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Abstract

Hepatitis-A is a waterborne infectious disease transmitted by the eponymous hepatitis-A virus (HAV). Due to the disease’s

sociodemographic and environmental characteristics, this study applied public census and remote sensing data to assess risk

factors for hepatitis-A transmission. Municipality-level data were obtained for the state of Pará, Brazil. Generalized linear and

non-linear models were evaluated as alternative predictors for hepatitis-A transmission in Pará. The Histogram Gradient Boost

(HGB) regression model was deemed the best choice (RMSE= 2.36, and higher Rˆ2 = 0.95) among the tested models. Partial

dependence analysis (PDA) and permutation feature importance analysis (PFI) were used to investigate the partial dependences

and the relative importance values of the independent variables in the disease transmission prediction model. Results indicated a

complex relationship between the disease transmission and the sociodemographic and environmental characteristics of the study

area. Population size, lack of sanitation, urban clustering, year of notification, insufficient public vaccination programs, household

proximity to open-air dumpsites and storm-drains, and lack of access to healthcare facilities and hospitals are sociodemographic

parameters related to HAV transmission. Turbidity and precipitation are the environmental parameters closest related to disease

transmission. This study reinforces the need to incorporate remote sensing data in epidemiological modelling and surveillance

plans for the development of early prevention strategies for hepatitis-A.
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Key Points: 10 

 Hepatitis-A is a waterborne infectious disease responsible for approximately 70,000 11 

deaths per year around the world. 12 

 In this work, sociodemographic and environmental factors are related to hepatitis-A 13 

transmission by applying census and remote sensing data. 14 

 This research stresses the need to incorporate remote sensing data to epidemiological 15 

modelling for prevention and surveillance plans. 16 

Abstract 17 

Hepatitis-A is a waterborne infectious disease transmitted by the eponymous hepatitis-A 18 

virus (HAV). Due to the disease’s sociodemographic and environmental characteristics, this 19 

study applied public census and remote sensing data to assess risk factors for hepatitis-A 20 

transmission. Municipality-level data were obtained for the state of Pará, Brazil. Generalized 21 

linear and non-linear models were evaluated as alternative predictors for hepatitis-A 22 

transmission in Pará. The Histogram Gradient Boost (HGB) regression model was deemed the 23 

best choice (𝑅𝑀𝑆𝐸= 2.36, and higher 𝑅2 = 0.95) among the tested models. Partial dependence 24 

analysis (PDA) and permutation feature importance analysis (PFI) were used to investigate the 25 

partial dependences and the relative importance values of the independent variables in the 26 

disease transmission prediction model. Results indicated a complex relationship between the 27 

disease transmission and the sociodemographic and environmental characteristics of the study 28 

area. Population size, lack of sanitation, urban clustering, year of notification, insufficient 29 

public vaccination programs, household proximity to open-air dumpsites and storm-drains, 30 

and lack of access to healthcare facilities and hospitals are sociodemographic parameters 31 

related to HAV transmission. Turbidity and precipitation are the environmental parameters 32 

closest related to disease transmission. This study reinforces the need to incorporate remote 33 

sensing data in epidemiological modelling and surveillance plans for the development of early 34 

prevention strategies for hepatitis-A.  35 
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1. Introduction 36 

Risk assessment and vulnerability analyses are common practices in epidemiology 37 

(AVANZI et al., 2018; GULLÓN et al., 2017; WHO, 2014). Evidence from around the world 38 

confirms that climate change can affect distribution and occurrence of diseases, a major 39 

concern for policy making and healthcare facilities (UN, 2007). The health of human 40 

populations is sensitive to shifts in weather patterns and other aspects of climate change 41 

(SMITH et al., 2015). Weather events and climate change are important drivers of the 42 

transmission of waterborne diseases – for instance, cholera, dysentery and waterborne 43 

hepatitis are expected to have higher incidence, or even spread to new areas (AHERN et al., 44 

2005; DAVIES et al., 2015). 45 

Most of the burden of climate change will be borne by developing countries, where the 46 

incidence of viral hepatitis and other communicable diseases has traditionally been high, and 47 

where healthcare systems still lack proper coverage for health-related products and services 48 

(CARBALLO et al., 2013). Previous reports have indicated that the main causes of waterborne 49 

diseases are related to contamination of water supply systems, usually through increased run-50 

off from surrounding areas or by inundation (CANN et al., 2013). Nevertheless, other factors, 51 

e.g., climate variability, also influence waterborne disease transmission (WHO, 2009). 52 

Hepatitis-A is an infectious disease transmitted by the eponymous hepatitis-A virus 53 

(HAV) and accounts for approximately 70,000 deaths per year around the world (WHO, 2016). 54 

Hepatitis-A may cause debilitating symptoms and lead to acute liver failure, which is 55 

associated with high mortality (WHO, 2019). HAV transmission occurs in different ways, 56 

though the fecal-oral route is the most common worldwide (FIORE; WASLEY; BELL, 2006). 57 

Fecal-oral transmission occurs when a susceptible person has direct contact with an infectious 58 

person or ingests contaminated food or water (WHO, 2011). The latter transmission route is 59 

intimately dependent on sanitary, social, cultural and environmental conditions (CLEMENS et 60 

al., 2000; FIORE; WASLEY; BELL, 2006; JACOBSEN; KOOPMAN, 2005; MS, 2005; NUNES et al., 61 

2016; PEREIRA; GONÇALVES, 2003). 62 

Previous studies have indicated that hepatitis-A transmission may be related to extreme 63 

precipitation and flooding events (GULLÓN et al., 2017; MARCHEGGIANI et al., 2010). In Brazil, 64 

extreme precipitation events have been positively related to HAV outbreaks (SANTOS et al., 65 

2019). In Spain, intense rainfall has also been associated with greater incidence of hepatitis-A 66 

(GULLÓN et al., 2017). From a climate change perspective, one may expect more intense and 67 

more frequent precipitation events in the future (CAMUFFO; DELLA VALLE; BECHERINI, 2018; 68 

UN, 2007). This fact and how it bears upon epidemiological outbreaks pose a great challenge 69 

for policy making, public health agencies and management planning (MARCHEGGIANI et al., 70 

2010). 71 

Hepatitis-A is endemic in Brazil and affects mostly children, adolescents and young 72 

adults (CLEMENS et al., 2000; MS, 2002). Reported cases are heterogeneously spread 73 

throughout the country. Specifically, in the northern region, the HAV-related mortality rate has 74 

been increasing since 2013. Between 2012 and 2016, the HAV mortality coefficient doubled, 75 

reaching 35 cases per million inhabitants (MS, 2018). An anti-HAV vaccine only became 76 



available in 2014 and is now included in the National Vaccination Calendar of the Unified 77 

Health System (SUS), Brazil’s public health system (MS, 2014). 78 

Given the importance of effective prevention and control of hepatitis-A in Brazil and 79 

similar places, assessment of the main factors associated with disease transmission is 80 

paramount. In order to determine where disease-favoring conditions are present in the 81 

environment, remote sensing can be of great importance to assess disease-related 82 

environment factors (PATEL, 2020). This assessment can provide meaningful insights for 83 

controlling disease transmission. 84 

In light of the topics above, this study assessed how hepatitis-A transmission relates to 85 

environmental data detectable by remote sensing and to sociodemographic data derived from 86 

the national census and from vaccination programs of the state of Pará (in the Amazon region), 87 

Brazil. Various models were tested to best identify and characterize the main variables 88 

associated with the hepatitis-A transmission. A municipality grid was applied to perform the 89 

spatial aggregation among the datasets. 90 

2. Material and methods  91 

2.1. Study area 92 

Epidemiological, sociodemographic and remote sensing data were obtained for the 93 

northern state of Pará, Brazil. In this region, floods are gradual and natural to the ecosystem 94 

dynamics (IBGE, 2019). The state of Pará comprises 144 municipalities and six mesoregions 95 

(Figure 1). The geographical limits of the municipalities were obtained from the Brazilian 96 

Institute of Geography and Statistics (IBGE) (IBGE, 2019) and their grid was applied to spatially 97 

integrate the different datasets of this study. The municipality was the political unit of choice, 98 

being the smallest political-administrative unit of the Brazilian federative republic (RAMALHO, 99 

2020). 100 

 101 



Figure 1: Study area: state of Pará (Brazil). Geographical definitions by the Brazilian Institute of Geography and 102 
Statistics (IBGE) (IBGE, 2019). 103 

2.2. Epidemiological data 104 

Information on hepatitis-A cases was obtained from the Notifiable Diseases Information 105 

System (SINAN) of Brazil’s Ministry of Health (MS, 2007). Data included individual names and 106 

addresses, all of which were omitted to ensure and preserve confidentiality, and comprised 107 

Pará’s residents confirmed to be infected with the hepatitis-A virus between January 2008 and 108 

December 2017. The data was aggregated by municipality and month. The epidemiological 109 

dataset was geocoded by municipality and consists of 5,500 reported positive new cases (RPC), 110 

representing 4.26% of all RPCs in Brazil. 111 

2.3. Sociodemographic data 112 

Annual data on the coverage of the anti-HAV vaccination program and on the number of 113 

live births in each municipality were obtained from the SUS’s Information Technology 114 

Department platform (DATASUS) (MS, 2019), encompassing annual vaccination rates per 115 

municipality for the 2014-2017 period. Population coverage of anti-HAV vaccination is the ratio 116 

between vaccinated individuals (infants and children under 2) and the total population of a 117 

given municipality. 118 

A total of eight variables were obtained from the IBGE’s 2010 census data (IBGE, 2010): 119 

households with/without sanitation; households near storm drains; households near open-air 120 

sewage discharge; households near open-air dumpsites; households with running water; 121 

households with water-wheel; and households with a self-supplied water. These census data 122 

indicate the number of households in each condition. Therefore, each variable was 123 

transformed into relative percentages by dividing the number of households by the total 124 

number of households in each municipality. The annual population estimate per municipality 125 

was also obtained from the IBGE (IBGE, 2017). The demographic data was applied to evaluate 126 

the incidence of the disease in each municipality. A temporal dependence was also 127 

incorporated to the model by adding the covariate “year”. The variable reflects the year of 128 

notification of each reported case of hepatitis-A in the epidemiological data of the SINAN. 129 

All geographical and political boundaries and shapes (municipalities and mesoregions) 130 

were obtained from the IBGE (IBGE, 2019). The municipalities’ centroid coordinates (longitude 131 

and latitude) were taken as covariates during the modelling, enabling the integration of spatial 132 

dependence into the models. The municipalities’ centroid coordinates were previously 133 

reprojected for the SIRGAS 2000 polyconic projection. 134 

2.4. Environmental data 135 

The Google Earth Engine (GEE) platform allows easy access to several global remote 136 

sensing datasets thanks to the computational processing power of Google servers (GORELICK 137 

et al., 2017). The platform was used to retrieve environmental variables detectable by remote 138 

sensing pertaining to hepatitis-A modelling. For the present study, eight variables were 139 

selected: surface daytime temperature (𝑆𝐷𝑇), surface nighttime temperature (𝑆𝑁𝑇), turbidity, 140 



total suspended matter (𝑇𝑆𝑀), enhanced vegetation index (𝐸𝑉𝐼), normalized difference index 141 

(𝑁𝐷𝑉𝐼), precipitation, and hydrological mobility index (𝐻𝑀𝐼) (see Table 1). All remote sensing 142 

variables were aggregated monthly over the study period (2008-2017). 143 

Table 1:  General characteristics of the remote sensing variables used in this study (Data 144 
access: Google Engine Platform). 145 

Data Source Sensor 
Spatial 

resolution 

Spatial 

aggregation 

Temporal 

resolution 

Daytime and nighttime 

surface temperature 
NASAa/USGSb MODISc 1x1 km 

Average per 

municipality 
8 days  

Surface spectral 

reflectanced 
NASAa/USGSb 

Landsat 

series 30x30 m 
Average per 

municipality 
16 days 

𝐸𝑉𝐼/ 𝑁𝐷𝑉𝐼 NASAa/USGSb MODISc 250x250 m 
Average per 

municipality 
16 days 

Altimetry SRTMe Radar 30x30 m   

Precipitation 
Climate Hazards 

Group 

Multi-

plataformf 4 x 4 km 
Average per 

municipality 
Daily 

(a) NASA: National Aeronautics and Space Administration. (b) USGS: United States Geological Survey. (c) MODIS: 146 
Moderate Resolution Imaging Spectroradiometer. (d) Landsat surface spectral reflectance atmospherically 147 
corrected by the LASRC algorithm (U.S. GEOLOGICAL SURVEY, 2019).33 (e) SRTM: - Shuttle Radar Topographic 148 
Mission (SAINT-EXUPÉRY et al., 2007).34 (f) Precipitation from the Climate Hazards Group Infrared Precipitation with 149 
Stations (CHIRPS) dataset. (FUNK et al., 2015) The dataset comprises different platforms, orbiting sensors and in situ 150 
meteorological station data. 151 

Data on surface daytime and nighttime temperatures (𝑆𝐷𝑇 and 𝑆𝑁𝑇, respectively) were 152 

derived from the Moderate Resolution Imaging Spectroradiometer (MODIS), product 153 

MOD11A2, with 1 km2 spatial resolution (WAN, Z., HOOK, S., HULLEY, 2015). 𝑆𝐷𝑇 and 𝑆𝑁𝑇 are 154 

important factors that induce human behavior, as fluctuations in their values indirectly 155 

influence human activities such as bathing, hydration and water recreation (PARSONS, 2003). 156 

Thus, one should expect oscillations in daily temperatures to influence HAV transmission. 157 

The Landsat surface reflectance dataset was used to estimate the 𝑇𝑆𝑀 and the turbidity 158 

of the waterbodies of each municipality in Pará. These water-related parameters include water 159 

transparency (ALCÂNTARA; CURTARELLI; STECH, 2016; ODY et al., 2016; RODRIGUES et al., 160 

2017), transmittance (LEE et al., 2015), and, consequently, the amount of solar irradiance 161 

available in the system. Since solar irradiance directly influences the survival of HAV in aquatic 162 

systems through photodegradation (BALES; LI, 1993; HU et al., 2015; MAVIGNIER; 163 

FRISCHKORN, 1992), 𝑇𝑆𝑀 and turbidity are expected to be indirectly related to HAV survival, 164 

and therefore, to viral transmissivity. 165 

Turbidity was estimated using a semi-empirical algorithm previously validated for both 166 

estuarine and coastal waters (DOGLIOTTI et al., 2015). The algorithm relates turbidity to 167 



remote sensing reflectance at wavelength (𝜆), with 𝜌𝑤(𝜆). 𝜌𝑤(𝜆) is defined as the ratio of 168 

water-leaving radiance (𝐿𝑤(𝜆)) and the above-water downwelling irradiance (𝐸0+(𝜆)). The 169 

resulting turbidity is expressed in Formazin Nephelometric Units (𝐹𝑁𝑈). The algorithm was 170 

validated for independent environments, with stable performance and relative mean error 171 

below 13.7%. The algorithm is described in Equation 1,Equation 2 and Equation 3. 𝐴(𝜆) and 172 

𝐶(𝜆) are spectral conditional constants that follow the conditional rules from Equation 3. 𝑤 is a 173 

linear mixture factor for cases in which 𝜌𝑤(𝜆) is between 0.05 and 0.07 (sr-1). 174 

𝑇 (𝜌𝑤(𝜆)) =  
𝐴(𝜆) ∗  𝜌𝑤(𝜆)

(1 − 𝜌𝑤(𝜆))

𝐶(𝜆)

 
Equation 1 

𝑤 = [
𝜌
𝑤(𝜆=645)

− 0.05

0.02
] Equation 2 

𝑇 =

{
 
 

 
 𝑇 (𝜌𝑤(𝜆=645)) , 𝜌𝑤(𝜆=645) < 0.05 ∴  𝐴(𝜆) = 228.1, 𝐶(𝜆) = 0.1641

𝑇 (𝜌𝑤(𝜆=859)) , 𝜌𝑤(𝜆=859) ≥ 0.07 ∴  𝐴(𝜆) = 3078.9, 𝐶(𝜆) = 0.2112

(1 − 𝑤) ⋅  𝑇 (𝜌𝑤(𝜆=645))  + 𝑤 ⋅  𝑇 (𝜌𝑤(𝜆=859)) , 0.05 ≤  𝜌𝑤(𝜆=645) < 0.07 ∴ 

  Equation 3 

𝑇𝑆𝑀 was estimated using a generalized algorithm validated for continental waters 175 

(ALCÂNTARA et al., 2016). The algorithm has been previously validated with performance 176 

values for root mean square error (𝑅𝑀𝑆𝐸) equal to 24.62 (ALCÂNTARA et al., 2016). The 177 

algorithm defines 𝑇𝑆𝑀 as a second degree polynomial function of the ratio of two remote 178 

sensing reflectances. For this study, the algorithm was applied to the MODIS dataset, given its 179 

higher temporal resolution (daily) vis-à-vis Landsat’s (~16 days). Therefore, the spectral bands 180 

were corrected to the nearest available band from MODIS (see Equation 4 and Equation 5). 181 

𝑇𝑆𝑀 =  0.03 ∗  𝑖𝑛𝑑𝑒𝑥2 −  0.08 ∗  𝑖𝑛𝑑𝑒𝑥 +  0.9 Equation 4 

𝑖𝑛𝑑𝑒𝑥 =  𝜌
𝑤(𝜆=555)

/𝜌
𝑤(𝜆=469)

  Equation 5 

Since water body dynamics is mainly influenced by climatic and inter-annual variability 182 

(i.e., tides, rain cycles, temperature oscillations) (SIMONS; SENTÜRK, 1976), as well as by land 183 

use and land coverage changes that directly impact transport of sediments, deposition of 184 

materials and biochemistry fluxes (SIMONS; SENTÜRK, 1976), 𝐸𝑉𝐼 and 𝑁𝐷𝑉𝐼 were also 185 

integrated into the model. Both indexes can be related to surface vegetation coverage (DA 186 

SILVA et al., 2019) and both were derived from MODIS product MOD13Q1, with 1×1 km 187 

spatial resolution (JUSTICE et al., 1998). 188 

Data from the Climate Hazards Group Infrared Precipitation with Station (CHIRPS) (FUNK 189 

et al., 2014) were applied to assess monthly accumulated precipitation in the municipalities of 190 

Pará. CHIRPS data have a spatial resolution of ~5.6 × 5.6 km2 and encompass nearly 30 years of 191 

quasi-global rainfall data (50°S-50°N). CHIRPS provides gauge-precipitation satellite 192 



estimates with low latency, high resolution, low bias, and long record period (FUNK et al., 193 

2015). 194 

The digital elevation dataset from the Shuttle Radar Topography Mission (SRTM) (SRTM, 195 

2015) and the CHIRPS precipitation dataset were used to estimate the Hydrological Mobility 196 

Index (𝐻𝑀𝐼). Both datasets were spatially resampled to the same spatial resolution of the 197 

CHIRPS dataset (which has coarser spatial resolution). The index describes the hydrological 198 

flushing potential of a given surface (FONSECA et al., 2007) and, thus, can be associated with 199 

pathogen dispersal in the environment, serving both as a flusher and a retainer of the virus, 200 

influencing disease transmission (BARBOSAI et al., 2017; FONSECA et al., 2007). 201 

Another five environmental variables were also later derived from the CHIRPS dataset to 202 

be incorporated in the hepatitis-A modelling: 𝑃𝑃𝐹 1.0%, 𝑃𝑃𝐹 5.0%, 𝑃𝑃𝐹 90.0%, 𝑃𝑃𝐹 99.0% 203 

and 𝑃𝑃𝐹 99.9%, where 𝑃𝑃𝐹 stands for point-probability function. Each 𝑃𝑃𝐹 represents the 204 

cumulative number of monthly precipitation occurrences given an intensity threshold that 205 

might be expected from the 𝑃𝑃𝐹 of a predefined family of probability distribution functions 206 

(𝑃𝐷𝐹). The 𝑃𝑃𝐹 approach was applied to evaluate the potential relationship between disease 207 

transmission and extreme precipitation events (DIAZ; MURNANE, 2008; GULLÓN et al., 2017; 208 

MARCHEGGIANI et al., 2010). Since there is still much to be considered with respect to 209 

extreme precipitation events, this statistical approach was based on prior similar 210 

epidemiological studies (CURRIERO et al., 2001; GULLÓN et al., 2017). In brief, the algorithm 211 

for the derivation of these secondary precipitation variables can be described in three steps, as 212 

follows: 213 

First, the precipitation time-series is linearly decomposed into three time components: 214 

the trend (𝑇(𝑡)), the seasonal (𝑆(𝑡)) and the residue (𝑅(𝑡)). This approach assumes that the 215 

trend changes linearly over time, implying a linear additive structure (Equation 6). In addition, 216 

the decomposition assumes that seasonality presents constant frequency (width of cycles) and 217 

amplitude (height of cycles) over time. 218 

𝑌(𝑡) = 𝑇(𝑡) + 𝑆(𝑡) + 𝑅(𝑡) 
Equation 6 

Second, a Pearson Type III probability distribution family is fit into 𝑅(𝑡) by means of a 219 

Maximum Likelihood Estimation (𝑀𝐿𝐸) (VIRTANEN et al., 2020). This 𝑃𝐷𝐹 family is defined in 220 

terms of the mean (µ), the standard deviation (𝜎) and the skewness (𝑠𝑘𝑒𝑤) of the distribution 221 

(VOGEL; MCMARTIN, 1991) (Equation 7). This produces a large number of different 222 

distributions, both skewed and symmetrical, and is reduced to a standard frequency function 223 

when skewness is zero. This type of distribution is largely used by the U.S. Army Corps of 224 

Engineers in flood frequency analysis, by the National Oceanic and Atmospheric Administration 225 

in precipitation data analysis, and by the U.S. Navy (FEDERAL AVIATION ADMINISTRATION 226 

(FAA), 2003). 227 

PDF(𝑥| 𝑠𝑘𝑒𝑤, 𝜎, µ) =
|𝛽|

𝛤(𝑎)
∗ [𝛽 ∗ (𝑥 −  𝜁)](𝑎−1) ∗ exp[−𝛽 ∗ (𝑥 −  𝜁)] 

Equation 7 

where  228 



𝛽 = 
2

𝑠𝑘𝑒𝑤 ∗ 𝜎
 

Equation 8 

𝑎 = (𝜎 ∗  𝛽)2 

 

Equation 9 

𝜁 =  µ − (
ɑ

𝛽
) 

 

Equation 10 

𝛤(𝑥) = ∫ 𝑡(𝑥−1) ∗ 𝑒(−𝑡)𝑑𝑡
∞

0

 

 

Equation 11 

Finally, 𝑠𝑘𝑒𝑤 and 𝜎 are the skewness and the standard deviation of the time-series, 229 

respectively. 230 

Once the 𝑃𝐷𝐹 is fitted for 𝑅(𝑡), its hyper-parameters as well as the selected percentiles 231 

(1.0%, 5.0%, 90.0%, 99.0%, and 99.9%) are used to retrieve thresholds for later classification of 232 

𝑅(𝑡). The thresholds are then assessed by means of the point probability function (𝑃𝑃𝐹(𝑥)) of 233 

the given 𝑃𝐷𝐹. 𝑃𝑃𝐹 is defined as the inverse of a cumulative distribution function (𝐶𝐷𝐹). 𝑃𝑃𝐹 234 

is also called probability quantile function in statistics literature (WASSERMAN, 2009), but the 235 

𝑃𝑃𝐹 nomenclature is used here. The Pearson Type III 𝑃𝑃𝐹 is defined in Equation 12. 236 

𝑃𝑃𝐹(𝑞|𝑠𝑘𝑒𝑤,𝜎,µ) = 𝐶𝐷𝐹(𝑞|ɑ,𝛽,𝜁)
−1 =

1

𝛤(𝑎)
∗
[∫ 𝑡(𝑎−1)∗𝑒(−𝑡)𝑑𝑡
𝑞
0 ]

𝛽
+  𝜁  Equation 12 

For the third and final step of the algorithm, the thresholds derived from Equation 12 237 

are then used to classify 𝑅(𝑡). The classified 𝑅(𝑡) is then aggregated monthly for each 238 

threshold. These parameters are used as proxies for the evaluation of precipitation disaster 239 

events, since they can be highly significant for waterborne diseases such as hepatitis-A 240 

(FREITAS et al., 2015). 241 

2.5. Data pre-processing 242 

Prior to analyzing the data, all variables and all hepatitis-A cases were aggregated per 243 

municipality and per month. Remote sensing variables were averaged per month and per 244 

municipality. Precipitation data were summed monthly and averaged spatially for each 245 

municipality. Elevation and declivity data were averaged spatially for each municipality. 246 

2.6. Statistical analyses 247 

Multivariate regression analyses were used to evaluate the best model for assessing the 248 

main factors that impact hepatitis-A transmission. The evaluated regression models used here 249 

were: a) the Generalized Linear Model (GLM); b) the Multilayer Perceptron (MPL) deep-250 

learning algorithm; c) the Gradient Boost (GB); d) the Decision Tree (DT); e) the Histogram 251 



Gradient Boost (HGB). All algorithms are implemented in the Python’s Statsmodels package 252 

(PEDREGOSA et al., 2011). 253 

In the GLM model, the Poisson and Negative Binomial (NB) probability distribution 254 

families were used. In the Poisson distribution, each 𝑌(𝑖) is a random variable in which the 255 

Poisson distribution has an expected value (µ(i)) (Equation 13) that represents the number of 256 

observed events in a given municipality(𝑖). 257 

𝑌𝑖 ~ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛 (µ(𝑖)) Equation 13 

The expected value (µ(𝑖)) was assumed to be the linear sum of each relative risk 258 

coefficient (θ(𝑖)) and the respective linear expected value (E(𝑖)) (Equation 14). In this study, the 259 

relative risk coefficient represents the relative increase in hepatitis-A transmission in 260 

𝑚𝑢𝑛𝑖𝑐𝑖𝑝𝑎𝑙𝑖𝑡𝑦(i), while E(𝑖) is the expected hepatitis-A transmission in 𝑚𝑢𝑛𝑖𝑐𝑖𝑝𝑎𝑙𝑖𝑡𝑦(i) under 261 

the null hypothesis. Under this hypothesis, the transmission risk of the disease is constant over 262 

the entire area of study. The relative risk can take on real values between zero and +∞. If the 263 

relative risk is 1, this would mean that all verified municipalities have the same average risk of 264 

infection in the area of study; if less than one, it would mean that the municipality’s 265 

transmission risk is lower. If higher than one, it would mean that the municipality’s 266 

transmission risks is higher. 267 

µ(𝑖) = 𝐸(𝑖)  ∗ 𝜃(𝑖) Equation 14 

Alternatively to the Poisson family distribution, the negative binomial (NB) family is also 268 

commonly used to model counting processes, the main difference being that it allows for over-269 

dispersion of the data. Under this assumption, the data follow an expected value 𝐸(Y(𝑖)) =270 

 𝜇(𝑖) and variance 𝑉(Y(𝑖)) = 𝜇(𝑖) + (𝜇(𝑖))
2/𝜅 (FOX, 2008). Unless the parameter 𝜅 is large, the 271 

variance of Y increases more rapidly than for a Poisson distributed variable. By defining the 272 

expected value of Y(𝑖) as a random variable, it is possible to incorporate additional variability 273 

among observed counts. The 𝑃𝐷𝐹 of a NB variable is described in Equation 15. 274 

𝑝𝑌(𝑦|𝜇,𝜅) =  exp {[ylog (
𝜇

(𝜇 +  𝜅)
) −  𝜅 ∗ log(𝜇 +  𝜅)] +  𝜅 ∗ log(𝜅) + log(𝛤(𝜅+𝑦))

− log(𝛤(𝜅)) − log (𝑦!) 
Equation 15 

The MPL algorithm is a non-linear model. It assumes that the relationship between the 275 

covariates and the dependent variable can be defined by an association of neurons structured 276 

in sequential layers (WILDE, 2013). The MPL algorithm accepts several types of activation 277 

functions (𝑙𝑜𝑔 − 𝑙𝑜𝑠𝑠, 𝑖𝑑𝑒𝑛𝑡𝑖𝑡𝑦, 𝑡𝑎𝑛ℎ, 𝑟𝑒𝑙𝑢, etc.). In this study, the 𝑟𝑒𝑙𝑢 activation function 278 

(Equation 16) together with stochastic gradient descent 𝑎𝑑𝑎𝑚 solver (KINGMA; BA, 2015) 279 

were applied to evaluate the weights of the neuron matrix. 280 

f(x)  =  max(0, x) Equation 16 

Gradient Boost (GB), Decision Tree (DT) and Histogram Gradient Boost (HGB) are 281 

machine learning (ML) algorithms that can perform both classification and regression tasks. 282 



They are capable of fitting complex datasets in an additive model approach (BOEHMKE; 283 

GREENWELL, 2019). These ML algorithms can capture non-linear relationships between the 284 

covariates and the dependent variable in forward stage wise fashion (PETRERE-JR; FRIEDMAN, 285 

2000) by minimizing the negative gradient of a given loss function (PEDREGOSA et al., 2011). 286 

Machine learning is greatly influenced by its hyper-parameters setting. Therefore, tuning these 287 

hyper-parameters is an essential step in analysis. For each model, a grid-search technique 288 

(UNPINGCO, 2016) was applied to retrieve the respective best fitting hyper-parameters of each 289 

model configuration. The 𝑅𝑀𝑆𝐸 loss function (Equation 17) was applied to fit each model and, 290 

respectively, select the best hyper-parameters. The coefficient of determination 𝑅2 (Equation 291 

19) was also applied for later inter-comparison of models. 292 

𝑅𝑀𝑆𝐸 = √
∑ [(�̂�𝑖 − 𝑦𝑖)

2]𝑛
𝑖=1

𝑛
 Equation 17 

MSE = 
∑ [(�̂�𝑖− 𝑦𝑖)

2]𝑛
𝑖=1

𝑛
 Equation 18 

𝑅2 = (1 − 
𝑀𝑆𝐸

∑ [(𝑦𝑖 −  E(y)]
2𝑛

𝑖=1

) = 1 − 
𝑀𝑆𝐸

𝑇𝑆𝑆
 Equation 19 

After selecting the best regression model for the number of cases of hepatitis-A (the one 293 

with the lowest 𝑅𝑀𝑆𝐸), a partial dependence analysis (PDA) and the permutation feature 294 

importance (PFI) were verified. The PDA can depict the relationship between the dependent 295 

and the independent variables of the model (MOLNAR, 2019). It graphically structures the 296 

variables’ marginal effects (whether linear, monotonic or more complex) (PETRERE-JR; 297 

FRIEDMAN, 2000). PFI is a model inspection technique especially useful for non-linear/complex 298 

estimators (PEDREGOSA FABIAN et al., 2011) and is defined as the decrease in a model score 299 

(e.g., 𝑅𝑀𝑆𝐸) when a single covariate is randomly shuffled (PAVLOV, 2019). A shuffling effort of 300 

99 shuffles was applied for the PFI analysis. 301 

3. Results 302 

A set of six different techniques was applied to model hepatitis-A transmission. Of all 303 

models tested (Table 2), HGB Regression proved to be the best in terms of 𝑅𝑀𝑆𝐸 and 𝑅2 304 

criteria. GB obtained the lowest 𝑅𝑀𝑆𝐸 of all models, despite its low non-biased 𝑅2. 305 

GLM-Poisson, MPL, and DT returned negative 𝑅2 scores, indicating biased estimates. Results 306 

from the grid-search analyses can be found in the supporting information. 307 

Table 2: Relationship of the best-fitted models with respective residual fitness. 308 

Models 𝑅𝑀𝑆𝐸 𝑅2 
𝑅2 

adjusted 

Fitting 

time 

(s) 

Log-

likelihood 
Deviance 𝜒2 

GLM - 

Poisson 
11.311 -3.399 0.331 0.112 −7.27 ∗ 104 1.27 ∗ 105 

2.78 ∗ 105 

GLM – 

NB 
168.477 0.010 0.323 1.050 

−2.87 ∗ 104 2.862 ∗ 104 6.39 ∗ 104 



MPL 0.100 
-

249.366 
N/A 3.288 N/A N/A N/A 

GB 0.094 0.126 N/A 3.543 N/A N/A N/A 

DT 0.000 -6.061 N/A 0.145 N/A N/A N/A 

HGB 2.358 0.953 N/A 2.843 N/A N/A N/A 

After selecting the HGB model, a partial dependence analysis (PDA) was applied to 309 

indicate the relative dependence of each variable. The results of the PDA reflected how each 310 

variable related to hepatitis-A transmission. PDA values varied between -2.4 and zero (Figure 311 

2). Positive relations were observed for population size, households near open-air sewage 312 

discharge, households near open-air dumpsites, and latitude. Negative relations were 313 

observed for vaccination coverage, households with public water supply, households with 314 

waterwheels, and the municipalities’ centroid longitude. A constant relation was observed for 315 

the variable households with sanitation. More complex (non-linear) relations were observed 316 

for the variables households near storm-drains, households with local water supply and year of 317 

notification. The dependences of households near storm-drains, households with local water 318 

supply and year of notification presented a bell-shaped pattern, indicating that they varied 319 

depending on the municipality and/or period studied. 320 

The environmental variables with positive relations were turbidity, precipitation and 321 

𝑁𝐷𝑉𝐼 (the latter one in lesser degree) (Figure 2).  𝐼𝑀𝐻 and 𝐸𝑉𝐼 were negatively related. A 322 

constant relation was observed for 𝑆𝐷𝑇, 𝑆𝑁𝑇, 𝑇𝑆𝑀, and all 𝑃𝑃𝐹 derived variables. For 323 

normalized turbidity values below 1.8, a partial dependence plot of turbidity indicated no clear 324 

relationship with disease transmission, but for higher values partial dependence was positively 325 

related to disease transmission. Precipitation and 𝑁𝐷𝑉𝐼 relative dependences were non-326 

linearly associated with disease transmission, although they denoted an average positive 327 

trend. With respect to precipitation, there was nearly constant partial dependence for 328 

below-average values; for near average values, precipitation had a negative dependence 329 

effect; for above average values, precipitation had positive dependence. In respect to 𝑁𝐷𝑉𝐼, 330 

for below zero normalized values, 𝑁𝐷𝑉𝐼 denoted constant dependence with disease 331 

transmission; for higher values, 𝑁𝐷𝑉𝐼 dependence was positive. 𝐸𝑉𝐼 denoted an inverse 332 

pattern with respect to 𝑁𝐷𝑉𝐼. 333 



 334 

Figure 2: Results of the partial dependence analysis of the explanatory variables for hepatitis-A from the 335 
𝐻𝐺𝐵 𝑟𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛 model. Marks on the x-axis indicate the data distribution. 336 



PFI analysis depicted the relative importance of each environmental and 337 

sociodemographic parameter in the HGB model (Figure 3). In decreasing order of importance, 338 

population size, 𝑁𝐷𝑉𝐼, latitude, year of notification and households near open-air dumpsites 339 

were the five most significant variables in the model. 𝑇𝑆𝑀 and all 𝑃𝑃𝐹 variables were the least 340 

significant variables in the model. Uncertainty with regard to PFI values were similar; in 341 

decreasing order of uncertainty, the variables were population size, year of notification, 342 

vaccination coverage and households near open-air dumpsites. 343 

 344 

Figure 3: Permutation feature importance analysis depicting the relative importance of each covariate in the HGB 345 
model. Shuffling effort: 99 times. 346 

4. Discussion 347 

This study evaluated hepatitis-A transmission by means of sociodemographic and 348 

environmental parameters from the state of Pará, Brazil. The observed relations were mostly 349 

complex, indicating that multiple interaction effects control disease transmission. 350 

The sociodemographic variables closest related to the disease were the national public 351 

vaccination coverage, longitude of the municipality centroids, year of notification and location 352 

of households near open-air dumpsites and near storm-drains. 353 

Given the importance of public vaccination in mitigating hepatitis-A transmission (FIORE; 354 

WASLEY; BELL, 2006; WHO, 2011), the vaccination relative dependence values were expected 355 

to be higher, if not the highest of all variables of the model. The observed low relative 356 

dependence was associated with the insufficient coverage rate of the public vaccination 357 

program (MS, 2014), as well as with the problems arising from lack of sanitation, sewage 358 

disposal and drinking water in the study area (FREITAS et al., 2015; IBGE, 2010; UN, 2007). 359 

The longitude of the municipality centroids showed that disease transmission is space-360 

dependent. Westerly municipalities (longitudes < 50°W) had higher risk of hepatitis-A 361 

transmission than easterly municipalities (longitudes > 50°W), a spatial pattern that reflects 362 



the sociodemographic characteristics of the study area, where relatively richer and more 363 

developed municipalities tend to be located on the eastern part of the state (DO; HUMANO; 364 

MUNICÍPIOS, 2010). These findings reinforce the importance of clean drinking water and 365 

proper sociodemographic conditions for controlling hepatitis-A transmission (JACOBSEN; 366 

KOOPMAN, 2005). 367 

Households near storm-drains were both negatively and positively related to hepatitis-A 368 

transmission. For municipalities with a low percentage of households near storm-drains, the 369 

relationship was negative, whereas positive dependence was observed for municipalities with 370 

high percentage of households near storm-drains. This pattern is associated with population 371 

density, storm-drain clogging and the rate of contact of the population with contaminated 372 

water-bodies. A similar dual pattern was observed in a previous study, in which the authors 373 

suggested that a variable’s dependence duality is a reflection of internal spatial variations of 374 

disease transmission in the study area (ROGERS, 2000). This reinforces the notion that 375 

epidemiological programs, policy-making and strategy planning must be specific to each area. 376 

Only then it is possible to properly consider the unique epidemiological factors associated with 377 

a disease’s transmission. 378 

The environmental variables most related to hepatitis-A were turbidity and 379 

precipitation. Turbidity has a complex relationship with disease transmission and its 380 

dependence pattern is suggested by a peaked Gaussian distribution shape. Lower values of 381 

turbidity did not influence disease transmission; for average values, the turbidity was positively 382 

associated; and for higher values turbidity was negatively related to disease transmission. The 383 

peaked Gaussian distribution shape dependence was attributed to different characteristics of 384 

the limnological environment, e.g., increased untreated sewage discharge into the 385 

environment (GUIMARAENS; CODEÇO, 2005), contamination of waterbodies nearby, and 386 

particle sedimentation (JAMES; LECCE, 2013; UNESCO, 1982). Aside from the fact that 387 

untreated sewage is directly linked to virus dispersion and propagation of the disease 388 

(GUIMARAENS; CODEÇO, 2005), wastewater also influences the attenuation of light in the 389 

water column, increasing the turbidity of the water body (OLIVEIRA et al., 2018). The higher 390 

the turbidity, the more suspended particles there are in the water column. And more 391 

suspended particles mean a greater adherence rate of other materials (organic and inorganic), 392 

leading to an increase in sedimentation rates (GALVEZ; NIELL, 1993; THORNTON, 1990; WILDE, 393 

2013). As a consequence, the suspended particles may act as binding agents in the limnological 394 

environment; in sufficiently large number, these particles can more efficiently bind particles 395 

like the hepatitis-A virus (KENDALL; KENDALL, 2012), increasing its deposition rate. If there are 396 

less HAV available in the system, the chances of infection are reduced, directly diminishing 397 

disease transmission. In some cases, increases in turbidity can also be related to increases in 398 

water turbulence (KNOBLAUCH, 1999). As turbulence increases, higher dispersion forces act on 399 

the HAV present in the water column (SIMONS; SENTÜRK, 1976). As a consequence, 400 

turbulence acts as a cleaning agent that diminishes the virus pool available for potential 401 

infection (GURJÃO, 2015; SIMONS; SENTÜRK, 1976).  402 

Precipitation also denoted a non-linear association with disease transmission. For below 403 

average precipitation, the effect was nearly constant; for near average values, precipitation 404 

had a negative effect on disease transmission, while above average precipitation had a positive 405 



effect. These findings are associated with the same factors as turbidity. Lower precipitation 406 

events induce less turbulent behavior in water bodies, and consequently a higher deposition 407 

rate. Under this scenario, 𝐻𝐴𝑉 is expected to be less present in water systems. The opposite is 408 

also true. Under higher precipitation events, the deposition rate is reduced with the increase in 409 

water turbulence. Furthermore, under intense precipitation events, contamination of public 410 

water supply systems due to increased run-off from surrounding areas, to inundation 411 

processes (CANN et al., 2013) and/or to flushing of streets, ponds and other potential water 412 

sources (CANN et al., 2013) is an important factor positively related to hepatitis-A 413 

transmission. 414 

Previous studies report that hepatitis-A transmission is related to extreme precipitation 415 

and flooding events (GULLÓN et al., 2017; MARCHEGGIANI et al., 2010). This study, however, 416 

by applying the 𝑃𝑃𝐹 methodology to the study area, found no statistical evidence supporting 417 

such a statement. Despite the different tested 𝑃𝑃𝐹s, their respective relative dependencies 418 

were constant for disease transmission. As disaster events may impact public health in 419 

different time frames – from short-lasting impacts (hours) to long-lasting ones (years) (FREITAS 420 

et al., 2015), a time lag effect can impinge a direct assessment of the disease transmission. 421 

Thus, future studies are required to investigate this temporal dependence. Auto Regressive 422 

Integrated Moving Average (ARIMA) models might be a possible alternative. The technique is 423 

widely used in epidemiology (LUZ et al., 2008) and has been applied to other waterborne 424 

diseases (CHADSUTHI et al., 2012). Furthermore, given the variability and lack of consensus on 425 

how to measure and depict extreme precipitation events (GULLÓN et al., 2017), other 426 

methodological approaches to extreme events are required to properly assess a potential 427 

relationship with disease transmission. 428 

This study reiterates how important it is for public health practitioners and water 429 

companies to be aware of the risks related to waterborne disease outbreaks. The methods 430 

applied here can be extended to other waterborne diseases, reinforcing the applicability of this 431 

work. Given the impacts of extreme weather events on waterborne diseases, especially under 432 

a scenario of climate change, health disparities are likely to occur in the near future. A 433 

population’s ability to adapt to and limit the effects of such events is likely dependent on 434 

socioeconomic and environmental circumstances, as well as on the information and 435 

technology available (GULLÓN et al., 2017). By considering the expected increase in hepatitis-A 436 

transmission due to climate change, and given the increase in population density and the lack 437 

of proper sanitation and vaccination in the area of study, this essay may be of interest for early 438 

warning planning in the public health sector (FORD et al., 2009). 439 

5. Conclusions 440 

This study assessed the relationship between hepatitis-A transmission and 441 

environmental and sociodemographic variables in the state of Pará, Brazil. Generalized linear 442 

and non-linear models were examined as alternative predictors for hepatitis-A. The best-suited 443 

model was the Histogram Gradient Boost (HGB). Population size, lack of sanitation and of 444 

proper public vaccination, households’ proximity to open-air dumpsites and storm-drains, and 445 

insufficient access to healthcare facilities and hospitals were the sociodemographic 446 

parameters related to HAV transmission. Turbidity and precipitation were the environmental 447 



parameters more closely related to disease transmission, and it was found that hepatitis-A 448 

transmission was positively associated with periods of average turbidity and more intense 449 

precipitation. This study stresses the need to incorporate remote sensing data to 450 

epidemiological modelling and surveillance plans in order to develop early prevention 451 

strategies for waterborne diseases. 452 

Future studies are required to investigate potential time-dependent relationships of the 453 

disease with the environment and society. In addition, properly mitigating the spread of 454 

hepatitis-A will only be possible if we invest in alternative strategies for sustained disease 455 

control and relief, which are essential for public health policymakers, vaccine developers and 456 

disease control specialists to make robust estimates of current and future distribution of 457 

disease transmission around the world. 458 

Acknowledgements 459 

We thank the State Health Department of Pará (SESPA) for providing the 460 

epidemiological data used in this study. 461 

Ethics approval and consent to participate 462 

This study used secondary, publicly available and unrestricted data that do not identify 463 

individuals. The results were aggregated by municipality and, therefore, it was not necessary 464 

to go through the Research Ethics Committee (CEP) in accordance with Law no. 12,527/2011 465 

that ensures public access to information (http://www.planalto.gov.br/ccivil_03/_ato2011-466 

2014 /2011/lei/l12527.htm). 467 

Consent to publish 468 

The Geoprocessing Laboratory of the Evandro Chagas Institute of the Ministry of Health 469 

is authorized by State Health Department of Pará (SESPA) to use and publish data from the 470 

Notifiable Diseases Information System (SINAN) and Epidemiological Surveillance Information 471 

System (SIVEP).  472 

Availability of data and materials 473 

The Geoprocessing Laboratory of the Evandro Chagas Institute of the Ministry of Health 474 

is authorized to use and publish analyses of data made available by their respective sources. 475 

The present applied data and respective processing scripts can be provided on demand to 476 

eventual interested parties. 477 

Conflict of Interest 478 

The authors declare that they have no actual or potential competing financial interests. 479 

Funding 480 

PRL received support from the Coordination for the Improvement of Higher Education 481 

Personnel, CAPES (finance Code 001), and was partially supported by the National Research 482 



Council, CNPq (grant #313588/2019-8) under program 2019-2023 (no. 4444327/2019-5) of the 483 

National Institute for Space Research, INPE; RJPSG was partially supported by Brazil´s National 484 

Research Council (CNPq, grant #313588/2019-8). 485 

Authors’ contributions 486 

Concept: PRL, MK, RJPSG. Methodology: PLR, RJPSG, MK. Formal analysis: PRL. 487 

Resources: MK, RJPSG. Writing (original draft preparation): PRL. Writing (revision and editing): 488 

PRL, MK, RJPSG. Supervision: MK, RJPSG. 489 

All the authors have read and approved the final version of the manuscript. 490 

Authors’ Information 491 

Philipe Riskalla Leal (PRL) – National Institute for Space Research (INPE), Av. dos 492 

Astronautas 1758, São José dos Campos, Brazil, 12227-010 {philipe.leal@inpe.br}. 493 

BSc in Biological Sciences from the Federal University of São Paulo (UNIFESP), MSc in 494 

Sciences from the University of São Paulo (USP). PRL is currently a PhD student in the Remote 495 

Sensing Postgraduate Program at the National Institute for Space Research (INPE) and a 496 

member of the Monitoring Oceans from Space Multi-User Laboratory (MOceans-INPE). PRL has 497 

experience in the areas of Geosciences, Limnology, Water Resources and Environment, with 498 

emphasis on the use of geoprocessing, remote sensing and geographic information systems 499 

techniques. 500 

Milton Kampel (MK) – National Institute for Space Research (INPE), Av. dos Astronautas 501 

1758, São José dos Campos, Brazil, 12227-010 {milton.kampel@inpe.br}. 502 

BSc in Oceanography from the State University of Rio de Janeiro, MSc in Remote Sensing 503 

from the National Institute for Space Research (INPE), PhD in Oceanography from the 504 

University of São Paulo, with postdoctoral degree from the Bedford Institute of Oceanography, 505 

Canada. MK is currently Senior Researcher and Leader of the Monitoring Oceans from Space 506 

Multi-User Laboratory (MOceans-INPE) and Tenured Professor of the Postgraduate Program in 507 

Remote Sensing (INPE). MK has experience in the areas of Geosciences, Oceanography, 508 

Climate and Environment, with emphasis on the use of geotechnologies, remote sensing and 509 

geographic information systems. 510 

Ricardo José de Paula Souza e Guimarães (RJPSG) – Instituto Evandro Chagas, Rodovia 511 

BR-316 km 7 s/n, Ananindeua, Brazil, 67030-000 {ricardojpsg@gmail.com}. 512 

BSc in Biological Sciences from the University of Taubaté, MSc in Remote Sensing from 513 

the National Institute for Space Research, PhD in Biomedicine from the Institute of Teaching 514 

and Research at Santa Casa de Belo Horizonte. RJPSG is currently a Full Technologist 2 515 

(Biomedical Research and Investigation in Public Health) and responsible for the 516 

Geoprocessing Laboratory of the Evandro Chagas Institute of the Ministry of Health; Tenured 517 

Professor of the Postgraduate Program in Epidemiology and Health Surveillance (PPGEVS) at 518 

the Evandro Chagas Institute. RJPSG has experience in Geosciences, with emphasis on 519 

mailto:milton.kampel@inpe.br
mailto:milton.kampel@inpe.br
mailto:ricardojpsg@gmail.com


Geotechnologies, Remote Sensing, Geographic Information Systems, Spatial Epidemiology, 520 

Public Health. RJPSG works on the following areas: geoprocessing in health and the 521 

environment, mobile geotechnology, spatial and geostatistical analysis. 522 

References 523 

AHERN, M. et al. Global Health Impacts of Floods: Epidemiologic Evidence. Epidemiologic 524 
Reviews, v. 27, n. 1, p. 36–46, 2005.  525 

ALCÂNTARA, E.; CURTARELLI, M.; STECH, J. Estimating total suspended matter using the 526 
particle backscattering coefficient: results from the Itumbiara hydroelectric reservoir (Goiás 527 
State, Brazil). Remote Sensing Letters, v. 7, n. 4, p. 397–406, 2016.  528 

ALCÂNTARA, E. H. et al. Spatiotemporal total suspended matter estimation in Itumbiara 529 
reservoir with Landsat-8/OLI images. International Journal of Cartography, v. 2, n. 2, p. 148–530 
165, 2016.  531 

AVANZI, V. M. et al. Risk areas for hepatitis A, B and C in the municipality of Maringá, Paraná 532 
state, Brazil 2007-2010. Geospatial Health, v. 13, n. 607, p. 188–194, 2018.  533 

BALES, R. C.; LI, S. MS-2 and poliovirus transport in porous media: hydrophobic effects and 534 
chemical perturbation. Water Resources Research, v. 29, n. 4, p. 957–963, 1993.  535 

BARBOSAI, V. S. et al. Os Sistemas de Informação Geográfica em estudo sobre a 536 
esquistossomose em Pernambuco. Revista de Saúde Pública, v. 51, p. 1–10, 2017.  537 

BOEHMKE, B.; GREENWELL, B. Hands-On Machine Learning with Scikit-Learn, Keras and 538 
TensorFlow. . [s.l: s.n.], 2019.  539 

CAMUFFO, D.; DELLA VALLE, A.; BECHERINI, F. A critical analysis of the definitions of climate 540 
and hydrological extreme events. Quaternary International, n. October 2017, p. 0–1, 2018.  541 

CANN, K. F. et al. Extreme water-related weather events and waterborne disease. 542 
Epidemiology and Infection, v. 141, n. 4, p. 671–686, 2013.  543 

CARBALLO, M. et al. Migration, hepatitis B , and hepatitis C. Viral Hepatitis: Fourth Edition, p. 544 
506–514, 2013.  545 

CHADSUTHI, S. et al. Modeling seasonal leptospirosis transmission and its association with 546 
rainfall and temperature in Thailand using time-series and ARIMAX analyses. Asian Pacific 547 
Journal of Tropical Medicine, v. 5, n. 7, p. 539–546, 2012.  548 

CLEMENS, S. A. et al. Soroprevalência para hepatite A e hepatite B em quatro centros no Brasil. 549 
Revista da Sociedade Brasileira de Medicina Tropical, v. 33, n. 1, p. 1–10, 2000.  550 

CURRIERO, F. C. et al. The association between extreme precipitation and waterborne disease 551 
outbreaks in the United States, 1948-1994. American Journal of Public Health, v. 91, n. 8, p. 552 
1194–1199, 2001.  553 

DA SILVA, V. S. et al. Methodological evaluation of vegetation indexes in land use and land 554 
cover (LULC) classification. Geology, Ecology, and Landscapes, v. 00, n. 00, p. 1–11, 2019.  555 

DAVIES, G. I. et al. Water-borne diseases and extreme weather events in Cambodia: Review of 556 
impacts and implications of climate change. International Journal of Environmental Research 557 
and Public Health, v. 12, n. 1, p. 191–213, 2015.  558 

DIAZ, H. F.; MURNANE, R. J. Preface: The significance of weather and climate extremes to 559 



society: An introduction. Climate Extremes and Society, v. 9780521870, p. xiii–xvi, 2008.  560 

DO, E.; HUMANO, D.; MUNICÍPIOS, N. O. S. SÍNTESE DO ÍNDICE DE DESENVOLVIMENTO 561 
HUMANO MUNICIPAL – IDHM PARA O ESTADO DO PARÁ. 2010.  562 

DOGLIOTTI, A. I. et al. A single algorithm to retrieve turbidity from remotely-sensed data in all 563 
coastal and estuarine waters. Remote Sensing of Environment, v. 156, n. October 2014, p. 564 
157–168, 2015.  565 

FEDERAL AVIATION ADMINISTRATION (FAA). Using Modern Computing Tools to Fit the Pearson 566 
Type III Distribution to Aviation Loads Data. Dot/Faa/Ar-03/62, n. September, 2003.  567 

FIORE, A. E.; WASLEY, A.; BELL, B. P. Prevention of hepatitis A through active or passive 568 
immunization: recommendations of the Advisory Committee on Immunization Practices 569 
(ACIP).Atlanta, U.S.: Coordinating Center for Health Information and Service, Centers for 570 
Disease Control and Prevention (CDC), U.S. Department of Health and Human Services, 571 
2006Disponível em: <http://www.ncbi.nlm.nih.gov/pubmed/16708058>. Acesso em: 12 sep. 572 
2018. 573 

FONSECA, F. R. et al. Desenvolvimento de um índice hidrológico para aplicação em estudos de 574 
distribuição da prevalência de esquistossomose em Minas Gerias. Anais XIII Simpósio 575 
Brasileiro de Sensoriamento Remoto, n. January, p. 2589–2595, 2007.  576 

FORD, T. E. et al. Using satellite images of environmental changes to predict infectious disease 577 
outbreaks. Emerging Infectious Diseases, v. 15, n. 9, p. 1341–1346, 2009.  578 

FOX, J. Applied regression and generalized linear models. . In: Applied regression analysis and 579 
generalized linear models. 2. ed. Thousand Oaks, CA, US: Sage Publications, Inc, 2008. p. 379–580 
424.  581 

FREITAS, C. M. DE et al. Desastres naturais e saúde : uma análise da situação do Brasil. Ciência 582 
& Saúde Coletiva, v. 19, n. 9, p. 3645–3656, 2015.  583 

FUNK, C. et al. The climate hazards infrared precipitation with stations - a new environmental 584 
record for monitoring extremes. Scientific Data 2, v. 2, 8. 2015.  585 

FUNK, C. C. et al. A quasi-global precipitation time series for drought monitoring: U.S. 586 
Geological Survey Data Series 832. Usgs, n. January, p. 4, 2014.  587 

GALVEZ, J. A.; NIELL, F. X. Sedimentation and Mineralization of Seston in a eutrophic 588 
reservoir, with a tentative sedimentation model. . In: STRASKRABA, M.; TUNDISI, J. G.; 589 
DUNCAN, A. (Eds.). . Developments in Hydrology: Comparative Reservoir Limnology and 590 
Water Quality Management. Málaga: KLUWER ACADEMIC PUBL, SPUIBOULEVARD 50, PO BOX 591 
17, 3300 AA DORDRECHT, NETHERLANDS, 1993. p. 119–126.  592 

GORELICK, N. et al. Google Earth Engine: Planetary-scale geospatial analysis for everyone. 593 
Remote Sensing of Environment, v. 202, p. 18–27, 2017.  594 

GUIMARAENS, M. A. DE; CODEÇO, C. T. Experiments with mathematical models to simulate 595 
hepatitis A population dynamics under different levels of endemicity. Caderno de Saúde 596 
Pública, v. 21, n. 5, p. 1531–1539, 2005.  597 

GULLÓN, P. et al. Association between meteorological factors and hepatitis A in Spain 2010–598 
2014. Environment International, v. 102, p. 230–235, 2017.  599 

GURJÃO, T. C. M. GENÓTIPOS DO VÍRUS DA HEPATITE A (VHA) DETECTADOS EM DIFERENTES 600 
ECOSSISTEMAS AQUÁTICOS E A RELAÇÃO DO VHA COM OS INDICADORES DE QUALIDADE DA 601 
ÁGUA, BELÉM, PARÁ, BRASIL. . Dissertação (Mestrado em Biologia) — Brasil: Universidade 602 



Federal do Pará, 2015. 603 

HU, Z. et al. Temporal dynamics and drivers of ecosystem metabolism in a large subtropical 604 
Shallow Lake (Lake Taihu). International Journal of Environmental Research and Public 605 
Health, v. 12, n. 4, p. 3691–3706, 2015.  606 

IBGE. CENSO DEMOGRÁFICO 2010: características da população e dos domicílios: resultados 607 
do universo. Sidra: sistema IBGE de recuperação automática, 2010.  608 

IBGE. Estimativas da população residente no Brasil e Unidades da Federação em 1o de julho de 609 
2017Rio de Janeiro: [s.n.], 2017. Disponível em: 610 
<ftp://ftp.ibge.gov.br/Estimativas_de_Populacao/Estimativas_2017/estimativa_dou_2017.pdf611 
>. 612 

IBGE. Divisões politico-administrativas do Brasil. 2019.  613 

JACOBSEN, K. H.; KOOPMAN, J. S. The effects of socioeconomic development on worldwide 614 
hepatitis A virus seroprevalence patterns. International Journal of Epidemiology, v. 34, n. 3, p. 615 
600–609, 2005.  616 

JAMES, L. A.; LECCE, S. A. Impacts of Land-Use and Land-Cover Change on River Systems. . In: 617 
JOHN F. SHRODER (Ed.). . Treatise on Geomorphology. [s.l.], Academic Press, 2013. v. 9p. 768–618 
793.  619 

JUSTICE, C. O. et al. The Moderate Resolution Imaging Spectroradiometer (MODIS): land 620 
remote sensing for global change research. IEEE Transactions on Geoscience and Remote 621 
Sensing, v. 36, n. 4, p. 1228–1249, 1998.  622 

KENDALL, K.; KENDALL, M. Adhesion of Cells , Viruses and Nanoparticles. . [s.l.], SPRINGER, 623 
2012.  624 

KINGMA, D. P.; BA, J. L. Adam: A method for stochastic optimization. 3rd International 625 
Conference on Learning Representations, ICLR 2015 - Conference Track Proceedings, p. 1–15, 626 
2015.  627 

KNOBLAUCH, H. Overview of density flows and turbidity currents. Water Resources Research 628 
Laboratory, n. June, p. 27, 1999.  629 

LEE, Z. P. et al. Secchi disk depth: A new theory and mechanistic model for underwater 630 
visibility. Remote Sensing of Environment, v. 169, n. November, p. 139–149, 2015.  631 

LUZ, P. M. et al. Time series analysis of dengue incidence in Rio de Janeiro, Brazil. American 632 
Journal of Tropical Medicine and Hygiene, v. 79, n. 6, p. 933–939, 2008.  633 

MARCHEGGIANI, S. et al. Risks of water-borne disease outbreaks after extreme events. 634 
Toxicological and Environmental Chemistry, v. 92, n. 3, p. 593–599, 2010.  635 

MAVIGNIER, A. L.; FRISCHKORN, H. Physical, chemical and bacteriological study of Cocó River, 636 
Fortaleza - Ceará. Anais do 1 simpósio de Recursos hídricos do nordeste, Recife, 25-27 nov. 637 
Anais...Fortaleza: 1992 638 

MOLNAR, C. Interpretable Machine Learning: A Guide for Making Black Box Models 639 
Explainable. . 1. ed. [s.l.], Lulu, 2019.  640 

MS. Programa nacional de hepatites virais: avaliação da assistência as hepatites virais no 641 
Brasil 2002. . 1° edição ed. Brasília - DF:, Brasil: MINISTÉRIO DA SAÚDE, 2002.  642 

MS. Programa nacional para a prevenção e o controle das hepatites virais: manual de 643 
aconselhamento em hepatites virais. . [s.l.], MINISTÉRIO DA SAÚDE. SECRETARIA DE 644 



VIGILÂNCIA EM SAÚDE. DEPARTAMENTO DE VIGILÂNCIA EPIDEMIOLÓGICA, 2005. v. Série D 645 

MS. Sistema de informação de agravos de notificação (SINAN): normas e rotinas. . 2. ed. 646 
Brasília: Ministério da Saúde, 2007.  647 

MS. Informe técnico da introdução da vacina adsorvida Hepatite-A (inativada)Brasília, Brasil: 648 
MINISTÉRIO DA SAÚDE, 2014Disponível em: 649 
<http://portalarquivos2.saude.gov.br/images/pdf/2015/junho/26/Informe-t--cnico-vacina-650 
hepatite-A-junho-2014.pdf>. Acesso em: 30 jul. 2018. 651 

MS. HEPATITES virais 2018 (Secretaria de Vigilância em Saúde − Ministério da Saúde, 652 
Ed.)Boletim Epidemiológico, [s.l.], MINISTÉRIO DA SAÚDE; SECRETARIA DE VIGILÂNCIA EM 653 
SAÚDE, 2018Disponível em: 654 
<http://portalarquivos2.saude.gov.br/images/pdf/2018/julho/05/Boletim-Hepatites-655 
2018.pdf>. Acesso em: 7 sep. 2018. 656 

MS. Base de Dados - DATASUS. 2019.  657 

NUNES, H. M. et al. Soroprevalência da infecção pelos vírus das hepatites A, B, C, D e E em 658 
município da região oeste do Estado do Pará, Brasil. Revista Pan-Amazônica de Saúde, v. 7, n. 659 
1, p. 55–62, 2016.  660 

ODY, A. et al. Potential of high spatial and temporal ocean color satellite data to study the 661 
dynamics of suspended particles in a micro-tidal river plume. Remote Sensing, v. 8, n. 3, 2016.  662 

OLIVEIRA, A. R. M. DE et al. ESTIMATION ON THE CONCENTRATION OF SUSPENDED SOLIDS 663 
FROM TURBIDITY IN THE WATER OF TWO SUB-BASINS IN THE DOCE RIVER BASIN monitoring , 664 
variables Knowing the relationship between the total suspended solids concentration ( TSS ), 665 
turbidity in the waters , a. Engenharia Agrícola, v. 38, n. 5, p. 751–759, 2018.  666 

PARSONS, K. Human Thermal Enviroments. . 2. ed. London, England: Taylor & Francis, 2003.  667 

PATEL, K. Of Mosquitoes and Models : Tracking Disease by Satellite. Disponível em: 668 
<https://earthobservatory.nasa.gov/features/disease-vector?src=eoa-features>. Acesso em: 669 
22 jul. 2020.  670 

PAVLOV, Y. L. Random forests. Random Forests, p. 1–122, 2019.  671 

PEDREGOSA, F. et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning 672 
Research, v. 12, p. 2825–2830, 2011.  673 

PEDREGOSA FABIAN et al. Scikit-learn: Machine Learning in Python Gaël Varoquaux Bertrand 674 
Thirion Vincent Dubourg Alexandre Passos PEDREGOSA, VAROQUAUX, GRAMFORT ET AL. 675 
Matthieu Perrot. Journal of Machine Learning Research, v. 12, p. 2825–2830, 2011.  676 

PEREIRA, F. E. L.; GONÇALVES, C. S. Hepatite A. Revista da Sociedade Brasileira de Medicina 677 
Tropical, v. 36, n. 3, p. 387–400, 2003.  678 

PETRERE-JR, M.; FRIEDMAN, J. Greedy Function Approximation: A Gradient Boosting Machine. 679 
The Annals of Statistics, v. 29, n. 5, p. 1189–1232, 2000.  680 

RAMALHO, H. D. A caracterização do município como entidade federativa. . . 2020, p. 1–20.  681 

RODRIGUES, T. et al. Retrieving Total Suspended Matter in Tropical Reservoirs Within a 682 
Cascade System with Widely Differing Optical Properties. IEEE Journal of Selected Topics in 683 
Applied Earth Observations and Remote Sensing, v. 10, n. 12, p. 5495–5512, 2017.  684 

ROGERS, D. J. Satellites, Space, Time and the African Trypanosomiases. Advances in 685 
Parasitology, v. 47, 2000.  686 



SAINT-EXUPÉRY, A. DE et al. The Shuttle Radar Topography Mission. Reviews of Geophysics, v. 687 
45, n. 2, p. 248, 2007.  688 

SANTOS, K. D. S. et al. Perfil da hepatite A no município de Belém, Pará, Brasil. REvista visa em 689 
debate, v. 7, n. 2, p. 18–27, 2019.  690 

SIMONS, D. B.; SENTÜRK, F. Sediment transport technology. . Fort Collins, USA, USA: Water 691 
Resources Publications, 1976. v. 1 692 

SMITH, K. R. et al. Human health: Impacts, adaptation, and co-benefits. Climate Change 2014 693 
Impacts, Adaptation and Vulnerability: Part A: Global and Sectoral Aspects, p. 709–754, 694 
2015.  695 

SRTM. The Shuttle Radar Topography Mission (SRTM) Collection User Guide. p. 1–17, 2015.  696 

THORNTON, K. W. Sedimentary Processes. . In: Reservoir Limnology: Ecological Perspectives. 697 
[s.l.], John Wiley & Sons, 1990. p. 43–69.  698 

U.S. GEOLOGICAL SURVEY. Landsat 8 Surface Reflectance Code (LASRC) Poduct Guide. (No. 699 
LSDS-1368 Version 2.0). n. May, p. 40, 2019.  700 

UN. Climate Change: Impacts, Vulnerabilities and Adaptation in Developing Countries.United 701 
Nations Framework Convention on Climate Change, [s.l: s.n.], 2007Disponível em: 702 
<http://unfccc.int/resource/docs/publications/impacts.pdf>. 703 

UNESCO. Sedimentation problems in river basins. . In: Studies and reports in hydrology. Paris, 704 
France: [s.n.], 1982. . p. 152.  705 

UNPINGCO, J. Python for probability, statistics, and machine learning. . [s.l: s.n.], 2016.  706 

VIRTANEN, P. et al. SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. 707 
Nature Methods, 2020.  708 

VOGEL, R. W.; MCMARTIN, D. E. Probability Plot Goodness‐of‐Fit and Skewness Estimation 709 
Procedures for the Pearson Type 3 Distribution. Water Resources Research, v. 27, n. 12, p. 710 
3149–3158, 1991.  711 

WAN, Z., HOOK, S., HULLEY, G. MOD11A2 MODIS/Terra Land Surface Temperature/Emissivity 712 
8-Day L3 Global 1km SIN Grid V006 [Data set]. 2015.  713 

WASSERMAN, L. All of Statistics: A Concise Course in Statistical Inference. . [s.l.], Springer 714 
Berlin Heidelberg, 2009. v. 46 715 

WHO. Protecting health from climate change: connecting science, policy and peopleWHO 716 
Library Cataloguing-in-Publication Data, Denmark: World Health Organization, 2009Disponível 717 
em: 718 
<https://apps.who.int/iris/bitstream/handle/10665/44246/9789241598880_eng.pdf;jsessionid719 
=76ECF990F9BB0FB66A05CEF32C24613C?sequence=1>. Acesso em: 10 feb. 2020. 720 

WHO. Evidence based recommendations for use of hepatitis A vaccines in immunization 721 
services : Background paper for SAGE discussions. n. October, 2011.  722 

WHO. Gender, climate change and healthWHO Library Cataloguing-in-Publication Data, [s.l.], 723 
WHO Press, 2014Disponível em: 724 
<https://apps.who.int/iris/bitstream/handle/10665/144781/9789241508186_eng.pdf;jsessioni725 
d=FD60C4C0643A7E9306E66D67944C458B?sequence=1>. Acesso em: 10 feb. 2020. 726 

WHO. WHO: Viral Hepatitis 2016-2021[s.l: s.n.], 2016 727 



WHO. Hepatitis A. Disponível em: 728 
<https://www.who.int/immunization/diseases/hepatitisA/en/>. Acesso em: 8 may. 2019.  729 

WILDE, P. DE. Neural Network Models: theory and projects. . 2. ed. [s.l.], Springer, 2013. v. 730 
369 731 

Supporting Information 732 

The best hyper-parameters of each evaluated regression model are presented in Table 733 

3. 734 

Table 3: Best hyper-parameter settings of the grid search analyses of each tested model. 735 

Models HL 
Learning 

rate 

Leaf 

size 

Min 

samples 

per leaf 

Nearest 

neighbors 

Max 

depth 

N 

estimators 

GLM N/A N/A N/A N/A N/A N/A N/A 

MPL ( 3, 4) 0.001 N/A N/A N/A N/A N/A 

GB N/A 0.1 N/A N/A N/A 17 188 

DT N/A N/A N/A N/A N/A N/A N/A 

 HGB  N/A 0.05 150 13 N/A 20 N/A 

HL: hidden layers - (N° of neurons per layer) 736 

“N/A” indicates a hyper-parameter that is not applicable to a given model. 737 


