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Abstract

The North American Monsoon occurs July-September bringing significant rainfall to Colorado River headwater basins. This rain

may buffer streamflow deficiencies caused by reductions in snow accumulation. Using a data-modeling framework, we explore

the importance of monsoon rain in streamflow generation over historic conditions in an alpine basin. Annually, monsoon rain

contributes 18{plus minus}7% water inputs, generates 10{plus minus}6% streamflow and increases water yield 3{plus minus}2%

the following year. The bulk of rain supports evapotranspiration in lower subalpine forests. However, rains have the potential

to produce appreciable streamflow at higher elevations where soil storage, forest cover and aridity are low; and rebounds late

season streamflow 64{plus minus}13% from simulated reductions in snowpack as a function of monsoon strength. Interannual

variability in monsoon efficiency to generate streamflow declines with low snowpack and high aridity, implying the ability of

monsoons to replenish streamflow in a warmer future with less snow accumulation will diminish.
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Key Points: 12 

 Monsoons generate 10±6% of annual streamflow while late spring snowfall delivers 13 

twice as much for the same water input. 14 

 The influence of monsoons on streamflow is lessoned by evapotranspiration in the lower 15 

subalpine forest. 16 

 Monsoon efficiency in generating streamflow decreases in years with low snow 17 

accumulation and high aridity. 18 
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Abstract 21 

The North American Monsoon occurs July-September bringing significant rainfall to 22 

Colorado River headwater basins. This rain may buffer streamflow deficiencies caused by 23 

reductions in snow accumulation. Using a data-modeling framework, we explore the importance 24 

of monsoon rain in streamflow generation over historic conditions in an alpine basin. Annually, 25 

monsoon rain contributes 18±7% water inputs, generates 10±6% streamflow and increases water 26 

yield 3±2% the following year. The bulk of rain supports evapotranspiration in lower subalpine 27 

forests. However, rains have the potential to produce appreciable streamflow at higher elevations 28 

where soil storage, forest cover and aridity are low; and rebounds late season streamflow 29 

64±13% from simulated reductions in snowpack as a function of monsoon strength. Interannual 30 

variability in monsoon efficiency to generate streamflow declines with low snowpack and high 31 

aridity, implying the ability of monsoons to replenish streamflow in a warmer future with less 32 

snow accumulation will diminish. 33 

 34 

Plain Language Summary 35 

Monsoon rains bring much needed summer moisture to the southwestern United States, 36 

but it remains unclear whether rains have a significant effect on streamflow in the snow-37 

dominated headwaters of the Colorado River. Lack of understanding is largely due to the 38 

difficulty in measuring rain and snowfall in steep, mountainous basins, and the effect both have 39 

on seasonal plant consumption of water. Using a hydrological model populated with ground, 40 

airborne and synthesized climate data, we compare relative efficiency of monsoon rain to 41 

generate stream water over multiple decades. Monsoon rains deliver one-fifth of the basin’s 42 

water and produce 10% the annual streamflow, with additions largely confined to the upper 43 

elevations of the watershed where soils are thin, water is plentiful, and forests are less abundant. 44 

In contrast, lower elevations contain dense aspen and conifer forests that consume monsoon rain 45 

and limit streamflow response. Subsequently, even strong monsoon events cannot fully replenish 46 

lost snow. Summer rains produce more streamflow during cooler years with large snow 47 

accumulation. This hints that streamflow from summer rain may diminish in a warmer future 48 

with less snow. 49 

1 Introduction 50 

Snowpack in mountain systems is declining worldwide with trends in snow loss expected 51 

into the future (Hock et al., 2019). Across the western United States (US), rising temperatures 52 

and changing precipitation patterns have decreased peak snow accumulation 15-30% since the 53 

mid-20
th

 century (Mote et al., 2018), with the intensity and duration of these seasonal snow 54 

deficits increasing over the last 40 years (Huning & AghaKouchak, 2020). Reductions in snow 55 

cover produce a positive albedo feedback that results in higher air temperatures that promotes 56 

additional snowmelt (Hall, 2004; Ma et al., 2019). Rising temperatures can also drive larger soil 57 

evaporation and plant transpiration (evapotranspiration, ET) to reduce streamflow (Milly & 58 

Dunne, 2020). The Colorado River in the southwest US is dependent on 90% of its flow from the 59 

snow covered headwaters of Utah, Colorado and Wyoming (Jacobs, 2011) and is emblematic of 60 

these cascading feedbacks with 20% streamflow reductions projected by mid-21
st
 century (Vano 61 

et al., 2012). The North American Monsoon (NAM) can bring significant rain to the region July 62 

to September (Sheppard et al., 2002) that has the potential to buffer streamflow deficiencies 63 

related to reductions in snowpack.  Or the corollary, a lack of monsoon rain could potentially 64 
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promote late summer streamflow depletions and the potential to influence soil moisture memory 65 

on streamflow generation in the subsequent water year. To date, the influence of monsoon 66 

rainfall on streamflow generation in high elevation, snow-dominated basins remains uncertain 67 

largely due to difficulty in predicting and quantifying precipitation and snowmelt across 68 

mountainous watersheds (Deems et al., 2006; Harpold et al., 2012) and the tight coupling of 69 

climate, vegetation and topography ( Bales et al., 2006; Tennant, 2016; Tennant et al., 2017) that 70 

controls hydrologic partitioning between ET and runoff (Carroll et al., 2019). 71 

To capture these complex processes to better understand streamflow generation 72 

efficiency from NAM rains, we combine light detection and ranging (LiDAR) derived snow 73 

depths, precipitation and vegetation raster maps, an observation network of weather and stream 74 

discharge stations and a hydrologic numerical model of an alpine headwater basin of the 75 

Colorado River. Using this data-model framework, we pose the following questions over a multi-76 

decadal, historical period: (i) How efficient are monsoon rains in generating streamflow and 77 

what are the principal controls on this efficiency? (ii) Can monsoon rains mitigate stream 78 

depletions from reduced snowfall and how important are they in promoting streamflow the 79 

following year? 80 

2 Site Description and Methods 81 

The study site is the East River, Colorado (ER, 85km
2
, Figure 1). Climate is continental 82 

subarctic. Snowmelt drives peak streamflow, typically occurring in early June and receding 83 

through the summer and fall. Observational networks related to snow and streamflow are 84 

described by others (Carroll et al., 2018; Hubbard et al., 2018; Carroll et al., 2019) with station 85 

locations provided in Figure 1. ER elevations range from 2760 to 4065 m with pristine 86 

alpine/barren (26%), conifer (45%, spruce/fir), aspen (12%) and smaller coverages by shrubs, 87 

meadows and riparian conditions. Two Snow Telemetry (SNOTEL) stations reside in proximity 88 

of the ER (Figure 1, Schofield and Butte) with their period of record (1987-2019) capturing a 89 

wide range in snow accumulation and monsoon scenarios. Daily observations of solar radiation 90 

and snow depth are taken from four weather stations (Figure 1: SG, KP, JF and BB). Observed 91 

streamflow (years 2015-2019) are based on data from Carroll and Williams (2019) with subbasin 92 

characteristics provided in Table S1. In addition, observed daily streamflow at PH are regressed 93 

with the US Geological Survey (USGS) stream gauge (ID: 09112500) located 25 km 94 

downstream to approximate observed discharge over the entire simulation. 95 

Hydrologic modeling builds upon previous work (Fang et al., 2019; Carroll et al., 2019) 96 

Daily water budgets are estimated with the USGS Precipitation-Modeling Runoff System 97 

(PRMS, Markstrom et al., 2015). Water and energy are tracked within and between the 98 

atmosphere, plant, soil and groundwater and fluvial subcomponents of the watershed. The finite 99 

difference grid resolution is 100 m with elevations resampled from the USGS National Elevation 100 

Dataset. LANDFIRE (2015) is used to derive parameters of dominant cover type, summer and 101 

winter cover density, canopy interception characteristics for snow and rain and transmission 102 

coefficient for shortwave radiation. Climate forcing uses minimum and maximum daily 103 

temperature lapse rates defined by the two SNOTEL stations adjusted for aspect. Schofield 104 

snowfall is spatially distributed using LiDAR derived snow depth observations from the 105 

Airborne Snow Observatory (ASO, Painter et al., 2016) flown 4 April 2016. Snow depths are 106 

converted to snow water equivalent (SWE) based on ground surveys and density modeling. 107 

Rainfall is spatially distributed using the monthly Parameter-elevation Relationships on   108 
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 109 

 110 

Figure 1. The East River and elevation with discharge, weather stations and sub-basins 111 

identified. Streams from the National Hydrographic Dataset (NHD). Sub-basin ID: 1 = East 112 

above Quigley (EAQ), 2 = Quigley, 3 = Rustlers, 4 = Bradley, 5 = Rock, 6 = Gothic, 7 = 113 

Marmot, 8 = Avery, 9 = Copper, PH = Pumphouse. Inset shows East River location in the 114 

continental United States. 115 

 116 
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Independent Slopes Model (PRISM, 800 m) 30-year (1981-2010) monthly averages (OSU, 2012) 117 

(Figure S1). Simulated solar radiation is calibrated to match weather station observations. Model 118 

verification of SWE accumulation and ablation relies on the 2018 and 2019 ASO maps and 119 

weather station snow depth.  120 

Maximum soil water storage is conceptualized as a field capacity threshold above which 121 

water is partitioned to either shallow, lateral subsurface flow through the soil zone (interflow) or 122 

allowed to percolate downward via gravity drainage into the deeper groundwater system. The 123 

spatial distribution of soil storage is the product of rooting depth and available water content as a 124 

function of soil type (NRCS, 1991). Parameters related to solar radiation, potential 125 

evapotranspiration (PET), soil storage and groundwater transmissivity are adjusted at the 126 

subbasin level to best match observed solar radiation and stream discharge. Model sensitivity to 127 

seasonal precipitation is done by independently removing spring (April-May) or monsoon (July-128 

September) water inputs. Precipitation is removed for a single year and changes in water budget 129 

components are compared to the historical (baseline) condition. 130 

3 Results 131 

Simulated daily solar radiation captures observed seasonal variability with a mean 132 

monthly relative root mean squared error (rrmse) of 6.4% (Figure S2). Modeled SWE replicates 133 

the spatial distribution of peak snow accumulation and late spring persistence during a dry year 134 

2018, and peak accumulation in an extremely wet year 2019 (Figure S3); and mimics interannual 135 

variability of snow depth at the four weather stations (Figure S4). Annual average streamflow at 136 

all observed sites is modeled with rrmse of 2.4%. Daily flows (Figure S5) are well emulated for 137 

most of the subbasins with Nash Sutcliffe Efficiency (NSE) for EAQ = 0.57, Quigley = 0.38, 138 

Rustlers  = 0.64, Rock = 0.66, and Copper = 0.67. PH has a NSE = 0.72 (log-flow NSE = 0.87) 139 

for directly observed data and 0.71 (log-flow 0.73) using the USGS regression. Average annual 140 

streamflow exiting the basin is 2.16±0.48 m
3
/s (812± 204 mm/y) with flow highest in June 141 

(7.8±3.4 m
3
/s) and lowest in February (0.42±0.19 m

3
/s).  Simulated precipitation is 1413±233 142 

mm/y with 77±16% falling as snow. Total annual ET for the baseline simulation is 605±57 143 

mm/y, or 43% total precipitation (P). ET components of sublimation, canopy evaporation and 144 

soil ET are estimated at 39±6 mm/y, 138±19 mm/y and 428±41 mm/y, respectively. Snow 145 

dominates water inputs October-May. Rain dominates June-August when conditions are 146 

typically water limited (PET>P). Otherwise the basin is predominantly energy limited (PET<P) 147 

(Figure S6). Monsoon precipitation is estimated 251±94 mm, or 18±7% annual water inputs with 148 

interannual rain anomalies oscillating over a 7-10year cycle with amplitude in anomalies 149 

increasing 50% since 2013 (Figure S7). On average, spring precipitation in April and May 150 

provide nearly equal inputs as the monsoon events (248±94 mm) though the interannual ratio is 151 

highly variable.  152 

Several water budget components are collapsed to a single dimension (elevation) in 153 

Figure 2 for year 1998. Alpine conditions are defined above tree line (≥3750 m), while the 154 

subalpine is defined as conifer coverage ≥50% by area (3525-3000 m). Montane occurs at the 155 

lowest elevations where shrubs and aspen are dominant. Simulated SWE is largest in the alpine 156 

and upper subalpine. For 1998, late season snow (post-April 1) increases across most of the 157 

watershed by May 1, except at the lowest elevations where snowmelt exceeds any additional 158 

snowfall. By June 1, declines in SWE occur across all elevations with all snow melted in the 159 

montane. Interflow transports snowmelt downgradient with largest contributions into the upper 160 

subalpine. Snowmelt driven interflow increases water availability for ET (ET/PET increases) 161 
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across all elevations with ET largest in the lower portions of the subalpine where conifer forests 162 

are most abundant, canopy density is highest, and aridity is slightly water limited.  At lower 163 

elevations, water limiting conditions increase, lower snowpack and lower available interflow 164 

reduce water availability for ET such that ET begins to decline as a consequence. The removal of 165 

spring snow shifts water limited conditions to higher elevations compared to baseline. Interflow 166 

decreases below the alpine zone. Total ET increases in the alpine and upper subalpine and 167 

decreases in the lower portions of the subalpine and montane (refer to Figure S8 for changes in 168 

the spatial distribution of ET). Removal of monsoon rain reduces interflow above the upper 169 

subalpine but does increase aridity more in the lower subalpine and montane than removal of 170 

spring snow. ET and ET/PET decreases across all elevations, with ET decreasing the most in the 171 

lower subalpine. 172 

 173 

Figure 2. East River spatial trends in (a) ecosystems; and annual 1998 simulated (b) baseline 174 

evapotranspiration (mm/y) as well as elevation dependence of (c) area-weighted vegetation, 175 

snow water equivalent (SWE), interflow, aridity (PET/P), ET/PET and total ET. ‘No Monsoon 176 

Rain’ removes precipitation July–September, No Spring Snow removes precipitation April- May. 177 

  178 
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Daily water budgets for four different years illustrate the range in basin response to 179 

reduced seasonal water inputs (Figure S9). The largest snow accumulation occurred in 1995, 180 

with low PET and average monsoon conditions. Year 1998 had median snow accumulation, with 181 

below average but equal inputs of spring snow and monsoon rain. Year 2012 had the lowest 182 

snowfall and warmest conditions in the historical simulation. There was little spring snow but 183 

near normal monsoon conditions. Year 2018 was also a low snow year with warm conditions but 184 

had a monsoon nearly two standard deviations below normal.  Loss of spring snow, with 185 

emphasis on average and above average snow accumulation years, promotes higher soil moisture 186 

early in the spring and earlier onset of ET and runoff. These effects are largely due to increases 187 

in PET through simulated feedbacks with increased solar radiation and the influence of reduced 188 

snow-covered area on albedo and faster snowmelt (Figure S10). Shortly thereafter, lost 189 

snowpack reduces soil moisture in comparison to baseline, but soil moisture is largely 190 

replenished by monsoon rains, and ET only declines in dry years with declines amplified in years 191 

with weak monsoons. Streamflow, however, drops below baseline in all scenarios and becomes 192 

reliant on groundwater (versus interflow) earlier in the year. Removal of monsoon rain also 193 

increases solar radiation and PET and experiences soil moisture and streamflow deficits in 194 

comparison to baseline.  195 

A schematic of seasonal water partitioning for spring snow and monsoon rain is given in 196 

Figure S11, while controls on the ability of seasonal water inputs to generate streamflow is 197 

explored with simple regression analysis using annual totals in Figure 3. On average, monsoon 198 

rain contributes 10±6% to annual stream water. It is directly related to the amount of summer 199 

rain and is half as efficient at streamflow generation compared to spring snow for a given amount 200 

of water input. Monsoon rains support increases in basin scale ET (133±56 mm/y) and this is 201 

tightly controlled by the amount of rain. In contrast, increases in ET as a function of spring snow 202 

are much lower (31±27 mm/y) and this relationship declines with increases in contributing 203 

precipitation, albeit with a weak and insignificant trend (p=0.24). Sixty-five percent of the 204 

simulated variance in monsoon rain efficiency (streamflow generation per unit precipitation 205 

input) is described by peak SWE (p<<0.01) and PET (p<0.01), while sub-basin efficiency is best 206 

described by the indirect relationship of the forest areal coverage (p=0.08) and, to a lessor 207 

statistical degree, the canopy density (p=0.18). The ability for monsoon rain to generate 208 

streamflow in the following year (lag 1) is modest (3±2% increase), especially in comparison to 209 

spring snowfall’s influence (22±17%). Increase in future flow due to monsoons rain is 210 

predominantly driven by the size of the monsoon (r
2
 = 0.44, p<<0.01), but outlier years suggest 211 

the influence of monsoon rain increases when annual conditions are cool and PET is low 212 

(r
2
=0.33, p<<0.01). A combined nonlinear function of total rain and PET describes 70% of 213 

simulated variability (p<<0.01) and is able to explain sharp increases in subsequent year 214 

streamflow generation approaching 8%. Lastly, the ability of monsoon rain to replace late season 215 

streamflow deficiencies (July-Dec.) as a consequence of reduced spring snowfall is 64±13%. 216 

Rebound in baseflow is directly related to the relative strength of monsoon inputs (Rs) defined as 217 

the ratio of monsoon rain to spring snowfall reduction (p<<0.01). Low Rs can only reduce 218 

deficiencies 33% while very large ratios (~2.5) allow an 83% recovery. By the end of December, 219 

monsoons replace streamflow deficiencies 87±7% with no monsoon scenario obtaining 100% 220 

streamflow recovery.  221 



manuscript submitted to Geophysical Research Letters 

 

 222 
 223 

Figure 3. Annual water fluxes for 1987-2019. (a) Change in evapotranspiration (ET) as a 224 

function of added precipitation (P) from spring snow (April-May) or monsoon rain (July-Sept). 225 

(b) Change in streamflow (Q) for added precipitation. (c) Predictive ability of peak snow water 226 

equivalent (SWE) and aridity (PET/P) to describe numerical model simulated monsoon 227 

streamflow generation efficiency (Q/P). (d) Annual average efficiency for sub-basins in the 228 

East River as functions of forested area and forest canopy density. (e) Fractional increase in 229 

streamflow (lag 1, t1) as a power function of potential ET (PET) and amount of monsoon rain 230 

(lag 0, t0). (f) Fraction of streamflow rebound to baseline due to lost spring snow as a function of 231 

the ratio of monsoon precipitation to reduced spring snowfall (Rs). 232 

4. Discussion 233 

The timing and intensity of the NAM is dominated by large-scale atmospheric processes 234 

(Zhu et al., 2005) but influences of localized, land surface conditions (e.g. soil moisture) could  235 

be important. Several studies have suggested there is an inverse relationship between winter 236 

snow accumulation and summer rainfall with decreased snow accumulation driving reduced soil 237 
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moisture such that less energy is needed to heat the land surface and this enhances the onset of 238 

rains (Gutzler, 2000; Lo & Clark, 2002; Zhu et al., 2005). In contrast, a positive soil moisture 239 

and rainfall feedback has been found by others (e.g. Vivoni, Tai and Gochis, 2009), while 470 240 

years of precipitation records reconstructed with tree ring data found the historical inverse 241 

relationship between summer and winter precipitation weak and unstable despite appearing 242 

stronger during the latter half of the 20
th

 century (Griffin et al., 2013). It is acknowledged the 243 

hydrologic model used in this analysis does not account for large scale ocean-atmospheric 244 

coupling nor soil moisture–atmospheric feedbacks.  However, the use of local climate data from 245 

SNOTEL sites distributed with LiDAR derived SWE in combination with data reanalysis 246 

products, indicates that ER summer rain anomalies do not track sea temperature indices such as 247 

the Southern Oscillation Index (Trenberth, 2020) or Pacific Decadal Oscillation (Mantua, 2020), 248 

nor show a clear correlation to soil moisture. However, summer rains in the ER do show a 249 

statistically significant and indirect correlation with cumulative snow water inputs and PET. This 250 

suggests years with low snow accumulation and warm conditions might produce more summer 251 

rain, though the multiple regression’s predictive power is low.  Future work funded by the US 252 

Department of Energy’s Atmospheric Radiation Measurement research program will, in part, 253 

focus on capturing precipitation phase, amount and intensity in the ER as well as investigate 254 

regional flow of water into the continental interior during the summer monsoon 255 

(https://www.arm.gov/news/facility/post/60749). This work will help better constrain where, 256 

when and how summer rains enter the ER. 257 

A clearer coupling occurs between soil moisture and stream water generation. Initial 258 

conditions of soil moisture can improve streamflow forecasts (Crow et al., 2018; Mahanama et 259 

al., 2012; Shahrban et al., 2018). However, the sensitivity of ET and streamflow to soil moisture 260 

is a function of where the system resides on the spectrum between energy and water availability 261 

(Budyko, 1974; Orth & Seneviratne, 2013). PET, or the maximum amount of water transferred 262 

back to the atmosphere from the land surface if water is not limiting, is a commonly used metric 263 

to define energy availability. It varies seasonally as a function of temperature, solar radiation, 264 

vapor pressure and wind speed (ASCE, 2005). Likewise, water availability varies in space and 265 

time. Water availability prior to monsoon onset is largely dictated by the previous season’s snow 266 

accumulation, redistribution and persistence (Hammond et al., 2018; Knowles et al., 2015) with 267 

these snow dynamics highly dependent on topography (Tennant et al., 2017) as well as 268 

vegetation type and structure (Bales et al., 2006; Broxton et al., 2015; Welch et al., 2016).  Use 269 

of LiDAR snow observations accounts for where snow ends up, not necessarily where it fell. As 270 

such, the model implicitly accounts for snow redistribution by wind and avalanche as well as 271 

feedbacks between vegetation structure that may modify snow dynamics. Water availability also 272 

depends on lithologic and topographic characteristics that dictate water storage and holding 273 

capacity (Xiao et al., 2019) and the lateral redistribution of snowmelt via interflow (Carroll et al., 274 

2019).   275 

Research presented is largely inspired by exceptionally low NAM rain experienced in the 276 

ER 2018 and 2019 (z-score ~-2), and cited by regional water managers in Upper Colorado River 277 

for reducing late season flow to unprecedented levels (Sackett, 2018) and lowering streamflow 278 

forecasts the following year (Sackett, 2020). Because ET and streamflow are sensitive to energy 279 

and water availability and are highly co-dependent, it is important there is confidence that the 280 

hydrologic model captures these fluxes adequately for the baseline condition. The resultant, 281 

quasi-steady state water balance over multiple decades estimates annual ET equal to 605± 57 282 

mm/y to balance incoming precipitation and outgoing streamflow. Streamflow is well 283 

https://www.arm.gov/news/facility/post/60749
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constrained by observations; and snowfall, or the bulk of water inputs, is also constrained by 284 

observations. Estimated basin average ET is larger than eddy covariance flux tower data located 285 

near PH (417±29 mm/y) (Ryken et al., 2020), but is well aligned with Niwot Ridge eddy flux 286 

tower observations in a conifer (lodgepole) and aspen forest in Colorado (603 mm/y) 287 

(ameriflux.lbl.gov). Simulated ER seasonal variance encapsulates Niwot observations, but the 288 

model estimates lower median rates in the winter and higher rates in June (Figure S12). 289 

Likewise, modeled summer rates exceed those presented by (Ryken et al., 2020). Simulated 290 

summer rates are largely biased by the areally extensive subalpine where both energy and water 291 

availability are high. In contrast, reduced summer rates are simulated in portions of the basin 292 

where either energy (alpine) or water limited (montane) conditions occur that more closely 293 

resemble the flux tower data. With respect to winter ET, modeled snow losses, or the sum of 294 

sublimation and snow-only canopy evaporation, is 0.37-0.66 mm/d, or 17±9% of snowfall. 295 

Sexstone et al., (2016) reports lower total snow loss rates from open canopy at 0.36 mm/d in a 296 

Colorado basin, but losses are 15-17% total snowfall to suggest our winter ET estimates are 297 

reasonable.  298 

Model results indicate monsoon rains generate 10±6% the annual streamflow total with 299 

these contributions helping to sustain late season baseflow. Results fall in the reported range of 300 

streamflow generated from rain across the western US at 30% (Li et al., 2017), and 1-2% 301 

(Julander & Clayton, 2018), with the lower limit occurring in more arid climates than the ER. 302 

Years with large snow accumulation and low atmospheric water demand directly describe the 303 

efficiency of monsoon rain to generate streamflow. Under these conditions, soil moisture holding 304 

capacity is exceeded for lower amounts of water input to allow more interflow, with a portion of 305 

interflow reaching stream channels. While snowmelt generated interflow occurs across all 306 

elevations, interflow from monsoon rain is largely constrained above treeline where soils are 307 

thin, and PET is low. Lower in the landscape, and along southern aspects, aridity (PET/P) is 308 

higher and is simulated more sensitive in solar radiation as a function of altering seasonal 309 

precipitation and inferred cloud cover. Sensitivity of PET to solar radiation in warmer conditions 310 

has been shown with similar, empirically-based methods (e.g. Priestley-Taylor) (Guo et al., 311 

2017) to that used in PRMS (Jensen et al., 1969). These lower elevations, with emphasis in the 312 

subalpine forests, effectively eliminates streamflow response to monsoon rain through resulting 313 

increases in ET. In short, monsoon water inputs have a relatively small effect on streamflow 314 

through moderating effects of ET. Additionally, the ability of rain to generate streamflow is 315 

expected to decline in a future with less snow and warmer temperatures. In contrast, snowfall has 316 

a more complex relationship to ET in space and time driven by albedo-snowmelt feedbacks that 317 

substantively shift timing of melt and subsequent runoff (Barnett et al., 2005), but show 318 

relatively small net changes in ET compared to monsoon rains. The lower efficiency of ET to 319 

snowmelt is due to the timing of inputs prior to peak consumptive demand. This is supported by 320 

Berkelhammer et al. (2017) who found gross primary production (via satellite retrievals of solar-321 

induced variability) in the intermountain west twice as sensitive to variations in rain compared to 322 

snow. 323 

Despite differences in streamflow generation efficiencies, monsoon rain does help 324 

rebound baseflow deficiencies caused by a reduction snow accumulation. This ability is highly 325 

dependent on the relative strength of the monsoon, and no historical monsoon season can fully 326 

replenish streamflow deficits caused by hypothetical lost spring snowpack. This indicates that 327 

soil moisture dictated by snowmelt has long lasting effects on streamflow that cannot be fully 328 

reversed with summer rain. Likewise, soil moisture memory from summer rains is hypothesized 329 

http://ameriflux.lbl.gov/
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to also impose on future streamflow. McNamara et al. (2005) finds remnant dry soils in the fall 330 

remain dry once snowfall commences, and these dry soils require more meltwater than wet soils 331 

to produce lateral movement of water in the spring. Thereby decreasing streamflow. Our model 332 

predicts monsoon memory on future streamflow, but this the effect is modest with average 333 

annual change to future flow only to 3±2%. Memory is controlled by the size of the monsoon 334 

and atmospheric water demand and shows no correlation to late season soil moisture. This lack 335 

of simulated response may be due to the simplistic soil conceptualization in the hydrologic 336 

model; or it may be thin soils in headwater basins are rewetted quickly by low quantities of 337 

snowmelt in comparison to the large quantities of snow available. These relationships may 338 

change as one moves down gradient in the Colorado River to warmer and drier climates, or if 339 

snow droughts continue to increase throughout the region to reduce snow accumulation in the 340 

ER. However, this requires a more detailed process-based investigation. 341 

5 Conclusions 342 

Summer rains are a critical water input to the ER with the amplitude of monsoon 343 

anomalies growing in the basin since 2013 and inspiring questions related to the efficiency of 344 

monsoon rains to generate streamflow. This is particularly important in the Colorado River Basin 345 

where snowpack is decreasing, and it is unknown if summer rains can buffer some of these 346 

losses. We find through a data-modeling framework that the efficiency of seasonal precipitation 347 

to produce streamflow is dictated by the timing of water input with respect to energy and water 348 

availability. Summer rains occur when PET is high and soil moisture is waning during the pre-349 

monsoon drought. Subsequently, the bulk of rain serves to moisten very dry soils and does not 350 

generate interflow. Instead, water is quickly consumed by vegetation, with largest increases in 351 

ET occurring in the lower subalpine dominated by aspen and conifer forests.  As a result, 352 

streamflow contributions from rain are half those generated by spring snowfall which occur 353 

when PET is low and soils moisture is higher. Most of the rain-generated streamflow occurs at 354 

higher elevations in the watershed where soil storage, forest cover and aridity are low. Summer 355 

rain does rebound late summer streamflow from simulated reductions in snowpack as a function 356 

of monsoon strength but is unable to fully replace streamflow from lost snow accumulation even 357 

for the largest historical monsoon event. Results do show memory of monsoon rains propagate 358 

into the following year through altered baseflow, but do not indicate memory as a function of fall 359 

soil moisture condition. Interannual variability in monsoon efficiency to generate streamflow 360 

declines when snowpack is low and aridity is high. This underscores the likelihood that the 361 

ability of monsoon rain to generate streamflow will decline in a warmer future with increased 362 

snow drought. 363 
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Table S1. East River sub-basin characteristics (modified from Carroll et al., 2018) 22 
 23 
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 28 

Figure S1.  Ratios used to spatially distribute Schofield (a) snow water with ratios determined 29 
using snow water equivalent derived from LiDAR snow depths obtained during peak snow water 30 
equivalent on an average snow year April 4, 2016 (Painter et al., 2016) and adjusted for snow 31 
losses and melt prior to flight; and rain based on monthly average 30-year (1981-2010) PRISM 32 
raster maps (800 m) (OSU, 2012) (b) July, (c) August and (d) September. 33 

34 



 35 
36 

37 

Figure S2. Updated simulated solar radiation results first presented by (Carroll et al., 2019). 38 
Observed and modeled solar radiation at Rocky Mountain Biological Laboratory (RMBL) 39 
weather stations (a) Kettle Ponds (KP), (b) billy barr (BB) and (c) Judd Falls (JF). Calibration 40 
accomplished adjusting the PRMS monthly degree-day slope parameter (dday_slope) to minimize 41 
the relative root mean squared error (rrmse) of mean monthly solar radiation at each station. 42 
Snodgrass (SG) not included in calibration. Model consistently over predicts this location by 43 
125±33 W/m2 with over prediction likely due to tall conifer forest (>10 m) encroaching on tower 44 
affecting observations.  Locations provided in the manuscript Figure 1. Observed data available 45 
to the public at https://www.digitalrmbl.org/collections/weather-stations/. 46 



 47 
Figure S3. Validation of snow water equivalent (SWE, mm) between Airborne Snow Observatory (ASO, 50-m resolution) and PRMS (100-m 48 
resolution) for March 30, 2018 (a) ASO, (b) PRMS; May 24, 2018 (c) ASO and (d) PRMS, and April 7, 2019 (e) ASO, (f) PRMS 49 

50 



51 

52 

Figure S4. Snow depth comparison between observed weather stations and modeled, (a) billy 53 
barr (BB), (b) Judd Falls (JF), (c) Kettle Ponds (KP) and (d) Snodgrass (SG). Locations provided 54 
in the manuscript Figure 1. Simulated results updated from (Carroll et al., 2019). Observed data 55 
available to the public at https://www.digitalrmbl.org/collections/weather-stations/. 56 

57 



58 

Figure S5. A comparison of daily observed and modeled streamflow for the period of record with data (a) EAQ, (b) Quigley, (c) Rustlers, (d) 59 
Bradley, (e) Rock, (f) Gothic, (g) Marmot, (h) Avery, (i) Copper, (j) Pumphouse, (k) Pumphouse, log streamflow and (l) Pumphouse log 60 
streamflow for entire simulation with estimated flow from USGS stream gauge (ID 09112500) located 25 km downstream.  61 



 62 
63 
64 

 65 
 66 

Figure S6. East River basin scale average simulated monthly precipitation (P) and potential 67 
evapotranspiration (PET). Precipitation is divided into rain and snow contributions 68 
  69 



 70 

71 
Figure S7. East River simulated (a) monsoon rain (July-September) anomalies (z-score), (b) 72 
Southern Oscillation Index (Trenberth, 2020), (c) soil moisture fraction July 1, (d) the ratio of 73 
monsoon rain to spring snowfall, Rs (c) water year (Oct-Sept) cumulative snow water input with 74 
the spring snow contributions in April and May identified, (d) calendar year potential 75 
evapotranspiration (PET). 76 
  77 



 78 

Figure S8. Spatial differences in 1998 annual total evapotranspiration (mm/y) defined as baseline 79 
– scenario for (a) no spring snow in April and May, (b) no monsoon rain July-September. Note 80 
that color code scale varies, and a negative value indicates an increase as a result of removing 81 
seasonal water input. Black model cells are simulated river cells. 82 
  83 



 84 

Figure S9. Simulated basin-scale daily water budget items for baseline and scenarios removing 85 
spring snow (April-May) and monsoon rain (July-September) for years: (a-g) 1995 (h-n) 1998, 86 
(o-u) 2012, and (v-bb) 2018. SWE = snow water equivalent, fGW = fraction of groundwater 87 
contributed to stream. 88 
  89 



 90 

Figure S10. Temporal changes () for year 1998 between baseline and removal of either spring 91 
snow or monsoon rain: (a) solar radiation, (b) potential ET, PET, (c) snow covered area, SCA, 92 
and (d) snowmelt. For clarity, a negative value indicates increases as a result of removing 93 
seasonal water input. 94 
  95 



 96 

 97 

Figure S11. Average annual changes in water fluxes (and snow, soil storage) between the 98 
baseline (1987-2019) and scenarios with no monsoon (July-September) and no spring (April-99 
May) precipitation. Blue (red) font = increase (decrease) due to added water input. SCA = snow 100 
covered area. RO = runoff.  101 
  102 



 103 

Figure S12. A comparison of average monthly evapotranspiration (ET) rates from daily 104 
aggregated totals for (a)Ameriflux stations Niwot Ridge LTER (US-NR1), years 1998-2019, (b) 105 
simulated with PRMS, years 1987-2019. Ameriflux 30-min latent heat flux data available at 106 
ameriflux.lbl.gov. 107 
 108 
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