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Abstract

Solar-Induced chlorophyll Fluorescence (SIF) has previously been shown to strongly correlate with gross primary productivity

(GPP), however this relationship has not yet been quantified for the recently launched TROPOspheric Monitoring Instrument

(TROPOMI). Here we use a Gaussian mixture model to develop a parsimonious relationship between SIF from TROPOMI and

GPP from flux towers across the conterminous United States (CONUS). The mixture model indicates the SIF-GPP relationship

can be characterized by a linear model with two terms. We then estimate GPP across CONUS at 500-m spatial resolution over

a 16-day moving window. We find that CONUS GPP varies by less than 4% between 2018 and 2019. However, we observe

four extreme precipitation events that induce regional GPP anomalies: drought in west Texas, flooding in the midwestern US,

drought in South Dakota, and drought in California. Taken together, these events account for 28% of the year-to-year GPP

differences across CONUS.
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Abstract18

Solar-Induced chlorophyll Fluorescence (SIF) has previously been shown to strongly cor-19

relate with gross primary productivity (GPP), however this relationship has not yet been20

quantified for the recently launched TROPOspheric Monitoring Instrument (TROPOMI).21

Here we use a Gaussian mixture model to develop a parsimonious relationship between22

SIF from TROPOMI and GPP from flux towers across the conterminous United States23

(CONUS). The mixture model indicates the SIF-GPP relationship can be characterized24

by a linear model with two terms. We then estimate GPP across CONUS at 500-m spa-25

tial resolution over a 16-day moving window. We find that CONUS GPP varies by less26

than 4% between 2018 and 2019. However, we observe four extreme precipitation events27

that induce regional GPP anomalies: drought in west Texas, flooding in the midwest-28

ern US, drought in South Dakota, and drought in California. Taken together, these events29

account for 28% of the year-to-year GPP differences across CONUS.30

Plain Language Summary31

Gross primary productivity is the total amount of CO2 taken up by plants during32

photosynthesis and represents one of the main drivers of variability in atmospheric CO2.33

Plants emit a small amount of light during the process of photosynthesis, this is known34

as “solar-induced chlorophyll fluorescence” (SIF). We can measure this SIF signal from35

space and use it to study the biosphere. Here we build a high-resolution estimate of gross36

primary productivity over the United States using satellite measurements of SIF from37

2018 through 2019. We find the major drivers of variability in gross primary productiv-38

ity across the US were drought in west Texas, flooding in the midwestern US, drought39

in South Dakota, and drought in California.40

1 Introduction41

Terrestrial gross primary productivity (GPP) is the total amount of carbon diox-42

ide (CO2) assimilated by plants through photosynthesis and represents one of the main43

drivers of interannual variability in the global carbon cycle (Le Quéré et al., 2018). As44

such, quantifying the spatiotemporal patterns of terrestrial GPP is critical to understand-45

ing how the carbon cycle will both respond to and influence climate. Work over the past46

decade has shown satellite measurements of solar-induced chlorophyll fluorescence (SIF)47

to correlate strongly with tower-based estimates of GPP (e.g., Frankenberg et al., 2011;48

X. Yang et al., 2015; Sun et al., 2017; Turner et al., 2020; Wang et al., 2020) and are of-49

ten used as a remote-sensing proxy for GPP.50

This relationship between SIF and GPP is typically expressed through a pair of51

light use efficiency models (Monteith, 1972) that relate GPP and SIF to the absorbed52

photosynthetically active radiation (APAR):53

GPP = APAR× ΦCO2 (1)

SIF = APAR× βΦF (2)

where ΦCO2 is the light use efficiency of CO2 assimilation, ΦF is the fluorescence yield,54

and β is the probability of fluoresced photons escaping the canopy. Solving for APAR55

and substituting, we can rewrite GPP as:56

GPP =
ΦCO2

βΦF
SIF. (3)

The derivation follows from Lee et al. (2013), Guanter et al. (2014), Sun et al. (2017),57

and others.58

This seemingly straight forward relationship between SIF and GPP has been widely59

used to infer GPP from measurements of SIF (e.g., Frankenberg et al., 2011; Parazoo60
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et al., 2014; X. Yang et al., 2015; H. Yang et al., 2017; Sun et al., 2017, 2018; Magney61

et al., 2019; Turner et al., 2020) with some work showing that SIF captures more vari-62

ability in GPP than APAR alone (e.g., X. Yang et al., 2015; H. Yang et al., 2017; Mag-63

ney et al., 2019). However, there is much complexity encapsulated in the first term of64

Eq. 3 (ΦCO2
/βΦF). There is an ongoing debate about what exactly SIF is telling us about65

GPP (e.g., Dechant et al., 2020; Marrs et al., 2020) and the spatio-temporal scales at66

which SIF and GPP correlate well.67

Here we focus on the ecosystem-scale relationship between SIF and GPP, as that68

is the relevant observable scale from space-borne instruments. We begin by character-69

izing the relationship between SIF from TROPOMI and GPP from flux towers. Follow-70

ing this, we use this ecosystem-scale relationship to infer GPP at a spatial resolution of71

500-m using TROPOMI SIF measurements and identify drivers of interannual variabil-72

ity in GPP. Previous work has identified effects such as seasonal redistribution (Butterfield73

et al., 2020), drought (e.g., Sun et al., 2015), and flooding (Yin et al., 2020) as impor-74

tant drivers of interannual variability in GPP.75

2 Identifying distinct relationships between SIF and GPP76

We build on our previous work (Turner et al., 2020) downscaling measurements of77

SIF to 500-m spatial resolution. Briefly, the TROPOspheric Monitoring Instrument (TROPOMI;78

Veefkind et al., 2012) is a nadir-viewing imaging spectrometer. TROPOMI has a 2,60079

km swath with a nadir spatial resolution of 5.6 km along track and 3.5 km across track.80

Köhler et al. (2018) presented the first retrievals of SIF from TROPOMI. As in Turner81

et al. (2020), we apply a post hoc bias correction to ensure positivity of monthly aver-82

age values as systematically negative SIF values are non-physical. We downscale indi-83

vidual TROPOMI scenes using the near-infrared reflectance of vegetation index (NIRv)84

that was proposed by Badgley et al. (2017, 2019). We use the MCD43A4.006 (v06) MODIS85

NBAR reflectances (Schaaf et al., 2002) to compute NIRv. Two notable differences from86

Turner et al. (2020) are: 1) the analysis is extended to cover all of CONUS and 2) we87

now use a 16-day moving window, thus including a full orbit cycle in each averaging win-88

dow to minimize effects due to viewing-illumination geometry and noise.89

The extension to CONUS facilitates comparison of TROPOMI SIF retrievals to flux90

tower data over a more representative set of ecosystems and robustly infer the SIF-GPP91

relationship. Specifically, there are 82 AmeriFlux sites (D. Baldocchi et al., 2001) within92

CONUS that reported data in 2018, 2019, or 2020 whereas Turner et al. (2020) only in-93

cluded 11 sites and did not have data from forests. Figure 1 shows the location of these94

82 AmeriFlux sites overlaid on the dominant landcover. These eddy covariance sites pro-95

vide a direct measure of net ecosystem exchange (NEE; CO2 fluxes) (D. D. Baldocchi96

et al., 1988). We use GPP that has been partitioned by the group operating the site. If97

GPP is not provided we compute it using nighttime measurements of NEE as a proxy98

for ecosystem respiration (Reichstein et al., 2005). The AmeriFlux sites used here cover99

10 ecosystems as defined by the International Geosphere-Biosphere Programme: ever-100

green needleleaf forest, deciduous broadleaf forest, mixed forest, grassland, cropland, wet-101

land, woody savanna, savanna, open shrubland, and closed shrubland.102

We characterize the relationship between TROPOMI SIF and AmeriFlux GPP by103

plotting downscaled instantaneous SIF observations against the nearest AmeriFlux GPP104

data in time. Specifically, the 6 steps we take here are: 1) apply the post hoc bias cor-105

rection to the TROPOMI SIF data, 2) find all TROPOMI scenes that cover an Amer-106

iFlux site, 3) downscale TROPOMI scenes to 500-m using MODIS NIRv, 4) construct107

a timeseries of SIF observations from the 500-m grid cell that contains the AmeriFlux108

site, 5) construct a timeseries of AmeriFlux GPP data that are coincident in time with109

the TROPOMI overpass, and 6) regress SIF on GPP with a bisquare regression. The bisquare110

regression was chosen due to robustness against outliers. Additionally, we force the re-111
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Figure 1. Dominant landcover over conterminous United States (CONUS). Colors

show the dominant landcover over CONUS. Classification is based on the 2019 USDA CropScape

database (USDA, 2018). Forests are shown in green croplands in yellow, and wetlands in blue.

Location of 82 AmeriFlux sites used in this study are shown as yellow stars.

gression through the origin based on the physical constraint that GPP should be zero112

if SIF is zero. We observe a linear relationship between SIF and GPP when plotted against113

all ecosystems (Supplemental Figure S1) and when separated by ecosystem (Supplemen-114

tal Figure S2). Notable exceptions are closed shrubland, open shrubland, and savanna115

ecosystems where SIF explains less than 10% of the variability in GPP for AmeriFlux116

sites in those ecosystems due, in part, to a low signal-to-noise ratio.117

Many of the ecosystems exhibit a similar linear relationship between SIF and GPP,118

which begs the question: “what ecosystems have a distinct SIF-GPP relationship?” To119

address this, we bootstrap the bisquare regression for each ecosystem 2000 times. The120

slopes from this bootstrap can be seen in Figure 2. The range of slopes vary from 13 to121

18
(
µmol m−2 s−1

)
/
(
mW m−2 sr−1 s−1

)
with grasslands at the low end and evergreen122

needleleaf forests at the high end. We then use a two component Gaussian mixture model (see,123

for example, Bishop, 2007) to identify clusters of ecosystems with a similar SIF-GPP re-124

lationship. The implementation of our Gaussian mixture model is adapted from Turner125

and Jacob (2015). Parameters of the mixture model are obtained via an iterative expectation-126

maximization algorithm. A drawback of these mixture models is they often find local127

minima. To address this, we repeat the fitting of the mixture model with multiple ini-128

tializations and use simulated annealing to search for a global minimum. We tested a129

range of mixture model sizes and found a mixture of two Gaussians to be the most ro-130

bust. The resulting mixture model is overlaid on the histogram in Figure 2.131

We observe a clustering of ecosystems with SIF-GPP relationships around 16.3
(
µmol m−2 s−1

)
/
(
mW m−2 sr−1 s−1

)
.132

This grouping is the dominant weighting term for wetlands, evergreen needleleaf forest,133

deciduous broadleaf forest, mixed forest, cropland, and woody savanna. We refer to this134

cluster as the “Dominant Cluster” and assume that ecosystems not specifically mentioned135

elsewhere will have a response that is similar to this primary cluster. The other com-136

ponent of the mixture model corresponds to grasslands. Table 1 lists the SIF-GPP re-137

lationships for these two clusters. These relationships can be used to reconstruct GPP138
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Table 1. SIF-GPP relationships for different groupings.

Cluster SIF-GPP relationshipa (si)

Dominant Cluster 16.3 ± 0.4
Grassland 13.7 ± 0.1

aAll SIF-GPP relationships have units of(
µmol m−2 s−1

)
/
(
mW m−2 sr−1 nm−1

)
.

Uncertainty is the diagonal of the covari-
ance matrix for the mixture model.

from TROPOMI SIF as: GPP = SIF × (
∑

i fisi) where si is the SIF-GPP relation-139

ship in Table 1 for the ith cluster and fi is the fraction of a grid cell represented by that140

cluster.141

Figure 2. Identifying distinct SIF-GPP relationships across ecosystems. Histogram

shows the distribution of slopes that map SIF to GPP using a bisquare regression and a 2000

member bootstrap. Colors denote the different ecosystems and triangles at the bottom show the

mean for that ecosystem. Gray distributions are from a two-member Gaussian Mixture Model

and the stars indicate the mean for that component.

TROPOMI is in low earth orbit and only observes a snapshot in time. The equa-142

torial overpass time at nadir is 13:30 local time. By assuming that GPP scales linearly143

with PAR (i.e., Eq. 1) we can compute a correction factor to estimate daily integrated144

GPP. More formally, we scale the instantaneous SIF by the ratio of the integral of the145

cosine of the solar zenith angle (SZA) over the day to cos (SZA) from the TROPOMI146

overpass time. Putting everything together, we estimate daily GPP from TROPOMI SIF147
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observations as:148

GPP(x, y, t) = SIF(x, y, t) · γ
∑

i
sifi(x, y) ·

∫ tf
t0

cos [SZA(x, y, t)] dt

cos [SZA(x, y, ts)]
(4)

where SIF(x, y, t) is the 500-m downscaled SIF using a 16-day moving window, γ is a unit149

conversion from µmol to gC, si is the SIF-GPP relationship inferred from comparison150

with AmeriFlux GPP (see Table 1), fi(x, y) is the fraction of the grid cell represented151

by the ith cluster, SZA is the local solar zenith angle, t0 is sunrise, tf is sunset, and ts152

is the hour corresponding to the TROPOMI overpass time.153

3 Drivers of interannual variations in US gross primary productivity154

Figure 3 shows annual mean GPP across CONUS inferred from TROPOMI SIF155

measurements using Eq. 4. A number of prominent features are visible such as the Cen-156

tral Valley of California, the Snake River Valley in Idaho, and the Adirondack Moun-157

tains in upstate New York. California’s Central Valley and Idaho’s Snake River Valley158

are both major agricultural regions in the western US (e.g., the Central Valley of Cal-159

iforia accounts for more than 15% of irrigated land in the US). The Adirondack Moun-160

tains are a roughly circular dome that rise above the surrounding lowlands, resulting in161

a shorter growing season and lower annual mean GPP. This shortened growing season162

can be seen in an animation of GPP over CONUS (Supplemental Movie S1).163

We observe substantial GPP across the eastern US (delineated here by 98◦W) with164

annual mean values generally in excess of 5 gC/m2/day. This region accounts for less165

than half of the land but more than 70% of the annual mean GPP. This delineation in166

GPP roughly coincides with the location of drylands in CONUS that are more sensitive167

to changes in precipitation; drylands are also projected to expand in future climate (Yao168

et al., 2020). Most of the large year-to-year differences occur in these western US dry-169

lands (see Fig. 3c), a notable exception being a negative GPP anomaly in 2019 relative170

to 2018 that extended across Illinois, Indiana, and Ohio. Here we highlight four precipitation-171

driven GPP anomalies, which taken together, account for 28% of the interannual GPP172

variability across the United States: 1) 2018 drought in west Texas, 2) 2019 midwest-173

ern corn belt flooding, 3) 2018 drought in South Dakota, and 4) 2018 drought in Cal-174

ifornia. Figure 4 summarizes the interannual precipitation differences that we hypoth-175

esize are responsible for explaining these four GPP anomalies.176

The largest positive GPP anomaly in 2019 relative to 2018 was observed across west-177

ern Texas. This single event accounted for 11% of the year-to-year difference in GPP across178

CONUS. From Figure 4a, we observe 50% higher GPP in spring 2019 compared to spring179

2018. This increase in GPP was driven by a lack of precipitation in spring 2018. The cu-180

mulative precipitation from October 2017 through June 2018 was 50% less than Octo-181

ber 2018 through June 2019 (500 mm vs 1000 mm). The other notable difference between182

GPP in 2018 and 2019 was a second peak during fall 2018 that was not present in 2019.183

This second peak coincided with a series of precipitation events beginning in early Septem-184

ber. This tight coupling between GPP and precipitation is expected for dryland systems185

such as west Texas (e.g., Smith et al., 2019). The seasonal GPP dynamics inferred from186

TROPOMI SIF are also present in the MODIS vegetation index NIRv, albeit with slight187

differences in magnitude, implying convergent responses in SIF and NIRv for this ecosys-188

tem.189

The second largest anomaly is the reduction in 2019 GPP relative to 2018 across190

the midwestern corn belt (defined here as Illinois, Indiana, and Ohio) that accounted for191

7% of the year-to-year difference in CONUS GPP. We observe a decrease in the max-192

imum GPP between 2019 and 2018 as well as a two week delay in the timing of the max-193

imum. This anomaly was highlighted in recent work from Yin et al. (2020) who attribute194

the anomaly to flooding in the midwestern US. The flooding delayed planting of crops195
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Figure 3. Interannual variations in gross primary productivity across CONUS.

Map of annual mean GPP for 2018 (panel a) and 2019 (panel b). (Panel c) Map of the differ-

ence in annual mean GPP between 2019 and 2018. Red indicates higher GPP in 2019 and red

indicates higher GPP in 2018. Inset in bottom left corner shows a timeseries of the average GPP

across CONUS for 2018 and 2019.
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Figure 4. Major drivers of interannual variability in CONUS GPP. Black line shows

the TROPOMI-derived GPP over Texas (a), the midwest corn belt (b), South Dakota (c), and

California (d). Blue line shows the cumulative precipitation over the water year as measured by

the GPM satellite. Green line is NIRv from MODIS. Black and Green dotted lines are 2018 GPP

and NIRv superimposed on the 2019 timeseries.
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by two weeks and resulted in decreased carbon uptake across the midwestern corn belt196

and Mississippi Alluvial Valley, where we also observe a negative anomaly in Figure 3c.197

Yin et al. (2020) provide a detailed discussion of these floods and their impacts on crop198

productivity.199

South Dakota exhibits a dipole with positive anomalies in 2019 in the west and neg-200

ative anomalies in the east, again relative to 2018. The negative anomalies in the east201

are driven by the flooding events discussed above and in Yin et al. (2020). However, the202

positive anomaly in western portion of the state is the dominant term. This positive anomaly203

is driven by a series of summer precipitation events that served to extend the growing204

season across the western plains. From Figure 4c, we can see three precipitation events205

throughout the mid-to-late summer that coincide with pauses in senesence: mid-July,206

early August, and mid-September. As with Texas, this highlights the tight coupling be-207

tween GPP and precipitation for dryland systems. In toto, these precipitation events served208

to increase statewide GPP in 2019 relative to 2018.209

The final notable anomaly is California’s positive GPP anomaly in 2019. 2018 was210

a mild drought in California with ∼80% of the state being classified as abnormally dry;211

2019 had 50% more precipitation during the water year than 2018 (Figure 4c). Two con-212

sequences of this drought in 2018 were: a delayed onset of photosynthesis and a mid-summer213

senescence. The onset of photosynthesis in 2018 coincided with a series of atmospheric214

rivers that delivered about a third of the total precipitation that year, indicating a wa-215

ter limitation up to that point. In contrast, 2019 had ample precipitation through the216

winter and we observe both an earlier onset of photosynthesis and an extension of the217

growing season into the fall. Evergreen forests are the main contributor to the SIF sig-218

nal during the summer and fall (Turner et al., 2020) and, as such, will be more sensi-219

tive to the accumulated precipitation. The spatial pattern of the differences in August-220

November GPP (Fig. S3) strongly correlate with evergreen forests.221

In contrast to the anomalies presented earlier, the SIF-derived GPP and MODIS-222

based vegetation index (NIRv) show divergent seasonal dynamics for California. NIRv223

shows small differences between 2018 and 2019 with a strong similarity to the 2019 SIF-224

derived GPP. Vegetation indices estimate photosynthetic capacity provided optimal soil225

moisture, temperature, and PAR are known (Sellers, 1985). As such, this suggests that226

we observed a down-regulation of photosynthesis from evergreen forests in response to227

a water limitation during fall 2018, whereas these forests were close to photosynthetic228

capacity in fall 2019 resulting in a similar seasonality to 2018 and 2019 NIRv. Sims et229

al. (2014) also report a low sensitivity of MODIS vegetation indices to drought stress in230

forests.231

4 Conclusions232

We have developed a parsimonious relationship between measurements of SIF from233

TROPOMI and GPP inferred from flux towers. This relationship allows for estimation234

of GPP directly from TROPOMI SIF measurements. We combine this SIF-GPP rela-235

tionship with work downscaling TROPOMI data to 500-m spatial resolution to construct236

estimates of GPP across the conterminous United States in 2018 and 2019. Our estimate237

of US GPP varies by less than 4% between 2018 and 2019. We do, however, observe large238

regional anomalies that are driven by extreme precipitation events. Namely, west Texas,239

South Dakota, and California experienced droughts in 2018 while the midwestern US corn240

belt states (Illinois, Indiana, and Ohio) experienced flooding in 2019. Taken together,241

these four events account for 28% of the year-to-year variability in GPP across the con-242

terminous United States.243

The impact of the west Texas drought, South Dakota drought, and midwestern flood-244

ing are observed in other remote-sensing measures of photosynthetic capacity such as NIRv245
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while the California drought shows a divergent result using SIF; the divergent responses246

are driven by specific ecosystems such as evergreen forests. Our work suggests that SIF247

provides a measure of photosynthetic activity as opposed to photosynthetic capacity, and248

converge with other remote-sensing measures under non-stressed conditions. Future work249

investigating the response to extreme events across ecosystems may provide additional250

insight into these divergent responses in remote-sensing measurements related to pho-251

tosynthesis.252

Acknowledgments253

We are grateful to the team that has realized the TROPOMI instrument, consisting of254

the partnership between Airbus Defence and Space, KNMI, SRON, and TNO, commis-255

sioned by NSO and ESA. We acknowledge the following AmeriFlux sites for their data256

records: US-ALQ, US-ARM, US-Bi1, US-Bi2, US-CF1, US-CF2, US-CF3, US-CF4, US-257

CS1, US-CS2, US-CS3, US-EDN, US-GLE, US-Hn2, US-Hn3, US-Ho1, US-JRn, US-Jo2,258

US-KS3, US-Los, US-Me2, US-Me6, US-Men, US-Mpj, US-MtB, US-Myb, US-NC2, US-259

NC3, US-NC4, US-Rls, US-Rms, US-Ro4, US-Ro5, US-Ro6, US-Rwf, US-Rws, US-SRG,260

US-SRM, US-Seg, US-Ses, US-Sne, US-Snf, US-Syv, US-Ton, US-Tw1, US-Tw4, US-Tw5,261

US-UMd, US-Var, US-Vcm, US-Vcp, US-WCr, US-Whs, US-Wjs, US-Wkg, US-xAB, US-262

xBR, US-xCP, US-xDC, US-xDL, US-xHA, US-xJE, US-xJR, US-xKA, US-xKZ, US-263

xNG, US-xNQ, US-xRM, US-xSE, US-xSL, US-xSP, US-xSR, US-xST, US-xTE, US-xUK,264

US-xUN, US-xWD, US-xWR, US-xYE. In addition, funding for AmeriFlux data resources265

was provided by the U.S. Department of Energy’s Office of Science. Funding: AJT was266

supported as a Miller Fellow with the Miller Institute for Basic Research in Science at267

UC Berkeley. This research was funded by grants from the Koret Foundation and NASA268

80NSSC19K0945 for support of the computational resources. Part of this research was269

funded by the NASA Carbon Cycle Science program (grant NNX17AE14G). TROPOMI270

SIF data generation by PK and CF is funded by the Earth Science U.S. Participating271

Investigator program (grant NNX15AH95G). This research used the Savio computational272

cluster resource provided by the Berkeley Research Computing program at the Univer-273

sity of California, Berkeley (supported by the UC Berkeley Chancellor, Vice Chancel-274

lor for Research, and Chief Information Officer). Author contributions: AJT wrote275

the text with feedback from all authors. PK and CF performed the TROPOMI SIF re-276

trievals. AJT downscaled the SIF data, conducted the AmeriFlux analysis, and drafted277

the figures. All authors contributed to the discussion and analysis. Competing inter-278

ests: The authors declare no competing interests. Data and materials availability:279

Daily gridded 500-m TROPOMI SIF and GPP data from February 1, 2018 through June280

15, 2020 is temporarily available on Google Drive here: “https://bit.ly/2GHEOOq”, and281

will be uploaded to ORNL DAAC at acceptance.282

References283

Badgley, G., Anderegg, L. D. L., Berry, J. A., & Field, C. B. (2019). Terrestrial284

Gross Primary Production: Using NIRV to Scale from Site to Globe. Global285

change biology . doi: 10.1111/gcb.14729286

Badgley, G., Field, C. B., & Berry, J. A. (2017). Canopy near-infrared reflectance287

and terrestrial photosynthesis. Sci Adv , 3 (3), e1602244. doi: 10.1126/sciadv288

.1602244289

Baldocchi, D., Falge, E., Gu, L., Olson, R., Hollinger, D., Running, S., . . . Wofsy,290

S. (2001). FLUXNET: A New Tool to Study the Temporal and Spatial Vari-291

ability of Ecosystem–Scale Carbon Dioxide, Water Vapor, and Energy Flux292

Densities. Bulletin of the American Meteorological Society , 82 (11), 2415-2434.293

doi: 10.1175/1520-0477(2001)082〈2415:fantts〉2.3.co;2294

Baldocchi, D. D., Hicks, B. B., & Meyers, T. P. (1988). Measuring Biosphere-295

Atmosphere Exchanges of Biologically Related Gases with Micrometeorological296

–10–



manuscript submitted to Geophysical Research Letters

Methods. Ecology , 69 (5), 1331-1340. doi: 10.2307/1941631297

Bishop, C. M. (2007). Pattern Recognition and Machine Learning (1st ed.).298

Springer.299

Butterfield, Z., Buermann, W., & Keppel-Aleks, G. (2020). Satellite observations re-300

veal seasonal redistribution of northern ecosystem productivity in response to301

interannual climate variability. Remote Sensing of Environment , 242 , 111755.302

doi: 10.1016/j.rse.2020.111755303

Dechant, B., Ryu, Y., Badgley, G., Zeng, Y., Berry, J. A., Zhang, Y., . . . Moya, I.304

(2020). Canopy structure explains the relationship between photosynthesis and305

sun-induced chlorophyll fluorescence in crops. Remote Sensing of Environment ,306

241 , 111733. doi: 10.1016/j.rse.2020.111733307

Frankenberg, C., Butz, A., & Toon, G. C. (2011). Disentangling chlorophyll fluo-308

rescence from atmospheric scattering effects in O2A-band spectra of reflected309

sun-light. Geophysical Research Letters, 38 (3). doi: 10.1029/2010gl045896310

Guanter, L., Zhang, Y., Jung, M., Joiner, J., Voigt, M., Berry, J. A., . . . Griffis,311

T. J. (2014). Global and time-resolved monitoring of crop photosynthe-312

sis with chlorophyll fluorescence. Proceedings of the National Academy313

of Sciences of the United States of America, 111 (14), E1327-33. doi:314

10.1073/pnas.1320008111315
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