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Abstract

Dissolved oxygen (DO) sustains aquatic life and is an essential water quality measure. Our capabilities of forecasting DO

levels, however, remain elusive. Unlike the increasingly intensive earth surface and hydroclimatic data, water quality data often

have large temporal gaps and sparse areal coverage. Here we ask the question: can a Long Short-Term Memory (LSTM) deep

learning model learn the spatio-temporal dynamics of stream DO from intensive hydroclimatic and sparse DO observations

at the continental scale? That is, can the model harvest the power of big hydroclimatic data and use them for water quality

forecasting? Here we used data from CAMELS-chem, a new dataset that includes sparse DO concentrations from 236 minimally-

disturbed watersheds. The trained model can generally learn the theory of DO solubility under specific temperature, pressure,

and salinity conditions. It captures the bulk variability and seasonality of DO and exhibits the potential of forecasting water

quality in ungauged basins without training data. It however often misses concentration peaks and troughs where DO level

depends on complex biogeochemical processes. The model surprisingly does not perform better where data are more intensive.

It performs better in basins with low streamflow variations, low DO variability, high runoff-ratio (> 0.45), and precipitation

peaks in winter. This work suggests that more frequent data collection in anticipated DO peak and trough conditions are

essential to help overcome the issue of sparse data, an outstanding challenge in the water quality community.

1



From hydrometeorology to water quality: can a deep learning model 
learn the dynamics of dissolved oxygen at the continental scale? 

Wei Zhi1, Dapeng Feng1, Wen-Ping Tsai1, Gary Sterle2, Adrian Harpold2, Chaopeng 

Shen1, Li Li1,* 

 

1, Department of Civil and Environmental Engineering, The Pennsylvania State University, 

State College, PA 16802, USA 

2, Department of Natural Resources & Environmental Science, The University of Nevada, 

Reno, NV, 89557, USA 

* Correspondence to lili@engr.psu.edu 

 

Classification: Physical Sciences, Environmental Sciences 

Keywords: dissolved oxygen, water quality, deep learning, LSTM, big data, continental-

scale model 

 

Author Contributions 

G. S. and A. H. compiled the CAMELS-chem database. C. S. and L. L. conceived the 

idea. W. Z. performed the research and analysis with help from D. F. and W. T. on model 

training. W. Z. wrote the first draft of the manuscript, which was heavily revised by LL. C. 

S. and A. H. helped edit the manuscript. 

 

 

 

 

 

 



Abstract: Dissolved oxygen (DO) sustains aquatic life and is an essential water quality 

measure. Our capabilities of forecasting DO levels, however, remain elusive. Unlike the 

increasingly intensive earth surface and hydroclimatic data, water quality data often have 

large temporal gaps and sparse areal coverage. Here we ask the question: can a Long 

Short-Term Memory (LSTM) deep learning model learn the spatio-temporal dynamics of 

stream DO from intensive hydroclimatic and sparse DO observations at the continental 

scale? That is, can the model harvest the power of big hydroclimatic data and use them 

for water quality forecasting? Here we used data from CAMELS-chem, a new dataset that 

includes sparse DO concentrations from 236 minimally-disturbed watersheds. The 

trained model can generally learn the theory of DO solubility under specific temperature, 

pressure, and salinity conditions. It captures the bulk variability and seasonality of DO 

and exhibits the potential of forecasting water quality in ungauged basins without training 

data. It however often misses concentration peaks and troughs where DO level depends 

on complex biogeochemical processes. The model surprisingly does not perform better 

where data are more intensive. It performs better in basins with low streamflow variations, 

low DO variability, high runoff-ratio (> 0.45), and precipitation peaks in winter. This work 

suggests that more frequent data collection in anticipated DO peak and trough conditions 

are essential to help overcome the issue of sparse data, an outstanding challenge in the 

water quality community.  

 

Significance Statement. Sufficient dissolved oxygen (DO) level is essential to maintain 

a healthy aquatic ecosystem. Yet DO is challenging to forecast because of complex 

hydroclimatic and biogeochemical conditions that vary spatially and temporally. Here we 

harvested the power of intensive hydrometeorological data and developed a continental-

scale deep-learning model that captured the bulk variability and DO seasonality across 

poorly gauged and ungauged basins of diverse climate, geology, and vegetation 

conditions in the United States. The model surprisingly does not perform better in places 

with most data. Instead, it often performs better in basins with low streamflow and DO 

variability and high runoff-ratio. The model suggests that more intensive data collection 

at DO peaks and troughs is needed to capture the full dynamics.  



1. Introduction 

Dissolved oxygen (DO) sustains aquatic life and is a critical water quality measure 
(1, 2). Low DO levels arising from eutrophication, or hypoxia, have caused dead zones 
worldwide (3, 4). DO concentrations also affect nutrient availability and metal mobilization. 
Low DO conditions favor denitrification and facilitate the release of reactive phosphorus 
and toxic metals (e.g., As, Cr) from polluted sediments (5-7). The capability of forecasting 
DO is essential for monitoring aquatic ecosystem health and water management (2, 8, 9).  
DO levels are controlled by the relative magnitude of source and sinks. DO is supplied by 
the O2 dissolution and aquatic photosynthesis (6). DO solubility follows Henry’s law and 
decreases as temperature increases; it also drops as partial pressure of O2 decreases at 
high elevation (10) and as salinity increases (11, 12). DO is consumed via aquatic 
respiration (13), often peaking at summer times when biological activities culminate. 
Generally speaking, shallow streams with actively running water can mix sufficiently and 
often have abundant light for photosynthesis, leading to high DO levels compared to 
deeper and stagnant waters. Streams with rich organic materials are often more depleted 
in DO due to carbon decomposition (14). 

The past decades have witnessed extensive studies of DO in human-affected 
estuaries and coastal waters with elevated nutrient loading (e.g., agriculture, fertilizer) 
and organic input (e.g., sewage treatment plants) (3, 6, 15). Water quality forecasting has 
traditionally used process-based modelling. Irby et al. (2016) (16) evaluated eight 
process-based, well-calibrated DO models in the Chesapeake Bay and their results .and  
found that capturing observed spatial variability is much more challenging than capturing 
temporal variability. Stefan and Fang (1994) (17) developed a regional process-based 
DO model for seven lakes and obtained the standard errors ranges from 1.2 to 2.3 mg/L 
(mean = 1.9 mg/L) after calibration at individual sites.  

With greater data availability and computational power, deep learning approaches 
have recently shown promises in applications in a wide range of fields. Deep learning 
models do not rely on a prior model assumption, are computationally efficient and less 
scale-dependent than traditional process-based models that solve differential equations 
(18, 19). The emerging Long Short-Term Memory (LSTM) is a type of recurrent neural 
network structure that learns directly from sequential data (20, 21). The LSTM can learn 
to carry useful information from the past input to the next time step for time-series 



prediction. Recent work has shown that the LSTM can capture soil moisture dynamics 
(22-24) and predict streamflow at the regional (25) and continental scale (26). A few 
studies have used LSTM for DO prediction in individual sites from small aquaculture 
ponds (27-30) to a lake (31), with RMSE in the range of 0.5 to 1 mg/L. These studies 
used intensively measured, high frequency (e.g., 15 minutes) water quality data that not 
only include DO but also other measures such as pH, organic carbon, and nutrients. At a 
larger scale in the Chesapeake Bay, Ross and Stock (2019) (32) developed a machine 
learning model for DO and showed RMSE values of 0.5 – 2 mg/L for multiple stations. To 
the best of our knowledge, no attempt has been made to use LSTM to understand and 
forecast the DO spatial-temporal dynamics at the continental scale.  

The recent decades have seen significant increase in hydroclimatic data, 
discharge data, and earth surface characteristics data (33). Discharge data are often 
collected at minutes to daily resolution, capturing detailed nuances of streamwater 
dynamics. Water quality data, including DO and nutrients, are typically collected at much 
coarser temporal resolution (e.g., weekly to quarterly sampling frequency). Water quality 
data often have large temporal gap (e.g., multi-year to decade gap) and relatively small 
spatial coverage, presenting major challenges for applying machine-driven models and 
for forecasting water quality. Here we ask the question: Can a uniform machine learning 
model learn the spatial-temporal dynamics of DO from intensive hydroclimatic data, 
watershed characteristics, and sparse DO data at the continental scale? Can a model 
learn enough to forecast DO levels in ungauged basins without any DO measurements? 
To answer these questions, we used DO records from the CAMELS-chem database for 
236 sites across the U.S. and trained a single LSTM model. The CAMELS-chem 
database is a new nationwide water chemistry database for minimally disturbed streams 
that build upon the well-known CAMELS hydrology dataset (Catchment Attributes and 
Meteorology for Large-sample Studies) (34, 35). The dataset includes sparse DO data, 
time series of climate forcing data (e.g., precipitation, temperature, solar radiation, 
pressure) and watershed attributes (e.g., topography, land cover, vegetation, geology, 
and soil) that can be important determinants of DO levels. The DO levels in these 
minimally-disturbed watersheds also offer contrasts and reference points for extensively-
studied coastal and urban areas where human influences are vast and deep. We also 
examined the conditions under which the LSTM performs well to provide insights on DO 
process dynamics and to identify strategies for future data collection. 



2. Results 

2.1 Spatial patterns of DO and model performance  

Mean DO concentrations (Figure 1b) generally are higher at higher latitude, with 
the highest (11 – 12 mg/L) in the Northeast and Northwest. The lowest mean DO occurs 
in Florida and is surprisingly low (i.e., 4 – 5 mg/L) for these minimally-disturbed 
watersheds, close to the hypoxia limit of 3 mg/L. DO variations (Figure 1c) are lower in 
the West compared to the East. For the core evaluation group of 84 sites, the model 
achieved satisfactory performance (NSE >= 0.4) for 74% sites (Table S1). Specifically, 
the good performance (NSE >= 0.7, 38% of the 84 evaluated sites) and fair performance 
(0.4 <= NSE < 0.7, 36%) groups exhibit a mean (median) NSE of 0.77 (0.75) and 0.53 
(0.55), respectively. For the whole evaluation group, the model achieves a mean (median) 
NSE, RMSE, and Pcorr of 0.51 (0.57), 1.2 (1.1) mg/L, and 0.78 (0.82) respectively. Note 
that even the low NSE performance group achieved a mean (median) Pcorr of 0.61 (0.60), 
indicating a robust capture of DO seasonality (Table S1). 

 
Figure 1. DO records (top panel, 236 sites) from the CAMELS-chem database and model 
performance (bottom panel, core 84 sites + ungauged 24 sites): (a) data count; (b) mean DO 
concentration (mg/L); (c) coefficient of variation of DO concentration (mg/L); (d) Nash-Sutcliffe 
Efficiency (NSE); (e) Root Mean Square Error (RMSE); (f) Pearson’s correlation coefficient (Pcorr). 
Triangles with blue border indicate ungauged basins lacking training data (Figure 2, the last two 
rows). Darker red color in the performance panel (d, e, f) suggests better performance. 

 



Figure 1d-f shows NSE, RMSE, and Pcorr maps for the core evaluation group (84 
sites) and the out-of-training group (i.e., 24 ungauged sites). The Northeast and Eastern 
regions exhibit the best NSE performance. California and New Mexico also show 
consistent (>= 3 sites) good NSE performance of 0.71 and 0.70, respectively. For the 
covered 33 states, only three states show unsatisfying state-averaged performance (NSE 
< 0.4), i.e., Montana = 0.18, North Dakota = 0.18, Colorado = 0.29. North Dakota has the 
largest model error of 1.82 mg/L and a low correlation of 0.59; the state-averaged NSE 
of Montana and Colorado are lowered by one or two sites with lower NSE and larger 
biases (0.9 – 1.6 mg/L). The mean and median of modeled DO errors quantified by RMSE 
(Figure 1e) across the 108 sites are 1.2 and 1.1 mg/L, respectively. The model also 
captures DO seasonality at the continental scale (Figure 1f), with mean and median 
Pearson’ correlation coefficient of 0.80 and 0.83, respectively.  

A detailed look further confirms that the model captures the seasonal DO dynamics 
across diverse conditions (Figure 2), despite large data gaps that may have challenged 
the training process. In general, the model covers the bulk variability of DO concentrations 
of 5 - 15 mg/L. In some cases, it misses the DO peaks and troughs. While a few 
occasional mismatches at extremes may have a limited impact on NSE values in basins 
with abundant data (Figure 2d, i), they could lead to a large penalty on NSE in basins with 
less testing data points (e.g., low performance group, Figure 2l, o). Such larger biases at 
DO extremes could be attributed to several reasons. High and low extremes are often 
rare and thus are underrepresented in the training process. Second, DO values are 
instantaneously measured, reflecting temperature conditions at the time of 
measurements, which may differ substantially from conditions represented by the daily 
average of temperature, among other meteorological conditions. On the other hand, low 
DO conditions are often driven by biogeochemical processes, in particular in-stream 
decomposition of organic carbon. These processes vary spatially and temporally and 
hinge on local conditions (36, 37) and are challenging to capture (16). For example, Bailey 
and Ahmadi (2014) (36) revealed that biogeochemical processes (e.g., algal respiration, 
chemical oxidation) vary substantially with seasonal variations of water temperature and 
solar radiation, and specific locations within a stream network. These figures also indicate 
that model performance does not necessarily depend on the number of data points and / 
or the length of the record, contradicting conclusions from many existing studies. Some 



sites with sparse data perform well (Figure 2a); some sites with dense and long records 
perform poorly (Figure 2k).   

For the ungauged basins, the trained model captures the seasonalities with high 
mean and median Pearson’s correlation coefficients of 0.85 and 0.89 (Figure 1f, blue 
triangles), respectively. The model also captures the bulk variations in DO ranges for most 
of the time (Figure 2, last two rows) with some occasionally missed peak and troughs. 
Overall, the model captures the DO trend and achieves an above-the-average 
performance with mean and median NSE of 0.60 and 0.78, respectively. Out of the 24 
ungauged basins, only 3 basins (two of them shown in Figure 2n, o) exhibit low 
performance (NSE < 0.4).  

 

Figure 2. Temporal DO dynamics for randomly selected basins in good NSE (>= 0.7), fair NSE 
(0.4 – 0.7), and low NSE (< 0.4) performance group. Black dots are measurements; lines are 
model predictions. The top three rows are core evaluation sites with data in both training (light red 
line, 1980-2000) and testing period (red line, 2001-2014). The last two rows are ungauged basins 
with data only in testing period (also in Figure 1). 

 



2.2 Model performance for reproducing C-Q relationships.  

Concentration-discharge (C-Q) relationships are often used to understand the 
response of solute concentration to changing streamflow (38-40) and offer clues about 
catchment structure and biogeochemical processes (41-43). Shallow pink circles in 
Figure S2 are DO outputs from the model with measured stream discharge. The figure 
shows that the good and fair performance occur when the model captures the full range 
of DO levels (left and middle columns). The sites with low performance are those that 
missed the peaks and troughs. The figure also indicates that DO measurements occur 
mostly in low to intermediate-high discharge regimes, covering 70-80% on logQ but often 
miss the concentrations at high Q regimes that could largely determine C-Q patterns.   

 

2.3 Reproducing Concentration-Temperature relationships 

Temperature controls DO solubility and biological activities in water and is often 
the dominant driver for DO variations. Both data and model output show DO decrease as 
temperature increases at all sites (Figure 3). The theoretical prediction line of DO 
solubility was based on the Benson and Krause Equations under the specific altitude 
(barometric pressure) and salinity conditions at individual sites (44, 45). The model 
outputs show that for most sites, the model can learn the DO solubility theory and produce 
at least part of the concentration versus temperature curves (Figure 3), especially under 
low T conditions. At higher T conditions, DO levels often drop to levels much lower than 
the solubility prediction (Figure 3, middle row), which is expected. Biological activities 
such as decomposition of organic carbon are much higher under high T conditions. At 
some sites, the DO data follow the prediction lines at all T range (Figure 3, top row), 
indicating minimal biological activities that consume DO. At some other sites, DO can be 
much higher than the solubility line (Figure 3, bottom row), potentially indicating significant 
aquatic photosynthesis in streams. The model generally performs better where the DO 
has a relatively narrow range (i.e., less scattering in black dots, Figure 3a-c). In some 
sites (Figure 3g), for example, at the same 20 deg C, DO concentrations can vary from 5 
to 13 mg/L, indicating significant supply or consumption. The model often does not do 
well in these sites (Figure 3g-i).  



 

Figure 3. Concentration-temperature relationships for a few selected sites from the good, fair, 
and low NSE performance group. The black solid line is the theoretical prediction of DO solubility 
by the Benson and Krause Equations (Benson & Krause Jr, 1980; Benson & Krause Jr, 1984) 
based on local water temperature, altitude (barometric pressure) and salinity conditions. The 
specific conductance (SC) that typically ranges from 10 to 1000 um/cm for reference stream 
(Griffith, 2014) was used for salinity estimation by the equation: 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = 5.572 × 10−4(𝑆𝑆𝑆𝑆) +
2.02 × 10−9(𝑆𝑆𝑆𝑆)2  (American Public Health Association, 2005). The empty light red circles 
represent the 7-day modeled DO concentrations within the week when the stream water 
temperature was measured. The filled red circle represents the modeled daily DO concentration 
on the same date with the measured stream water temperature. The top row includes sites with 
data and modeled DO falling along theoretical prediction lines, indicating minimum DO 
consumption process in the stream. The middle row includes sites with lower DO that theoretical 
DO solubility, especially at higher temperature, indicating significant DO consumption in rivers. 
The bottom row includes cases with DO higher than theoretical DO solubility, indicating potentially 
significant aquatic photosynthesis in the stream. 

 

 



2.4 Controls on model performance  

Correlation between predictors and RMSE (as a loss function during the training 
process) were analyzed to understand important controls on the model performance. 
Results show RMSE values are positively correlated with the variation of DO 
concentrations (Figure 4a), i.e., standard deviation (R2 = 0.52) and coefficient of variation 
(R2 = 0.46). This indicates that basins with smaller DO variations have lower RMSE and 
perform better. The model performance does not correlate to the number of data points 
(R2 = 0.03, not shown). RMSE values are negatively correlated with minimum DO values 
(R2 = 0.40, Figure 4b), indicating the model does not do well at sites and under conditions 
of high DO consumption. Model training performance also depends on hydroclimatic 
characteristics (Figure 4c). The model performs in regions with high runoff-ratios (> 0.45) 
and negative p_seasonality where precipitation peaks in winter. Lower performance sites 
co-occurred with positive p_seasonality when precipitation peaks in summer. The low-
performance basins in North Dakota (Figure 1d) could be due to their low runoff ratios as 
they are challenging to model even just for streamflow (26). The training performance 
was also weakly to moderately (R2 = 0.19 – 0.24) correlated with other hydrological 
processes including stream flow and baseflow (Figure S3a, b). This indicates that basins 
with large variations in streamflow tended to perform not as well, as more seasonal 
dominance and less short-term transient processes are harder to model. The ungauged 
basins (i.e., blue triangles) follow the same correlation trends. The capturable 
dependence of error on these attributes mean that the errors may be predictable with 
deep-learning-based uncertainty methods (46, 47). 

 



Figure 4. Deep learning model training insights: relationships between model RMSE performance 
and watershed predictors for all 236 sites. Blue triangles are 24 ungauged basins in Figure 1 (also 
in Figure 2). The “CVDO” in (a) is the coefficient of variation of DO concentration. The “runoff_ratio” 
(c) is the ratio of mean daily discharge to mean daily precipitation. The “p_seasonality” is the 
precipitation seasonality: positive (negative) values indicate that precipitation peaks in summer 
(winter), values close to 0 indicate similar precipitation throughout the year.  

 

3. Discussion 

3.1 Can the model learn the spatio-temporal dynamics of DO from intensive 
hydrometeorology data and sparse water quality data?  

The continental-scale model developed here has good and fair performance for 
74% of the basins. Although the low NSE performance group (26% basins) has relatively 
larger model errors (i.e., 1.7 mg/L RMSE), they still generally agree with observed DO 
seasonality (i.e., mean Pcorr = 0.61). The largest errors occur at DO peaks and troughs, 
similar to conclusions from LSTM DO forecasting models developed for individual sites. 
For example, Irby et al. (2016) (16) found it challenging to reproduce spatial DO variability 
than seasonality, because the models have difficulty capturing the dynamics of biological 
drivers. Even with intensive DO and other water quality data, DO modeling errors 
generally increase with spatial scales, from 0.5 – 0.7 mg/L in individual ponds (27, 31) to 
1 – 2 mg/L at the regional scale (e.g., Chesapeake Bay, Twin Cities region) (16, 17, 32). 
A meta-analysis of well-calibrated water quality models (e.g., N, P) at smaller scales (i.e., 
pilot to watershed scale) shows the monthly NSE ranges from 0.2 to 0.6 (mean = 0.44) 
(48). This indicates that the continental scale model here achieved comparable 
performance with other DO or water quality models for individual sites and regional scale. 
Note that existing LSTM models for individual sites often have much more data, typically 
with high frequency DO data at hour to daily frequency other water quality data such as 
pH, water temperature, specific conductance, carbon (27, 31, 49). This suggests the 
LSTM model can learn the DO dependence on the hydro-meteorological conditions 
modulated by site conditions, and forecast DO with confidence only using sparse DO data. 
This is significant because meteorological and hydrological data are much more available 
and at much higher frequency than water quality data.  

It is somewhat surprising that the training performance was not correlated with 
sample count (R2 = 0.03). Instead, the model performance correlates more with DO 



variability (Figure 4) and performs better in places with low DO variability without 
extremely low DO troughs, relatively stable flow conditions (high baseflow index, low 
streamflow flashness, and high runoff ratio). This is because more DO variations and low 
DO troughs indicate complex biogeochemical processes that form and decompose 
organic matter (50).  

 

3.2 Potentials for DO prediction in ungauged and poorly gauged basins 

Prediction in ungauged basin for streamflow has been highlighted as a grand 
challenge for decades (51). Water quality modelling in ungauged basins has generally 
lagged far behind and received much less attention (52). In fact, 35% of the 236 sites in 
this work have less than 60 counts for the entire study period of 35 years and the mean 
(median) count density of the 236 sites is 4 (3) count/year. Such data sparsity in fact 
makes many of these sites poorly gauged basins for water quality even though they may 
be well gauged for streamflow. The satisfactory model performance in most of the 
ungauged basins suggests that the continental-scale model can learn spatio-temporal 
dynamics across diverse climatic and watershed conditions, and is promising for 
forecasting DO dynamics in diverse ungauged basins. The model could be used to fill 
temporal data gaps in many poorly gauged basins as well. It can also be used to improve 
temporal resolution (e.g., from monthly to daily). The more complete datasets can be used 
for trend analysis to understand the response of water chemistry and earth surface 
system to changing environmental and human-induced perturbations such as acid rain, 
urbanization, and changing climate (53). They can also be used as constraints or 
predictor (similar to pH) for modelling other chemicals such as nutrients (e.g., 
denitrification, phosphorus remobilization) or aquatic activity (e.g., fish kill). On the other 
hand, data gaps beyond a decade probably need to be filled with caution as the influential 
factors (e.g., climate change, land cover change) for DO dynamics may be changing. GIS 
analysis of stream network information and near stream vegetation/shading information 
could probably help with model prediction. 

 

 

 



3.3 Implications for water quality measurements 

The challenge of sparse data is omnipresent for water quality measures that are 
costly to collect, analyze, and monitoring (54). Unlike streamflow data that are often 
measured at minutes to daily time scales, water quality and chemistry observations are 
typically at monthly to quarterly frequency but at a moment in time. Large data gaps from 
multiple years to decades are also common. Studies using hydrological models (55) have 
indicated that, when streamflow data are carefully chosen, 10% of streamflow 
measurements are sufficient for parameter calibration, meaning that approximately 90% 
of the data are redundant for parameter identification. The number of data points is often 
not critical in discriminating between parameter sets. What matters is often the 
information content and the efficiency with which information is extracted (56, 57). Model 
uncertainty and data analysis studies are common in the hydrology literature but much 
rarer in biogeochemistry and water quality literature. 

This work shows that current monthly and bimonthly sampling, together with high-
frequency hydrometeorological data, is generally sufficient for daily prediction for these 
reference sites with minimum human disturbance. Although larger data do not necessarily 
lead to improved performance, results also suggest that DO peak and trough values are 
critical measures. Increased sampling frequency in seasonal highs and lows is not only 
useful for model training but also offer opportunities for mechanistic understanding of 
processes (58). The map (Figure 2) shows DO data is unevenly distributed between the 
East and the West, where the East has 2.4 times more basins with better NSE 
performance (East mean: 0.56) than the West (West mean: 0.41). This suggests the DO 
model could benefit from more data from the West that is relatively underrepresented in 
the current data. 

Results further show that basin performance varies from site to site and largely 
depend on local DO variability that is regulated by climate, hydrological, and 
biogeochemical processes (Figure 4). In regions with low runoff ratio and summer 
precipitation peaks where the model generally has lower performance, more 
measurements covering the DO variability at full flow regime could be useful. In humid 
regions (e.g., Pennsylvania, Vermont) where the model already captures the seasonality 
and bulk variability, sampling campaign could be relaxed in frequency and directed more 
toward summer time where low DO levels are often expected. Basins with flashy 



hydrology tend to have larger model errors (Figure S3). This indicates watersheds with 
steep slope, highly conductive soil, or thin regolith and shallow water storage (thus flashy 
streamflow) (59) should be sampled more frequently to alleviate data limitation and cover 
the full range of more discharge and DO variability. In basins with chemodynamic C-Q 
patterns (e.g., flushing patterns in Figure S2b, c), more measurements could be planned 
for hydrological events such as snow-melting floods in spring or large storms in summer, 
and in the post-melt dry periods where DO can drop low (e.g., typical in western high-
mountain regions such as Colorado). This is particularly the case in predicting hypoxia 
under human influences. Moatar et al. (2020) (60) suggests that optimal sampling 
frequency largely depends on the flashiness of streamflow and the response of solute 
concentration variation to streamflow variations. For solutes that are sensitive to 
streamflow variation such as total suspended solids (TSS), sub-daily frequency is 
necessary. For solutes that are insensitive to streamflow variations such as total dissolved 
solutes (TDS), monthly sampling may be sufficient. 



Methodology 

CAMELS-Chem database  

The CAMELS-Chem dataset is built as a supplement to the Catchment Attribute 
for Large Sample Studies (CAMELS) (34, 35) that includes hydrologic, climatic, and 
catchment attributes (61). CAMEL-Chem compiles U.S. Geological Survey (USGS) water 
chemistry and instantaneous discharge from 1980 through 2014 in 493 headwater 
catchments. It includes many solutes other than DO. Here we used a total of 236 sites 
with at least 10 records from 1980 to 2014. The drainage areas varied from 5.4 to 25,791 
km2, with mean and median areas of 1,111 and 489 km2, respectively.  

DO data density varies significantly from site to site, with denser and longer 
records in the East. Data points (Figure 1a) vary from 10 to 842 with the mean and median 
of 139 and 96, respectively. Although a handful of sites have > 400 records, 16% and 35% 
sites have less than 30 and 60 data points from 1980 to 2014, respectively. Record length 
(Figure S1) varies from 0.9 to 98 years, with mean and median of 27 and 27 years, 
respectively. Data gaps from multi-year to decade are common. Record density varies 
from 0.25 to 19 count/year, with mean and median of 4 and 3 count/year, respectively, 
close to an overall frequency of quarterly sampling.  

 

Deep learning algorithm: Long Short-Term Memory network 

The Long Short-Term Memory (LSTM) network (20, 21) solves the problem of 
vanishing gradients in traditional RNNs for time-series tasks (e.g., speech recognition, 
time-series forecasting) (19). The LSTM layer consists of a set of recurrently connected 
blocks (i.e., memory cells) to store and pass sequential information. Each LSTM memory 
cell has three information gates (i.e., input gate, forget gate, and output gate in 𝐸𝐸𝐸𝐸𝑆𝑆 3 − 5) 
and two states (i.e., cell state and hidden state in 𝐸𝐸𝐸𝐸𝑆𝑆 6 − 7) to control what to flow in, 
what to forget, and what to memorize across time steps, allowing the network to learn 
long-term dependencies (e.g., water storage). The forward pass of the LSTM model is 
described by the 𝐸𝐸𝐸𝐸𝑆𝑆 1 − 8. The LSTM network was implemented in the open source 
machine learning framework PyTorch (62) while other LSTM details are contained in Feng 
et al. (2020) (26). 



𝐼𝐼𝑆𝑆𝐼𝐼𝐼𝐼𝑆𝑆 𝑆𝑆𝑡𝑡𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑆𝑆𝑆𝑆𝑆𝑆𝑡𝑡𝑆𝑆: 𝑥𝑥𝑡𝑡 = 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝑊𝑊𝐼𝐼𝐼𝐼𝑡𝑡 + 𝑏𝑏𝐼𝐼)    (𝐸𝐸𝐸𝐸𝑆𝑆 1) 

𝐼𝐼𝑆𝑆𝐼𝐼𝐼𝐼𝑆𝑆 𝑆𝑆𝑡𝑡𝑛𝑛𝑅𝑅: 𝑔𝑔𝑡𝑡 = 𝑆𝑆𝑆𝑆𝑆𝑆ℎ�𝐷𝐷(𝑊𝑊𝑔𝑔𝑔𝑔𝑥𝑥𝑡𝑡) +  𝐷𝐷(𝑊𝑊𝑔𝑔ℎℎ𝑡𝑡−1) + 𝑏𝑏𝑔𝑔�    (𝐸𝐸𝐸𝐸𝑆𝑆 2) 

𝐼𝐼𝑆𝑆𝐼𝐼𝐼𝐼𝑆𝑆 𝑔𝑔𝑆𝑆𝑆𝑆𝑅𝑅: 𝑆𝑆𝑡𝑡 = 𝜎𝜎(𝐷𝐷(𝑊𝑊𝑖𝑖𝑔𝑔𝑥𝑥𝑡𝑡) + 𝐷𝐷(𝑊𝑊𝑖𝑖ℎℎ𝑡𝑡−1) + 𝑏𝑏𝑖𝑖)    (𝐸𝐸𝐸𝐸𝑆𝑆 3) 

𝐹𝐹𝑡𝑡𝑡𝑡𝑔𝑔𝑅𝑅𝑆𝑆 𝑔𝑔𝑆𝑆𝑆𝑆𝑅𝑅: 𝑡𝑡𝑡𝑡 = 𝜎𝜎�𝐷𝐷(𝑊𝑊𝑓𝑓𝑔𝑔𝑥𝑥𝑡𝑡) +  𝐷𝐷(𝑊𝑊𝑓𝑓ℎℎ𝑡𝑡−1) + 𝑏𝑏𝑓𝑓�    (𝐸𝐸𝐸𝐸𝑆𝑆 4) 

𝑂𝑂𝐼𝐼𝑆𝑆𝐼𝐼𝐼𝐼𝑆𝑆 𝑔𝑔𝑆𝑆𝑆𝑆𝑅𝑅: 𝑡𝑡𝑡𝑡 = 𝜎𝜎(𝐷𝐷(𝑊𝑊𝑜𝑜𝑔𝑔𝑥𝑥𝑡𝑡) +  𝐷𝐷(𝑊𝑊𝑜𝑜ℎℎ𝑡𝑡−1) + 𝑏𝑏𝑜𝑜)    (𝐸𝐸𝐸𝐸𝑆𝑆 5) 

𝑆𝑆𝑅𝑅𝑆𝑆𝑆𝑆 𝑡𝑡𝑆𝑆𝑆𝑆𝑆𝑆𝑅𝑅: 𝑡𝑡𝑡𝑡 = 𝑔𝑔𝑡𝑡 ⊙ 𝑆𝑆𝑡𝑡 + 𝑡𝑡𝑡𝑡−1 ⊙ 𝑡𝑡𝑡𝑡    (𝐸𝐸𝐸𝐸𝑆𝑆 6) 

𝐻𝐻𝑆𝑆𝑛𝑛𝑛𝑛𝑅𝑅𝑆𝑆 𝑡𝑡𝑆𝑆𝑆𝑆𝑆𝑆𝑅𝑅: ℎ𝑡𝑡 = 𝑆𝑆𝑆𝑆𝑆𝑆ℎ (𝑡𝑡𝑡𝑡)⊙𝑡𝑡𝑡𝑡    (𝐸𝐸𝐸𝐸𝑆𝑆 7) 

𝑂𝑂𝐼𝐼𝑆𝑆𝐼𝐼𝐼𝐼𝑆𝑆: 𝑆𝑆𝑡𝑡 = 𝑊𝑊ℎ𝑦𝑦ℎ𝑡𝑡 + 𝑏𝑏𝑦𝑦   (𝐸𝐸𝐸𝐸𝑆𝑆 8) 

where the superscript 𝑆𝑆  represents the time step for time-dependent variables, 𝐼𝐼𝑡𝑡 
represents the raw input to the model, 𝑥𝑥𝑡𝑡 is the input vector to the LSTM cell, 𝐷𝐷 is the 
dropout operator to reduce overfitting, 𝑆𝑆𝑆𝑆𝑆𝑆ℎ and 𝜎𝜎 in 𝐸𝐸𝐸𝐸𝑆𝑆 2 − 5,𝑆𝑆𝑆𝑆𝑛𝑛 7 are tangent and 
sigmoidal function, respectively, 𝑊𝑊 and 𝑏𝑏 with different subscripts in 𝐸𝐸𝐸𝐸𝑆𝑆 1 − 5 represent 
the weights and bias parameters, respectively, ⊙  in 𝐸𝐸𝐸𝐸𝑆𝑆 6 − 7  is the element-wise 
multiplication operator, 𝑆𝑆𝑡𝑡, 𝑡𝑡𝑡𝑡, and 𝑡𝑡𝑡𝑡 are the input, forget, and output gates, respectively, 
𝑔𝑔𝑡𝑡 is the output of the input node, 𝑡𝑡𝑡𝑡 and ℎ𝑡𝑡 are the memory cell state and hidden state, 
respectively, 𝑆𝑆𝑡𝑡 represents the predicted output at the time step of 𝑆𝑆. 

 

Model training and evaluation 

The DO records were split between 1980-01-01 to 2000-12-01 for training (i.e., 21 
years) and 2001-01-01 to 2014-12-31 for testing (i.e., 14 years). This split corresponds to 
67% and 33% data for training and testing, respectively. The model was trained using 
daily time-series of six meteorological features (i.e., precipitation, solar radiation, 
maximum and minimum air temperature, vapor pressure, day length), with 49 watershed 
attributes directly imported from CAMELS (e.g., topography, land cover, geology, and soil) 
(attribute details in Addor et al., 2017 (34)), and one set of air temperature attributes (i.e., 
Tavg, Tmax, Tmin) calculated from the Daymet forcing dataset (https://daymet.ornl.gov). With 
large data gaps and discontinuity in data record in many sites, a core group of 84 sites 
with at least 6 DO records in both training and testing period was selected for model 



performance evaluation. Another out-of-training group of 24 sites with no data points in 
training periods (1980 - 2000) but has data in testing period (2001 - 2014) were used for 
evaluating model performance in these as ungauged basins without training data. A total 
of 89 sites with data only in the training period were not reported for testing performance. 
The remaining 39 sites with < 6 records in training and testing were not included for 
performance evaluation due to lower statistical power and potential bias in evaluation 
metrics. For example, the Nash-Sutcliffe Efficiency (NSE) is sensitive to extreme values 
due to the squared difference term (Eqn 9) (48). In basins with only a few data points in 
the testing period, model biases at DO peaks could result in large, overestimated drop in 
the NSE. This work intends to provide a glimpse of general model performance as well 
as some across-site understanding on large water-quality dataset, so we did not carry out 
a systematic optimization on model performance. We tried both daily and monthly (i.e., 
aggregating daily DO data into monthly average) resolution and they did not differ much 
in overall performance. The monthly resolution setup took around 20 minutes of 
computational time for training (i.e., 300 epochs) with an NVIDIA 1080 Ti graphical 
processing unit (GPU) while the daily setup took around 60 minutes. The choice of 67%-
33% data splitting allows more data points in the testing period to be fairly evaluated for 
more basins (e.g., fewer data points could result in biased NSE values). The model could 
be further improved by a systematic hyperparameter search and by the inclusion of more 
basins and data in the training process.  

Three statistical metrics were used to measure the model performance: Nash-
Sutcliffe Efficiency (NSE), Root Mean Square Error (RMSE), and Pearson’s correlation 
coefficient (Pcorr). NSE ranges from −∞ to 1, with 1 being the perfect match between 
model prediction and observation. NSE values between 0 and 1 are generally considered 
as acceptable, whereas NSE < 0 indicates unacceptable performance where model 
prediction is worse than mean observations (63). Here NSE values >= 0.4 were 
considered as satisfactory with NSE >= 0.7 and 0.4 <= NSE < 0.7 being good and fair 
performance, respectively (48) (Table S1). RMSE ranges from 0 to ∞ with lower values 
indicate better model performance and 0 being the perfect match. Here we found that 
RMSE < 1.0 mg/L, 1.0 <= RMSE < 1.5 mg/L, RMSE >= 1.5 mg/L are generally associated 
with good performance (NSE >= 0.7), fair performance (0.4 <= NSE < 0.7), and low 
performance (NSE < 0.4), respectively. Pcorr ranges from -1 to 1 for perfect negative and 



positive correlation, respectively. It is useful for assessing the model capture of 
seasonality, with values close to 1 indicating better capture of seasonality.  

𝑁𝑁𝑆𝑆𝐸𝐸 = 1 −
∑ |𝑆𝑆𝑚𝑚𝑜𝑜𝑚𝑚 − 𝑆𝑆𝑜𝑜𝑜𝑜𝑜𝑜|2𝑛𝑛
𝑖𝑖=1

∑ (𝑆𝑆𝑚𝑚𝑜𝑜𝑚𝑚 − 𝑆𝑆𝑜𝑜𝑜𝑜𝑜𝑜������)2𝑛𝑛
𝑖𝑖=1  

     (𝐸𝐸𝐸𝐸𝑆𝑆 9) 

𝑅𝑅𝑅𝑅𝑆𝑆𝐸𝐸 = �∑ (𝑆𝑆𝑚𝑚𝑜𝑜𝑚𝑚 − 𝑆𝑆𝑜𝑜𝑜𝑜𝑜𝑜)2𝑛𝑛
𝑖𝑖=1

𝑆𝑆
   (𝐸𝐸𝐸𝐸𝑆𝑆 10) 

𝑃𝑃𝑃𝑃𝑡𝑡𝑡𝑡𝑡𝑡 =
∑ (𝑆𝑆𝑚𝑚𝑜𝑜𝑚𝑚 − 𝑆𝑆𝑚𝑚𝑜𝑜𝑚𝑚�������)(𝑆𝑆𝑜𝑜𝑜𝑜𝑜𝑜 − 𝑆𝑆𝑜𝑜𝑜𝑜𝑜𝑜������)𝑛𝑛
𝑖𝑖=1

�∑ (𝑆𝑆𝑚𝑚𝑜𝑜𝑚𝑚 − 𝑆𝑆𝑚𝑚𝑜𝑜𝑚𝑚�������)2𝑛𝑛
𝑖𝑖=1 ∑ (𝑆𝑆𝑜𝑜𝑜𝑜𝑜𝑜 − 𝑆𝑆𝑜𝑜𝑜𝑜𝑜𝑜������)2𝑛𝑛

𝑖𝑖=1  
    (𝐸𝐸𝐸𝐸𝑆𝑆 11) 

Where 𝑆𝑆𝑚𝑚𝑜𝑜𝑚𝑚 and 𝑆𝑆𝑜𝑜𝑜𝑜𝑜𝑜 model prediction and observation, respectively, 𝑆𝑆𝑚𝑚𝑜𝑜𝑚𝑚������� and 𝑆𝑆𝑜𝑜𝑜𝑜𝑜𝑜������ are 
the model predication mean and observation mean, n is the total number of paired model 
prediction and observation in the testing period. 

 

Data and Code Availability 

The CAMELS-Chem DO dataset is deposited at the GitHub repository at 
https://github.com/ZhiWei2020/CAMELS-Chem-DO-dataset. The hydrometeorological 
time-series data and watershed attributes are available at the CAMELS data website 
(https://ral.ucar.edu/solutions/products/camels). The deep-learning LSTM code is also 
available from the GitHub at https://github.com/mhpi/hydroDL. 
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Figure S1. DO record length (year) of 236 sites (>= 10 records) from the CAMELS-chem 
database. 

 

 
Figure S2. Model performance in reproducing concentration-discharge (C-Q) relationships for a 
few selected sites from the good, fair, and low performance group. Note only DO concentrations 
(not Q) were modeled. Empty pink circles are all modeled daily DO concentration during the entire 
study period (1980 to 2014) while solid black and red circles are measurements and 
corresponding modeled values, respectively.  



 
Figure S3. Deep learning model training insights: relationships between model RMSE 
performance and watershed predictors for all 236 sites. Blue triangles are 24 ungauged basins in 
Figure 1 (also in Figure 2). The “stream_elas” (a), or streamflow elasticity, is the sensitivity of 
streamflow to changes in precipitation at the annual time scale; “baseflow_index” is the ratio of 
mean daily baseflow to mean daily discharge with larger values indicate higher fraction of 
baseflow to the stream. The “low_q_freq” and “high_q_freq” in (b) mean frequency of low-flow 
days (< 0.2 times the mean daily flow) and high-flow days (> 9 times the median daily flow), 
respectively.



Table S1. Model testing performance for the core evaluation group (84 sites) 

Metric 

Good performance 
(NSE >= 0.7) 

Fair performance 

(NSE ~ 0.4-0.7) 

Low performance 

(NSE < 0.4) 

site  

(%) 
range 

mean 

(median) 

site 

 (%) 
range 

mean 

(median) 
site 
(%) range 

mean 

(median) 

NSE 

32 

(38%) 

0.70 - 
0.93 

0.77 
(0.75) 

30 
(36%) 

0.4 – 
0.65 

0.53 
(0.55) 

22 
(26%) 

-0.5 – 
0.29 

0.08 
(0.17) 

RMSE 0.37 – 
1.7 

0.87 
(0.78) 

0.64 – 
2.0 

1.2  

(1.2) 
0.79 – 

2.9 
1.7  

(1.7) 

Pcorr 0.82 – 
0.99 

0.90 
(0.89) 

0.67 – 
0.93 

0.78 
(0.80) 

0.18 – 
0.90 

0.61 
(0.60) 

 

 


