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Abstract

Geodetic fault slip inversions have been generally performed by employing a least squares method with a spatial smoothing

constraint. However, this conventional method has various problems: difficulty in strictly estimating non-negative solutions,

assumption that unknowns follow the Gaussian distributions, unsuitability for expressing spatially non-uniform slip distribu-

tions, and high calculation cost for optimizing many hyper-parameters. Here, we have developed a trans-dimensional geodetic

slip inversion method using the reversible-jump Markov chain Monte Carlo (rj-MCMC) technique to overcome the problems.

Because sub-fault locations were parameterized by the Voronoi partition and were optimized in our approach, we can estimate

a slip distribution without the spatial smoothing constraint. Moreover, we introduced scaling factors for observational errors.

We applied the method to the synthetic data and the actual geodetic observational data associated with the 2011 Tohoku-oki

earthquake and found that the method successfully reproduced the target slip distributions including a spatially non-uniform

slip distribution. The method provided posterior probability distributions with the unknowns, which can express a non-Gaussian

distribution such as large slip with low probability. The estimated scaling factors properly adjusted the initial observational

errors and provided a reasonable slip distribution. Additionally, we found that checkerboard resolution tests were useful to

consider sensitivity of the observational data for performing the rj-MCMC method. It is concluded that the developed method

is a powerful technique to solve the problems of the conventional inversion method and to flexibly express fault-slip distributions

considering the complicated uncertainties.
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Abstract 18 

Geodetic fault slip inversions have been generally performed by employing a least squares 19 

method with a spatial smoothing constraint. However, this conventional method has various 20 

problems: difficulty in strictly estimating non-negative solutions, assumption that unknowns 21 

follow the Gaussian distributions, unsuitability for expressing spatially non-uniform slip 22 

distributions, and high calculation cost for optimizing many hyper-parameters. Here, we have 23 

developed a trans-dimensional geodetic slip inversion method using the reversible-jump Markov 24 

chain Monte Carlo (rj-MCMC) technique to overcome the problems. Because sub-fault locations 25 

were parameterized by the Voronoi partition and were optimized in our approach, we can 26 

estimate a slip distribution without the spatial smoothing constraint. Moreover, we introduced 27 

scaling factors for observational errors. We applied the method to the synthetic data and the 28 

actual geodetic observational data associated with the 2011 Tohoku-oki earthquake and found 29 

that the method successfully reproduced the target slip distributions including a spatially non-30 

uniform slip distribution. The method provided posterior probability distributions with the 31 

unknowns, which can express a non-Gaussian distribution such as large slip with low 32 

probability. The estimated scaling factors properly adjusted the initial observational errors and 33 

provided a reasonable slip distribution. Additionally, we found that checkerboard resolution tests 34 

were useful to consider sensitivity of the observational data for performing the rj-MCMC 35 

method. It is concluded that the developed method is a powerful technique to solve the problems 36 

of the conventional inversion method and to flexibly express fault-slip distributions considering 37 

the complicated uncertainties. 38 

 39 

1 Introduction 40 

Precise estimation on fault slip distributions is important to understand slip behaviors 41 

during earthquake cycles. Geodetic slip inversions have been generally conducted to estimate 42 

fault slip distributions, and a conventional geodetic slip inversion is performed by a least squares 43 

method (LSM). In this conventional approach, a smoothing constraint on fault-slips (e.g., 44 

Laplacian regulation) is generally provided to avoid overfitting. Then, strength of smoothing is 45 

determined by a criteria such as a trade-off L-curve [e.g., Du et al., 1992] and Akaike’s Bayesian 46 
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Information Criterion (ABIC) [e.g., Yabuki & Matsu’ura, 1992]. However, some problems in the 47 

LSM-based geodetic slip inversion have been noted: (1) it is difficult to strictly impose a direct 48 

constraint (such as non-negative constraint) [Fukuda & Johnson, 2008], (2) it is difficult to 49 

evaluate estimation error when unknowns  follow non-Gaussian distributions, (3) it is unsuitable 50 

for estimating a spatially heterogeneous fault slip distribution because spatially uniform 51 

smoothing is applied, and (4) it takes effort to adjust the hyper-parameters when the multiple 52 

hyper-parameters are introduced, such as weighting hyper-parameters for multiple data and 53 

smoothing hyper-parameters for multiple time-windows in the viscoelastic inversion [Tomita et 54 

al., 2020].  55 

 To overcome the above problems, various approaches have been developed. Although 56 

LSMs without using the simple Laplacian regulation have been investigated, such as utilizing 57 

spectral decomposition [e.g., Hori, 2001; Jin et al., 2007; Xu et al., 2018] and promoting sparse 58 

solutions [e.g., Evans & Meade, 2012], they are not suitable for solving problems (1) and (2). 59 

Meanwhile, slip inversion methods using a Markov chain Monte Carlo (MCMC) technique have 60 

been well developed recently [e.g., Fukuda & Johnson, 2008; Minson et al., 2013]. MCMC-61 

based slip inversions can treat a direct constraint strictly and express posterior probability 62 

distributions of model parameters [Fukuda & Johnson, 2008]. Furthermore, they can provide 63 

posterior probability distributions of hyper-parameters as well as those of the model parameters 64 

[e.g., Fukuda & Johnson, 2008; Kubo et al., 2016], which is an useful solution for the problem 65 

(4). Thus, MCMC is a useful technique to solve the problems (1), (2), and (3). Although most of 66 

the previous MCMC-based slip inversion studies have introduced the Laplacian regulation as 67 

similar to the LSM-based slip inversions, MCMC-based slip inversions without using the 68 

Laplacian regulation have been recently developed to solve the problem (3). One approach is that 69 

the number and size of sub-faults are optimized based on the spatial resolution of observational 70 

data prior to the MCMC sampling [Kimura et al., 2019]; however, a spatially smooth fault slip 71 

distribution cannot be resolved by this method. Another idea is introduction of a complicated 72 

regulation such as von Karman regulation [e.g., Amey et al., 2018]. 73 

 Here, we investigated a trans-dimensional geodetic slip inversion method using a 74 

reversible jump MCMC (rj-MCMC) technique [Green, 1995]. Through the trans-dimensional 75 

approach, number of model parameters is automatically adjusted based on the sensitivity of 76 

observational data and model complexity. Among the applications of the trans-dimensional 77 
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approach to geophysics [e.g., Bodin & Sambridge, 2009; Hawkins & Sambridge, 2015], spatial 78 

model parameters are divided into groups by a parameterization technique (e.g., Voronoi 79 

partition, Figure 1). For the Voronoi partition parameterization, model space is discretized using 80 

the Voronoi nuclei (Figure 1), and number and spatial positions of the nuclei are optimized 81 

through rj-MCMC sampling [Bodin and Sambridge, 2009]. Considering this optimization, the 82 

trans-dimensional approach can be regarded as a sparse modeling method. As indicated by Bodin 83 

and Sambridge [2009], ensemble of the rj-MCMC samples can express spatially smooth 84 

distribution of the model parameters without any smoothing constraints. Furthermore, weighting 85 

hyper-parameters for multiple observation data can be introduced in the rj-MCMC technique in 86 

the same manner as conventional MCMC techniques [e.g., Dettmer et al., 2014]. Thus, we 87 

expect that the trans-dimensional approach overcomes all of the above problems. 88 

 For geophysical studies, the trans-dimensional approach has been often applied to explore 89 

underground geophysical structures using seismic wave data [e.g., Bodin & Sambridge, 2009; 90 

Bodin et al. 2012] and electrical resistivity data [e.g., Galetti & Curtis 2018]. Furthermore, the 91 

approach has been also applied to estimate tsunami sources due to a large subduction earthquake 92 

[Dettmer et al., 2016]. However, there are few applications of the approach to estimate fault slip 93 

distributions; for example, Dettmer et al. [2014] and Hallo and Gallovič [2020] investigated a 94 

fault slip distribution using seismic wave data. Although Amey et al. [2019] estimated a fault slip 95 

distribution using geodetic observational data, they utilized the rj-MCMC technique and a von 96 

Karman regulation together to restrict the number of sub-faults with non-zero slip. Thus, the 97 

application of the trans-dimensional geodetic slip inversion has not been well investigated. 98 

One of the chracteristics of the geodetic slip inversion is that we often treat many types of 99 

observational data such as onland GNSS, onland InSAR, offshore GNSS-Acoustic (GNSS-A), 100 

offshore bottom pressure (OBP), and the others. Determination of relative weights among these 101 

various data is an important issue [e.g., Funning et al., 2014]; however, it is difficult optimized 102 

the relative weights by conventional inversion approaches because of computational costs when 103 

types of the observational data are many. This study tried to automalltically adjust many 104 

weighting hyper-parameters through the MCMC sampling process. Moreover, compared with 105 

other geophysical data, the geodetic data have heterogeneity of spatial coverage of observational 106 

sites: dense onshore sites and sparse offshore sites. This heterogeneity provides strong spatial 107 

variation of sensitivity to fault slips. We expect thet the rj-MCMC method can consider such 108 
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spatil variation of the data sensitivity because fault patch sizes are variable depending on the 109 

observational data. Thus, this study tried investigated how the rj-MCMC method works for 110 

various patterns of the observational sites.  111 

In this study, we performed a simple trans-dimensional geodetic slip inversion using the 112 

rj-MCMC method based on the Voronoi partition through synthetic tests and an application to 113 

actual observational data associated with the 2011 Tohoku-oki earthquake. We then assessed 114 

utility of the trans-dimensional inversion approach for analyzing geodetic observational data.  115 

 116 

2 Methods 117 

2.1 Observation equation 118 

We aim to analyze geodetic observational data with multiple time windows or from 119 

multiple observational instruments. An observational equation that links the vector of ground 120 

surface displacements 𝐝 with the vector of fault slips 𝐬 via the matrix of Green’s functions 𝐆 is: 121 

𝐝 = 𝐆𝐬 + 𝐞, (1) 

where 𝐞 is an observational error vector. When we have I types of the observational data and J 122 

components of fault slips (hereafter, called as fault-slip component), Equation (1) is re-written as 123 

follows: 124 

 
𝐝1
⋮
𝐝𝐼

 =  

𝐆1,1 ⋯ 𝐆1,𝐽
⋮ ⋱ ⋮

𝐆𝐼,1 ⋯ 𝐆𝐼,𝐽

  

𝐬1
⋮
𝐬𝐽
 +  

𝐞1
⋮
𝐞𝐼
 ; 

(2) 

for example, if we estimate fault slips in horizontally orthogonal slip directions for coseismic 125 

slip, 𝐽 = 2, or if  we estimate fault slips in horizontally orthogonal slip directions for transient 126 

slip with three time windows,  𝐽 = 2 × 3. 127 

 We consider the observational error vector e obeys an observational covariance matrix 𝐄. 128 

The observational covariance matrix can be expressed by combination of 𝐼  types of the 129 

observational covariance matrices 𝐄𝑖(𝑖 = 1,⋯ , 𝐼) as 130 

𝐞 ∼ 𝐄 =  
𝐄1 ⬚ 𝟎

⬚ ⋱ ⬚
𝟎 ⬚ 𝐄𝐼

 . 

(3) 
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Most of the previous geodetic inversion studies fixed the observational covariance matrix 131 

initially given from instrumental measurement errors. However, considering modeling errors and 132 

the difficulty in assessing instrumental measurement errors, it is reasonable to introduce scale 133 

factors to the individual types of the observational covariance matrices [e.g., Dettmer et al., 134 

2014; Funning et al., 2014]. According to Dettmer et al. [2014], we provided hierarchical scaling 135 

parameters, 𝜆𝑖
2(𝑖 = 1,⋯ , 𝐼) , which multiplies the initial observational covariance matrices 136 

𝐄𝑖
ini(𝑖 = 1,⋯ , 𝐼). As each hierarchical scaling parameter is a positive value, we transformed 𝜆𝑖

2
 137 

into 10−𝛬𝑖  and sampled 𝛬𝑖(𝑖 = 1,⋯ , 𝐼) in same manner as Kubo et al. [2016] (hereafter, 𝛬 is 138 

called as a weighting parameter). Then, Equation (3) is re-written as 139 

𝐞 ∼ 𝐄 =  
𝐄1 ⬚ 𝟎

⬚ ⋱ ⬚
𝟎 ⬚ 𝐄𝐼

 =  
𝜆1
2𝐄1

ini ⬚ 𝟎

⬚ ⋱ ⬚
𝟎 ⬚ 𝜆𝐼

2𝐄𝐼
ini

 =  
10−𝛬1𝐄1

ini ⬚ 𝟎

⬚ ⋱ ⬚
𝟎 ⬚ 10−𝛬𝐼𝐄𝐼

ini

 . 

(4) 

Subseqently, defining 𝐖𝑖
ini = 𝐄ini𝑖

−1
, the weight matrix is written as 140 

𝑾 =  
10𝛬1𝐖1

ini ⬚ 𝟎

⬚ ⋱ ⬚
𝟎 ⬚ 10𝛬𝐼𝐖𝐼

ini

 . 

(5) 

 141 

2.2 Principle of the rj-MCMC method 142 

In the Bayesian framework, all information on unknowns can be expressed by the 143 

probability density function (PDF). From Bayes theorem [Bayes, 1763], a posterior PDF of 144 

unknowns 𝐱 when data 𝐝 are given can be written as 145 

𝑝(𝐱 ∣ 𝐝) =
𝑝(𝐝 ∣ 𝐱)𝑝(𝐱)

𝑝(𝐝)
∝ 𝑝(𝐝 ∣ 𝐱)𝑝(𝐱) 

(6) 

where 𝑝(𝐝 ∣ 𝐱) is a likelihood function of observational data 𝐝 given 𝐱, and 𝑝(𝐱) is the a priori 146 

PDF of 𝐱. The posterior PDF can be written by a proportionality relationship using 𝑝(𝐝 ∣ 𝐱) and 147 

𝑝(𝐱) because 𝑝(𝐝), which is evidence indicating a priori PDF of 𝐝, is independent of 𝐱 [e.g., 148 

Sambridge et al., 2006]. In an ordinary MCMC approach (e.g., the Metropolis-Hasting (MH) 149 

algorithm [Metropolis et al., 1953; Hastings, 1970]), unknowns are updated based on a posterior 150 

PDF. As for the MH algorithm, unknown candidates 𝐱′ are generated from current unknowns 𝒙 151 

by adding perturbation based on a proposal distribution (e.g., uniform or normal distribution). 152 
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Then, an acceptance probability 𝛼𝑀𝐻 is calculated as a ratio of the posterior PDFs when proposal 153 

PDFs 𝑞(𝐱′ ∣ 𝐱) and 𝑞(𝐱 ∣ 𝐱′) are symmetric [e.g., Fukuda & Johnson, 2008; Kubo et al., 2016]: 154 

𝛼MH(𝐱′ ∣ 𝐱) = min  1,
𝑝(𝐱′ ∣ 𝐝)

𝑝(𝐱 ∣ 𝐝)
×
𝑞(𝐱 ∣ 𝐱′)

𝑞(𝐱′ ∣ 𝐱)
 ∝ min  1,

𝑝(𝐱′ ∣ 𝐝)

𝑝(𝐱 ∣ 𝐝)
 . 

(7) 

If 𝛼MH > 𝑢 (𝑢 is a random number generated from a uniform distribution with a range between 0 155 

and 1), the candidates are accepted. The unknown values are sampled during iterative updates of 156 

the unknowns based on the above process; the ensemble of the sampled unknown values 157 

demonstrates the estimates of the unknowns following their posterior PDFs. 158 

 For the rj-MCMC approach, an extended form of the acceptance probability in the MH 159 

algorithm has been generally utilized, which was implemented as the Metropolis-Hasting-Green 160 

(MHG) algorithm [Green, 1995; 2003]. The acceptance probability in the MHG algorithm is 161 

written as 162 

𝛼MHG(𝐱′ ∣ 𝐱) = min  1,
𝑝(𝐱′ ∣ 𝐝)

𝑝(𝐱 ∣ 𝐝)
×
𝑞(𝐱 ∣ 𝐱′)

𝑞(𝐱′ ∣ 𝐱)
×  𝐉   

(8) 

where 𝐉 is the Jacobian for the transformation from 𝐱 to 𝐱′, which evaluates the scale changes 163 

due to a dimensional jump between 𝐱 and 𝐱′. However, we can simply consider  𝐉 = 1 when the 164 

transformed dimension is less than one, such as in a case of the birth/death rj-MCMC method 165 

[e.g., Denison et al., 2002; Bodin & Sambridge, 2009]. In this study, we employed the 166 

birth/death rj-MCMC method. The details of the birth/death rj-MCMC method are denoted in 167 

Section 2-4. Thus, considering Equation (6),  the acceptance probability in this study can be 168 

expressed as following: 169 

𝛼(𝐱′ ∣ 𝐱) = min 1, (𝐩𝐫𝐢𝐨𝐫 𝐫𝐚𝐭𝐢𝐨) × (𝐥𝐢𝐤𝐞𝐥𝐢𝐡𝐨𝐨𝐝 𝐫𝐚𝐭𝐢𝐨) × (𝐩𝐫𝐨𝐩𝐨𝐬𝐚𝐥 𝐫𝐚𝐭𝐢𝐨)  

= min  1,
𝑝(𝐱′)

𝑝(𝐱)
×
𝑝(𝐝 ∣ 𝐱′)

𝑝(𝐝 ∣ 𝐱)
×
𝑞(𝐱 ∣ 𝐱′)

𝑞(𝐱′ ∣ 𝐱)
 . 

(9) 

Like the ordinary MCMC, the unknowns are updated based on the acceptance probability 170 

and are sampled. The practical implementation of the dimensional jump and of the unknowns’ 171 

update is denoted later. 172 

 173 
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2.3 Parameterization of unknowns 174 

 We introduced a set of the Voronoi nuclei to discretize a 2-dimensional fault plane as 175 

shown in Figure 1. The fault plane is covered by sub-faults (black rectangles). Each sub-fault 176 

was classified by distance from the Voronoi nuclei (red circles); this classification demonstrated 177 

the Voronoi cells (colors of sub-faults). The Voronoi nuclei are generated from a nucleus grid 178 

(gray dots). The total number of nucleus grid points is defined as 𝐾grid. Using the Voronoi 179 

partition, the unknowns expressing fault slip distributions are defined as the combination of 180 

locations of the Voronoi nuclei 𝐜 and slips for individual cells 𝐬. Note that the slips 𝐬 are defined 181 

as a partitioned form of 𝐬. Defining the number of the Voronoi nuclei for the 𝑗th fault-slip 182 

component is 𝐾𝑗, the unknown vector for the locations of the Voronoi nuclei 𝐜 can be written as 183 

𝐜 =  

𝐜1
⋮
𝐜𝐽
 =  

𝑐11
⋮
𝑐𝐾𝐽

 . 

(10) 

Note that each nucleus location 𝑐𝑘𝑗  denotes a locational number of the nucleus grid; the 184 

locational number is assigned for each point of the nucleus grid in advance. The unknown vector 185 

for the slips 𝐬 can be written as 186 

𝐬 =  
𝐬1
⋮
𝐬𝐽

 =  

𝑠11
⋮
𝑠𝐾𝐽

 . 

(11) 

 Besides the unknowns expressing fault slip distributions, the number of the Voronoi 187 

nuclei and the weighting parameters also account for unknowns. Defining the number of the 188 

Voronoi nuclei for the 𝑗th fault-slip component is 𝐾𝑗 , the unknown vector for number of the 189 

Voronoi nuclei is expressed as 𝐤 = (𝐾1, ⋯ , 𝐾𝐽) . Furthermore, the unknown vector for the 190 

weighting parameters is defined as 𝐡 = (𝛬1, ⋯ , 𝛬𝐼). Thus, the unknown vector can be finally 191 

written as 192 

𝐱 =  

𝐤
𝐡
𝐜
𝐬

 . 

(12) 

 193 
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2.4 Birth/death rj-MCMC algorithm 194 

 We summarized our birth/death rj-MCMC algorithm as a flowchart in Figure S2. Based 195 

on Bodin and Sambridge [2009] and Galetti and Curtis [2018], we iteratively optimized the 196 

unknowns from initial values by following three steps: (1) “slip update” updating the slip amount 197 

for a randomly chosen Voronoi cell 𝑠𝑘𝑗; (2) “weight update” updating the weighting parameters 198 

𝐡; (3) “Voronoi partition update” updating the number of the Voronoi nuclei 𝐤, the locations of 199 

the Voronoi nuclei 𝐜, and the corresponding slip 𝐬. 200 

 In the step (1), we randomly chose the 𝑘th Voronoi cell of the 𝑗th fault-slip component 201 

with the slip of 𝑠𝑘𝑗. According to Bodin and Sambridge [2009], we generated a new candidate of 202 

the slip parameter 𝑠′𝑘𝑗 as following: 203 

𝑠′𝑘𝑗 = 𝑠𝑘𝑗 + 𝑣𝜎slip (13) 

where 𝑣 is a random coefficient derived from a normal distribution 𝑁(0,1) and 𝜎slip is a constant 204 

denoting the standard deviation of the proposal PDF for the slip. This step is same with the 205 

ordinary MH algorithm and does not involve a dimensional jump. 206 

 In the step (2), we generated a new candidate of the weighting parameters 𝐡′ as 207 

𝐡′ = 𝐡 + 𝜎scale𝐯, (14) 

where 𝐯 is a random coefficient vector (𝐼 dimensions) derived from a normal distribution 𝑁(0,1) 208 

and 𝜎scale is a constant denoting the standard deviation of the proposal PDF for the weighting 209 

parameters. This step is also same the ordinary MH algorithm and does not involve a 210 

dimensional jump. 211 

 We implemented the birth/death algorithm in step (3). According to Bodin and 212 

Sambridge [2009], we performed this step only at every odd iteration loop. Step (3) branches 213 

into three actions: (a) “birth” action that adds a new nucleus is added, (b) “death” action that 214 

chooses one nucleus randomly from the existing nuclei to eliminate, (c) “move” action that 215 

chooses the location of one nucleus randomly from the existing nuclei to relocate. In step (3), we 216 

randomly chose one of the actions with equal probability. The unknowns are updated without the 217 

dimensional jump in the move action, while they are updated with the dimensional jump in the 218 

birth and death actions. We produced a new candidate of the unknowns for each action, and 219 

evaluated the candidates using the acceptance probability. The acceptance ratio is calculated 220 
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based on the formulation of Bodin and Sambridge [2009] and Galetti and Curtis [2018].  The 221 

details of the acceptance probability are written in Text S1. 222 

 In the birth action, we randomly chose a target fault-slip component from 𝐽 components. 223 

Then, we randomly added one nucleus for the target 𝑗th fault-slip component from the 𝐾grid grid 224 

points except the currently existing nuclei listed in  𝐜𝑗. According to this action, the total number 225 

of the nuclei for the 𝑗th fault-slip component was increased by 1 as 𝐾𝑗
′ = 𝐾𝑗 + 1. Then, the 226 

locations of the nuclei were reformed as 227 

𝐜′𝑗 =  
𝐜𝑗
𝑐′𝐾𝑗

′
  

(15) 

where 𝑐′𝐾𝑗
′  is the locational number of the new nucleus. The slips of the nuclei were also 228 

reformed as 229 

𝐬′𝑘𝑗 =  
𝐬𝑗
𝑠′𝐾𝑗

′
  

(16) 

where the slip of the new cell 𝑠′𝐾𝑗
′ was derived from the slip of the existing cell where the new 230 

nucleus was introduced with perturbation. If the nucleus controlling the existing cell is defined as 231 

𝑘𝑗
c, the slip at the new cell 𝑠′𝐾𝑗

′can be written as 232 

𝑠′𝐾𝑗
′ = 𝑠𝑘𝑗

c + 𝑣𝜎jump (17) 

where 𝜎jump is a constant denoting the standard deviation of the proposal PDF for the slip due to 233 

the dimensional jump. 234 

 In the death action, we randomly chose a target fault-slip component from 𝐽 components. 235 

Then, we randomly eliminated one nucleus of the target 𝑗 th fault-slip component from the 236 

currently existing nuclei. According to this action, the total number of the nuclei for the 𝑗th fault-237 

slip component was decreased by 1 as 𝐾𝑗
′ = 𝐾𝑗 − 1. Then, the locations of the nuclei and the 238 

slips of the cells were reformed just excluding the corresponding fault-slip component. 239 

 In the move action, we randomly chose a target fault-slip component from 𝐽 components. 240 

Then, we randomly chose one nucleus from the currently existing nuclei of the target 𝑗th fault-241 

slip component, and relocated its point to another nucleus randomly chosen from the grid points 242 

within specific distances from the original nucleus; the specific distances are defined by 𝑟move
str  243 

and 𝑟move
dip

 in the strike and dip directions, respectively. In this action, the total number of the 244 
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nuclei and the slips were kept 𝐤′ = 𝐤 and 𝐬′ = 𝐬. For the locations of the nuclei 𝐜𝑗
′, they were 245 

kept from the existing locations 𝐜𝑗 except the chosen nucleus. 246 

 After these three steps, we sampled the unknowns with a specific loop interval of the 247 

loops if the number of the iteration loops 𝑛 was over the number of burn-in loops 𝑁burn-in. To 248 

sample well-converged unknowns, the unknowns during the burn-in loops were discarded. As 249 

not all unknowns were updated in a single iteration loop, we only sampled the unknowns with a 250 

specific loop interval. In this study, we sampled every 100th iteration loop based on Bodin and 251 

Sambridge [2009]. Finally, we sampled the unknowns until 𝑛 reached 𝑁all. 252 

 In this study, we performed the above rj-MCMC algorithm for 𝐿  multi-chains with 253 

(multi-chains approach); we assigned different initial values of  𝐱ini for each chain and sampled 254 

the unknowns parallely from the multi-chains. As noted by Brooks et al. [2011] and Somogyvári 255 

and Reich [2019], the multi-chains approach is useful to reduce computational times by parallel 256 

computing compared with a long single-chain approach. Furthermore, calculating the ensemble 257 

of the samples from the multiple chains, we can obtain robust solutions regardless of influence 258 

on the initial values. As the length of each chain in the multi-chains approach is shorter than the 259 

long single-chain approach, the multi-chains approach is relatively sensitive to the length of the 260 

burn-in loops (i.e., degree of convergence). Thus, a parallel tempering technique has been often 261 

employed to accelerate the convergence [e.g., Sambridge, 2013; Dettmer et al., 2014]. However, 262 

this technique has difficulty in properly assigning the number of parallel replicas and their 263 

potential temperatures. Thus, we calculated solutions for the slip by a conventional ABIC-LSM, 264 

𝐬LSM, and produced 𝐿 sets of the initial partitioned solutions 𝐬
ini

 from 𝐬LSM assuming various 265 

distributions of initial Voronoi nuclei ( 𝐜ini, 𝐤ini ). Because 𝐬LSM  can be regarded as well-266 

converged initial values, we can perform the multi-chains approach effectively and simply 267 

without the parallel tempering technique. 𝐬LSM was estimated following Yabuki and Matsu’ura 268 

[1992], and the details of this estimation method are written in Text S2. 269 

 In this study, we uniformly assigned the following configuration of rj-MCMC: 𝐿 =270 

2000, 𝑁burn-in = 1000000, 𝑁all = 1250000, and 𝐾𝑗
ini = 20 (𝑗 = 1,⋯ , 𝐽). Considering that the 271 

unknowns are sampled every 100th iteration loop, we fully obtained 5 × 106 samples from the 272 

multi-chains. Note that the initial distributions of the Voronoi nuclei 𝐜ini  were randomly 273 

generated from the nucleus grid following the number of the initial Voronoi nuclei 𝐤ini . 274 
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Moreover, we basically assigned the minimum and maximum numbers of the Voronoi nuclei for 275 

each fault-slip component as 𝐾𝑗
min = 5 and 𝐾𝑗

max = 50 (𝑗 = 1,⋯ , 𝐽), respectively, which are 276 

used in Equation (S2) and (S3) of Text S1. We also assigned the minimum and maximum values 277 

of the weighting parameters as 𝛬𝑖
min = −10 and 𝛬𝑖

max = 10 (𝑖 = 1,⋯ , 𝐼), respectively for the 278 

all estimations, which are used in Equation (S8) and (S9) of Text S1. 279 

 280 

3 Synthetic tests 281 

3.1 Model configuration 282 

Here, we investigated performance of the trans-dimensional geodetic inversion using the 283 

rj-MCMC technique through synthetic tests assuming fault slips in a subduction zone. A plate 284 

interface with uniform dip of 15° in a semi-infinite space was assumed as shown in Figure S2. 285 

The fault domain was approximately 500 km (along strike) × 310 km (along dip), and its upper 286 

limit reached to the surface corresponding to the trench. We then laid sub-faults with size of 287 

approximately 20 km × 20.7 km on the plate interface, and total number of the sub-faults is 375. 288 

We located randomly distributed 150 synthetic observational sites within the a range of 200–400 289 

km from the trench as onshore GNSS sites. Moreover, we located synthetic observational sites 290 

within the a range of 0–200 km from the trench as offshore GNSS-A sites. Three patterns of the 291 

offshore observational site distribution were assumed: (1) no site, (2) five randomly distributed 292 

sites, and (3) twenty-five randomly distributed sites. We calculated synthetic displacements at 293 

these sites due to a given fault slip distribution, and then we obtained synthetic observational 294 

data by adding observational errors. 295 

 296 

3.2 Synthetic test 1: response to smooth coseismic slip 297 

 In the synthetic test, a smooth coseismic slip distribution with maximum slip of ~700 cm 298 

was provided to calculate synthetic observational data for three site patterns (“Target” column of 299 

Figure 2). In this test, we assumed an elastic media [Okada, 1992], and we calculated the Green 300 

functions in the directions of rake = 45° and of rake = 135° (i.e., the fault-slip components were 301 
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defined as 𝐽 = 2, and total number of the unknowns for slip is 375 × 2 = 750). Then, imposing 302 

non-negative constraints on the slip, we restricted the slip rake within the range from 45° to 135° 303 

in the same manner as Miyazaki et al. [2011]. We assigned the minimum and maximum slips as 304 

𝑠𝑗
min

= 0  cm  and 𝑠𝑗
max

= 3000  cm  (𝑗 = 1,2) , respectively. The observational errors were 305 

added as the Gaussian noises of 306 

 𝜎onhor , 𝜎onver , 𝜎offhor , 𝜎offver = (1, 2, 3, 6)  cm  (18) 

indicating standard deviations for horizontal components of the onshore sites, vertical component 307 

of the onshore sites, horizontal components of the offshore sites, and vertical component of the 308 

offshore sites, respectively. The standard deviations for the offshore sites are given following the 309 

case of the 2005 Miyagi-oki earthquake shown in Sato et al. [2013]. We provided single 310 

weighting parameter uniformly scaling all data for simplicity (i.e., 𝐼 = 1). Because we assigned a 311 

diagonal matrix for the initial observational covariance matrix 𝐄1
ini following Equation (18), the 312 

weighting parameter should be zero (i.e., the weight matrix should be on the initial condition: 313 

𝐖1 = 100𝐖1
ini). 314 

 From the synthetic observational data, we estimated fault-slip distributions by the ABIC-315 

LSM and the rj-MCMC method, which are shown in “ABIC-LSM” and “Rj-MCMC” columns of 316 

Figure 2, respectively. Note that the “Error” column of ABIC-LSM demonstrates standard 317 

deviations calculated from diagonal components of the covariance matrix. For the rj-MCMC 318 

results, we used two methods to express a slip distribution: mean and median of the samples. 319 

Moreover, we calculated the standard deviation of the samples (“SD” column) and the 320 

normalized interquartile range (NIQR) of samples (“NIQR” column) as estimation errors. The 321 

synthetic (without the observational errors), observational (with the observational errors), and 322 

calculated (from the estimated model) displacements are shown in Figure 2 as magenta, black, 323 

and blue vectors.  324 

 Figure 3c shows histograms of the unknowns for site pattern 2. The histograms 325 

demonstrated that total number of the unknowns for slip was reduced from 750 to ~10–12 by the 326 

Voronoi partition and that the weighting parameter was properly kept at zero. For the slip 327 

unknowns, the histograms at three sub-faults shown in Figure 3a are demonstrated for example. 328 

The slip at the 𝑚th sub-fault was calculated as 𝑠𝑚 =  𝑠𝑚1
2 + 𝑠𝑚2

2  when defining 𝑠𝑚𝑗
 as the slip 329 

at the 𝑚th sub-fault in the 𝑗th fault-slip component. Figures S3 and S4 also show histograms for 330 
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the unknowns in the cases for site patterns 1 and 3, respectively. The histograms at the sub-fault 331 

A are similar to the Gaussian distribution in all cases of the site patterns, whereas we can find the 332 

histograms with multiple peaks or those with a biased distribution at the sub-fault B and at sub-333 

fault C, respectively, in the cases of the site patterns 1–2. These histograms following non-334 

Gaussian distributions are considered to be caused by the lack of the offshore observational sites 335 

as the slip amounts at these sub-fault were not well constrained. Although we showed the 336 

standard deviation of the samples to visualize estimation errors (“SD” in Figure 2), the standard 337 

deviation of the samples potentially assumes a Gaussian distribution of the samples. Thus, to 338 

visualize the estimation error following a non-Gaussian distribution, we also showed the map of 339 

NIQR. If the observational error follows a Gaussian distribution, NIQR corresponds to SD; 340 

therefore, we can roughly interpret that the estimation errors are close to Gaussian distributions 341 

when the mean and the standard deviation resemble the median and the median and the NIQR, 342 

respectively. Furthermore, to visualize details of the PDFs for the slip such as due to multiple 343 

peaks or a biased distribution, we calculated differences of the percentiles (subtracting 50th 344 

percentile from 5th, 25th, 75th, and 95th percentiles) in Figures 3b, S3b, and S4b. For example, 345 

we considered that a PDF of the slip amount shows a biased distribution with a long slope to the 346 

high slip; 5th and 25th percentile differences demonstrate small absolute values, while 75th and 347 

95th percentile differences demonstrate large absolute values such as sub-fault C in the cases of 348 

the site patterns 1–2. 349 

 The target slip distributions were well reproduced both by the ABIC-LSM and by the rj-350 

MCMC method for the cases of the site patterns 2 and 3. Furthermore, both of the ABIC-LSM 351 

and the rj-MCMC method underestimated the maximum slip for the case of the slip pattern 1 352 

because no offshore site was employed. However, the estimated slip distribution of ABIC-LSM 353 

was obviously over-smoothed in the along-strike direction. By contrast, the rj-MCMC method 354 

reduced such over-smoothing in the along-strike direction. It is considered that this effect was 355 

caused by a sparse modeling behavior of the rj-MCMC method. Furthermore, among all site 356 

patterns, the rj-MCMC method successfully reduced spotting artificial slips appearing in the all 357 

slip distribution estimated by the ABIC-LSM. This effect is also considered to be provided as the 358 

sparse modeling behavior of the rj-MCMC method. 359 

 For all slip pattern cases, the slip distributions estimated by the rj-MCMC method 360 

generally show large slip near the trench compared with those estimated by the ABIC-LSM. This 361 
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is because the rj-MCMC method sampled a low probability of large slips near the trench as 362 

demonstrated by the histograms of sub-fault C and the 95th percentile difference (Figures 3, S3, 363 

and S4). Because spatial resolution near the trench was low due to the lack of the observational 364 

sites, large coseismic slip there was considered to occur with low probability as modeled by the 365 

rj-MCMC. However, ABIC-LSM cannot properly consider such a low probability phenomenon 366 

in the solutions because Gaussian distribution of the solutions was assumed. 367 

 We showed two models for the results of the rj-MCMC method: the mean and median 368 

models as shown in Figure 2. Their slip distributions were quite similar except the region near 369 

the trench where the large slip was considered to occur with the low probability. Because the 370 

median is generally smaller than the mean when the biased PDF with a long slope to the high slip 371 

(e.g., the histogram of sub-fault C in Figure 3c), the seismic moment of the median model is 372 

smaller than that of the mean model; for example, in the case of the site pattern 1, the moment 373 

magnitude of the median model is Mw 8.18, while that of the mean model is Mw 8.24. We 374 

evaluated the mean model as a better representative model because the seismic moments of the 375 

mean model were generally close to the seismic moment of the target model. However, the 376 

median model and its corresponding estimation error (NIQR) provided useful information to 377 

know degree how the unknowns for the slip follow the Gaussian distribution or not as indicated 378 

above. 379 

 380 

3.3 Synthetic test 2: response to sharp coseismic slip 381 

In this synthetic test, a sharp coseismic slip distribution with maximum slip of 382 

approximately 1000 cm was provided to calculate synthetic observational data for the three site 383 

patterns as in synthetic test 1, and then we estimated slip distributions by the ABIC-LSM and the 384 

rj-MCMC method as shown in Figure 4. Considering the elasticity of plates, deformation due to 385 

fault locking at asperities should be continuous; therefore, coseismic slip should be rather 386 

continuous (i.e., edge of fault slip distribution tends to be smooth) [Herman et al., 2018]. Thus, 387 

the target slip distribution in this synthetic test is slightly unrealistic but effective to evaluate the 388 

performance of the inversion techniques. 389 

 The ABIC-LSM model failed to reproduce the target slip distribution in any cases of the 390 

site patterns (Figure 4), because the assumption of the smoothing was unsuitable to model such a 391 
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sharp distribution. To forcibly reproduce sharp edges of the slip patch, the ABIC-LSM provided 392 

a weak smoothing constraint; hence, the estimated slip distributions were highly dependent on 393 

location of the observational sites especially as shown in site pattern 3. In contrast, the rj-MCMC 394 

method successfully reproduced the target slip distribution, because the Voronoi partition was 395 

potentially suitable for producing sharp edges. Summarising the results of the synthetic tests 1 396 

and 2, the rj-MCMC method can flexibly represent a fault slip distribution regardless of the site 397 

distribution and of roughness on the target slip distribution. 398 

 399 

3.4 Synthetic test 3: behavior of the weighting parameters 400 

 In this synthetic test, performance of the weighting parameters was investigated by 401 

applying incorrect initial observational errors. We provided the smooth coseismic slip 402 

distribution for the target slip distribution as employed in synthetic test 1 and performed the rj-403 

MCMC inversion under the same conditions as synthetic test 1 except the observational errors. 404 

Note that we performed the inversion only for the data assuming the site pattern 3. Here, dual 405 

weighting parameters were employed (i.e., 𝐼 = 2): the weighting parameter for the onshore 406 

observational data (𝑖 = 1) and that for the offshore observational data (𝑖 = 2), regardless of 407 

distinction between the horizontal and vertical components. Then, two types of the observational 408 

error conditions were investigated; one assumed that the true observational errors, which were 409 

added to the synthetic observational data, were smaller than the initial observational errors (the 410 

smaller error case); and the other assumed the true observational errors were larger than the 411 

initial observational errors (the larger error case). In the former case, the true observational errors 412 

were added as the Gaussian noises of 413 

 𝜎onhor , 𝜎onver , 𝜎offhor , 𝜎offver = (1, 2, 3, 6)  cm , (19) 

like synthetic test 1, while the initial observational errors were given as 414 

 𝜎onhor
ini , 𝜎onver

ini , 𝜎offhor
ini , 𝜎offver

ini  = (1, 2, 30, 60)  cm . (20) 

In the later case, the true observational errors were added as the Gaussian noises of 415 

 𝜎onhor , 𝜎onver , 𝜎offhor , 𝜎offver = (1, 2, 30, 60)  cm  (21) 

while the initial observational errors were given as 416 

 𝜎onhor
ini , 𝜎onver

ini , 𝜎offhor
ini , 𝜎offver

ini  = (1, 2, 3, 6)  cm . (22) 
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For comparison, we also estimated fault slip distributions by the rj-MCMC method assuming the 417 

single weighting parameter in the same manner as synthetic test 1.  418 

 The upper panels of Figure 5 show the results for the smaller error case. When assuming 419 

the single weighting parameter, the estimated slip distribution and its standard deviation are 420 

similar to those of the synthetic test 1 for the site pattern 1. This similarity suggested that the 421 

offshore observational data were almost ignored because of the employed large initial 422 

observational errors (Equation 20). When assuming the dual weighting parameters, the estimated 423 

slip distribution and its standard deviation are similar to those of synthetic test 1 for site pattern 3 424 

(Figure 2). This suggests that the weighting parameter for the offshore observational data 425 

increased the weights of the offshore observational data. Actually, the observational errors 426 

adjusted by the weighting parameters were given as 427 

   𝜎 onhor , 𝜎 onver , 𝜎 offhor , 𝜎 offver  

=  10−
𝛬1
2 𝜎onhor

ini , 10−
𝛬1
2 𝜎onver

ini , 10−
𝛬2
2 𝜎offhor

ini , 10−
𝛬2
2 𝜎offver

ini   

= (1.01, 2.03, 4.36, 8.72)  cm . 

(23) 

The weighting parameters used in Equation (23) were calculated as the mean values of the rj-428 

MCMC samples. The histograms of the weighting parameters are shown in Figure S5. Because 429 

the adjusted observational errors for the offshore data were rather larger than the true 430 

observational errors (Equation 19), the estimated slip distribution was also smoother than that of 431 

the synthetic test 1 for site pattern 3. 432 

 The lower panels of Figure 5 show the results for the larger error case. When assuming 433 

the single weighting parameter, the estimated slip distribution was extremely rough. In this 434 

result, the offshore observational data were over-fitted because of the employed small initial 435 

observational errors (Equation 22). By contrast, when assuming the dual weighting parameters, 436 

the estimated slip distribution reproduced the target smooth distribution by degrading the weights 437 

of the offshore observational data by the weighting parameters. The observational errors adjusted 438 

by the mean weighting parameters were given as 439 

   𝜎 onhor , 𝜎 onver , 𝜎 offhor , 𝜎 offver  

=  10−
𝛬1
2 𝜎onhor

ini , 10−
𝛬1
2 𝜎onver

ini , 10−
𝛬2
2 𝜎offhor

ini , 10−
𝛬2
2 𝜎offver

ini   

(24) 
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= (1.01, 2.03, 31.77, 63.54)  cm . 

which are well fitted to the true observational errors (Equation 21). The histograms of the 440 

weighting parameters are shown in Figure S6 as well as the histograms of the other unknowns. 441 

  From the above results, the weighting parameters properly adjusted the initial 442 

observational errors by the data-driven approach. Considering that the initial large observational 443 

errors provided a little smooth slip distribution even using the weighting parameter (the smaller 444 

error case), we would assign rather small initial observational errors and adjust them by the 445 

weighting parameters in a practical use of the rj-MCMC method as shown later in Section 4. 446 

 447 

3.5 Synthetic test 4: coupling estimation 448 

In this synthetic test, we provided synthetic negative fault slips assuming annual inter-449 

seismic coupling (Figure 6). An elastic media [Okada, 1992] was assumed, and we calculated the 450 

Green functions in the direction of rake=90° alone (i.e., 𝐽 = 1). The minimum and maximum slip 451 

rates were assigned as 𝑠1
min

= −83.5  mm/yr  and 𝑠1
max

= 500  mm/yr , respectively. The 452 

minimum slip rate was provided as a subducting rate in the off-Tohoku region, Japan. The 453 

observational errors were added as the Gaussian noises of 454 

 𝜎GNSShor , 𝜎GNSSver , 𝜎GNSS-Ahor
 = (1.5, 3, 5)  mm/yr . (25) 

We ignored the vertical component of the offshore sites because the GNSS-A measurement has 455 

too large observational errors to discuss small coupling conditions. The standard deviation for 456 

the horizontal components of the offshore sites was given following the case of interseismic 457 

displacement rates for the Nankai and Tohoku regions shown in Sato et al. [2013] and Yokota et 458 

al. [2016]. The initial observational errors were given following the true observational errors 459 

(Equation 25), and the single weighting parameter was given (𝐼 = 1). The aim of this test was to 460 

assess performance of the rj-MCMC method for the coupling estimation and for difficult 461 

inversion conditions compared with the coseismic slip cases: multiple peaks of fault slip 462 

(“Target” of Figure 6) and low signal-noise ratio. 463 

 Figure 6 shows the inversion results estimated by the ABIC-LSM and the rj-MCMC 464 

method for site patterns 1 and 3. In the both of the site patterns, the ABIC-LSM provided fairly 465 

smooth coupling distributions because the difficult inversion conditions required strong 466 
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smoothing constraints. The rj-MCMC method also provided smooth coupling distributions for 467 

site pattern 1 due to the low spatial resolution in the offshore area. However, down-dip limits of 468 

the coupling distribution estimated by the rj-MCMC method were substantially constrained 469 

compared with those estimated by the ABIC-LSM. This indicated that flexibility of the spatial 470 

partition by the rj-MCMC method enables smooth edge expression of the up-dip limits (due to 471 

low spatial resolution) and relatively sharp edge expression of the down-dip limits (due to 472 

relatively high spatial resolution). The rj-MCMC method obviously demonstrated better 473 

performance for site pattern 3; peaks of the coupling distribution in the northern and middle 474 

regions were clearly obtained. Thus, the rj-MCMC method has superior ability to avoid the over-475 

smoothing compared with the ABIC-LSM. Meanwhile, the southern peak of the coupling could 476 

not be imaged even by the rj-MCMC method because of its narrow spatial extent and insufficient 477 

deployment of the offshore observational sites.  478 

 Figure 6 shows that distributions of the standard deviation are obviously different from 479 

that of NIQR in both of the site patterns. This suggests the observational errors did not generally 480 

follow Gaussian distributions. Figures S7 and S8 show percentile differences and histograms of 481 

the unknowns for cases of site patterns 1 and 3, respectively. Figure S7 clearly shows positive 482 

slip with low probability in the northern area near the trench, and also indicates low spatial 483 

resolution there. Figure S8 shows multiple histogram peaks, especially the histogram for the slip 484 

at sub-fault D (in the northern area near the trench). For the sub-fault D, we can interpret that 485 

both possibilities of strong coupling and zero coupling are considered at the same level taking 486 

into account the insufficient spatial resolution. Thus, the rj-MCMC method is useful to assess 487 

how risk of the coupling occurs at each sub-fault from the histogram or the percentile difference, 488 

which cannot be expressed by the conventional ABIC-LSM. 489 

 490 

3.6 Synthetic test 5: viscoelastic inversion 491 

 In this synthetic test, we provided synthetic coseismic slip distribution (period 1) and 492 

postseismic slip distributions with three time windows (periods 2–4; the duration for each period 493 

was set as one year). We assumed a two-layered viscoelastic media [Fukahata & Matsu’ura, 494 

2004] in the same manner as Tomita et al. [2020]: viscosity in the lower media of 1.5 × 10
19

 Pa 495 

s, thickness of the upper media of 50 km, rigidities in the upper and lower media of 40 GPa and 496 
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67 GPa, densities in the upper and lower media of 2800 kg/m
3
 and 3300 kg/m

3
, and Poisson’s 497 

ratios in the upper and lower media of 0.25 and 0.27, respectively. We then calculated the 498 

viscoelastic Green functions in the directions of rake=45° and rake=135° for the coseismic slip 499 

and in the direction of rake=90° alone for the postseismic slip (i.e., 𝐽 = 5). The minimum and 500 

maximum slips for the coseismic period were assigned as 𝑠𝑗
min

= 0  cm  and 𝑠𝑗
max

= 6000  cm  501 

(𝑗 = 1,2) , respectively, and those for the postseismic period were assigned as 𝑠𝑗
min

=502 

−8.35  cm  and 𝑠𝑗
max

= 500  cm  (𝑗 = 3,⋯ ,5), respectively. Based on the 2011 Tohoku-oki 503 

earthquake, we assumed that the offshore sites were installed in the postseismic period (here, the 504 

period 3). The observational errors for the coseismic period were added as the Gaussian noises of 505 

 𝜎GNSShor , 𝜎GNSSver = (1, 2)  cm . (26) 

The observational errors for the postseismic period were added as the Gaussian noises of 506 

 𝜎GNSShor , 𝜎GNSSver , 𝜎GNSS-Ahor
, 𝜎GNSS-Aver

 = (0.5, 1, 2, 4)  cm/yr . (27) 

The standard deviations of the offshore sites were given following the postseismic displacements 507 

after the 2011 Tohoku-oki earthquake shown in Watanabe et al. [2014], Tomita et al. [2017], and 508 

Yokota et al. [2018]. The initial observational errors were given following the true observational 509 

errors, and the four weighting parameters were given to individual time-window (𝐼 = 4). The 510 

aim of this test was to assess performance of the rj-MCMC method for estimation of 511 

spatiotemporal evolution of fault slip, which basically requires many hyper-parameters 512 

constraining both spatial space and temporal space [e.g., Yoshioka et al., 2015]. In this case, we 513 

individually deployed Voronoi nuclei for each time-window and estimated fault slip distributions 514 

considering viscoelastic responses without any external constraints. Although we can introduce 515 

temporal smoothing constraints in our rj-MCMC method, we did not use the constraints for 516 

simplicity.  517 

 For comparison and obtaining initial values, we also performed the ABIC-LSM as well as 518 

the rj-MCMC method. In the rj-MCMC method, we simultaneously estimated the co- and post-519 

seismic slip distributions based on the following observation equation for the viscoelastic 520 

inversion approach derived from Tomita et al. [2020]: 521 
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(28) 

where 𝐆e and 𝐆v represent the elastic and viscous Green functions, respectively. However, in the 522 

ABIC-LSM, we estimated a fault slip distribution of each time-window step by step as similar 523 

with Lubis et al. [2013] to avoid difficulty in determining multiple hyper-parameters. 524 

 Figure 7 shows the target and the estimated slip distributions. The slip and error maps of 525 

the rj-MCMC method demonstrated mean and standard deviation of the samples, respectively. 526 

The rj-MCMC results well reproduced the target distributions as well as the results of the ABIC-527 

LSM except the period 2 in which effective offshore observational sites were absent. Unlike the 528 

ABIC-LSM, the rj-MCMC method successfully reduced artificial negative postseismic slip. 529 

Although the smoothing constraint of the ABIC-LSM cannot prevent generation of spotting 530 

artificial slips, the rj-MCMC method can prevent it by unifying the sub-faults by the Voronoi 531 

partition. Thus, the rj-MCMC method is useful to model such spatiotemporal evolution of the 532 

fault slip without any constraints. Additionally, as with the other synthetic tests above, the 533 

estimation errors imaged precision of the solutions, which cannot be assessed by the ABIC-LSM. 534 

We also showed median model at percentile differences in Figure S9 to assess non-Gaussian 535 

errors.  536 

 537 

3.7 Checkerboard resolution test 538 

From the above synthetic tests, the estimation errors of the rj-MCMC method (standard 539 

deviation and NIQR) demonstrated good performance of imaging precision of the solutions for 540 

the fault slip; however, it is difficult to consider spatial resolution from the results. To evaluate 541 

spatial resolution, we conducted checkerboard resolution tests. As it is difficult to evaluate 542 

spatial resolution for the overall fault space by single checkerboard pattern, we conducted the 543 

checkerboard resolution test for various patterns in which checkerboard patches were slightly 544 

shifted (Figure S10). Here, we generated eighteen total checkerboard patterns. Note that 545 

observational noises, which were given to generate the synthetic observational data, followed the 546 

observational errors adjusted by the weighing parameter in the synthetic test 1. The upper limits 547 
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of the Voronoi nuclei are set as 𝐾𝑗
max = 50 (𝑗 = 1,2) in the checkerboard resolution tests. Figure 548 

8a shows an example of the inversion result for a single checkerboard pattern. The results for all 549 

checkerboard patterns are shown in Figure S10. For each checkerboard pattern, a patch with the 550 

size of ~60 × 60 km
2
 and with the slip of ~425 cm was provided. The patch size and the slip 551 

amount for patch should be manually changed to comform with our target slip behavior by which 552 

we intend to assess sensitivity of the observational data to. To summarize the results, we 553 

introduced a new indicator called as the “reconstruction ratio”. The reconstruction ratio for a 554 

sub-fault 𝑚 is written as follows: 555 

𝑅𝑅𝑚 = 100 −
1

𝐿 

  𝑠 𝑚,𝑙
cal − 𝑠𝑚,𝑙

syn
 

𝐿

𝑙=1

𝑠syn
× 100  % , 

(29) 

with 𝑠 𝑚,𝑙
cal =  

𝑠𝑚,𝑙
cal 𝑖𝑓  𝑠𝑚,𝑙

syn
> 0

0 𝑖𝑓  𝑠𝑚,𝑙
syn

= 0
, 556 

where 𝑠syn is the slip amount of the slip patch (~425 cm in this case), and 𝑠𝑚,𝑙
cal  and 𝑠𝑚,𝑙

cal  are the 557 

estimated and the target slips at the sub-fault 𝑚 for the pattern 𝑙, respectively. Moreover, 𝐿 is the 558 

total number of the checkerboard patterns ( 𝐿 = 18 ), and 𝐿  is the total number of the 559 

checkerboard pattern that provided the slip (non-zero slip) at the sub-fault 𝑚. As defined by 𝑠 𝑚,𝑙
cal , 560 

we only considered recovery at the sub-faults where synthetic slip was provided by the target slip 561 

distribution. Because we provided a set of normal and reverse checkerboard patterns (see the 562 

target distributions of 1 and 4 in Figure S10, for example), 𝐿 = 𝐿/2. A map of the reconstruction 563 

ratio (Figure 8b) clearly demonstrated that high reconstruction ratios (corresponding to high 564 

spatial resolution) appeared roughly below the observational sites. A checkerboard resolution test 565 

has been often performed in ABIC-LSM aproaches; however, it is difficult to assess intrinsic 566 

sensitivity of the observational data because the degree of recovery was quite influenced by 567 

strength of a smoothing constraint in ABIC-LSMs. If the smoothing constraint is optimized for a 568 

checkerboard slip distribution, it is not suitable for a practical slip distribution. Whereas, if the 569 

smoothing constraint is optimized for a practical slip distribution, it is not suitable for a 570 

checkerboard slip distribution. Meanwhile, as the smoothing constraint is not used in the rj-571 

MCMC method, the checkerboard resolution tests through the rj-MCMC method are much 572 

effective to demonstrate sensitivity of the observational data. 573 
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 574 

4 Application to the 2011 Tohoku-oki earthquake 575 

 Here, we applied the rj-MCMC method to coseismic geodetic observational data 576 

associated with the 2011 Tohoku-oki earthquake (March 11, 2011). We constructed 485 sub-577 

faults based on the plate interface model of Iwasaki et al. [2015]. As with synthetic test 1, an 578 

elastic media [Okada, 1992] was assumed, and the Green functions in the directions of rake=45° 579 

and of rake=135° were calculated (𝐽 = 2; total number of the unknowns for slip is 485 × 2 =580 

970). When calculating the Green functions for offshore sites (denoted later), we considered 581 

seafloor depths by biasing the depths of the sub-faults along the plate interface in the same 582 

manner as Iinuma et al. [2012].  Minimum and maximum slips were assigned as 𝑠𝑗
min

= 0 m  583 

and 𝑠𝑗
max

= 100  m  (𝑗 = 1,2), respectively.  584 

 We employed the following types of the observational data: onshore GNSS (horizontal 585 

and vertical), offshore GNSS-A (horizontal and vertical), and offshore OBP gauge (vertical) 586 

data. The onshore GNSS data were differences between the daily coordinate solutions for the day 587 

before the mainshock (March 10, 2011) and those for the day after the mainshock (March 12, 588 

2011) at 370 GNSS sites maintained by the Geospatial Information Authority of Japan (GSI) and 589 

Tohoku University, which were obtained by Tomita et al. [2020]. The offshore GNSS-A data 590 

were provided by the Japan Coast Guard (six sites with horizontal and vertical components) 591 

[Sato et al., 2011; Yokota et al., 2018] and Tohoku University (two sites with horizontal 592 

component only) [Kido et al., 2011]. The offshore OBP data were provided by University of 593 

Tokyo and Tohoku University (six sites) [Ito et al. 2011; Meade et al., 2011] as summarized by 594 

Iinuma et al. [2012]. The onshore GNSS and the offshore OBP data indicate almost pure 595 

coseismic displacements, while the offshore GNSS-A data include not only coseismic 596 

displacements but also early (~1 month) postseismic displacements [Kido et al., 2011; Sato et al., 597 

2011]. Then, as for the offshore GNSS-A data, it is unsuitable to assign instrumental 598 

measurement errors as observational errors for the inversion analysis considering the 599 

observational errors included not only instrumental measurement errors  but also the modeling 600 

errors of the early postseismic displacements. Thus, we adopted an approach providing rough 601 

initial observational errors of the offshore GNSS-A data and then adjusting them by the 602 

weighting parameters. The observational errors of the offshore GNSS-A data in the horizontal 603 
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and vertical components were quite different for both the instrumental measurement errors and 604 

the early postseismic displacements; hence, we provided three weighting parameters (𝐼 = 3) for 605 

the horizontal GNSS-A data, vertical GNSS-A data, and other data. The initial observational 606 

errors were given as follows: 607 

 𝜎GNSShor
ini , 𝜎GNSSver

ini , 𝜎OBP1
ini , 𝜎OBP2

ini , 𝜎
GNSS-Ahor

ini , 𝜎
GNSS-Aver

ini  =

(2.5, 5, 10, 2.5, 20, 20)  cm . 

(30) 

The onshore GNSS data potentially had standard deviations of a few centimeter as the 608 

observational errors from the previous geodetic slip inversion studies [Iinuma et al., 2012; 609 

Tomita et al., 2020]. The observational errors for OBP1 [Maeda et al., 2011] and OBP2 [Ito et al., 610 

2011] were roughly given from measurement errors following Iinuma et al. [2012]. We provided 611 

relatively small observational errors for the GNSS-A data compared with the instrumental 612 

measurement errors (from several tens of centimeters [Sato et al. 2011] to ~1 meter [Kido et al., 613 

2011]). We then assigned the initial observational covariance matrices 𝐄𝑖
ini(𝑖 = 1,⋯ ,3) 614 

following Equation (30). Meanwhile, as for the ABIC-LSM, a diagonal observational covariance 615 

matrix was given based on the following relative observational errors: 616 

𝜎GNSShor: 𝜎GNSSver: 𝜎OBP1: 𝜎OBP2: 𝜎GNSS-Ahor
: 𝜎GNSS-Aver

= 1: 2: 2: 1: 10: 10. (31) 

Because the ABIC-LSM tends to generate larger misfits in the offshore area for the case of the 617 

2011 Tohoku-oki earthquake, we determined the relative observational errors by trial and error. 618 

 Figure 9 shows the estimated slip distributions and the estimation errors, and Figure 10 619 

shows percentile differences and histograms for the unknowns. Through the rj-MCMC method, 620 

the weighting parameters were determined as Figure 10c. Using the estimated weighting 621 

parameters (mean values of samples), the adjusted observational errors are obtained as follows: 622 

 𝜎GNSShor , 𝜎GNSSver , 𝜎OBP1 , 𝜎OBP2 , 𝜎GNSS-Ahor
, 𝜎GNSS-Aver  

=  10−
𝛬1
2 𝜎GNSShor

ini , 10−
𝛬1
2 𝜎GNSSver

ini , 10−
𝛬1
2 𝜎OBP1

ini , 10−
𝛬1
2 𝜎OBP2

ini , 10−
𝛬2
2 𝜎GNSS-Ahor

ini , 10−
𝛬3
2 𝜎GNSS-Aver

ini   

= (2.47, 4.93, 9.86, 2.47, 177.32, 59.20)  cm . 

(32) 

The adjusted observational errors for the GNSS and OBP data did not significantly changed from 623 

the initial values, while those for the GNSS-A data indicated large uncertainties. Considering the 624 

instrumental measurement errors (from several tens of centimeters [Sato et al., 2011] to ~1 meter 625 

[Kido et al., 2011]) and the early postseismic displacements (especially affecting the horizontal 626 

components), the adjusted large observational errors for the GNSS-A data are reasonable. 627 
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Furthermore, histograms of the weighting parameters for the GNSS-A data show wide ranges 628 

(Figure 10). This is because the total number of the GNSS-A data is small. Although previous 629 

ABIC-LSM studies have often considered relative weights between different observational data 630 

[e.g., Funning et al., 2014], the relative weights were finally fixed to certain values optimized by 631 

the ABIC criterion. By contrast, the rj-MCMC method can obtain slip distributions considering 632 

wide ranges of  the weighting parameter through the MCMC sampling process. 633 

 Figure 9 shows that the slip distributions estimated by the rj-MCMC method were similar 634 

to the slip distribution estimated by the ABIC-LSM, which show large coseismic slip over 20 m 635 

at the up-dip portion of the plate interface in the off-Miyagi region (the central portion of the 636 

fault zone, called as the main rupture area) and small coseismic slip less than 20 m at the down-637 

dip portion of the plate interface in the off-Fukushima region  (the southern portion of the fault 638 

zone, called as the sub-rupture area). These features are the same as previous studies [e.g., Yagi 639 

& Fukahata, 2011; Iinuma et al., 2012; Ozawa et al., 2012; Yue & Lay, 2013]. 640 

 Comparing the results of the ABIC-LSM and the rj-MCMC method, the rj-MCMC 641 

method provided relatively large slip near the trench (Figure 9). This feature was the same as the 642 

results of the synthetic tests (e.g., Figure 2). The estimation error maps (SD and NIQR) of the rj-643 

MCMC method demonstrate small errors just below the offshore observational sites and large 644 

errors in the northern and southern portions of the main rupture area (especially, around 38.5°N 645 

near the trench and around 37.5°N). These large estimation errors were caused by low spatial 646 

resolution due to lack of offshore observational sites. We can find the low spatial resolution there 647 

by checkerboard resolution tests (Figure 11a; Figure S11) and reconstruction ratio (Figure 11b). 648 

In the checkerboard resolution tests, each slip patch has the slip amount of ~21.2 m, and size of 649 

the slip patch is ~80 × 80 km
2
. Moreover, Figure 10b and 10c demonstrate that large coseismic 650 

slip with low probability was obtained in the areas with the large estimation errors as clearly seen 651 

by difference between the 95th and 50th percentiles and by a histogram for the slip at sub-fault 652 

C; i.e., the slip amount there was basically estimated to be zero, but it might be large in low 653 

probability. Such high coseismic slip with low probability cannot be investigated by the 654 

conventional ABIC-LSM because of its assumption that the estimation errors follow a Gaussian 655 

distribution. Meanwhile, we can also find low spatial resolution in the sub-rupture area (Figure 656 

11b). However, unlike the large estimation error areas around the main rupture area, quite large 657 

coseismic slip did not be sampled (Figure 10b and Figure 10c for the sub-fault A). Thus, we 658 
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figured out that the sub-rupture did not reach high slip amount such as the main rupture, but 659 

spatial extent of the sub-rupture might not be well constrained considering the low spatial 660 

resolution. 661 

 662 

5 Summary 663 

 In this study, we developed the trans-dimensional geodetic inversion approach using the 664 

rj-MCMC method based on the Voronoi partition and assessed its performance by the five 665 

synthetic tests and the application to the 2011 Tohoku-oki earthquake. 666 

 Throughout the synthetic tests and the application, the rj-MCMC method demonstrated 667 

similar or superior performance compared with the conventional ABIC-LSM from the point of 668 

view of reproducing fault slip distributions. Because of the absence of the smoothing constraints, 669 

the rj-MCMC method can flexibly express fault slip distributions; both of the smooth and the 670 

sharp fault slip distributions can be reproduced (e.g., synthetic tests 1 and 2), and the spatially 671 

non-uniform degree of the fault slip smoothness can be expressed (e.g., site pattern 1 in synthetic 672 

tests 1 and 4, showing the sharp down-dip limits of slip and the smooth up-dip slip limits of slip). 673 

Especially in synthetic test 4, non-uniformness of the fault slip distributions reflected spatial 674 

heterogeneity of the data sensitivity to fault slips depending on spatial coverage of observational 675 

sites. Because geodetic observational data often have large variation of their spatial coverage as 676 

shown in the application of the 2011 Tohoku earthquake, the rj-MCMC method is suitable to 677 

handle such geodetic observational data for appropriately imaging a fault slip distrition following 678 

the data sensitivity. Moreover, the rj-MCMC method can prevent the occurrence of the artificial 679 

spotting slips that cannot be avoided by the conventional ABIC-LSM. This benefit is provided 680 

due to sparsity of number of unknowns introduced by the Voronoi partition. 681 

 One of utilities of the MCMC sampling is in obtaining the estimation errors following a 682 

non-Gaussian distribution. As shown in the synthetic tests and application (especially, synthetic 683 

test 4 and application), we successfully obtained slip parameters following non-Gaussian 684 

distributions, which cannot be expressed by the conventional ABIC-LSM. These non-Gaussian 685 

estimation errors suggested further detailed information on fault slip behavior such as high 686 

coseismic rupture or strong fault locking in regions with low spatial resolution, which are useful 687 

for coupling risk assessment or evaluation of large co- and post-seismic fault slip events. 688 
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Meanwhile, we demonstrated utility of the percentile differences (e.g., Figures 3b, S4b, S5b and 689 

10b) to roughly understand distributions of the estimation errors in map views. 690 

 For the conventional ABIC-LSM, the estimation error and spatial resolution are affected 691 

by the prior information, such as the spatially uniform smoothing constraint; thus, they uniformly 692 

vary depending on strength of the smoothing constraint. Although the rj-MCMC method also 693 

have influence on the prior information, such as the Voronoi-partition assumption, we can easily 694 

evaluate precision of the unknowns from standard deviation, NIQR, or PDF histograms of the 695 

MCMC samples without such spatial uniform dependency. Meanwhile, it is difficult to assess 696 

spatial resolution (i.e., sensitivity of the observational data to fault slips) from a series of the 697 

samples obtained by performing the rj-MCMC method once. To assess this, it is effective to 698 

conduct the checkerboard resolution tests (Sections 3.7 and 4). We also introduced an indicator 699 

of the reconstruction ratio averaging various patterns of the checkerboard resolution tests and 700 

demonstrated its usefulness in considering the spatial resolution. 701 

 Our results also showed utility of the weighting (hierarchical scaling) parameters 702 

implemented in the MCMC sampling. As shown in synthetic test 3, the weighting parameters can 703 

appropriately adjust the initial observational errors to the given observational errors. The 704 

adjustment of the observational errors provided us reasonable fault slip distributions. Moreover, 705 

as the weighing parameters were sampled through the MCMC procedure as well as the other 706 

unknowns, we can obtain the estimated slip distributions considering the possible extents of the 707 

weighting parameters as shown in the weighting parameter histograms (e.g., Figures 3c, S4c, 708 

S5c, and 10c). This is one of advantage of the MCMC method compared with ABIC-LSMs that 709 

can adjust relative weighting parameters but cannot consider their possible extents. Furthermore, 710 

we can easily handling multiple weighting parameters. These flexibilities of the weighting 711 

parameters are quite useful for modeling geodetic data that included various kinds of 712 

measurements as shown in the application to the 2011 Tohoku earthquake. 713 

 As indicated above, the developed rj-MCMC method has various advantages compared 714 

with the conventional ABIC-LSMs; therefore, we conclude that it is effective for inverting 715 

geodetic observational data into fault slips. The rj-MCMC method can be widely used for 716 

estimating coseismic slip distributions, postseismic slip distributions considering viscoelastic 717 

Green’s functions, coupling distributions, and it is useful to assess the detailed fault slip 718 
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behaviors even if the slip parameters follow non-Gaussian distributions and spatially non-719 

uniform roughness.  720 
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 892 

 893 

Figure 1. Image of the Voronoi partition 894 

The whole rectangle represents a fault zone, and small squares represent sub-faults. Red 895 

circles represent the Voronoi nuclei, and gray dots represent nucleus grid points (i.e., candidates 896 

for the Voronoi nuclei). The colors of sub-faults indicate extents of the Voronoi cells classified 897 

by the Voronoi nuclei. 898 
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 901 

Figure 2. The estimated slip distributions and the estimation errors of synthetic test 1 902 

The upper, middle, and lower panels show results of the synthetic test 1 assuming the site 903 

patterns 1, 2, and 3, respectively. Leftmost panels show the target slip distribution, and triangles 904 

and inverse triangles indicate synthetic onshore and offshore geodetic sites. The other panels 905 

show the estimated slip distributions and the estimation error distributions given by the ABIC-906 

LSM and the rj-MCMC method (the mean and median models). Magenta, black, and blue 907 

vectors in the estimated slip distributions indicate the synthetic, and observed (synthetic 908 

displacements with observational noises), and calculated displacements in the horizontal 909 

components, respectively. The bars in the estimation error distribution indicate the displacements 910 

in the vertical component. Colors of the bars indicate the same meanings with the vectors. 911 

 912 

 913 

 914 

 915 

 916 

 917 
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 919 

Figure 3. The percentile differences and the histograms for the synthetic test 1 assuming the site 920 

pattern 2 921 

(a) The slip distribution estimated by the rj-MCMC method (the mean model) with the 922 

site distribution as shown in Figure 2. (b) The slip distributions for percentiles of 5th, 25th, 75th, 923 

and 95th subtracting 50th percentile (the median model). (c) The histograms for unknowns: 924 

number of the Voronoi nuclei for the fault slip component of rake=45°, that of rake=135°, the 925 

weighting parameter, and slips at sub-fault A, B, and C shown in (a). The vertical axis of each 926 

histogram indicate sample’s frequency (i.e., number of the samples at certain range over total 927 

number of the samples). Red and blue vertical lines represent mean and median values, 928 

respectively. Solid orange vertical lines represent 5th and 95th percentile values, and dotted 929 

orange vertical lines represent 25th and 75th percentile values.  930 
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 932 

Figure 4. The estimated slip distributions and the estimation errors of synthetic test 2 933 

The panels show results of the synthetic test 2  in the same manner as Figure 2. 934 
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 939 

Figure 5. The estimated slip distributions and the estimation errors of synthetic test 3 940 

The upper and lower panels show results of the synthetic test 3 assuming the smaller and 941 

larger error cases, respectively. Leftmost panels show the target slip distribution, and triangles 942 

and inverse triangles represent the same with Figure 2. The second and third columns show the 943 

estimated slip distributions and the estimation error distributions given by the rj-MCMC method 944 

with single weighting parameter, respectively. The fourth and fifth columns show the estimation 945 

results given by the rj-MCMC method with dual weighting parameter. The vectors and bars are 946 

written in the same manner as Figure 2. 947 

 948 

 949 
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 951 

Figure 6. The estimated slip distributions and the estimation errors of synthetic test 4 952 

The upper and lower panels show results of the synthetic test 4 assuming the site patterns 953 

1 and 3, respectively. The panels for each column show the results in the same manner as Figure 954 

2. 955 

 956 

 957 

 958 

 959 
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 961 

Figure 7. The estimated slip distributions and the estimation errors of synthetic test 5 962 

The panels for each row show the target slip distributions and the estimation results for 963 

the periods 1–4. The upper panels show the target slip distributions. The middle and lower panels 964 

show results of the synthetic test 5 estimated by the ABIC-LSM and the rj-MCMC method, 965 

respectively. The vectors and bars are written in the same manner as Figure 2. 966 

 967 

 968 

 969 

 970 

Figure 8. Example of the checkerboard resolution test and reconstruction ratio for the synthetic 971 

test 1 972 

(a) The target and estimated slip distributions for one pattern of the checkerboard 973 

resolution tests. Triangles and inverse triangles represent the same with Figure 2. (b) Map of the 974 

reconstruction ratio averaging all patterns of the checkerboard resolution tests. 975 

 976 

 977 
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 979 

Figure 9. The estimated slip distributions and the estimation errors of the application 980 

The upper and lower panels show the estimated slip distributions and the estimation error 981 

distributions of the 2011 Tohoku-oki earthquake, respectively. The first, second, and third rows 982 

show the results of the ABIC-LSM solution, the mean model of the rj-MCMC method, and the 983 

median model of the rj-MCMC method, respectively. The black and blue vectors represent the 984 

observed and calculated displacements in the horizontal components, respectively. The black and 985 

blue bars represent the observed and calculated displacements in the vertical component, 986 

respectively.  987 

 988 

 989 
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 991 

Figure 10. The percentile differences and the histograms for the application 992 

(a) The slip distribution estimated by the rj-MCMC method (the mean model) with the 993 

site distribution as shown in Figure 9. (b) The panels show the percentile differences as the same 994 

manner with Figure 3. (c) The histograms for unknowns: number of the Voronoi nuclei for the 995 
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fault slip component of rake=45°, that of rake=135°, the weighting parameters, and slips at sub-996 

fault A, B, C, and D shown in (a). The histograms are expressed in the same manner as Figure 3. 997 

 998 

 999 

Figure 11. Example of the checkerboard resolution test and reconstruction ratio for the 2011 1000 

Tohoku-oki earthquake 1001 

(a) The target and estimated slip distributions for one pattern of the checkerboard 1002 

resolution tests. (b) Map of the reconstruction ratio averaging all patterns of the checkerboard 1003 

resolution tests. 1004 


