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Abstract

Automatic identification of debris flow signals in continuous seismic records remains a challenge. To tackle this problem we use
a machine learning approach, which can be applied to continuous real-time data streams. We show that a machine learning
model based on the random forest algorithm recognizes different stages of debris flow formation and propagation at the Illgraben
torrent, Switzerland, with an accuracy exceeding 90%. In contrast to typical debris flow detection requiring instrumentation
installed directly in the torrent, our approach provides a significant gain in warning times of tens of minutes to hours. For
real-time data streams from 2020, our detector raises alarms for all 8 independently confirmed Illgraben events and gives no
false alarms. We suggest that our seismic machine-learning detector is a critical step towards the next generation of debris-
flow warning, which increases warning times using both simpler and cheaper instrumentation compared to existing operational
systems.
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Key Points:12

• A novel debris-flow detector is developed using a machine-learning model and seismic13

data from a Swiss torrent.14

• Signals of 22 debris flows recorded by six seismic stations are used to train and test15

the machine-learning model.16

• A detector is running on the continuous real-time 2020 data stream detecting all 1317

debris flows in 3 months and raising no false alarms.18
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Abstract19

Automatic identification of debris flow signals in continuous seismic records remains a20

challenge. To tackle this problem we use a machine learning approach, which can be applied21

to continuous real-time data streams. We show that a machine learning model based on the22

random forest algorithm recognizes different stages of debris flow formation and propagation23

at the Illgraben torrent, Switzerland, with an accuracy exceeding 90 %. In contrast to typical24

debris flow detection requiring instrumentation installed directly in the torrent, our approach25

provides a significant gain in warning times of tens of minutes to hours. For real-time data26

streams from 2020, our detector raises alarms for all 8 independently confirmed Illgraben27

events and gives no false alarms. We suggest that our seismic machine-learning detector is28

a critical step towards the next generation of debris-flow warning, which increases warning29

times using both simpler and cheaper instrumentation compared to existing operational30

systems.31

Plain Language Summary32

Debris flows are fast-moving masses of mud, soil, fragmented rock, and water trans-33

porting large volume of material in mountainous areas. They pose a significant danger to34

human life, properties, and infrastructure. Thus, it is crucial to reliably detect debris flows35

early enough to send an alarm message to local communities. We propose a novel approach36

for debris-flow detections using recorded ground vibrations generated by 22 debris flows37

in Illgraben, Switzerland. We use a machine-learning algorithm that automatically learns38

to distinguish between debris flow generated ground vibrations and other seismic signals.39

This allows us to increase warning times by at least 42 min comparing to existing detection40

systems at Illgraben.41

1 Introduction42

Debris flows are mixtures of water and sediments of all sizes, which are mobilized by43

heavy precipitation in steep Alpine torrents. They move downstream with average velocities44

of several meters per seconds (Hürlimann et al., 2003) showing a flow behaviour in-between45

landslides and sediment transporting floods (Iverson, 1997). Debris flows have a high de-46

structive potential, which is amplified at the flow front, where large cobbles and boulders47

concentrate (Iverson, 1997). The significant hazard to human life and infrastructure in48

Alpine regions, including Switzerland (e.g., Jakob & Hungr, 2005; Badoux et al., 2016) de-49

mands reliable warning systems to reduce risk in exposed terrain (e.g., Stähli et al., 2015).50

Recently, modern seismic instrumentation has suggested new warning perspectives,51

because even at large distances (tens to hundreds of kilometers) seismometers can detect52

high-frequency (>1 Hz) ground unrest induced by debris flows (for a review see Allstadt53

et al., 2018). This may extend warning times compared to conventional instrumentation54

within or near debris flow torrents, which can only be installed in accessible terrain (e.g.,55

Arattano & Marchi, 2008; Coviello et al., 2019).56

Despite recent advances in our theoretical understanding of high-frequency debris flow57

seismograms (Cole et al., 2009; Kean et al., 2012; Lai et al., 2018; Farin et al., 2019),58

seismometers installed at larger distances from torrents have yet to be implemented in oper-59

ational warning systems. Identification of debris flow signals in the presence of other seismic60

activity remains a challenge. Since seismic debris flow signals have moderate amplitudes,61

simple threshold-based detection criteria cannot distinguish them from cultural noise, earth-62

quakes and other Alpine mass movements at a permissible false detection rate (Walter et63

al., 2017).64

Here, we introduce a machine learning approach to detect debris flows based on their65

seismic signature. For the Illgraben torrent, Switzerland, seismic records from an 8-station66
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Figure 1. Study site. (a) Illgraben catchment is outlined with green dashed line (source: Swis-

stopo). Check dam (CD) 1 and CD29 are represented with orange and black bars. Seismometer

locations are indicated with triangles. Connection of east side hillslope (Sagenschleif) with Illgraben

channel is marked at Point S. Inset shows Illgraben’s location in Switzerland. Station ILL11 not

used in detection is marked in yellow and station ILL15 is located outside of the presented map. (b)

Photo of Illgraben debris-flow passing CD29 (Source: WSL). (c) Vertical ground velocity recorded

at ILL18 on 29 May 2017 (large and fast event) and the corresponding power spectral density (PSD)

in (d). (e) Vertical ground velocity recorded at ILL18 on 20 August 2019 (small and slow event)

and the corresponding PSD in (f). Arrival times of the debris flows at CD1 are marked with an

orange line. In (d) and (f) PSDs averaged over 1-50 Hz are shown with a yellow line. Time windows

between gray and orange lines divide the records in (c)-(f) into 3 signals classes.

network allow for debris flow detection in the upper catchment area, where instrument67

deployment is not possible. Trained with data from 20 events, our detection algorithm was68

subjected to real-time data streams from summer 2020 and identified all 13 debris flows with69

no false alarms. Our approach adds up to an hour of warning time to the earliest possible70

in-torrent detection at Illgraben.71

2 Study site72

Located in the southwestern part of Switzerland, Illgraben is one of the most active73

debris-flow torrents in the European Alps (Rickenmann et al., 2001) (Figure 1a). The74

catchment area extends over 10.4 km2 from the summit of the Illhorn mountain [2716 m75

above sea level (asl)] to the Rhone River (610 m asl). The steep slopes (∼40◦) of the76

upper Illgraben catchment are characterized by rockfall and landslide activity (Berger et77

al., 2011b). The resulting sediments accumulate downslope or in the Illgraben channel and78

–3–



manuscript submitted to Geophysical Research Letters

provide sliding material with volumes ranging from 500 to more than 4,000 m3 (Schlunegger79

et al., 2009). During heavy precipitations and intense summer thunderstorms from April to80

October this material is regularly mobilized in form of debris flows (Badoux et al., 2009).81

The larger debris flow volumes (103 to 105 m3) result from cumulative sediment mobilization82

and entrainment along the flow path and often reach the Rhone River. Like elsewhere,83

Illgraben debris flows have boulder-rich fronts resulting from particle sorting phenomena84

(Pierson, 1986; Johnson et al., 2012) followed by turbulent slurry with a large concentration85

of suspended sediments of variable granulometry and water content (Costa, 1984; Iverson,86

1997; McCoy et al., 2010; Berger et al., 2011a, 2011b).87

In 1961 a major landslide occurred in the upper Illgraben catchment and resulted in a88

debris flow destroying the bridge of the Cantonal highway along the Rhone river (Graf et89

al., 2007; Berger et al., 2011a). Consequently, a series of 30 Check Dams (CD; see Figure90

1b for lowest CD29) was placed along the lower 3.4 km of the channel in order to stabilize91

the current debris flow path, expand discharge capacity, and minimize erosion.92

As debris-flows still pose a hazard to people crossing the channel and to nearby infras-93

tructure, an in-torrent warning system was commissioned by the governmental authorities94

and installed in 2007 (Badoux et al., 2009). The system consists of geophone detectors in95

check dams and flow depth measurements in the lower Illgraben part (Badoux et al., 2009;96

McArdell et al., 2007). Similar instruments and a recently re-deployed force plate form the97

debris flow observatory, which is operated for research purposes independently of the warn-98

ing system since 2000 (Hürlimann et al., 2003; McArdell et al., 2007; Berger et al., 2011a).99

The observatory provides estimates of debris flow depth, volume and density (Schlunegger100

et al., 2009).101

Illgraben’s warning system has undergone different upgrades but is still based on the102

initial measurement principles. The earliest possible detection is provided by geophones103

installed inside check dam CD1 (Figure 1a), but this detection point is not deemed reliable104

as it is contingent upon solar power supply and mobile phone reception, which vary as a105

consequence of shadowing effects from the canyon walls. However, the CD1 arrival times106

can be downloaded in retrospect and are available for subsequent data analysis.107

The present warning system in Illgraben requires instrument installation in direct con-108

tact with the torrent, which implies that detection is insensitive to sediment movement in109

the highly unstable and inaccessible upper catchment. This is a major weakness as debris110

flows mobilize in the upper catchment above CD1 (Schlunegger et al., 2009), where detection111

could increase warning times by tens of minutes.112

2.1 Seismic debris-flow data113

In past years, researchers have attempted to extend detection capabilities to the upper114

Illgraben catchment using seismological and acoustic measurements (Burtin et al., 2016;115

Walter et al., 2017; Schimmel et al., 2018; Marchetti et al., 2019; Wenner et al., 2019).116

In this context, since 2017, a seasonal seismometer network has been installed around the117

Illgraben catchment during spring/summer months (Figure 1a). The network consists of118

8 3-component 1 Hz seismometers recording ground velocity continuously at a sampling119

frequency of 100 Hz.120

All 8 stations are equipped with a modem to stream seismic data via the 4G mobile121

phone network to the Swiss Seismological Service from where they are made available via a122

seedlink server. A python client on a work station at the Institute of Hydraulics, Hydrology123

and Glaciology (VAW) at ETH Zürich receives data packages every 8-9 seconds, which are124

concatenated to continuous records. Disregarding station ILL18 (the only station within125

the Illgraben canyon), realtime data return reaches 95%, except during rare instrument126

malfunctioning events. Mobile phone reception at Ill18 was unstable and gappy in 2018 and127

2019, but improved to 99%, during 2020 when the network provider was changed. Even128
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when real-time data transfer is interrupted, data are locally recorded and transmitted when129

the mobile network connection is stable again.130

Between 2017 and 2019, the seismic network recorded more than 22 debris flows. Fig-131

ures 1c-f show vertical velocities seismograms and associated spectrograms of two debris132

flows. Figure 1c shows the largest recorded event (vol.= 100,000 m3, velocity of the front133

vfront=6.67 m s-1), and Figure 1e shows one of the smallest recorded events (vol.= 13,000 m3,134

vfront=0.95 m s-1). Both debris-flow signals show emergent onsets with dominant frequen-135

cies above 1 Hz reaching frequencies of 40-50 Hz. The signal emerges from the background136

noise at times that depend on the distance between the debris-flow front and the recording137

station (Walter et al., 2017). For the larger event (Figure 1c, d) we observe burst-like sig-138

nals generated by thunder, not directly related to the debris-flow (Marchetti et al., 2019).139

Seismograms generated by all events recorded on eight stations are presented in Figures140

S1-S22.141

3 Methods142

We use the vertical-component seismograms of the 22 debris-flow events between 2017143

and 2019 recorded on six stations (stations ILL12, ILL13, ILL14, ILL16, ILL17, ILL18144

in Figure 1a) to train a machine learning model and test its detection capability. ILL15145

and ILL11 were not used, because the former was deployed later in the season and the146

latter is located in the Rhone Valley recording strong anthropogenic noise signals. Debris-147

flow properties are shown in Table S1. The emergent nature of debris flow seismograms148

precludes use of standard event detectors and instead the spectral content of the continuous149

seismic signal is analyzed (Walter et al., 2017; Lai et al., 2018; Wenner et al., 2019, 2020).150

We split the debris flow seismograms into 100 s time windows with an overlap of 50 %. This151

window length is long enough to extract stable spectral characteristics and results in large152

enough set of training data. The overlap is chosen to further increase the number of samples153

in the data set.154

3.1 Labeled data155

We define labels for three seismic event classes:156

1. Pre-CD1 : debris flow signals before passage of CD1157

2. Post-CD1 : debris flow signals after passage of CD1158

3. Noise: signals not associated with debris flows159

Dividing the debris-flow signals into two classes caters to the need to detect debris160

flows in the upper catchment before CD1 passage. In the lower Illgraben part, the check161

dams interrupt the flow and possibly influence particle sorting which might change debris162

flow signals. For 20 events, the arrival times at CD1 are known from geophone installations163

within the check dam. For 2 events geophone detections were not available and instead we164

used estimates from amplitude source location (ASL), which traces the flow front location165

using time-varying amplitudes of the debris flow seismograms (Walter et al., 2017). The166

three different signal classes are indicated on Figures 1c-f and S23.167

3.2 Catalog compilation and processing steps168

The construction of our debris flow detector is a supervised machine-learning classifica-169

tion (Goodfellow et al., 2016), because we ask an algorithm to classify a signal of unknown170

origin based on a previously trained machine learning model. Training the model requires a171

labeled signal catalog with signals whose classes are known from independent observations.172

We compile such a labeled data set from debris flow seismograms defined by manually picked173

signal start and end times (Figure 1d, f; see TextS1 for details). Debris flow seismograms are174
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defined to be those records lying between the earliest signal start and the latest signal end175

among all stations. Including all available stations, this yields 3,631 pre-CD1 time windows176

and 13,046 post-CD1 time windows. We randomly choose 550 100-second long noise time177

windows from 2017, 2018 and 2019 and several rainfall seismograms to compile the noise178

catalog. This provides 16,614 noise time windows.179

We use a two-iteration training and testing approach: in the first iteration we confine180

ourselves to the 18 debris flows with the cleanest seismic signatures. From these we use181

all 100 second time windows from 15 events with both pre-CD1 and post-CD1 labels to182

train the model and test it on the seismograms from the remaining debris flows. We use183

2/3 (11,076) randomly selected noise time windows for the training, and the rest (5,538)184

for the testing. In the second iteration we repeat this exercise with time windows from 20185

debris flows for training and 2 debris flows for testing. We furthermore inject identified false186

positives (29,741 time windows) from the first iteration into the noise class. This increases187

the noise class to 46,355 time windows.188

3.2.1 Detector implementation and performance189

Rather than using the raw seismic signals, our classification algorithm operates on 70190

statistical signal features. A feature is a scalar number, which describes waveform charac-191

teristics [e.g. root-mean-square amplitude (RMS), spectral content (e.g. mean and variance192

of the discrete Fourier transform), and signal variations throughout the network (e.g. ratio193

between maximum RMS and minimum RMS). The complete feature list is given in Table194

S2 in SI and Provost et al. (2017). 59 features are extracted for each station separately.195

Additional 11 network features are calculated based on all available stations.196

We use the Random Forest (RF) supervised classifier (Breiman, 2001) as the machine197

learning algorithm, which comprises majority votes among an ensemble of randomized de-198

cision trees. The decision trees are formed by consecutive inequality operations, which199

determine if features of a signal are smaller or larger than predefined thresholds. These200

thresholds, the order and the number of the inequality operations are learned during the201

training phase, whereas hyperparameters (e.g. the maximum number of the inequality op-202

erations and the total number of decision trees) are determined as described in Text S1.203

RF has proven useful in seismological applications (e.g., Rouet-Leduc et al., 2017,204

2019) and mass movements detection (e.g., Hibert et al., 2017; Maggi et al., 2017; Provost205

et al., 2017). For our implementation we use Scikit-learn machine learning Python library206

(Pedregosa et al., 2011).207

In the training phase the machine learning algorithm has access to the features and208

their associated labels (pre-CD1, post-CD1 and noise). Subsequently, the performance of209

the machine learning model is evaluated on testing set, which were not included in the210

training set. The true labels of the testing set are compared to the model predictions, which211

may or may not be correct (Figure 2).212

The RF algorithm returns the feature importance which elucidates how the model213

reaches its predictions (Breiman, 2001). Figure 2a shows pairwise relations between the three214

most important features. In each subplot two features are plotted against each other and the215

univariate distributions of the same features are plotted on the diagonal with density plots.216

The three most important features are network features: 1. ratio between the maximum217

RMS and the minimum RMS in the network, 2. station number with maximum RMS, and218

3. maximum coherence (normalized cross-correlation) between station pairs.219

This shosw that: (1) The machine-learning model strongly relies on the relative RMS220

amplitudes throughout the network and the RMS amplitude ratio is the lowest for the pre-221

CD1 class. (2) Some noise time windows are highly correlated. (3) ILL18 has the largest222
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Figure 2. Machine-learning model evaluation (second iteration training). (a) Pairwise relations

of the three most important features (see text for details). Features from each class are marked in

different colors.(b) Normalized confusion matrix with true and predicted labels (columns and rows).

(c) Results of the ML-based detector and (d) ASL-based detector applied to the 2019 continuous

data. Inset in (c) shows a zoom on the testing debris flow, which was not part of the training set.

Gray dashed lines denote individual detections in time windows and red line shows the alarm raised

after a fixed number of subsequent detections.
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RMS for the pre-CD1 class, while ILL12 and ILL13 show the largest RMS for the post-CD1223

class.224

We use a confusion matrix (Figure 2b) and Receiver Operating Characteristic (ROC)225

curve (Figure S25, in SI) to evaluate our model performance. The confusion matrix, also226

called an error matrix (Stehman, 1997), assesses classification performance in a table layout227

with true labels as columns and predicted labels as rows. For an ideal classifier all samples228

locate on the diagonal where the predicted label equals the true label and the diagonal229

values are normalized with 1.230

We present within results of the second iteration, results of the first iteration are pre-231

sented in Figures S24-S25. The confusion matrix on Figure 2b shows the highest misclassifi-232

cation for the pre-CD1 class with 14 % of pre-CD1 time windows classified as noise. However,233

we verified that ∼30 % of these ”confused” time windows are the first three time windows234

of the pre-CD1 seismograms, and the normalized number of true positives increases to from235

0.83 to 0.87 (pre-CD1—noise misclassification lowers to 0.11) if we remove these windows236

from the testing set. Whereas these initial samples are labeled as pre-CD1 they might still237

constitute noise for stations located further away from the torrent. Based on the scores on238

the confusion matrix diagonal we expect that our detector identifies debris flow signals at239

an accuracy near 90 %.240

3.3 Detections and alarms241

So far, we evaluated the performance of our machine learning model using the union of242

predictions from all stations. For an operational real-time alarm system we define a detector,243

which requires that more than half of the operational stations point towards the same class.244

If such a majority does not exist the detector does not make a prediction. Consequently,245

for real-time operation, we define ”detection” and ”alarm” as follows:246

1. Detection: a single time window in which the majority vote over online stations247

predicts the pre-CD1 or post-CD1 class.248

2. Alarm: > 2 subsequent detections for the pre-CD1 class, and > 10 subsequent detec-249

tions for the post-CD1 class.250

If no majority exists among online stations, the detector freezes the current alarm status251

and waits for the prediction from the next time window to update the alarm status. The252

alarm definition introduces a time lag between an initial debris flow detection (200 s for253

the pre-CD1 class and 16 min 40 s for the post-CD1 class, see the inset in Figure 2c for254

a visual representation). This time lag is small for the pre-CD1 class which is crucial for255

warning, and at the same time minimizes the number of false alarms. In future detector256

improvements, more advanced logical operations will likely reduce the time lag between257

initial detection and alarm, especially for the post-CD1 class.258

4 Results259

4.1 2019 continuous classification260

Next, we run the detector over the 2019 archived data using 100 s time windows, this261

time without overlaps. In 2019 we monitored station up- and down times, which we now262

use to reproduce real-time station performance. The 2019 data contain 13 training events263

and one, which was part of the testing set.264

Figure 2c shows the detector performance over 170 days in 2020. As expected, the debris265

flow detections (dark blue pixels for the pre-CD1 class, and green pixels for the post-CD1266

class) are embedded in the noise windows (light pink). Debris flows consist of continuous267
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detections, but isolated detection ”pixels” illustrate numerous noise time windows falsely268

classified as debris flows.269

We apply the alarm criterion to the 2019 detections and find that our debris flow270

detector raises a pre-CD1 alarm for 11 events, including the testing event, and misses only271

three small-volume events. For all 14 events a post-CD1 alarm was raised. 6 false positive272

alarms were raised (1 post-CD1 class, and 5 pre-CD1 class). For comparison, the ASL-273

based detector (e.g., Battaglia & Aki, 2003; Walter et al., 2017) catches 5 large debris274

flows but raises false alarms on 64 days; for some days (e.g.: Julian days 123-126, 270-275

280) it generates false alarms continuously (Figure 2d). Visual data inspection shows that276

ASL detection tends to fail when amplified noise signals resulting from electronic spikes or277

cultural activity are present on individual stations. The machine learning detector is less278

sensitive to these spurious signals.279

We stress that for this 2019 debris-flow detection comparison, the machine learning280

approach is biased: The machine learning model learns 13 events in the training phase and281

only one event [marked with a red arrow (Figure 2c)] is independent from the training phase.282

This event happens to be missed by the ASL-detector. On the other hand, this test of the283

2019 data demonstrates the drastic reduction of false alarms when moving from ASL to284

machine-learning based detection.285

Finally, we test the machine learning detector on the 2017 and 2018 data (Figure S26),286

analogous to the 2019 test. The detector generates less than 3 false alarms per year and287

correctly raises pre-CD1 and post-CD1 alarms for the event not included in the training288

set (marked with red arrows in Figure S26). Moreover, the detector finds some previously289

unknown events (Figure S27) with either pre-CD1 or post-CD1 alarms. Based on signal290

strengths and characteristics, these alarms correspond to small debris flows, which did not291

trigger or reach the in-torrent detection system.292

4.2 2020 continuous classification293

The final realistic and rigorous test of our machine learning detector is the real-time294

classification of the 2020 data-stream. The 2020 seismic network was deployed at the end295

of May 2020 and the detector has been running continuously since 2 June 2020. In the first296

week of operation (3-9 June 2020) the detector correctly raised alarms for 5 debris flows297

triggered by high-intensity rainfalls [cumulative rainfall over one week=52.4 mm (Swiss298

Meteorological Service, Montana precipitation station)]. In total, during three months (3299

June to 3 September 2020) the detector caught 13 debris flows and raised no false alarms.300

Figure 3b shows an example of detections and alarms, vertical records, and spectrograms301

during the initiation of the 29 June 2020 debris flow.302

8 out of the 9 June and July 2020 alarms were independently confirmed by the WSL303

observatory, although the debris-flow observation station currently undergoes maintenance304

and does not provide CD1 arrival times. Nevertheless, we can compare our results with305

recordings from a video camera installed at the lowermost check dam CD29 near the Rhone306

River (Table S3). This comparison was not possible for events, which occurred at night307

or which stopped before reaching CD29. We also estimated arrival times at a nearby seis-308

mometer (ILL11) installed within a few meters from the torrent, which is not part of our309

detection system. Depending on their average flow velocities, most debris flows arrived at310

CD29 ∼ 1-2 h after our pre-CD alarm times (Figure 3c, Table S3). Given typical travel311

times between CD1 and CD29 of 20 minutes (Badoux et al., 2009; Walter et al., 2017), our312

system therefore provides additional warning time between 20 minutes and over 1.5 hours313

with respect to CD1.314
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Figure 3. Debris flow detections in 2020. (a) Results of the ML-based detector run on the

continuous real-time data stream from 2020. The 29 June 2020 event is marked with a red box.

(b) Detections (gray dashed lines), alarms (red lines), vertical records of seismometers and spec-

trograms. The top horizontal color bar shows detection type (white: noise; blue: pre-CD1; green:

post-CD1). (c) Warning time gain with respect to detection at CD29. (d) Relation between signal

amplitudes near CD1 and averaged apparent impact force spectra (AIFS) calculated for the lowest

Illgraben stretch (Zhang et al., 2020). The horizontal error bars are taken as 10 % from the aver-

aged AIFS and the vertical error bars represent the standard deviation of RMS calculated over 10

consecutive post-CD1 detections. In Panels c and d events are indicated by the same color code.
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5 Discussion and Conclusions315

The central result of this study is that machine learning applied to real-time seismic data316

streams can detect debris flows in regions where conventional instrument deployment is not317

possible. This provides significant increases in warning times. All 8 events independently318

captured by the WSL debris flow observatory were detected with our approach. Several319

smaller debris flows, which did not reach in-torrent instrumentation but generated weak yet320

clear debris flow seismograms were also detected.321

The performance in 2020 with no false positives or false negatives is encouraging but322

warrants modifications to the detector to automatically identify debris flows large enough323

to leave the upper catchment. This leads to the pivotal question whether our machine324

learning detector provides some quantitative measure of event size at the earliest alarm325

times, because this would allow warning against particularly destructive events. To this326

end we investigate if alarm-time seismic amplitudes scale with frequency-averaged apparent327

impact forces spectra (AIFS). The latter represent moment transfer of debris flow particles328

during ground impacts (Farin et al., 2019). We follow (Zhang et al., 2020) (see also Text329

S2) to calculate AIFS and their averages over the lowest Illgraben extent. These averages330

scale with boulder sizes accumulating at the flow front by the time it reaches the Rhone331

River near CD29 (Zhang et al., 2020) (Figure S28).332

We do not find significant correlations between seismic amplitudes at the time of pre-333

CD1 alarms (R2 varying between stations, from 0.01 to 0.38). However, for the earliest334

detection time window contributing to the post-CD1 alarms, there is a clear correlation335

between seismic amplitudes and AIFS (Figure 3d). Not all stations correlate equally, but336

ILL14, ILL17, and ILL18 have an R2 of around 0.80. This shows that shortly after debris337

flow passage at CD1, seismic amplitudes can identify flow fronts with large boulder sizes,338

some 20 minutes before they arrive at CD29.339

The poor correlation between seismic amplitudes during pre-CD1 alarms and AIFS340

raise questions about what seismogenic processes are detected at the very beginning of a341

debris flow. In general, initial sediment mobilization leading to debris flows may occur via342

pore water pressure increases or water drag forces leading to sediment failure on lateral343

slopes or within the torrent channel (Berti & Simoni, 2005; Godt & Coe, 2007; Gregoretti344

& Fontana, 2008). Our pre-CD1 detections identify time windows, when seismic amplitudes345

steadily increase (Figure 1d,f, 3b), rather than distinct bursts of seismic energy, which are346

observed in our records at other times (e.g. between 0 and 1000 s in Figure 1d). The steady347

increase in seismic energy argues for slow mobilization of debris flow material rather than348

sudden landslide failures on steep slope, which would be associated with burst-like signals.349

The Illgraben site is an ideal natural laboratory to test debris flow detections, because350

regular event occurrence facilitates detector training. This is particularly important for351

machine learning algorithms relying exclusively on labeled training data. 22 training events352

used here can be considered a small training catalogue compared to most machine learning353

applications. Yet our practice to split signals into 100 second time windows increases the354

training data set by several orders of magnitudes to provide reliable detection. To transfer355

our Illgraben detector to other debris flow catchments, modifications are likely necessary to356

cope with fewer training events. We evaluated the accuracy of classification as a function of a357

number debris flow events used in a training set(Figure S29). The results show that machine-358

learning model trained even on a single event gives better results than a random guess, but359

a higher accuracy (> 0.7) and stable predictions are obtained from 9 training events. Al-360

ternatively, it remains to be tested if the machine learning model trained at Illgraben could361

simply be applied in other geographic regions, i.e. if the model learned ”general” charac-362

teristics of debris flow seismograms, which are independent of source-station distances and363

subsurface properties affecting seismic wave propagation. For machine learning algorithms364

applied to earthquake detection such detector transferability has already been confirmed365

(Ross et al., 2018).366
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Machine learning provides powerful tools for time series analysis and the approach367

presented here is only a first step to leverage this potential for natural hazard warning.368

Nevertheless, our relatively simple application already tackled the longstanding problem to369

reliably detect debris flows in an upper catchment area, which is inaccessible to existing370

detectors. Moreover, seismic data acquisition such as used here is a relatively cheap alterna-371

tive to in-torrents instruments, which require major construction efforts. The combination372

of seismic monitoring and real-time data processing based on machine learning therefore373

provides significant advantages for Alpine mass movement detection, which have yet to be374

harnessed in operational warning schemes.375
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tailed description of methods used for the development of the machine-learning detector.

Supplemental Text2 provides additional information on the apparent total impact force

spectrum (AIFS) calculation. Supplemental Figures S1 to S22 show vertical-component

seismograms of 22 debris flow events recorded in 2017, 2018, and 2019. Supplemental

Figure S23 shows debris-flow seismograms of 21 June 2019 event, and corresponding spec-

trograms. Supplemental Figure S24 shows machine-learning model evaluation for the first

iteration. Supplemental Figure S25 shows receiver operating characteristic (ROC) curve

analysis for the first and the second iteration. Supplemental Figure S26 shows the results

of the detector run (from the second iteration) over 2017 and 2018 continuous data. Sup-

plemental Figure S27 shows seismograms of a small debris flow event newly caught by

the detector. Supplemental Figure S28 shows four photos of Illgraben debris-flow events

with boulder-rich fronts detected in 2020. Supplemental Figure S29 shows results of a

sensitivity test (accuracy of prediction vs number of debris-flow events used in a training

set). Supplemental Figure S30 shows vertical apparent total impact force spectra (AIFS)

for 2020 debris flows.

Supplemental Table S1 provides detailed information on the characteristics of 22 debris

flows recorded in 2017, 2018, and 2019. Supplemental Table S2 (uploaded separately)

shows 70 statistical features used as input in the machine-learning model. Supplemental

Table S3 provides information on the characteristics of 13 debris flow events detected in

2020.
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Text S1. Description of methods used in the development of the machine-

learning debris flow detector.

Three classes of seismic signals are defined: pre-Check Dam 1 (CD1), post-CD1, and

noise. We divide the dataset into 100 s time windows with an overlap of 50 %. We

find that 100 s time window is long enough to contain enough of information to reliably

extract signal statistics, and it is short enough to create a large catalog needed for machine

learning.

We use a two-iteration training and testing approach, where in the first iteration we

use a subset of 18 DF events with the cleanest seismic signature (15 for training and 3 for

testing), and in the second iteration we use all 22 events (20 for training and 2 for testing)

to increase the amount of information used to train the machine-learning model. In the

second iteration we also inject false positives detections from the first iteration into the

noise class. We use Scikit-learn (Pedregosa et al., 2011) implementation of the Random

Forest classifier. When we refer to the machine-learning detector we refer to the overall

system that involves pre-processing the data, extracting the features, and applying the

machine-learning model to the new data.

We follow the following processing steps:

1. Pre-processing of the seismic data

The data is detrended and centred, and it is not corrected for instrument response to

increase the computational performance. Further, the instrumental response is flat in the

1-50 Hz frequency range. The only pre-processing we apply to data is a low-cutoff filter

at 1 Hz to focus on high frequency signals.

2. Catalog preparation
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To extract debris-flow seismograms we manually pick the start time and the end time of

the debris-flow events. The picks are based on Power Spectral Density (PSD) (Figure

1d,f in the manuscript) averaged over 1-50 Hz and root-mean squared (RMS) amplitudes

calculated for each station and each event. An example of picks that are delimiting the

three different classes is schematically presented on Figure S23. We choose the earliest

and the latest picked times for each event as start times and end times making the picks

uniform for all stations (Figure S23).

We then randomly choose 550 100-second long noise time windows from 2017, 2018 and

2019 and we manually select 41 rainfall events with a fixed duration of 30 min to compile

the noise catalog. For the latter, we use rainfall data from the nearby precipitation station

located in Montana, Switzerland (Swiss Meteorological Service). We choose long-duration

rain events that do not overlap with the picked debris flow events (at least 45 min time

difference between the debris flow events and the rainfall events). We define rain events

as rainfall lasting at least 30 min with 1h moving (step=10 min) average higher than 1.4

mm. Note that in the second iteration the noise class contains also the false positive

detections from the first iteration.

For the first iteration in total we obtain: 2,966 pre-CD1, 9,886 post-CD1, and 16,614 noise

time windows in the catalog. For the second iteration we obtain: 3,631 pre-CD1, 13,046

post-CD1, and 46,355 noise time windows in the catalog. The number of time-windows

per class in the second iteration is unbalanced, therefore we account for the non-balanced

dataset in the training procedure (see details below).

3. Extracting statistical features of the seismic data
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For statistical feature calculation, we follow works of Hibert et al. (2017); Maggi et al.

(2017); Provost, Hibert, and Malet (2017). They defined a set of significant features that

proved efficient in classification of other types of mass movements, including landslides

and rockfalls. In total we use 70 features based on the waveform, spectral, spectrogram,

and network attributes (see Table S2 for the list of features). We slightly modify the

list of features presented in Provost et al. (2017) by adding the following features: (1)

waveform features: RMS, and interquartile range, (2) network features: mean Wasserstein

distance, and standard deviation of the Wasserstein distance calculated between stations

in the frequency band of (1-50) Hz. We use the stations separately meaning that for

each station and for each 100 s time window we calculate 59 individual attributes, and

11 network attributes are shared between the stations. We also tried different variations

of combining the features and the stations (e.g., combining features from 4 stations or

averaging features over stations), but treating the stations separately gives the best results.

Finally, we eliminate time windows from the catalog when only one station was online.

See Table S2 for the complete list of features, and for the formulas please refer to Provost

et al. (2017).

4. Train-test dataset split

There are two ways we might approach the splitting of the dataset: (1) by the number

of time windows, and (2) by the number of events. We use the first approach to optimize

the hyperparameters of the machine-learning algorithm and the second one to assess

the accuracy of the classification and the performance of the machine-learning model.

Hyperparameters are settings of a machine learning algorithm used to control its behavior

(Goodfellow et al., 2016).
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In (1) we take the whole dataset as ensemble without considering debris-flow event sep-

aration. However, we need (2) to reliably and independently from the hyperparameter

optimization estimate the accuracy of the classification.

• Hyperparameter optimization

We use randomly chosen 75 % of the dataset as a training set for the hyperparameter

optimization. The hyperparameters are optimized by a 5-fold cross validation with a grid

search, which allows for a full search over specified parameter values. The performance of

a machine-learning model for different hyperparameter values is measured with accuracy,

which is the proportion of sample for which the model produces the correct output.

We tune the following hyperparameters of the random forest algorithm: the number of

trees in the forest, the minimum number of time windows required at node leaf, type of

class balancing, the maximum depth of a tree, the minimum number of time windows

required for an internal node split. The last two hyperparameters control the depth

of trees. We use ”balanced subsample” random forest mode to minimize a potential

bias related to imblanced classes. It automatically adjusts class weights to be inversely

proportional to class frequencies in each tree.

• Optimal dataset split per debris-flow event

Next, we search for the optimal number and combination of debris-flow events used for

training and testing. We fist choose a subset of 8 debris-flow events with different char-

acteristics (e.g., year of occurrence, volume, and waveforms). From these we choose 2-5

element event combinations that are used in the testing set. For each combination the

testing set is independent from the training set. We use the accuracy score for each

training-testing combination to assess the performance of the model.In each test we use
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the optimized hyperparameters of the random forest algorithm. The accuracy score is nor-

malized and its values are bounded between 0 and 1. The best subset reaches accuracy

score of > 0.9, meaning that more than 90% of labels are predicted correctly.

The debris-flow events used in the final testing set are marked in orange in Table S1 (3

events for the first iteration), and in green (2 events for the second iteration). For the

noise class, we randomly select 1/3 of the samples for the testing process. In overall we

use 80 % of the dataset for training and 20 % for testing.

5. Building and evaluating the machine-learning model

The model is then built in a training phase in which the machine-learning algorithm has

access to seismic features and the corresponding classes which are used as labels. To

evaluate the model we apply it to the testing set with restricted access to the features.

We then compare the predicted labels to the true labels. The accuracy score might be

misleading for the imbalanced dataset, so to better assess the performance of the model

we calculate a confusion matrix and Receiver Operating Characteristic (ROC) curves with

cross validation (5 different splits).

The confusion matrix from the first iteration is presented in Figure S24a. It indicates

that the machine learning model performs less well in classification of pre-CD1 and noise

signals with a score of 0.73.

Figure S25 shows the ROC curves for the three classes. ROC curves shows the true positive

rate (TPR=TP/(TP/FN)) on the y axis and false positive rate (FPR=FP/(FP+TN)) on

the x axis, where: TP=true positive, FN=false negatives, FP=false positives, TN=true

negatives.
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The higher the area under the curve (AUC), the better the accuracy of the classifier. The

ROC curve is computed for each class separately by pairwise comparison (one class vs. all

other classes) and the dotted line shows the baseline for a random guess. In general, the

ROC curves shows good classification results, strongly above the random baseline with

AUC values of 0.9, and with low standard deviation values meaning that the classifier

output should not be too much affected by changes in the training data (Pedregosa et al.,

2011). Moreover, the ROC curves indicate the improvement of the performance of the

machine-learning model in the second iteration.

Figure S24b shows pairwise relationships between the three most important features.

The three most important features belong to the network attributes: 1. ratio between

the maximum RMS and the minimum RMS in the network, 2. station number with

maximum RMS, and 3. maximum coherence between station pairs. The three most

important features are the same in the first and in the second iteration.

6. Applying the machine-learning model to new data

We now apply the machine-learning model to 2019 continuous data. The results of the

first iteration (Figure S24c) indicate that the model often classifies anthropogenic noise

as post-CD1 class. This is interesting since it is not represented in the confusion matrix,

hinting that the classification accuracy estimated over limited testing set might not fully

represent the classification accuracy over the entire seismic dataset. These false positives

are related to the presence of anthropogenic noise in Illgraben area because they appear

only during week days, e.g., Monday-Friday:154-158, 182-186, 189-193 Julian days between

∼5 a.m. UTC (7 a.m. local time) and 10 a.m-11 a.m. until 15 (17 local time). The false
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positives are consequently injected into the noise class in the second iteration to teach the

model how to distinguish between this anthropogenic noise and debris-flow signals.

One can ask how many debris flow events are needed to train the machine-learning model

and obtain a good performance in classification. Figure S29 shows a sensitivity test:

balanced accuracy score [the average of recall TP/(TP+TN) obtained on each class] as

a function of number of debris-flow events used in training set with cross-validation (5

folds). The results show that using even a single debris-flow event for training gives

better results than a random guess, although higher values of balanced accuracy (> 0.7)

and stable prediction are obtained from 9 debris-flow events used in the training set.

Text S2. Apparent total impact force spectrum (AIFS) calculation

The vertical apparent total impact force spectrum (AIFS) of the debris flow events is

calculated following Zhang et al. (2020). The peaks of seismic signals recorded at stations

ILL11 and ILL2 (pink and yellow triangle on Figure 1) are used to estimate the average

velocity of the debris flows. To calculate the AIFS, we assume that the velocity of the

debris flow is constant during run-out and that the events originate upstream from CD1.

The average debris flow velocities used in the AIFS calculations are presented in Table

S3.

Two large peaks in the vertical AIFS at around 2,100 m and 3,100 m visible on Figure

S30 are probably caused by large CDs located at these channel locations (Zhang et al.,

2020). The AIFS is lower at 2,500 m, which might be related to a denser distribution of

check dams at 2,500 m. If large particles (e.g., boulders) are present in a debris flow, they

gradually gather at the flow front due to the particle sorting phenomena which corresponds
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to an increase in AIFS (events on 4, 7, 8(2), 17, 29 June and 8 August 2020) . Other

events seem to have lower volumes and strong deposits.
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Figure S1. (a) Vertical-component seismograms generated by a debris-flow event on 29 May

2017. The arrival time of the debris flow front at CD1 is marked in red.
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Figure S2. (a) Vertical-component seismograms generated by a debris-flow event on 3 June

2017. The arrival time of the debris flow front at CD1 is marked in red.
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Figure S3. (a) Vertical-component seismograms generated by a debris-flow event on 3 June

2017. The arrival time of the debris flow front at CD1 is marked in red.
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Figure S4. (a) Vertical-component seismograms generated by a debris-flow event on 14 June

2017. The arrival time of the debris flow front at CD1 is marked in red.
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Figure S5. (a) Vertical-component seismograms generated by a debris-flow event on 19 May

2017. The arrival time of the debris flow front at CD1 is marked in red.
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Figure S6. (a) Vertical-component seismograms generated by a debris-flow event on 11 June

2018. The arrival time of the debris flow front at CD1 is marked in red.
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Figure S7. (a) Vertical-component seismograms generated by a debris-flow event on 12 June

2018. The arrival time of the debris flow front at CD1 is marked in red.
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Figure S8. (a) Vertical-component seismograms generated by a debris-flow event on 25 July

2018. The arrival time of the debris flow front at CD1 is marked in red.
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Figure S9. (a) Vertical-component seismograms generated by a debris-flow event on 08 August

2018. The arrival time of the debris flow front at CD1 is marked in red.
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Figure S10. (a) Vertical-component seismograms generated by a debris-flow event on 10 June

2019. The arrival time of the debris flow front at CD1 is marked in red.
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Figure S11. (a) Vertical-component seismograms generated by a debris-flow event on 10 June

2019. The arrival time of the debris flow front at CD1 is marked in red.
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Figure S12. (a) Vertical-component seismograms generated by a debris-flow event on 20 June

2019. The arrival time of the debris flow front at CD1 is marked in red.
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Figure S13. (a) Vertical-component seismograms generated by a debris-flow event on 21 June

2019. The arrival time of the debris flow front at CD1 is marked in red.
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Figure S14. (a) Vertical-component seismograms generated by a debris-flow event on 01 July

2019. The arrival time of the debris flow front at CD1 is marked in red.
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Figure S15. (a) Vertical-component seismograms generated by a debris-flow event on 02 July

2019. The arrival time of the debris flow front at CD1 is marked in red.
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Figure S16. (a) Vertical-component seismograms generated by a debris-flow event on 03 July

2019. The arrival time of the debris flow front at CD1 is marked in red.
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Figure S17. (a) Vertical-component seismograms generated by a debris-flow event on 15 July

2019. The arrival time of the debris flow front at CD1 is marked in red.
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Figure S18. (a) Vertical-component seismograms generated by a debris-flow event on 26 July

2019. The arrival time of the debris flow front at CD1 is marked in red.
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Figure S19. (a) Vertical-component seismograms generated by a debris-flow event on 11

August 2019. The arrival time of the debris flow front at CD1 is marked in red.
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Figure S20. (a) Vertical-component seismograms generated by a debris-flow event on 20

August 2019. The arrival time of the debris flow front at CD1 is marked in red.
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Figure S21. (a) Vertical-component seismograms generated by a debris-flow event on 10

October 2019. The arrival time of the debris flow front at CD1 is marked in red.
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Figure S22. (a) Vertical-component seismograms generated by a debris-flow event on 15

October 2019. The arrival time of the debris flow front at CD1 is marked in red.
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Figure S23. (a) Debris-flow seismograms generated by 21 June 2019 event with vol.= 83,000 m3

recorded over six stations in the network. Corresponding spectrograms are showed in panel b.

Three classes of seismic events used in machine-learning detector are schematically represented

with different colours: pre-CD1 (blue), post-CD1 (green) and noise (pink). The arrival time of

the debris flow front at CD1 is marked in orange.
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Figure S24. Machine-learning model evaluation for the first iteration. (a) Normalized confu-

sion matrix with true labels as columns and predicted labels as rows. (b) Pairwise relationships

of the three most important features. In each subplot, two features are plotted against each other

(the same features are plotted on diagonal, which show univariate distribution of features). Fea-

tures from each class are marked in different colors. (c) Results of the machine-learning detector

executed on 2019 continuous data.
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Figure S25. Mean ROC curves for the first (a), and the second iteration (b), calculated using

5-fold cross-validation. The mean ROC curves are marked in solid lines with shaded standard

deviations. The true positive rate (TPR) is presented on the y axis and false positive rate (FPR)

on the x axis. The area below the curve (AUC) measures model accuracy.

Figure S26. Results of the machine-learning detector run (from the second iteration) over

2017 (a), and 2018 (b) continuous data.
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Figure S27. Waveforms generated by a small debris flow event found by the ML-based DF

detector, and detected on 18 August 2018, 17:53:20.
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Figure S28. Photos of Illgraben debris-flow events with boulder-rich fronts passing through

CD29 detected by the machine-learning detector on 4, 8(2), 17, and 29 June 2020 (Source: WSL).
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Figure S29. Sensitivity test: balanced accuracy score as a function of n number of debris-

flow (DF) events used in training set with cross-validation (5 folds). For each test a subset of

n events is chosen from 20 events to train the ML-model and two events marked in green in

TableS1 are used as testing set. The mean balanced accuracy is marked in solid green line with

shaded standard deviation. The values are normalized between 0 and 1. Even a model trained on

a single event gives better classification results than a random guess (for a 3-class classification

problem balanced accuracy of a random guess converges towards 1/3). Higher values of balanced

accuracy (> 0.7) and stable prediction are obtained from n=9 events used in the training set.
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Figure S30. Vertical apparent total impact force spectra (AIFS) for 2020 debris flows.
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N◦ Date Arrival time CD1 (UTC) Vol.(m3) Vel.(m s-1) h99 (m)

0 2017-05-19 11:41:00 n.a. n.a. n.a.
1 2017-05-29 16:58:31 100,000 6.67 4.80
2 2017-06-03 (1) 20:23:07 n.a. n.a. n.a.
3 2017-06-03 (2) 23:27:38 25,000 5.10 3.30
4 2017-06-14 19:30:48 n.a. 7.10 3.40
5 2018-06-11 10:46:39 35,000 7.00 3.50
6 2018-06-12 18:29:16 n.a. n.a. n.a.
7 2018-07-25 16:56:40 <50,000 4.69 2.00
8 2018-08-08 17:49:25 <100,000 6.70 n.a.
9 2019-06-10 (1) 17:02:51 3,300 0.90 0.64
10 2019-06-10 (2) 22:01:17 6,600 2.38 0.59
11 2019-06-20 09:12:17 n.a. n.a. n.a.
12 2019-06-21 19:34:42 83,000 5.60 2.45
13 2019-07-01 23:00:29 78,000 3.80 1.62
14 2019-07-02 22:09:28 39,000 2.50 0.71
15 2019-07-03 16:43:15 n.a. n.a. n.a.
16 2019-07-15 03:40:21 16,000 5.00 0.68
17 2019-07-26 17:33:12 64,000 6.97 1.21
18 2019-08-11 17:02:34 53,000 5.56 n.a.
19 2019-08-20 16:40:59 13,000 0.95 0.89
20 2019-10-09 11:45:28 n.a. n.a. n.a.
21 2019-10-15 16:10:50 n.a. n.a. n.a.

TableS1. Characteristics of 22 debris flow events recorded in 2017, 2018, and 2019. Volume is
the integrated sum of discharge over the entire debris-flow wave. Flow velocity is calculated from
the travel time between in-channel sensors as described in (Schlunegger et al., 2009). Flow depth
h99 is the depth where 99 % of the depth values are smaller. n.a. denotes values that were not
estimated. Volume and flow depth are estimated at the instrumented wall, CD29. The arrival
times at CD1 come mostly from the measurements of a geophone installed at CD1, although the
arrival times of events 0 and 2 were estimated based on the ASL results (Walter et al., 2017).
Events used in the first iteration in the testing set are marked in orange, and events used in the
testing set in the second iteration are marked in green.
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N◦ Date Alarm ILL11 arrivals Warning time Peak ampl. DF Vel.
increase (min:s) (n◦ counts) (m s-1)

0 2020-06-04 14:55:08 15:41:51 43:43 250,849 3.2
1 2020-06-07 07:33:28 09:29:32 136:04 117,228 0.7
2 2020-06-08 (1) 13:43:28 15:51:59 128:31 28,383 0.6
3 2020-06-08 (2) 16:35:08 17:59:10 84:02 132,500 0.8
4 2020-06-09 23:35:08 00:55:43(+1d) 90:35 84,089 2.1
5 2020-06-16 20:20:08 23:56:18 216:10 2,486 3.2
6 2020-06-17 03:11:48 04:06:58 55:10 7,468 0.7
7 2020-06-29 04:33:29 05:49:13 75:44 159,970 1.5
8 2020-07-22 15:41:50 n.a. n.a. n.a. n.a.
9 2020-07-28 16:05:10 17:58:55 113:45 2,461 n.a.
10 2020-08-16 21:15:08 23:04:11 109:03 96,098 0.6.
11 2020-08-30 04:54:24 05:52:23 57:59 23,455 n.a.
12 2020-09-01 04:54:24 n.a. n.a. n.a. n.a.

TableS3. Characteristics of 13 alarms in 2020. n.a. denotes values that were not estimated.

22 July 2020 and 01 September 2020 debris flows stopped before ILL11, and 30 August 2020

event had multiple surges which makes difficult reliable debris-flow velocity estimation and AIFS

calculation.

Captions for large Table S2.

TableS2. 70 statistical features including waveform, spectral, spectrogram, and network at-
tributes used as input in the machine-learning model. The table is uploaded separately as an
excel file.
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