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Abstract

Quartz c-axis fabrics in natural mylonites can vary to such an extent that they apparently give opposite senses of shear in a

single thin section. Many hypotheses have been invoked to explain this. Here, we couple our self-consistent multiscale approach

for flow partitioning with the visco-plastic self-consistent model for crystallographic fabric simulation to investigate quartz c-axis

fabric development. Quartz aggregates are regarded as microscale Eshelby inhomogeneities embedded in a macroscale medium

whose effective rheology is represented by a hypothetical homogeneous equivalent medium which is rheologically isotropic or

has a planar anisotropy. We reproduced the observed quartz c-axis fabrics. We found that, although the microscale flow fields

are distinct from one another and from the macroscale flow, the microscale vorticity in every inhomogeneity has the same sense

as the macroscale vorticity. This implies that one can use the average of the microscale vorticity axes determined through the

crystallographic vorticity axis analysis to obtain the macroscale vorticity axis. However, quartz c-axis fabrics cannot be used

to determine the vorticity number where flow partitioning is significant.
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partitioning with the visco-plastic self-consistent model for crystallographic fabric simulation to 11 

investigate quartz c-axis fabric development. Quartz aggregates are regarded as microscale 12 
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1. Introduction: 24 

Quartz c-axis fabrics are widely used to infer flow kinematics (e.g. Lister and Hobbs, 25 

1980; Price, 1985; Simpson and Schmid, 1983) as well as deformation temperature (e.g. Faleiros 26 

et al., 2016; Law, 2014) and mechanisms (e.g. Schmid and Casey, 1986; Stipp et al., 2002) of 27 

ductile shear zones in Earth’s lithosphere. In terms of kinematics, the asymmetry of a c-axis 28 

fabric with respect to the shear zone coordinates is routinely used to infer sense of shear (e.g. 29 

Lister, 1977; Lister and Price, 1978; Lister and Williams, 1979; Menegon et al., 2008; Price, 30 

1985). Fig.1 summarizes the standard models for this practice (e.g. Passchier and Trouw, 2005). 31 

Note we have adopted the convention of Lister (1977) to present the c-axis fabrics whereby the 32 

shear plane (C-foliation) is vertical east west and the shear direction (the Lc-lineation of Lin et 33 

al., 2007) is horizontal east. This convention differs from the one that orients the S-foliation east 34 

west and Ls-lineation horizontal east (e.g., Passchier and Trouw 2005). Natural quartz c-axis 35 

fabrics mainly comprise of single- and cross-girdles. In the coordinate system used here (Fig.1), 36 

the cross-girdle has its dominant girdle normal to the shear plane and the weaker girdle inclined 37 

antithetically to the shear sense (Fig.1a). Single c-axis girdles either incline antithetically to the 38 

shear sense or are nearly normal to the shear plane (Fig.1b, c). Point maxima within the girdles 39 

may lie at the periphery, the center, or intermediate positions between the periphery and the 40 

center. These are interpreted as reflecting the slip systems during deformation (e.g. Mainprice et 41 

al., 1986; Okudaira et al., 1995; Schmid and Casey, 1986; Simpson and Schmid, 1983). The 42 

models summarized in Fig.1 were based on numerical modeling of pure quartz aggregates using 43 

the Taylor-Bishop Hill model (e.g. Lister, 1977; Lister and Hobbs, 1980; Lister and Williams, 44 

1979) and the visco-plastic self-consistent (VPSC) model (e.g. Morales et al., 2011; Nie and 45 

Shan, 2014; Wenk et al., 1989). Both model methods predicted that the c-axis girdle is antithetic 46 

or normal to the shear zone boundary in the coordinate system used here. Modeling has never 47 

generated girdles synthetically-inclined to the shear plane.                                                                                            48 

However, synthetically-inclined girdles have been observed in both natural shear zones 49 

(e.g. Keller and Stipp, 2011; Kilian et al 2011, Law et al., 2010; Little et al., 2016) and creep 50 

experiments of quartz aggregates (e.g. Heilbronner and Tullis, 2006; Kilian and Heilbronner, 51 

2017). Heilbronner and Tullis (2006) suggested that the synthetical orientation is due to rotation 52 

with vorticity of earlier antithetic girdles as finite strain increases. But this is not supported by 53 
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any numerical modeling work with fairly large shear strains (up to 5, e.g. Jessell and Lister, 54 

1990; Morales et al., 2011). Little et al (2016) suggested that general plane-strain flows may lead 55 

to synthetically-inclined c-axis girdles. The VPSC models of Takeshita et al. (1999) and Nie and 56 

Shan (2014) considered such flows but did not produce any synthetically-inclined c-axis girdles. 57 

However, their model did not consider cases where prism<a> and rhomb<a> slips are more 58 

significant than basal<a> slip. Through VPSC modeling, Keller and Stipp (2011) produced 59 

synthetically-inclined c-axis girdle with rhomb <a>, prism <a>, and prism <c> all active and all 60 

more significant than the basal <a> slip system. However, there are natural samples with 61 

synthetically-inclined c-axis girdles (e.g. Little et al 2016, Kilian et al 2011; Law et al 2010) that 62 

were clearly produced in the temperature range ~350-550°C much below that required for the 63 

activation of prism <c> slip (Toy et al., 2008). Furthermore, c-axis fabrics with both 64 

synthetically- and antithetically-inclined c-axis girdles have been observed in the same thin 65 

section (Kilian et al., 2011 their fig. 8, 9). Therefore, it is important to clarify if the combination 66 

of rhomb<a> and prism<a> slip, without prism <c>, can generate these synthetically-inclined c-67 

axis girdles. 68 

The standard models summarized in Fig.1 are based on the deformation of pure quartz 69 

aggregates under limited (mostly simple shearing) single-scale uniform flows (e.g. Lister et al., 70 

1978; Lister and Hobbs, 1980; Lister and Williams, 1980; Keller and Stipp, 2011; Morales et al., 71 

2014; Nie and Shan, 2014; Wenk et al., 1989). The spatial variation of quartz c-axis fabrics is a 72 

manifestation of heterogeneous deformation and, we suspect, is related to flow partitioning (e.g., 73 

Jiang, 1994a, 1994b; Lister and Williams, 1983) and strain buildup in rheologically distinct 74 

domains. Most natural mylonites are made of polyphase minerals in which the microscale 75 

rheology varies from one domain to another which facilitates flow partitioning. In fact, many 76 

authors have referred to flow partitioning qualitatively (e.g., Killian et al. 2011; Garcia Celma, 77 

1982; Jerabek et al., 2007; Larson et al., 2014; Law, 1987; Lister and Price, 1978; Passchier, 78 

1983; Pauli et al., 1996; Peternell et al., 2010) to explain observed c-axis fabric variations.  79 

In this contribution, we apply a multiscale numerical modeling approach to quantitatively 80 

investigate the consequence of flow partitioning on the development of quartz c-axis fabrics and 81 

compare our modeling results with natural and experimental observations. Specifically, we use 82 

the mylonite thin-section photomicrograph of Killian et al (2011, Fig.8 there) as a model and 83 
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seek to understand if flow partitioning can produce the observed variation in quartz c-axis 84 

fabrics. 85 

 86 

2. Approach 87 

Fig.2a shows the thin-section photomicrograph from Kilian et al (2011). The rock is 88 

comprised of quartz domains (from which c-axis fabrics were presented), feldspar 89 

porphyroclasts, and a matrix of fine-grained quartz, feldspar, and mica. According to Kilian et al. 90 

(2011), the microstructure was produced in a simple shearing flow which is consistent with the 91 

geometric pattern of the foliation (Ramsay, 1980; Ramsay and Graham, 1970). In this 92 

investigation, we consider plane-strain general shearing flows as the bulk flow field to 93 

understand how the partitioning of the bulk flow into rheologically distinct quartz domains may 94 

affect the c-axis fabrics in those domains. Our method here also applies to any 3D general 95 

shearing flows (e.g. Jiang and Williams, 1998).  96 

In the coordinate system used in this investigation (Fig.2c), a general plane-strain general 97 

shearing flow is defined by the following Eulerian velocity gradient tensor:    98 

                                                                   

0
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where    is the shear strain rate for the simple shearing component and    is the strain rate 100 

parallel to the X-axis. The flow in Eq.1 corresponds to a kinematic vorticity number 101 

2 24
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

 






 
(Jiang and White, 1995; Li and Jiang, 2011; Truesdell, 1953). We 102 

consider the variation of the flow by varying kW  from 0 to 1. 103 

The progression of the finite strain is measured by a strain intensity defined as  ρ =104 
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  where 𝑠ଵ, 𝑠ଶ,𝑠ଷ are the three principal stretches (𝑠ଵ > 𝑠ଶ > 𝑠ଷ) of the 105 
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finite strain ellipsoid  (e.g., Yang et al., 2019). In the event of simple shearing ( kW  = 1), the strain 106 

can also be measured by the shear strain γ . The relation between γ and ρ in simple shearing 107 

situation is shown in Fig.3. 108 

We use the Visco-Plastic-Self-Consistent(VPSC) model, originally due to Molinari et al 109 

(1987) and further developed by Lebensohn and Tome (1993), to simulate the quartz c-axis 110 

fabric development in a flow field. Specifically, VPSC7 (Lebensohn and Tomé, 2009) for 111 

Windows is used in this investigation. We track the c-axis evolution of 500 quartz crystals whose 112 

initial orientations are randomly distributed in 3D space (Jiang 2007b). The initial shapes of 113 

grains are equant. The crystal shapes evolve with strain and the grain fragmentation scheme of 114 

Beyerlein et al. (2003) is used to limit the aspect ratio of quartz grains to mimic some effect of 115 

dynamic recrystallization. The VPSC output of c-axis data are plotted using the MTEX toolbox 116 

(Bachmann et al., 2010). Since we are concerned with variation in quartz c-axis fabrics, we 117 

present pole figures of the (0001) directions here. Pole figures of other crystal directions are 118 

provided in the supplementary material. 119 

The relative activity of slip systems is modulated in VPSC by their relative critical 120 

resolved shear stress (CRSS). A lower CRSS corresponds to higher activity. For quartz, the 121 

CRSS for a slip system is largely temperature dependent with basal <a>  slip occurring at about 122 

350-500°C, rhomb<a> and prism<a> slip  at ~ 500-600°C, and prism<c> slip  at  >650°C (e.g. 123 

Toy et al., 2008). Table 1 summarizes the slip system combinations used in this study based on 124 

previous work (e.g. Lister and Paterson, 1979; Morales et al., 2014; Wenk et al., 1989). They are 125 

labelled as Model-A to F. Morales et al (2014) and Keller and Stipp 2011) made a distinction 126 

between rhomb (+) slip{r} in <a> direction and rhomb (-) slip{z} in <a> direction in their 127 

modelling works. This distinction may be important in regime 1 dislocation creep (Hirth and 128 

Tullis, 1992) but it is not necessary for our work here on the effect of flow partitioning. 129 

In the single scale case, the flow field defined in Eq.1 is used in the VPSC directly for the 130 

simulation of the resulting quartz c-axis fabric development. In the multiscale case, Eq.1 defines 131 

the bulk macroscale flow which must be partitioned into different rheologically distinct quartz 132 

domains (Figs. 2b and d) before the quartz c-axis fabric development in those domains can be 133 

simulated with VPSC. We use the self-consistent Multi Order Power Law Approach (MOPLA) 134 

(Jiang and Bentley 2012; Jiang 2016, 2014; Qu et al., 2016; and Lu 2020) to obtain the 135 
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partitioned flow fields in quartz domains. The multiscale approach can be illustrated using the 136 

thin section sample in Fig.2a as follows: Quartz domains, feldspar porphyroclasts, and mica 137 

seams are referred to as Rheologically Distinct Elements (RDEs). The sample as a whole was 138 

subjected to a macroscale flow field like Eq.1. In micromechanics terms, the macroscale flow is 139 

the bulk flow averaged on a Representative Volume Element (RVE) which represents the 140 

mineral assemblage for the sample. It is reasonable to regard the thin section as a section of the 141 

RVE for the macroscale flow. The microscale flow field in each constituent RDE such as a 142 

quartz domain is distinct and differs from the macroscale flow, because each RDE is unique in 143 

its rheology, shape, and orientation (Eshelby, 1957; Mura, 1987; Jiang 2014, 2016). Clearly, it is 144 

the microscale (or partitioned) flows in quartz domains that are responsible for the quartz c-axis 145 

fabric development.  146 

In MOPLA, an RDE is regarded as an ellipsoidal Eshelby inhomogeneity embedded in 147 

and interacting with the macroscale material (Fig.2d). The rheology of the latter is approximated 148 

by a homogeneous effective medium (HEM) and obtained from the rheologies of the constituent 149 

RDEs from a set of homogenization equations. The microscale or partitioned flows in an RDE is 150 

related to the macroscale flow, which is assigned by Eq.1, by a set of partitioning equations (for 151 

details, see Jiang 2014, 2016).  The partitioning and homogenization equations are solved 152 

simultaneously to obtain the partitioned flow fields and the macroscale rheology. As the relevant 153 

rheology for mylonites are  power-law viscous (Kohlstedt et al., 1995), the MOPLA formulation 154 

adopts a linearization approach (Lebensohn and Tomé, 1993; Molinari et al., 1987) where 155 

linearized viscosities such as tangent viscosities are used in the formulation. As we are 156 

concerned with quartz c-axis fabric development, we specifically use MOPLA to calculate the 157 

partitioned flow fields within quartz domains. 158 

We consider two situations for the rheology of the quartz RDEs and HEM. In the first, 159 

both the RDEs and the HEM are isotropic. The rheological contrast between an RDE and the 160 

HEM is reduced to an effective viscosity ratio r between the RDE to the HEM. We do not 161 

consider the rheological anisotropy development in HEM as a result of fabric buildup with strain 162 

because anisotropic rheological response of the constituent RDEs are not available. Because of 163 

power-law rheology, r varies with time. We thus consider a range of constant r values. The 164 

quartz aggregates in Fig.2a all have convex shapes with surrounding matrix material wrapping 165 
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around them, suggesting that quartz RDEs were rheologically stronger (r > 1) than the ambient 166 

HEM. But r cannot be too high (e.g., r > 10) because of power-law rheology or the quartz RDEs 167 

would behave like rigid clasts (Jiang, 2007a; Xiang and Jiang, 2013) with no c-axis fabric 168 

formation. We consider the situations of r being 2, 5, and 10. The situation of r = 0.5 is also 169 

considered here for comparison to show what the c-axis fabrics might be like if quartz RDEs 170 

were mechanically weaker than the ambient medium.  171 

In the second situation, we consider isotropic RDEs in a HEM of simple planar 172 

anisotropy which approximates a foliated and/or layered material like natural mylonites. The 173 

rheology of such a HEM can be characterized by two distinct viscosities: n  , the normal 174 

viscosity for the resistance to pure shearing along and perpendicular to the layering, and S  the 175 

shear viscosity measuring the resistance to shearing parallel to the layering (e.g. Jiang, 2016; 176 

Fletcher, 2009; Johnson and Fletcher, 1994) . The strength of anisotropy is measured by the ratio 177 

m  of n  to S  . For foliated and layered rocks,  m > 1 (Treagus, 2003).The rheological contrasts 178 

between the isotropic quartz RDE and HEM can be defined by the following two parameters: the 179 

ratio, reff , between the  viscosity of the RDE to n  and  m. In such case, the effective viscosity of 180 

the RDE is simply given by reff n . Similar to the isotropic cases, we consider reff being 0.5, 2, 5, 181 

and 10. Fig. 4 shows the geometric relation between the flow field and the plane of anisotropy. 182 

Macroscale flow is simple shear with shear plane parallel to X-Z plane. 183 

To cover the shape variation of quartz RDEs, we considered three reference initial 184 

shapes: prolate (5:1:1), oblate (5:5:1), sphere (1:1:1) and initial triaxial RDEs with long and short 185 

semi-axial length fixed to 5 and 1 respectively and intermediate semi-axial length ranging from 186 

2-4. These initial RDEs will deform into various possible triaxial shapes in nature. The initial 187 

orientations of the RDEs are defined by spherical angles (Jiang, 2007b, 2007a) which are 188 

randomly assigned.  189 

The partitioned flow for a quartz RDE computed from MOPLA is used as the input flow 190 

field to simulate the quartz c-axis fabrics in that RDE through the VPSC model. Because the 191 

partitioned flow field in any given RDE is non-steady as the RDE continuously changes shape 192 

and orientation during deformation, the coupled computation between MOPLA and VPSC is 193 

carried out as follows: With a given macroscale flow field defined in Eq.1, we use MOPLA 194 
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algorithm implemented in MATLAB (Lu, 2020; Jiang, 2016, 2014, 2007a; Jiang and Bentley, 195 

2012; Qu et al., 2016) to calculate the partitioned flow in every quartz RDE, which is expressed 196 

as a velocity gradient tensor. We export to a data file the RDE velocity gradient tensor for every 197 

prescribed macroscale strain increment until a pre-set macroscale finite strain is reached. This 198 

data file is then used as input flows into the VPSC code to calculate the c-axis fabric evolution 199 

within the RDEs as macroscale strain increases until the set magnitude. The velocity gradient 200 

tensor files for all the RDEs are available in the supplementary material. 201 

       202 

3. Results: 203 

As mentioned above, we have simulated quartz c-axis fabric development in three 204 

situations. The first is in homogeneous macroscale plane-strain general shearing flows, without 205 

flow partitioning, with quartz slip system combinations that have not been covered by previous 206 

studies. The second situation is when rheologically distinct quartz domains are within an 207 

isotropic HEM, and the third is when the quartz domains are within a HEM of planar anisotropy.  208 

3.1 Quartz c-axis fabric development in homogeneous plane-strain general shearing flows    209 

Figs.5 and 6 present quartz c-axis fabrics produced for models-A-F (rows) under uniform 210 

macroscale flows of plane-strain general shearing from kW  = 0  to kW  = 1 (columns), at 211 

macroscale strain states ρ = 2 and 6.  212 

In pure shearing ( kW  = 0), for models-A, C, and D, peripheral c-axis maxima form and remain 213 

at the maximum shortening direction regardless of strains (Figs. 5a,d, m,p,6a,d). For model-B, a 214 

cross-girdle (Figs 5g) form at ρ = 2, with its central segment lying along the maximum 215 

shortening direction. A single girdle is produced lying along the maximum shortening direction 216 

(Figs. 5j) at ρ = 6. For models-E and F, peripheral maxima develop and remains at the maximum 217 

stretching direction at both strain states (Figs. 6g, j, m, p). 218 

When 0 < kW≤ 1, for models-A, C, and D and at ρ = 2, peripheral c-axis maxima are 219 

developed inclining antithetically to the shear sense (Figs. 5b, c, n, o, 6b, c). As kW  increases , the 220 

angle between the peripheral c-axis maxima and the shear plane normal increases. The peripheral 221 
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maxima rotate with macroscale vorticity as finite strain increases but do not pass the shear plane 222 

normal (Figs. 5f, l, q, r, 6f). For model-B, a cross-girdle, with its central segment lying normal to 223 

the shear plane, is formed at ρ = 2 (Figs 5 h, i). At ρ = 6, this cross-girdle becomes a single girdle 224 

lying normal to the shear plane (Figs. 5 k, l). In some general shear (0 < kW< 1) cases, the c-axis 225 

girdles can be slightly synthetically-inclined at ρ = 6 (Figs. 5e,k,6e), but the angle between the 226 

peripheral c-axis maxima and the shear plane normal is small (< 10°). For models-E and F, the c-227 

axis peripheral maxima are synthetically-inclined near the shear direction at ρ = 2. The angle 228 

between the peripheral c-axis maxima and the shear direction increases with kW   (Figs.6h, i, n, o). 229 

The c-axis peripheral maxima rotate with vorticity toward the shear direction as the finite strain 230 

increases (Figs.6 k, l, q, r). 231 

3.2 Quartz c-axis fabric development in quartz domains embedded in an isotropic HEM 232 

Since models-A, B, C and D all produce similar c-axis fabrics with c-axis girdles 233 

antithetically-inclined or nearly normal to the shear plane, we only present results for model-A 234 

for multiscale deformation. Figs. 7 and 8 report ten results of c-axis fabrics produced in quartz 235 

RDEs of varying initial shapes, orientations, and viscosity ratio r under a range of macroscale 236 

flow fields. These results can be summarized as follows: When 0 < kW≤ 1,  c-axis girdles are 237 

always antithetically-inclined (Figs.7a,b,d,e,g,h, j, k, m, n, 8a,g,j,m) regardless of initial 238 

conditions of RDEs up to the finite strain ρ ~4. With increase in finite strain, the girdles rotate 239 

with bulk vorticity (rows of Figs.7 and 8) but do not pass the shear plane normal unless r >= 5 240 

(Figs. 7-i, l, o, 8-b, c, i, l, o). If the RDEs were weaker than the HEM (r = 0.5), c-axis girdles 241 

remain close to normal (Figs. 7-c) to the shear plane even at very high finite strains (ρ ~6-7). In 242 

pure shearing, a cross girdle is produced at ρ ~2 which becomes a single girdle at ρ ~6 with 243 

peripheral c-axis maxima always parallel to the maximum shortening direction (Figs.8-d, e, f). 244 

3.3 Quartz c-axis fabric development in quartz domains embedded in a planar anisotropic HEM  245 

Figs. 9a-o report c-axis fabrics developed in quartz RDEs of varying initial shapes, 246 

orientations, and viscosity ratio reff, embedded in a planar anisotropic HEM of anisotropic 247 

strength m as described in Section-2. These results can be summarized as follows: The c-axis 248 

girdles are always antithetically-inclined (Figs.9a,d,g,j,m) at ρ ~2 regardless of kW , reff , m, initial 249 

orientations and shapes of RDEs. The girdles rotate with bulk vorticity as ρ increases (rows of 250 
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Figs.9) but do not pass the shear plane normal unless reff >= 2 (Figs. 9i, l, o). If RDEs were 251 

weaker (reff = .5), c-axis girdles are close to normal (Figs. 9c, f) to the shear plane even at high 252 

finite strains (ρ ~6-7).  253 

4. Discussion: 254 

In Section 2, we argued that r must be greater than 1 from microstructures (Fig.2a) but 255 

not so high that the quartz RDEs do not develop enough internal strain for c-axis fabric 256 

formation. In our modeling, we considered the range r between 2 and 10. Our modeling results 257 

show that, with basal<a>, rhomb<a>, and prism<a> slips, c-axis girdles in a quartz RDE always 258 

develop at an antithetical orientation initially. But the girdles rotate with vorticity as the 259 

macroscale finite strain increases. If the RDE is sufficiently strong ( 5r  in isotropic HEM case 260 

and reff ≥ 2 in planar anisotropic HEM case), the girdles will rotate pass the shear zone normal 261 

and lie in the synthetical sector at high strains ( ρ ~6, Figs. 7-i, l, o, 8-b, c, i, l, o, 9-i, l, o). Our 262 

modeling results show that for synthetically-inclined girdles, r should be between 5 and 10. 263 

These results are consistent with the strain gradient of the thin section (Fig.10, based on Killian 264 

et al., 2011, Fig.9 there). The antithetically-inclined c-axis peripheral maxima (yellow in Fig.10) 265 

correspond to a lower strain and synthetically-inclined c-axis peripheral maxima (red in Fig. 10) 266 

to a higher strain.  267 

Despite the variability of the partitioned flow field in quartz RDEs, we found out that the 268 

microscale vorticity in every quartz RDE still has the same sense as the macroscale vorticity. 269 

Fig.11 shows the dot product of the unit vector ω  parallel to the vorticity in a RDE and the unit 270 

vector   parallel to the macroscale vorticity.    ω  is positive for all quartz RDEs (a few 271 

selected ones are shown in Fig.11). In other words, there is no vorticity sense reversal in any 272 

quartz RDEs.  This implies that the volume-weighted average of microscale vorticity vectors is 273 

parallel to the macroscale vorticity vector. Therefore, the crystallographic vorticity axis (CVA) 274 

analysis (Giorgis et al., 2017; Michels et al., 2015) can still be used in every quartz RDE and 275 

then the averaged microscale vorticity axes represent the macroscale vorticity axis. 276 

Synthetically-inclined c-axis girdles have also been reported in some creep experiments 277 

on pure quartz aggregates with similar slip systems (basal<a>, rhomb<a>, and prism<a>) at high 278 

finite strains (Heilbronner and Tullis 2002, 2006). Although Keller and Stipp (2011) obtained 279 
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synthetically-inclined c-axis girdles by including prism<c> slip in their VPSC models, we have 280 

further confirmed that without prism <c> slip (our model-D), synthetically-inclined c-axis 281 

girdles cannot be produced (Figs. 5a-f), unless flow partitioning is considered. We suspect that 282 

some degree of heterogeneous strain and therefore partitioned flow was responsible for such c-283 

axis girdle orientations. Heilbronner and Tullis (2006) themselves suggested that different 284 

domains of polycrystal aggregates might exhibit different viscosities, which could have 285 

facilitated partitioning of the flow among different domains. 286 

Li and Jiang (2011) raised issues with the practice of vorticity estimation using rigid 287 

porphyroclasts under the assumption of steady-state homogeneous flow histories. The 288 

significance of flow partitioning as demonstrated by our modeling based on microstructures of 289 

natural mylonites raises further issues with using quartz c-axis fabrics to estimate the 290 

(macroscale) vorticity (e.g. Vissers, 1989; Wallis, 1995, 1992; Xypolias, 2009; Law, 2010). 291 

First, where quartz c-axis fabrics have resulted from partitioned flow, the steady-state flow 292 

assumption is invalid. As we have shown, there is a distinct microscale vorticity history, not a 293 

constant vorticity number, in every quartz RDE, which cannot be determined from the final c-294 

axis fabric. In principle, the microscale vorticity in a quartz RDE does not have a simple relation 295 

to the macroscale vorticity. Second, even for the single-scale case where no flow partitioning is 296 

considered, our modeling demonstrates that the assumption commonly used in vorticity 297 

determination that the dominant c-axis girdle is perpendicular to the shear plane is not always 298 

valid.  299 

Peripheral c-axis maxima close to the shear direction have commonly been taken to 300 

reflect prism <c> slip (Passchier and Trouw, 2005). Our modeling suggests that they can also be 301 

significantly rotated peripheral basal <a> maxima from certain quartz RDEs (Fig.8c). Larson et 302 

al (2014) have reported a possible example of this. They presented peripheral c-axis maxima 303 

close to the shear direction in a temperature condition much below that required for the 304 

activation of prism <c> and used the concept of flow partitioning to explain their observation. 305 

Our modeling lends support to this explanation.  306 

  307 

 308 
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5. Conclusions: 309 

The co-existence of both synthetically-inclined and antithetically-inclined quartz c-axis 310 

girdles in a single thin section can be explained by flow partitioning at the thin section scale. The 311 

antithetically-inclined girdles correspond to relatively low finite strains and the synthetically-312 

inclined girdles to high finite strains.  313 

Although the microscale flow fields vary from one quartz RDE to another and are distinct 314 

from the macroscale flow, the sense of vorticity in every quartz RDEs remains the same as the 315 

macroscale vorticity.  316 

Because of flow partitioning, it is not possible to estimate the vorticity number of the 317 

macroscale flow from quartz c-axis fabrics. But, it is still possible to obtain the macroscale 318 

vorticity axis by averaging the microscale vorticity axes from quartz RDEs. The latter can be 319 

obtained through the crystallographic vorticity axis analysis .   320 

As a result of partitioned flows, the dominant quartz c-axis girdle can lie antithetical, normal, 321 

synthetical to the shear plane. The basal <a> peripheral maxima may end up lying close to the 322 

shear direction at high macroscale strains. Caution should be taken not to misinterpret these 323 

peripheral maxima as reflecting prism<c> slip. 324 

 325 
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 531 

Figure Captions: 532 

Figure 1: Current models for interpreting quartz c-axis fabrics at low to medium temperatures 533 

~350-550°C presented in the shear zone coordinate system. The sense of shear is dextral.  Cross-534 

girdle and single girdle c-axis fabrics are commonly observed. (a) c-axis cross girdle pattern with 535 

one girdle normal to the shear plane while the other antithetic to the shear sense. (b) a single c-axis 536 

girdle with Y-maxima, inclined either antithetically to the shear sense or normal to the shear plane. 537 

(c) a single c-axis girdle inclined either antithetically to the shear sense or normal to the shear 538 

plane. The c-axes near the periphery, the center, and in between are interpreted to reflect basal<a>, 539 

prism<a>, and rhomb<a> slips respectively. 540 

 541 

Figure 2: Illustration of the multiscale approach used in this paper. (a) The thin section 542 

photomicrograph of a natural mylonite from Kilian et al. (2011) used as a model. (b) Sketch of 543 

(a). The thin section can be viewed as a 2D section of the representative volume element (RVE) 544 

for the shear zone material, which is composed of quartz domains, feldspar porphyroclasts, and 545 

mica seams in a fine-grained matrix. The quartz domains and feldspar clasts are referred to as 546 

Rheologically Distinct Elements (RDEs). We are concerned with partitioned flows in quartz 547 

RDEs in this paper. (c) Coordinate system to define the macroscale flow field used in modeling 548 

investigation (d) Each quartz RDE is regarded as a heterogeneous Eshelby inclusion embedded 549 

in the composite shear zone material that is idealized as the Homogeneous Equivalent Matrix 550 

(HEM). Microscale fields ( strain rate ε , and vorticity w) are related to respective macroscale 551 

fields ( Ε and W) by partitioning equations, where A is the strain partitioning tensor, S and Π  552 

are respectively the 4th-order symmetric and anti-symmetric Eshelby tensors (Jiang 2014).  553 

 554 

 555 
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Figure 3: The macroscale finite strain of the shear zone, measured by the strain intensity ρ, as a 556 

function of computation steps for varying kW . The increase of the shear strain γ in the simple 557 

shear case  ( kW = 1) is also plotted for comparison. 558 

 559 

Figure 4: Geometric relation between the macroscale flow field and anisotropy plane in the 560 

planar anisotropic HEM. 561 

 562 

Figure 5: C-axis fabrics in single-scale deformation with varying Wk from pure shearing to 563 

simple shearing and for models-A-C. The final strain intensity is between ρ = 2 and 6. The pole 564 

densities are contoured in multiples of uniform distribution.  565 

 566 

Figure 6: Same as Figure 5 but for models-D-F. 567 

 568 

Figure 7: C-axis fabrics in selected quartz RDEs in an isotropic HEM under simple shearing (Wk 569 

=1). (a)-(o) are the resultant c-axis fabrics developed. The first column presents the initial 570 

conditions for the RDEs [ r : viscosity ratio of the RDE to HEM, initial shape defined by semi-571 

axes of the RDE ( 1 2 3: :a a a ,where 1 2 3a a a  ), and initial orientation given by spherical angles 572 

(θ1, Φ1, θ2) for general RDEs or (θ, Φ) for spheroidal RDEs] . Each row presents the results for 573 

the RDE as the macroscale strain increases.  574 

 575 

Figure 8: Same as Figure 7 except that the macroscale flow is plane strain general shearing 576 

(0<Wk ≤1). 577 

 578 

Figure 9:  C-axis fabrics in selected quartz RDEs in a HEM with planar anisotropy under simple 579 

shearing flow (Wk = 1) (a)-(o) are the resultant c-axis fabrics developed. The first column presents 580 
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the initial conditions for the RDEs [reff - viscosity ratio of the RDE to HEM’s n , initial shape 581 

defined by semi-axes of the RDE ( 1 2 3: :a a a ,where 1 2 3a a a  ), initial orientation given by 582 

spherical angles (θ1, Φ1, θ2) for general RDEs or (θ, Φ) for spheroidal RDEs, and anisotropic 583 

strength m]. Each row presents the results for the RDE as the macroscale strain increases. 584 

 585 

Figure 10: Sketch of the thin-section sample showing c-axis fabric variation in quartz domains 586 

(based on Kilian et al., 2011, Fig. 9 there). C-axis fabrics comprise of peripheral c-axis maxima 587 

that are antithetically-inclined (yellow), nearly normal (blue), and synthetically-inclined (red) to 588 

the shear plane. The sense of shear is dextral. The arrow at the top-left shows the direction of 589 

increase in strain gradient. 590 

  591 

Figure 11: Plot of dot product   ω  with increasing macroscale strain ρ, for 50 RDEs with 592 

random initial shapes and orientations, r = 0.5, 2 and 5(rows) and Wk = 1 and .75 (columns). ω  593 

and   are, respectively, the unit vectors parallel to the microscale vorticity vector in an RDE and 594 

the macroscale vorticity vector.    ω  is close to unity for the RDEs. Therefore, the microscale 595 

vorticity vectors are always of the same sense as and nearly parallel to the macroscale vorticity 596 

vector.  597 

 598 

Table 1: Quartz slip systems and the relative CRSS values for different models used in VPSC 599 

simulation. 600 
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Slip Systems  
CRSS ratio 

Model A Model B Model C Model D Model E Model F 

Basal <a>      {0001} 1210   1          3 3 3 3 3 

Rhomb<a>     {1011} 1210   5 5 1 1 5 3 

Prismatic<a> {1010} 1210   5 1 3 1 5 1 

Prismatic <c> {1010} 0001   10 10 10 10 1 1 

Approximate Temperature Range 350-500˚C 500-600 ˚C 500-600 ˚C 500-600 ˚C 650 ˚C 650˚C 
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