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Abstract

Until the Mw 6.8 Elazığ earthquake ruptured the central portion of the East Anatolian Fault (EAF) on January 24, 2020, the
region had only experienced moderate magnitude (Mw 6.2) earthquakes over the last century. Here, we use geodetic data to
constrain a model of subsurface fault slip. We adopt an unregularized Bayesian sampling approach relying solely on physically
justifiable prior information and account for uncertainties in both the assumed elastic structure and fault geometry. The rupture
of the Elazığ earthquake was bilateral, with two primary disconnected regions of slip. This rupture pattern may be controlled
by structural complexity. Both the Elazığ and 2010 Mw 6.1 Kovancılar events ruptured portions of the central EAF that are
believed to be coupled during interseismic periods, and the Palu segment is the last portion of the EAF showing a large deficit
of fault slip which has not yet ruptured in the last 145 years.
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Key Points:7

• We infer a stochastic model for the distribution of subsurface fault slip associated8

with the 2020 Elazığ earthquake9

• We account for uncertainties in both the depth-dependence of the assumed elas-10

tic structure and the location and geometry of the fault11

• Our models are characterized by two primary patches of fault slip where distri-12

bution appears to be controlled by geometrical complexities13
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Abstract14

Until the Mw 6.8 Elazığ earthquake ruptured the central portion of the East Ana-15

tolian Fault (EAF) on January 24, 2020, the region had only experienced moderate mag-16

nitude (Mw < 6.2) earthquakes over the last century. Here, we use geodetic data to con-17

strain a model of subsurface fault slip. We adopt an unregularized Bayesian sampling18

approach relying solely on physically justifiable prior information and account for un-19

certainties in both the assumed elastic structure and fault geometry. The rupture of the20

Elazığ earthquake was bilateral, with two primary disconnected regions of slip. This rup-21

ture pattern may be controlled by structural complexity. Both the Elazığ and 2010 Mw22

6.1 Kovancılar events ruptured portions of the central EAF that are believed to be cou-23

pled during interseismic periods, and the Palu segment is the last portion of the EAF24

showing a large deficit of fault slip which has not yet ruptured in the last 145 years.25

Plain Language Summary26

The Elazığ earthquake ruptured the central portion of the East Anatolian Fault27

(EAF), a major strike-slip fault in eastern Turkey, on January 24, 2020. Before this event,28

the region had only experienced moderate magnitude earthquakes over the last century.29

We aim at understanding the rupture of this earthquake, and how it relates to the his-30

torical ruptures of the EAF. To do so, we use geodetic observations of the deformation31

at the surface to image the subsurface slip on the fault that occurred during the earth-32

quake. As the characteristics of the crust are poorly known, we make realistic assump-33

tions on the fault geometry and Earth structure, and build on novel approaches to ac-34

count for the possible biases of our assumptions and to characterize the uncertainties of35

the imaged slip. We suggest that the Elazığ earthquake rupture may be controlled by36

structural complexity of the fault, and that two main regions of slip surround the fault37

bend responsible for the nucleation of the rupture. We also suggest that the fault seg-38

ment located between Lake Hazar and the city of Palu is the last portion of the central39

EAF, showing a large deficit of the fault slip, which has not yet ruptured in the last 14540

years.41
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Figure 1. Tectonic setting and assumed characteristics for the Elazığ earthquake. (a) Tec-

tonic setting of the area, plate boundaries are shown in thick black lines. East and North Ana-

tolian Faults are labelled (EAF and NAF), as well as the Dead Sea fault (DSF) and Karlıova

Triple Junction (KTJ). (b) Active fault traces (Basilic et al., 2013) and seismicity since 1976

(GCMT, Dziewonski et al., 1981) around the EAF and NAF. The Elazığ earthquake focal mech-

anism (GCMT) is in red. (c) Details of assumed (black) and mapped (gray) fault trace at the

surface. (d) Assumed fault geometry at depth and associated uncertainty (standard deviation of

5◦ around the assumed dip and 1 km around the fault surface trace). (e) Assumed shear moduli

with depth (derived from Maden, 2012; Ozer et al., 2019) and associated uncertainties.
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1 Introduction42

A large portion of Turkey is located on the Anatolian Plate (AP), which is slowly43

extruding westward as a result of the north-south collision between the Arabian and Eurasian44

tectonic plates (e.g., Mckenzie, 1970; McKenzie, 1972; McClusky et al., 2000). The west-45

ward motion of the AP is predominantly accommodated along the North and East Ana-46

tolian faults (NAF and EAF, Fig. 1). The NAF experienced a sequence of destructive47

earthquakes that struck within the last eighty years (e.g., A. Barka, 1996; Stein et al.,48

1997; Armijo et al., 1999; Şengör et al., 2005). In contrast, the EAF is generally assumed49

to be less active, and has only experienced small to moderate events over the last cen-50

tury, although large (M > 7) earthquakes have occured in the historic past (e.g., Am-51

braseys, 1970; Ambraseys & Jackson, 1998; Hubert-Ferrari et al., 2020).52

The EAF is a left-lateral 600-km-long strike-slip fault linking the Dead Sea fault53

(DSF, Fig. 1) to the Karlıova Triple Junction (KTJ, Fig. 1) where it intersects with the54

right-lateral NAF (e.g., Yilmaz et al., 2006; Duman & Emre, 2013). The EAF has a com-55

plex geometry divided into several main segments, each of them characterized by bends,56

pull-apart basins or compressional structures (e.g., Duman & Emre, 2013), and also com-57

prises multiple secondary sub-parallel and seismically active structures delineating a 50-58

km-wide fault zone (e.g., Bulut et al., 2012). The EAF accomodates a displacement of59

9 to 15 mm/yr (Cetin et al., 2003; Reilinger et al., 2006; Cavalié & Jónsson, 2014; Bletery60

et al., 2020), with creep dominantly at depths greater than 5 km (Cavalié & Jónsson,61

2014; Bletery et al., 2020), while shallower portions of the fault are characterized by a62

moderate to large inter-seismic slip deficit (Bletery et al., 2020).63

The January 24 2020 Mw 6.8 earthquake ruptured the EAF between the Hazar Pull-64

apart Basin and the city of Pütürge (Fig. 1). Although no coseismic surface rupture has65

been observed, the main fault has been mapped as sinusoidal and interrupted by small66

bends and step-overs whose widths do not exceed a kilometer (Duman & Emre, 2013).67

In this study, we investigate the subsurface rupture of the Elazığ earthquake and its re-68

lationship to fault geometry and inter-seismic slip deficit. While assuming a fault struc-69

ture with a realistic geometry, we also account for its inherent uncertainties, as well as70

uncertainties related to assumptions on the crustal structure. We adopt a Bayesian sam-71

pling approach which allows us to sample a large panel of possible slip models and to72

estimate the posterior uncertainty on the inverted slip distribution.73

–4–



manuscript submitted to Geophysical Research Letters

Figure 2. Observations used in thus study. (a) Surface displacement in the satellite line-

of-sight (LOS) direction from a Sentinel-1 ascending interferogram (01/21/2020-01/27/2020),

overlayed with coseismic GNSS offsets (Melgar et al., 2020). (b) Surface displacement from a

Sentinel-1 descending interferogram (01/22/2020-01/28/2020). (c) Surface displacement from an

ALOS-2 ascending interferogram (01/03/2020-01/31/2020). (d) Surface displacement from an

ALOS-2 descending interferogram (03/03/2019-01/03/2020). (e) Pixel-offset surface displacement

in the satellite along-track (azimuth) direction from the ALOS-2 descending pair (03/03/2019-

01/03/2020). (f) Pixel-offset surface displacement in the satellite azimuth direction from the

ALOS-2 ascending pair (01/03/2020-01/31/2020). The surface projection of the satellite LOS

direction is positive in the ground-to-satellite direction.

2 Bayesian Inference framework74

2.1 Data75

We derive the earthquake surface displacement from four Synthetic Aperture Radar76

(SAR) interferometric pairs and two SAR pixel offsets images (summarized in Table S277

and Fig. 2). We computed two ALOS-2 ascending and descending interferograms, and78

two Sentinel-1 ascending and descending interferograms. Copernicus Sentinel-1 data have79

been acquired by the European Space Agency (ESA) and processed with the NSBAS soft-80
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Figure 3. Inferred average slip model and associated posterior uncertainty for the Elazığ

earthquake. (a) Map view of the fault trace and local setting, the epicenter is the white star.

(b) Depth view of the average total slip amplitudes and directions. (c) Standard deviation of

the inferred strike-slip parameters. (d) Observed and predicted surface displacement in the LOS

direction from Sentinel-1 ascending and descending, and ALOS-2 ascending InSAR.

3 Results172

We infer primarily strike-slip fault slip (Fig. 3). Most of the slip is imaged around173

the main bend (localized around the city of Doganyol, Fig. 3a). The maximum slip am-174

plitudes (up to 4 m) are reached within two slip patches located around the main bend175

and from 2 to 10 km depth. Associated posterior uncertainty for these patches can reach176

up to ∼1 m for highest amplitudes (Fig. 3c). The westernmost slip patch extends down177

to greater depths (7 - 15 km) with moderate slip amplitudes of ∼2 m. At depth, the pos-178

terior model uncertainty reaches up to 1 m. The posterior marginal distributions all show179

well-delineated Gaussian shapes (Fig. S2), even for the smallest slip amplitudes. The pos-180

terior PDFs on subfaults in between these two main slip patches indicate well resolved181

very low slip amplitudes (Fig. S2), suggesting that the two patches are disconnected (Fig. 3c).182
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One other narrow slip patch can be observed west of the main bend, at the loca-183

tion of the second bend. Slip is imaged from the surface to 4-km-depth, with maximum184

amplitudes reaching 2.5 m at the surface, and with relatively small posterior uncertainty.185

This patch is not connected with the main slip patches, and does not seem to correspond186

to any Mw > 4 aftershock (relocated by Melgar et al., 2020; Pousse-Beltran et al., 2020).187

This slip may be coseismic or afterslip (given that the InSAR data span a period up to188

one month after the mainshock).189

Observations are well fit by the predictions of our model (Figs. 3(d), S4, S5, S6 and190

S7 for the InSAR and GNSS data respectively), within the assumed uncertainties and191

possible remaining noise (in particular for the pixel-offset data). Accounting for epistemic192

uncertainties mitigates overfitting (Ragon et al., 2018). Residuals are expected to be larger193

than if epistemic biases are neglected. The descending interferograms present larger resid-194

uals (Figs. S4, S5, S6) because the assumed fault geometry is primarily constrained by195

ascending data, and the descending imaging geometry is not oriented favorably.196

We also infer the slip distribution of the Elazığ earthquake assuming a planar fault197

structure dipping of 85◦ towards the north and embedded within a homogeneous half198

space, without introducing any epistemic uncertainty (Fig S8). Unlike our preferred model,199

the slip is concentrated in a single shallow and extended slip patch with low posterior200

uncertainty. Highest amplitudes (up to 3.5 m) are reached above the main bend, from201

1.5 to 9 km depth. Low slip values are inferred at depths greater than 10 km and lower202

than 1.5 km. Some slip is also inferred around the second bend. As expected, the fit of203

the predicted displacement to the observations is good (Figs. S9, S10, S11 and S12), and204

slightly better than with our preferred inference.205

4 Discussion and Conclusion206

4.1 A stochastic view of the 2020 Elazığ coseismic rupture207

Assuming a realistic fault geometry and crustal structure, and accounting for re-208

lated epistemic uncertainties, we estimate the slip distribution of the 2020 Elazığ earth-209

quake with a Bayesian inference approach. We show that the coseismic rupture affects210

almost the full width of the Pütürge-Sivrice segment, down to 15 km depth. Two dis-211

connected slip patches host most of the slip: one patch extends from ∼ 2.5 to ∼ 12 km212

depth east of the main bend, reaching up to 4 m in amplitude, while the second extends213

–10–
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Figure 4. Comparison between the spatial distributions of the 2020 Elazığ earthquake rup-

ture, historical earthquakes, and highly coupled sections of the EAF. (A) Map view of three

segments the East Anatolian Fault (black lines), overlayed with historical and recent seismicity

from 1900 to January 2020 (Retrieved from AFAD, 2020; NEIC, 2020), shallow interseismic slip

deficit (Bletery et al., 2020) and our assumed fault trace for the 2020 Elazığ event (thick black

line). (B) Possible rupture extents for the 4 most recent Mw > 6.5 earthquakes that struck the

mapped segments of the EAF before the Elazığ event, inferred from Ambraseys (1989); Hubert-

Ferrari et al. (2020). Red stars denote the locations of the mainshock and aftershock of the 1874

sequence (Ambraseys, 1989). Fault segments of the central EAF are indicated, from Duman and

Emre (2013). (C) Depth extent of the slip amplitude inferred for the 2020 Elazığ event (Fig. 3),

along with the highly coupled sections of the EAF between 2003 and 2010 (Bletery et al., 2020),

and the possible extent of the 2010 Mw 6.1 Kovancılar earthquake estimated from the spatial

coverage of aftershocks and basic scaling laws (Wells & Coppersmith, 1994; Tan et al., 2011), as

well as historical and recent seismicity from 1900 to January 2020.
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down to 15-km-depth just west of the main bend (Fig. 3). A large shallow slip (0-5 km,214

2.5 m in amplitude) is also imaged around the second bend. Although the location of215

the epicenter, as estimated from different institutions and authors (e.g., Jamalreyhani216

et al., 2020), comes with a few kilometers uncertainty, it is probably located around the217

main bend. Our inferred model thus suggests the rupture of the Elazığ earthquake is bi-218

lateral, starting at a geometrical complexity and propagating on both sides.219

The inferred slip distribution changes significantly if we assume a planar fault em-220

bedded in a homogeneous crust and we neglect uncertainties stemming from the assump-221

tion of a simplified Earth interior. In particular, a single and shallower slip patch is in-222

ferred above the epicenter, no slip larger than 50 cm being imaged above 2 km, or larger223

than 80 cm below 10 km depth. The slip deficit imaged when assuming a simplified for-224

ward model suggests that the pronounced shallow slip deficit observed by Pousse-Beltran225

et al. (2020) may be an artifact deriving from modeling choices, as proposed by Xu et226

al. (2016) and Ragon et al. (2018).227

Our estimates of the pattern of fault slip differ from other estimates based on sim-228

ilar data (e.g., Melgar et al., 2020; Pousse-Beltran et al., 2020; Cheloni & Akinci, 2020).229

While our preferred model is very different from Pousse-Beltran et al. (2020), it shares230

some characteristics with the preferred one of Melgar et al. (2020), especially for the lo-231

cation of largest slip and the overall shape of the ruptured areas, surrounding the epi-232

center. Melgar et al. (2020) preferred model being primarily driven by high-rate GNSS233

data and assuming a 1D crustal structure, these shared characteristics suggest that as-234

suming a layered crustal model is necessary to infer robust slip estimates in this region.235

4.2 Structurally driven slip on the Pütürge segment236

Fault segmentation and bends are thought to act as geometric barriers that can237

influence, or even drive, rupture initiation, termination and propagation (e.g., G. King238

& Nabelek, 1985; A. A. Barka & Kadinsky-Cade, 1988; Wesnousky, 2006; Duan & Oglesby,239

2005; Aochi et al., 2002; Perrin et al., 2016). Similarly, creeping sections might act as240

barriers to earthquake propagation (e.g., G. C. P. King, 1986; Chlieh et al., 2008; Per-241

fettini et al., 2010; Kaneko et al., 2010).242

The coseismic rupture of the Elazığ earthquake started at the location of the main243

bend of this portion of the EAF (refer to Fig. 3, Melgar et al., 2020; Jamalreyhani et al.,244

–12–
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2020). Peak slip amplitudes and most of the slip are located on both sides of this bend,245

which also acts as a barrier, in particular at depth, where well-resolved low slip values246

separate the two main slip patches. The location of the main bend also corresponds to247

the portion of the EAF that shows maximum shallow interseismic slip deficit (Fig. 4).248

Inferred slip partly overlays this portion of maximum slip deficit, but the coseismic rup-249

ture also extends over moderately coupled regions (30-40%) at greater depths (from 8250

to 15-km-depth). The second bend, to the northeast of the main bend (Fig. 3), is also251

surrounded by large slip amplitudes at shallow depths.252

Slip slowly decreases towards Lake Hazar (Fig. 4). Aftershocks activity also declines253

abruptly at the basin boundary (Melgar et al., 2020; Jamalreyhani et al., 2020). The pull-254

apart basin hosting Lake Hazar might thus have acted as a geometrical barrier to the255

ruptured asperity (as also observed for the Haiyuan fault, China, Liu-Zeng et al., 2007;256

Jolivet et al., 2013).257

Altogether, these observations suggest that the distribution of subsurface fault slip258

during the Elazığ earthquake may largely reflect complexities in the fault geometry. The259

main fault bend is not prone to aseismic slip (at least at shallow depths), and it likely260

triggered the rupture. Both bends might have favored seismic rupture and large coseis-261

mic slip amplitudes. The main bend might also have acted as a barrier to rupture prop-262

agation, similarly to the structure responsible for the pull-apart basin of Lake Hazar. The263

deepest imaged slip patch, down to 15-km-depth, confirms that the seismogenic depth264

is deeper than 10 km for the central EAF (Bulut et al., 2012). Our results do not seem265

to corroborate the shallow locking depth (full creep below 5 km) inferred by Cavalié and266

Jónsson (2014). This behavior appears similar to the NAF, where large earthquakes oc-267

cur on faults also prone to aseismic slip (Cakir et al., 2005, 2014; Schmittbuhl et al., 2016).268

4.3 Seismic potential of the Palu segment269

From Pütürge to Bingöl, interseismic slip deficit at shallow depths varies along strike,270

as inferred from geodetic data from 2003 to 2010 (Bletery et al., 2020, Fig. 4, the city271

of Bingöl is located just out of the map). Three main sections of large shallow interseis-272

mic slip deficit (>70%) are clearly distinct: one on the Pütürge segment, another on the273

Palu segment, and a last one west of the city of Palu. Before the Elazığ event, this por-274

tion of the EAF was struck by 4 large earthquakes in the last 200 years. Two M ∼ 6.8275

–13–
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and M ∼ 7.3 occured west of Lake Hazar in 1893 and 1905 (Ambraseys, 1989). In 1874-276

1875, a sequence of two M ∼ 7.1 and M ∼ 6.7 likely struck the region between Sivrice277

and Palu (Ambraseys, 1989; Cetin et al., 2003; Hubert-Ferrari et al., 2017). East of the278

locality of Palu, the region around the city of Bingöl was affected by a Mw 6.8 in 1971279

(Ambraseys, 1989; Ambraseys & Jackson, 1998).280

Slip deficit has accumulated on the EAF since these recent historical ruptures, and281

the newly coupled portions (from 2003 to 2010) are preferably located in between the282

historically ruptured segments (Bletery et al., 2020). The 2010 Mw 6.1 earthquake that283

occurred near Kovancılar (Akkar et al., 2011) appears to have filled the possible seismic284

gap between the 1874 sequence and the 1971 Bingöl event (Fig. 4B). Similarly, the ex-285

tent of the Elazığ rupture well overlays with a highly coupled portion of the EAF, and286

it may have filled a possible gap between the 1893/1905 earthquakes and the 1874 se-287

quence (Melgar et al., 2020; Duman & Emre, 2013).288

Although the portions of the EAF that have been affected by the Elazığ and Ko-289

vancılar events show seismic activity in the 20 years preceding these events, the Palu seg-290

ment is characterized by relatively low seismic activity (Fig. 4). Together with the low291

slip deficit at depth (or shallow locking depth, Cavalié & Jónsson, 2014; Bletery et al.,292

2020), the lack of seismicity suggests that this segment is creeping. However, this seg-293

ment also shows large interseismic slip deficit in its shallow portion (< 5-km-depth), and294

at greater depths even larger than for the Pütürge segment (before the 2020 event, Bletery295

et al., 2020). Ground shaking maps derived from press reports and testimonies suggest296

the 1874 sequence likely initiated at depth just west of Lake Hazar (Ambraseys, 1989),297

near the epicenter of a Mw ∼ 5 earthquake that occurred in 2010. The Palu segment298

is thus capable of producing large earthquakes. Cheloni and Akinci (2020) also suggest299

that the Elazığ event led to an increase in the Coulomb stress of the Palu segment. Al-300

together, these observations suggest that the Palu segment of the central EAF is likely301

seismogenic.302
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Width ρ Vp Vs µ Std in µ
(km) (mg/m3) (km/s) (km/s) (GPa)

3.0 2.20 3.5 2.33 11.9 6
2.0 2.20 5.0 3.33 24.4 5
4.0 2.65 6.0 4.00 42.4 3.5
26.0 2.85 6.5 4.33 53.4 3
0.0 5.85 7.8 5.20 77.4 3

Table S1. Assumed elastic structure and assumed uncer-
tainties (std = standard deviation). Poisson’s ratio is assumed
constant for each layer.

Satellite Orbital direction Track Interferogram pair

ALOS 2 ascending A182 2020/01/03 - 2020/01/31
ALOS 2 descending D077 2019/03/03 - 2020/03/01
Sentinel 1A ascending TA116 2020/01/21 - 2020/01/27
Sentinel 1A descending TD123 2020/01/22 - 2020/01/28

Table S2. Interferometric pairs used for the study of the Elazig earthquake.
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Figure S1. Empirical covariance functions (cm2) in
fonction of the distance between data points (km) for the
pairs used in the study of the Elazig earthquake. A) Sen-
tinel 1 Ascending. B) Sentinel 1 Descending. C) ALOS2
ascending. D) ALOS2 descending. E) ALOS2 descending
pixel-offset. F) ALOS2 ascending pixel-offset. Radially
symmetric empirical covariance functions (black points)
and associated best fit exponential functions (red curve),
as well as semivariograsm (black curve) are shown. For
each interferogram, we compute the empirical covariance
as a function of the inter-pixel distance and then fit an
exponential function (Jolivet et al. 2012) such that σ and

λ characterize C(i, j) = σ2e−
||i,j||2
λ .
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Figure S2. Posterior marginal probability density func-
tions for selected strike-slip parameters of our preferred
slip model.
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Figure S3. Inferred dip-slip amplitude (top) and associated standard deviation (bottom) for our preferred slip model.
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Figure S4. Observed and predicted surface displace-
ment in the LOS direction for the Sentinel-1 ascending
(left) and descending (right) interferograms. Predictions
are inferred from the average model. The assumed fault
trace is shown with a dark gray line.
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Figure S5. Observed and predicted surface displace-
ment in the LOS direction for the ALOS 2 ascending
(left) and descending (right) interferograms. Predictions
are inferred from the average model. The assumed fault
trace is shown with a dark gray line.
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Figure S6. Observed and predicted pixel-offset surface
displacement in the satellite azimuth direction for ALOS2
ascending (left) and descending (right) pairs. Predictions
are inferred from the average model. The assumed fault
trace is shown with a dark gray line.
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Figure S7. Observed and predicted surface displace-
ment at the GNSS locations. Observed horizontal surface
displacements are shown in gray with 90% confidence
ellipses and vertical displacements as the inner ampli-
tudes. Predicted horizontal displacements are shown in
blue with 90% confidence ellipses and vertical displace-
ments are the outer amplitudes. The assumed fault trace
is shown with a dark gray line and the epicenter is the
white star.
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Figure S8. Inferred slip model and associated posterior
uncertainty for the Elazığ earthquake, assuming a pla-
nar and vertical fault and no epistemic uncertainties. (a)
Map view of the fault trace and local setting, the epicen-
ter is the white star. (b) Depth view of the inferred total
slip amplitudes and directions. (c) Standard deviation of
the inferred strike-slip parameters.
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Figure S9. Observed and predicted surface displace-
ment in the LOS direction for the Sentinel-1 ascending
(left) and descending (right) interferograms. Predictions
are inferred from the average model. The assumed fault
trace is shown with a dark gray line.
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−15cm 0cm 15cm

LOS

Observed20 km

−15cm 0cm 15cm

LOS

Observed20 km

38°00'

−15cm 0cm 15cm

LOS

Predicted20 km

−15cm 0cm 15cm

LOS

Predicted20 km

38°00'

−15cm 0cm 15cm

LOS

Residuals20 km

38°40' 39°20'

−15cm 0cm 15cm

LOS

Residuals20 km

38°40' 39°20'

38°00'

Figure S10. Observed and predicted surface displace-
ment in the LOS direction for the ALOS 2 ascending
(left) and descending (right) interferograms. Predictions
are inferred from the average model. The assumed fault
trace is shown with a dark gray line.
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Figure S11. Observed and predicted pixel-offset surface
displacement in the satellite azimuth direction for ALOS2
ascending (left) and descending (right) pairs. Predictions
are inferred from the average model. The assumed fault
trace is shown with a dark gray line.
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Figure S12. Observed and predicted surface displace-
ment, assuming a planar fault, at the GNSS locations.
Observed horizontal surface displacements are shown in
gray with 90% confidence ellipses and vertical displace-
ments as the inner amplitudes. Predicted horizontal dis-
placements are shown in blue with 90% confidence ellipses
and vertical displacements are the outer amplitudes. The
assumed fault trace is shown with a dark gray line and
the epicenter is the white star.


