for CO and BC 

compared to CO2. This may reflect the confounding influences of the fire properties on the 

emission of these incomplete combustion products (although not so much explained by the 

relative rate of change in MCE). While BC aerosols are also subject to plume processes such as 

coagulation that reduce their number concentration beyond what would be attributable to dilution 

with background air alone, the mass concentrations reported here should be largely conserved 

over the early hours of the plume. Limitations of this analysis include the lack of in-situ 

measurements that span the vertical length of the plume and the potential of horizontal 

heterogeneity in the distribution of emissions in the plume. LIDAR-derived measurements of 

vertical bulk aerosol extinction could offer an opportunity to explore the vertical distribution of 

emisions and the role of boundary layer dynamics on plume extent. 

4 Summary and Conclusions 

We present a new method for evaluating emissions inventories and the observed rates of change 

of conserved emissions tracers using high time-resolution satellite observations of FRP. The 

technique is used to interpret the comprehensive airborne dataset from the NASA FIREX-AQ 

mission in summer, 2019. These unique data demonstrate the need for and the power of satellite 

observations for disentangling the impacts of dilution, atmospheric procesing and changing fire 

activity on fire emissions observed in smoke plumes. Our results suggest smoke forecast models 

could leverage assimilation of high-time resolution GOES FRP observations to significantly 

improve their ability to temporally distribute emissions. The strong relationships between the 

rate of change in FRP and CO2 can also be exploited in smoke forecasting and emissions models, 

because it provides a connection to other trace gas and aerosol emissions. While fire emissions 
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are commonly modeled as a single, Gaussian mode, we show that this representation is 

oversimplified and would fail to capture the multi-peak structure of the diverse FIREX-AQ fires. 

The results from this study also imply that high-time resolution GOES FRP observations can be 

used as a tool to tease apart the influence of changing fire behavior from downwind plume 

processing when interpreting airborne campaign measurements. The variation in FRP over the 

time period represented by smoke plumes is an important factor in understanding smoke 

evolution along the length of a plume, and should be considered along with dilution and 

atmospheric processing. We demonstrate the strong connection between FRP and CO2, which 

suggests that changes in fire activity govern the near-field plume concentrations more so than 

dilution. Combining airborne measurements with satellite FRP is a powerful analysis tool for 

accounting for the influence of changing fire activity on plume observations and their downwind 

evolution. 
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Figure S1. Panel a shows a time series in local time of the average GOES FRP diurnal cycle for 
Williams Flats fire over the entire lifetime of the fire. Average 5-min FRP is shown as purple 
circles. The FRP reflects the sum of all detections within a 5-min interval. The bimodal Gaussian 
model fit to the lifetime average 5-min FRP is shown as a black line.  Panel b shows 5-min FRP 
for all observations on August 3rd (blue) and August 7th (gold). The Gaussian model fit shown in 
panel a is used to inform the interpolation of the daily 5-min FRP shown in panel b.  

 
 



 
 
Figure S2. Left panel shows a map of the DC-8 flight track on August 16th, 2019 for the first set of 
orthogonal transects through the Sheridan smoke plume. Colors correspond to the CO2 mixing 
ratios from DC-8 measurements. Example of positive rate of change in observations and 
corresponding FRP for Sheridan fire. Time series of CO2, CO, and BC observations from the DC-8 
(panels a-c) highlighted by average smoke age. Panel d shows the sum of GOES FRP integrated 
over the same time interval represented by the smoke plume transects and aligned in time with 
the observations.  
 
 



 
Figure S3. Relationship between time of sampling and smoke age. The linear fit is shown as solid 
lines and individual transects are shown as dots. Colors represent fires sampled on a given day. 
The slope of the linear fit for each fire is given in the legend following the fire name and 
sampling data in parenthesis. For days when the fire was sampled with more than one set of 
orthogonal transects going down the plume, the slope is given for all sets of transects 
sequentially.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 
Table S1: Fires classified into categories based on dominant landcover type of burned area. 
Pearson’s correlation coefficient between the model fit and observation driven diurnal FRP cycle 
for single mode Gaussian distribution (r(1)) and bimodal Gaussian distribution (r(2)). Gaussian 
model fit parameters for the first mode (a1), time of the first mode (t1), and standard deviation 
of first mode (𝜎1) are shown in the upper portion of the table. The bottom portion shows the 
Gaussian model fit parameters for the second mode, time, and standard deviation (a2, t2, 𝜎2). 

 Grass / Shrublands Forests / Woodlands Mixed 

  Tucker Castle Sheridan Shady 
Left 
Hand 

Lick 
Creek Horsefly 

North 
Hills Ridgetop 

Williams 
Flats 

r (1) 0.91 0.97 0.95 0.89 0.91 0.86 0.76 0.76 0.84 0.95 

r (2) 0.95 0.99 0.96 0.93 0.94 0.89 0.88 0.88 0.93 0.98 
a1 
(MW) 1623 117 917 372 158.5 242 256 617 947 3560 

t1 (hr) 15.41 14.85 16.27 16.71 15.53 14.30 14.29 14.97 17.59 16.87 

s1 (hr) 0.60 0.66 0.51 1.83 2.35 0.62 1.08 0.93 4.39 2.85 
a2 
(MW) 1074 60 1320 242 108 114 300 637 391 1611 

t2 (hr) 17.98 16.54 17.07 19.87 18.75 15.66 17.04 20.05 18.45 21.896 

s2 (hr) 1.68 2.041 2.34 1.01 5.39 0.54 0.94 2.57 0.60 1.692 


