
P
os
te
d
on

21
N
ov

20
22

—
T
h
e
co
p
y
ri
gh

t
h
ol
d
er

is
th
e
au

th
or
/f
u
n
d
er
.
A
ll
ri
gh

ts
re
se
rv
ed
.
N
o
re
u
se

w
it
h
ou

t
p
er
m
is
si
on

.
—

h
tt
p
s:
//
d
oi
.o
rg
/1
0.
10
02
/e
ss
oa
r.
10
50
44
02
.1

—
T
h
is

a
p
re
p
ri
n
t
a
n
d
h
as

n
ot

b
ee
n
p
ee
r
re
v
ie
w
ed
.
D
a
ta

m
ay

b
e
p
re
li
m
in
a
ry
.

Statistical and Machine Learning Methods Applied to the

Prediction of Tropical Rainfall

Jiayi Wang1, Raymond K. W. Wong1, Mikyoung Jun2, Courtney Schumacher1, and R
Saravanan3

1Texas A&M University
2University of Houston
3Department of Atmospheric Sciences, Texas A & M University

November 21, 2022

Abstract

We explore the use of three advanced statistical and machine learning methods (a generalized linear model, random forest, and

neural network) to predict the occurrence and rain rate distribution of three tropical rain types (deep convective, stratiform,

and shallow convective) observed by the radar onboard the GPM satellite over the West Pacific. Three-hourly temperature

and moisture fields from MERRA-2 were used as predictors. While all three methods perform reasonably well at predicting

the occurrence of each rain type, the neural network is the only method able to produce rain rate distributions similar to

observations, especially for the top 5-10% of observed values. However, the neural network took the most effort to train and

has a relatively high root mean square error, suggesting that it sometimes assigns high rain rates to situations that in reality

produce much weaker rain rates.
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Key Points:8

• A generalized linear model, random forest, and neural network perform similarly9

at predicting the occurrence of three tropical rain types.10

• The neural network outperforms the other methods in recovering the rain rate dis-11

tributions associated with each rain type.12

• The neural network took the most effort to train and may suffer from overfitting.13
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Abstract14

We explore the use of three advanced statistical and machine learning methods (a gen-15

eralized linear model, random forest, and neural network) to predict the occurrence and16

rain rate distribution of three tropical rain types (deep convective, stratiform, and shal-17

low convective) observed by the radar onboard the GPM satellite over the West Pacific.18

Three-hourly temperature and moisture fields from MERRA-2 were used as predictors.19

While all three methods perform reasonably well at predicting the occurrence of each20

rain type, the neural network is the only method able to produce rain rate distributions21

similar to observations, especially for the top 5-10% of observed values. However, the22

neural network took the most effort to train and has a relatively high root mean square23

error, suggesting that it sometimes assigns high rain rates to situations that in reality24

produce much weaker rain rates.25

Plain Language Summary26

We relate satellite rain observations to environmental profiles of temperature and27

moisture using advanced statistical and machine learning techniques to determine how28

well each technique can predict the occurrence and intensity of rain over the tropical Pa-29

cific Ocean. While the generalized linear model and random forest do well at predict-30

ing rain occurrence, they struggle at capturing the tail of the rain rate distributions, re-31

gardless of rain type. A carefully trained neural network performs much better at pre-32

dicting the highest observed rain rates although overfitting remains a concern.33

1 Introduction34

Rainfall is fundamental to water resources, agriculture, and ecosystems and can cause35

massive damage in the form of too little or too much rain. However, rainfall is hard to36

measure and even harder to predict. In particular, large geographical biases exist in cli-37

mate model simulations of rainfall and the rain rate distribution of most climate mod-38

els is far different than observed, with too much weak rain and not enough heavy rain39

(e.g., Stephens et al., 2010; Fiedler et al., 2020), which hinders predictions of extreme40

events. The goal of this study is to analyze the ability of advanced statistics and ma-41

chine learning techniques to predict the occurrence and rain rate distribution of trop-42

ical rainfall using environmental temperature and humidity profiles as predictors. An even-43

tual goal would be to determine if these techniques could be implemented in global cli-44

mate model (GCM) predictions of short-term climate phenomena like El Niño, and per-45

haps even long-term climate change.46

Most of the global rain falls in the tropics and warm season mid-latitudes and over47

half of this rain comes from large, organized rain systems (Nesbitt, Cifelli, & Rutledge,48

2006; R. S. Schumacher & Rasmussen, 2020). These systems are much larger than the49

individual convective cells targeted by most conventional GCM convective parameter-50

izations and contain elements of deep convection and stratiform rain (Houze, 1997; C. Schu-51

macher & Houze, 2003a; Figure 1). Shallow convective rain is another type of rainfall52

that is ubiquitous over the tropical ocean and occurs regularly over some continental lo-53

cations (C. Schumacher & Houze, 2003b; Funk, Schumacher, & Awaka, 2013). As dis-54

cussed by Mapes et al. (2006), these rain types form the building blocks of larger con-55

vective systems ranging from mesoscale convective systems (with scales on the order of56

100 km and 12 h) to the Madden-Julian Oscillation (with scales on the order of 1000 km57

and many weeks), so emphasis on improving the prediction of each of these rain types58

in climate models is well warranted. However, most GCMs produce shallow convection59

in their boundary layer parameterization, which is run separately from the convective60

parameterization, and GCM convective parameterizations do not typically account for61

stratiform (or mesoscale) rain processes. It is important to note that large-scale rain oc-62

curs as a grid-scale process in most GCMs and does not represent the observed strat-63
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iform building block discussed above. Weather radar has the unique capability to view64

the 3-dimensional structure of precipitating storms, which can be used to determine the65

occurrence and evolution of the three tropical rainfall building blocks. Thus, this study66

utilizes spaceborne radar observations separated into deep convective, stratiform, and67

shallow convective rain to assess the predictive capability of advanced statistical and ma-68

chine learning methods.69

Figure 1. GPM DPR reflectivity observations at 01 UTC on 4 February 2017. The red box

indicates the bounds of the study area over the West Pacific. The horizontal cross section is

at 2 km AMSL and the vertical cross section is taken along the black line. Stratiform profiles

are labeled as 1, convective profiles are labeled as 2. The far right cell in the vertical cross sec-

tion would be considered shallow convection because its top is below the 0 degree Celsius level

(typically 5 km in the tropics).

There are currently a number of efforts to use data science to improve the repre-70

sentation of subgrid processes in climate models. Since there is often very limited amount71

of data available for unresolved processes, especially in situ measurements, many of these72

efforts apply machine learning to conventional model parameterizations or a large en-73

semble of higher resolution simulations (Brenowitz & Bretherton, 2018; O’Gorman & Dwyer,74

2018; Rasp, Pritchard, & Gentine, 2018 ). Training on conventional parameterizations75

can improve computational efficiency, but does not address the physical deficiencies. The76

higher resolution simulations also have their own built-in assumptions about a different77

set of smaller scale unresolved processes. Yang et al. (2019) considered a data-centric78

approach, using a large satellite rainfall data set and reanalysis fields to show that a gen-79

eralized linear model (GLM) can do well at predicting the occurrence of rain in the trop-80

ics, but it failed at capturing the tail of the rain rate distributions. This is mainly due81

to the restriction of parametric probability distributions used for rain rate. Although dis-82

tributions such as Gamma, log-normal, or Weibull are commonly used for rain rate due83
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to their shape of density curves with long tails (e.g., Yang et al. used a Gamma distri-84

bution), they are often not flexible enough to capture the heaviest rain rates. This study85

builds on Yang et al. (2019) by applying two machine learning techniques, i.e., a ran-86

dom forest (RF) and deep feedforward neural network (NN), to a similar data set to de-87

termine how well these methods compare to one another and the GLM in predicting rain88

occurrence and capturing the high rain rate end of the distribution for multiple rain types.89

2 Statistical and Machine Learning Methods90

2.1 Generalized Linear Model91

GLMs (McCullagh & Nelder, 1989) are a popular class of statistical models used92

to predict a response variable whose mean is assumed to be some parametric function93

of covariates. It is a more general modeling framework than multiple linear regression94

in that response variables may not follow a Gaussian distribution. Furthermore, unlike95

multiple linear regression models, which often use the least squares method for model96

fitting, GLMs are fitted using a maximum likelihood estimation (MLE) method. The MLE97

method utilizes the distribution function of the response, thus giving generally better98

statistical properties of estimators than the least squares method. A GLM does not nec-99

essarily assume a direct linear relationship between the response and covariates, and of-100

ten their nonlinear relationship is introduced by a link function. For instance, a common101

log-link function assumes that the log transformed mean of the response can be written102

as a linear combination of covariates. Widely used examples for distributions and link103

functions for GLMs include logistic regression (a Bernoulli distribution for the response104

and log link), loglinear regression (a Poisson distribution for the response and log link),105

and Poisson regression (a Poisson distribution for the response and log link).106

In this work, we adopt the two-step modeling procedure used in Yang et al. (2019).
Two separate GLMs, a logistic regression and a Gamma regression, are employed to deal
with rain occurrence and rain amount, respectively. At a given time, let p(s) denote the
probability of rain at a grid point s. Then the rain event is assumed to follow a Bernoulli
distribution with

log
{ p(s)

1− p(s)

}
= β0 + β1z1(s) + · · ·+ βpzp(s), (1)

where zi(s) denotes predictors (i.e. covariates) at the grid point s. If y(s) denotes the
rain amount at s, we assume that y follows a Gamma distribution with

log[E{y(s)}] = η0 + η1z1(s) + · · ·+ ηpzp(s). (2)

For both models, parameters, including the coefficients βi and ηi in (1) and (2), are es-107

timated using the MLE method. We fit the GLM models using data aggregated over space108

and time altogether, similar to Yang et al. (2019). Although models (1) and (2) do not109

have explicit temporal structure in them, the temporal structure of the covariates effec-110

tively account for that of the responses, and it did not seem necessary to add more tem-111

poral terms in (1) or (2).112

Statistical inference on the estimated parameters, including the significance of co-113

efficients, is made possible by using GLMs, and the estimated coefficients are readily in-114

terpretable. On the other hand, a possible drawback of the approach outlined above is115

the linearity assumption given in (1) and (2), as well as the distribution assumption on116

rain amount. In particular, the Gamma distribution may be too restrictive to account117

for some heavy rain events (Yang et al., 2019). Other commonly used distributions such118

as log-normal and Weibull distributions have similar problems, due to their particular119

parametric forms and restrictions. In view of the potentially restrictive nature of GLMs,120

we explore two popular machine learning methods, RF and artificial NNs, which oper-121

ate under much weaker assumptions than GLMs. RF and NNs offer the most compet-122

–4–



manuscript submitted to Geophysical Research Letters

itive predictive performances in many applications, and are now standard tools for ma-123

chine learning.124

2.2 Random Forest125

Random forest (Breiman, 2001) is an ensemble learning method that makes pre-126

dictions based on multiple decision trees. A random forest is built upon these many de-127

cision trees. A decision tree is a simple model that predicts the label associated with a128

sample by a series of splitting rules. An example decision tree is shown in Figure 2, where129

a tree is used to determine if a binary response Y is 1 or 0. The root node has a split-130

ting condition: “X1 > 0?” If the observation fulfills this condition, it will be passed to131

the next condition: “X2 < 10?” Otherwise, the tree predicts Y = 0. The procedure132

is applied recursively until the tree reaches a prediction of Y . For the construction of a133

decision tree, we refer the readers to Breiman (2001). In the above example, the under-134

lying goal is classification, where the response is categorical. Decision trees can also be135

modified to handle a regression problem, where the response is quantitative.136

The core idea of ensemble methods like RF is to combine weak predictive models137

to achieve strong predictive performance. A RF is usually trained with two “random”138

ideas. The first is bagging – for each tree, the training set is formed by resampling from139

the original data set with replacement. The second is feature randomness – each tree in140

a RF is trained with a random subset of features. These two strategies reduce the de-141

pendence across trees, which is beneficial to ensemble learning. The prediction of the RF142

is obtained by a majority vote over the predictions of the individual trees.143

Similar to the GLM analysis, a two-step modeling procedure was implemented for144

RF in our work. Namely, we trained an RF model on rain occurrence and another RF145

model on rain amount. For both models, we used the default setting of the “random-146

Forest” function from the R package“randomForest”, except that we restricted the num-147

ber of decision trees to 100 when predicting rain amount in order to alleviate the com-148

putational burden. As opposed to GLM, RF is a nonparametric method and can pro-149

duce a highly nonlinear regression function. On the other hand, it is significantly more150

difficult to interpret the results of the RF model, although RF provides a measure of vari-151

able importance.152

Figure 2. Illustrations for descision tree (left) and deep feedforward neural network (right).

2.3 Neural Network153

In recent years, artificial NNs (especially those with deep architecture) have be-154

come one of the most prominent models for complicated functions. A NN is based on155

a collection of connected nodes. Different ways to connect the nodes result in different156

NN architectures, such as fully connected (Hsu et al., 1990), sparsely connected (Ardakani157
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et al., 2016), convolutional (Lo et al., 1995), and recurrent (Mikolov et al., 2010). Nodes158

are typically organized into layers, which can be classified as input, hidden and output.159

Networks with multiple hidden layers are said to have deep architectures, and are referred160

to as deep NNs. Deep architectures are commonly used nowadays, due to their strong161

empirical performance in many areas.162

In our analysis, we adopt a deep feedforward NN in which consecutive layers are
fully connected (Svozil et al., 1997; Schmidhuber, 2015) because it is one of the most stan-
dard forms of deep NN. Figure 2 depicts an example. We use X(l) ∈ Rnl to represent
the nodes at layer l, where nl is the number of nodes at layer l. Take X(0) as the input
and X(L) as the output.The hidden and output layers are generated as follows. Let x

(l)
k

be the node k of layer l, where l = 1, . . . , L and k = 1, . . . , nl. Then

x
(l)
k = σ

(l)
k (b

(l)
k +

nl−1∑
i=1

w
(l)
i,kx

(l−1)
k ),

where σ
(l)
k is the activation function, and b

(l)
k and w

(l)
i,k are parameters to be trained by163

the data. For simplicity, it is common to use the same activiations within the same layer:164

σ(l) := σ
(l)
k , for k = 1, ..., nl.165

Similar to the previous two models (GLM and RF), we adopted the two-step ap-166

proach for the NN analysis. More specifically, we trained one NN to perform the binary167

classification on rain occurrence and another NN using training samples with positive168

rain values only to predict the rain amount. We used four hidden layers (i.e., L = 5),169

where nl was specified as follows: n0 = 80, n1 = 40, n2 = 20, n3 = 6, n4 = 3 and170

n5 = 1. The choice of four hidden layers was a balance between two considerations: (1)171

computational burden and (2) complexity of the model. This architecture leads to a rea-172

sonably flexible network, with a total of 4211 parameters. For l = 1, 2, 3, 4, the corre-173

sponding activation functions σ
(l)
k were chosen as the rectified linear unit (ReLU) func-174

tions (σ(x) = max(0, x)). The activation function for the output layer had to be cho-175

sen based on the response type, i.e., classification or regression. We used σL(x) = 1/(1+176

exp(−x)) for the classification, while we used the exponential function for the regression177

since the response is positive. As for the estimation of the NN, we adopted mean square178

error as the loss function and trained the network via the popular algorithm Adam (Kingma179

& Ba, 2014). The training was sensitive to the choice of initial points. Therefore, we tried180

five random initial points and reported the results with the least training error.181

3 Training and Test Data182

We used two years of observations from the NASA Global Precipitation Measure-183

ment (GPM; Hou et al., 2014) dual-frequency precipitation radar (DPR). Data from 2017184

was used for training and data from 2018 was used for testing. The rain type classifi-185

cations (i.e., deep convective, stratiform, and shallow convective; Funk et al., 2013) and186

associated rain rates were retrieved from 2ADPR v6 files. Figure 1 shows an example187

orbit from the GPM radar with all three rain types present. We regridded the DPR or-188

bital rain rate observations, which are made at a 5-km footprint scale over a 245-km swath,189

to 0.5-degree horizontal resolution and 3-hourly temporal resolution. Temperature and190

humidity fields at 40 pressure levels were obtained from the MERRA-2 reanalysis (Rienecker191

et al., 2011) for 2017 and 2018 and regridded to a similar horizontal and temporal res-192

olution as the DPR data. We limited our domain to the tropical West Pacific (130◦E−193

180◦E, 20◦S− 20◦N; Figure 1), but found similar results in the tropical East Pacific.194

The training and test data are generally similar to the observational data sets used195

in Yang et al. (2019). However, we used rain observations from the GPM DPR instead196

of the Tropical Rainfall Measuring Mission (TRMM) precipitation radar (PR) because197

of the DPR’s higher sensitivity to weaker rain rates and thus better shallow convective198
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rain retrievals (Hamada & Takayabu, 2016). We also used a slightly higher time reso-199

lution (3 hours vs 6 hours) to better isolate environment-rain relationships and all times200

of day instead of just 0-6 UTC to capture the full range of diurnal conditions. Finally,201

we used fewer environmental variables as predictors since temperature and humidity ac-202

counted for the majority of the predictive performance in the GLM in Yang et al. (2019).203

We further utilized the full temperature and humidity profiles rather than just the first204

three empirical orthogonal functions so that the machine learning techniques had more205

flexibility in determining the vertical relationship of the predictors to the surface rain206

rate.207

4 Prediction Results208

4.1 Rain occurrence209

When solving the classification problem, we treat grids with extremely small rain210

amounts as no-rain cases to avoid retrievals from the radar likely associated with clut-211

ter or noise. For each rain type, we selected a rain rate cutoff that accounts for less than212

1% of the total rain amount in the training data. The cutoff values are 0.056, 0.0395,213

and 0.0087 mm/hr for deep convective, stratiform, and shallow convective rain, respec-214

tively. As will be illustrated in the next section, the three rain types produce very dif-215

ferent rain rate intensities, which is why separate cutoff values are needed for each rain216

type.217

Rain does not occur often at the time and space scales being considered in this study218

(i.e., 3 hourly and 0.5 degrees), so there are many more no-rain cases than rain cases.219

To deal with this severely imbalanced classification problem, we created a “balanced”220

training data set by using a random under-sampling procedure. That is, we randomly221

sample the no-rain cases until we have the same number of no-rain and rain samples in222

our training data set.223

Table 1 shows the classification results for the three statistical and machine learn-224

ing methods described in section 2. All three methods perform similarly when predict-225

ing the occurrence of the three rain types. GLM usually has the best true positive pre-226

diction (i.e., predicting rain when it is observed) but the worst true negative prediction227

(i.e., predicting no rain when no rain is observed), while RF has the best true negative228

prediction but a lower true positive prediction. NN generally falls between the two other229

techniques in terms of classification performance. All methods suffer from a relatively230

high false positive rate (i.e., predicting rain too often), which is a persistent problem in231

most climate models (Dai 2006; Stephens et al. 2010).232

4.2 Rain rate distributions233

We next apply the statistical and machine learning methods to predict the rain rate234

distribution of the three rain types. Figure 3 compares the prediction of each method235

to the “True” distribution observed by the GPM DPR. For each rain type, NN charac-236

terizes the tail of the distributions well and its prediction range almost covers the true237

range of observed rain rates. This is true for the intense deep convective rain rates, the238

moderate stratiform rain rates, as well as the much weaker shallow convective rain rates.239

RF does not perform nearly as well as NN, but better than GLM, especially for deep con-240

vective rain. Figure 3 also shows that GLM and RF tend to overpredict small rain rates.241

To provide context on how the observed and predicted rain rate distributions in242

Figure 3 compare to standard GCM output, we obtained a year of data from the NCAR243

Community Atmospheric Model, version 5 (CAM5; Neale et al., 2013). We use model244

output for 2003 instead of 2018 because it was readily available. While there may be small245

year-to-year variations in the rain rate distributions over the West Pacific, we do not ex-246
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Table 1. Prediction results for each rain type. Top four rows are results for classification,

values are the proportion of the total cases that fall into each prediction category. Bold values

are the correct predictions. Bottom two rows are results for rain rate (mm/hr) prediction. Bold

values are the smallest errors among the three methods.

Deep convective Stratiform Shallow convective

GLM RF NN GLM RF NN GLM RF NN

True Negative 0.485 0.568 0.550 0.474 0.529 0.512 0.325 0.415 0.361
False Negative 0.036 0.054 0.063 0.052 0.069 0.080 0.084 0.137 0.124
True Positive 0.122 0.103 0.095 0.188 0.171 0.160 0.267 0.214 0.226
False Positive 0.357 0.275 0.292 0.286 0.231 0.248 0.324 0.234 0.289

RMSE 0.758 0.975 0.901 0.624 0.730 0.647 0.095 0.105 0.0978
MAE 0.405 0.504 0.291 0.295 0.367 0.195 0.058 0.062 0.052

pect them to be large, especially since neither 2003 or 2018 experienced strong El Niño247

or La Niña events. The original rain rate data had a 25 × 25km grid resolution so we248

aggregated rain rates to a 0.5×0.5 degree grid resolution to match our analysis. Hourly249

total precipitation (PRECT) and convective (PRECC) precipitation rates were also ag-250

gregated into 3 hourly rain rates. We use PRECC to represent deep convective rain and251

the difference between PRECT and PRECC (PRECT-PRECC) to represent stratiform252

rain. GCMs do not typically calculate a separate shallow convective rain rate, but there253

are only small differences between the GPM convective deep rain rate distribution com-254

pared to when we combine the observed deep and shallow convective rain rate distribu-255

tions (i.e., deep convective rain dominates the convective rain rate distribution in the256

West Pacific; not shown). As seen in Figure 3, CAM5 does not provide a good density257

estimation for deep convective rain (and is, in fact, close to the GLM distribution) but258

can characterize the stratiform rain distribution well. Thus, there is potential for neu-259

ral networks to improve upon conventional GCM convective parameterizations in rep-260

resenting heavy rain events.261

To further assess predicted rain amounts using GLM, RF, and NN, we calculated262

the following metrics to measure the performance of the techniques:263

1. Root mean squared error (RMSE) =
√∑N

i=1(ŷi − yi)2/N and264

2. Mean absolute error (MAE) =
∑N

i=1 |ŷi − yi|/N ,265

where yi is the observed rain amount for the i-th sample, and ŷi is the predicted rain266

amount for the i-th sample, for i = 1, . . . , N . Here samples are aggregated over space267

and time, and thus there are a total of N samples for each rain type. Note that MAE268

is in general less sensitive to large values compared to RMSE.269

Table 1 shows that RF has the highest (and thus worst) RMSE and MAE among270

the three techniques for each rain type. GLM has the smallest RMSE, while NN has the271

smallest MAE. This indicates that NN does well in predicting rain amount in general272

but its predictions can sometimes be too extreme, resulting in large errors in magnitude.273

In particular, we found that NN can sometimes assign high rain rates to cases that ac-274

tually rain little in the test set, which suggests an overfitting issue. But, due to its flex-275

bility, NN can produce a thicker and more realistic tail in the rain rate density without276

compromising the shape in the low rain rate density region, as shown in Figure 3.277
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Figure 3. GPM-observed and model-predicted rain rate distributions for deep convective,

stratiform, and shallow convective rain in the base-10 log scale. Values in parentheses are the

total cases in the testing data that rain. Values on the x-axis for the three plots are the 0.5, 0.9,

0.99, 0.999, and 0.9999 quantiles of the rain rate distribution, respectively.
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5 Conclusions278

There is strong motivation to use “big data” to parameterize unresolved processes279

in GCMs, such as rainfall production. While training and testing data can come from280

higher resolution models, we chose to use a multi-year data set of rain observations from281

satellite radar along with temperature and humidity fields derived from a model constrained282

by observations (i.e., reanalysis). There are also a number of advanced statistical and283

machine learning techniques with which to analyze the available data. We chose a rep-284

resentative set that ranged in ease of implementation and interpretability: a generalized285

linear model, random forest, and neural network.286

All three methods performed well in predicting the occurrence of each of the three287

tropical building block rain types: deep convective, stratiform, and shallow convective.288

Due to the high complexity of the model structure, NN shows its advantage in charac-289

terizing the rain rate distributions well, even with the highly varying range of rain rates290

produced by each rain type. However, high complexity raises the overfitting issue and291

can lead to “wrong” predictions. Compared to GLM, NN and RF are more flexible in292

modeling the response through a complicated function of all the predictors. But they293

are not as easy as GLM to interpret the results. Future work will assess the ability of294

each method to capture the spatial distribution of observed tropical rainfall, with the295

ultimate goal of implementing the best overall technique in a GCM to improve the rep-296

resentation of convection.297
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current neural network based language model. In Eleventh annual conference345

of the international speech communication association.346

Neale, R. B., Richter, J., Park, S., Lauritzen, P. H., Vavrus, S. J., Rasch, P. J., &347

Zhang, M. (2013). The mean climate of the community atmosphere model348

(CAM4) in forced sst and fully coupled experiments. Journal of Climate,349

26 (14), 5150–5168.350

Nesbitt, S. W., Cifelli, R., & Rutledge, S. A. (2006). Storm morphology and rain-351

fall characteristics of TRMM precipitation features. Monthly Weather Review ,352

134 (10), 2702–2721.353

O’Gorman, P. A., & Dwyer, J. G. (2018). Using machine learning to parameter-354

ize moist convection: Potential for modeling of climate, climate change, and355

extreme events. Journal of Advances in Modeling Earth Systems, 10 (10),356

2548–2563.357

Rasp, S., Pritchard, M. S., & Gentine, P. (2018). Deep learning to represent subgrid358

processes in climate models. Proceedings of the National Academy of Sciences,359

115 (39), 9684–9689.360

Rienecker, M. M., Suarez, M. J., Gelaro, R., Todling, R., Bacmeister, J., Liu, E., . . .361

others (2011). Merra: NASA’s modern-era retrospective analysis for research362

and applications. Journal of climate, 24 (14), 3624–3648.363

Schmidhuber, J. (2015). Deep learning in neural networks: An overview. Neural net-364

works, 61 , 85–117.365

Schumacher, C., & Houze, R. A., Jr. (2003a). Stratiform rain in the tropics as seen366

by the TRMM precipitation radar. Journal of Climate, 16 (11), 1739–1756.367

Schumacher, C., & Houze, R. A., Jr. (2003b). The TRMM precipitation radar’s view368

of shallow, isolated rain. Journal of Applied Meteorology , 42 (10), 1519–1524.369

Schumacher, R. S., & Rasmussen, K. L. (2020). The formation, character and chang-370

ing nature of mesoscale convective systems. Nature Reviews Earth & Environ-371

ment , 1–15.372

Stephens, G. L., L’Ecuyer, T., Forbes, R., Gettelmen, A., Golaz, J.-C., Bodas-373

Salcedo, A., . . . Haynes, J. (2010). Dreary state of precipitation in global374

models. Journal of Geophysical Research: Atmospheres, 115 (D24).375

Svozil, D., Kvasnicka, V., & Pospichal, J. (1997). Introduction to multi-layer feed-376

forward neural networks. Chemometrics and intelligent laboratory systems,377

39 (1), 43–62.378

Yang, J., Jun, M., Schumacher, C., & Saravanan, R. (2019). Predictive statisti-379

cal representations of observed and simulated rainfall using generalized linear380

models. Journal of Climate, 32 (11), 3409–3427.381

–11–


